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Abstract. For the computation of a few eigenvalues of Ax = µBx, the restarted Arnoldi method
is often applied to transformations, e.g., the shift-invert transformation. Such transformations typi-
cally require the solution of linear systems. This paper presents an analysis of the application of the
transformation (MA − αMB)−1(A − λB) to Arnoldi’s method where α and λ are parameters and
MA − αMB is some approximation to A− αB. In fact, (MA − αMB)−1 corresponds to an iterative
linear system solver for the system (A − αB)x = b. The transformation is an alternative to the
shift-invert transformation (A−αB)−1B when direct system solvers are not available or not feasible.
The restarted Arnoldi method is analyzed in the case of detection of the rightmost eigenvalues of
real nonsymmetric matrices. The method is compared to Davidson’s method by use of numerical
examples.
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1. Introduction. Consider the eigenvalue problem

Ax = µBx,(1)

where A and B are large sparse nonsymmetric real N ×N matrices with eigenvalues
µ1, µ2, . . ., µN ordered by decreasing real part; i.e., i > j ⇒ Re(µi) ≤ Re(µj). The
problem discussed in this paper is that of finding the rightmost eigenvalue(s) of (1)
when N is large. The motivation of this work lies in the determination of the stability
of the linearized system of the form

Bẋ = A(x), x ∈ RN ,(2)

where x represents a state variable. A steady state solution x∗ of such a nonlinear
system is stable if the eigenvalues of (1) have negative real parts. We assume that N
is large and A and B are sparse. The analysis in this paper applies to problems with
any A and B, but we suppose that there is an α such that A− αB is nonsingular.

Popular methods for solving (1) are Krylov methods such as Arnoldi’s method [20]
or Lanczos’s method [9] applied to the shift-invert transformation

TSI = (A− αB)−1B,(3)

where α ∈ R is called the shift. Since the eigenvalues of TSI are θi = (µi − α)−1,
i = 1, . . . , N , the eigenvalues of (1) far from α correspond to eigenvalues of TSI close
to zero. The eigenvalues µi close to α are mapped to the well-separated extreme
eigenvalues of TSI. Typically, an eigenvalue solver applied to TSI converges quickly
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to these well-separated extreme eigenvalues. Because (1) and TSI have the same
eigenvectors, it is feasible to recover eigenvalues and eigenvectors of (1) from the
eigenvectors of TSI (e.g., by use of the Rayleigh quotient). A Krylov method applied
to TSI requires the computation of several matrix–vector productsw = (A−αB)−1B·v,
which involves solving the linear system

(A− αB)w = Bv.(4)

This is typically done by factorizing A − αB = LU and by using several back-
substitutions of the form w = U−1(L−1 Bv) [6, 5, 18, 1, 10].

However, for large N , it may be advantageous to use iterative linear system
solvers for computing the shift-invert transformation. This is discussed in section 2.
We introduce the Cayley transform MC, which allows the computation of eigenvalues
of (1) close to a given λ using iterative linear system solvers. In section 3 we derive
some spectral properties of MC. The theory is valid for the generalized problem, but
a few properties are restricted to the standard case Ax = µx. Section 4 analyzes the
application of Arnoldi’s method to MC, and we present an asymptotic convergence
result for the restarted Arnoldi method. We also briefly discuss Davidson’s method.
In section 5, numerical examples of the standard eigenvalue problem illustrate the
theory. Finally, we conclude in section 6 with some general comments.

2. Shift-invert transformation with iterative linear system solvers. Ar-
noldi’s method (see Algorithm 1 in section 4.2) applied to TSI computes the Krylov
space

Km(TSI, v1) = span{v1, TSIv1, T
2
SIv1, . . . , T

m−1
SI v1}.

The computation of Km requires several matrix–vector products w = (A−αB)−1B ·v.
In this section we discuss whether iterative linear system solvers are suitable for
building Km(TSI, v1).

A straightforward approach to computing w is to apply a Krylov linear system
solver like GMRES [23], BICGSTAB(`) [26], or QMR [7] to (4). This technique was
used by Mittelmann et al. [12, 11] for computing eigenvalues by inverse iteration
using LSQR, SYMMLQ, and GMRES. In general, it is better to solve iteratively the
preconditioned system

P̂−1(A− αB)w = P̂−1(Bv)

by a Krylov method where the preconditioner P̂−1 is a good approximation to (A−
αB)−1.

In this paper, however, the linear system solver is supposed to be stationary (see
also [2]); i.e., the approximate solution of (4) can be written as

ŵ = Gw0 + (MA − αMB)−1Bv,(5)

where w0 is the initial solution, MA − αMB is an approximation to A− αB, and

G = I − (MA − αMB)−1(A− αB)(6)

is called the iteration matrix. Typical stationary solvers are Jacobi and Gauss–Seidel-
type relaxation methods, multigrid solvers, and incomplete LU factorizations like ILU
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or ILUT [22] (ILU with threshold) or ILUTP [22] (ILUT with pivoting). For all these
solvers, the matrix

MSI = (MA − αMB)−1B(7)

provides an approximation to TSI. Note that MA − αMB is just a notation for an
approximation to A−αB. The matrices MA and MB cannot be viewed as approxima-
tions to A and B, respectively. There is a problem when (5) is used for computing Km.
Suppose that w0 = 0; then (5) becomes ŵ = MSIv for each v ∈ CN . So, in Arnoldi’s
method, the Krylov space Km(MSI, v1) rather than Km(TSI, v1) is computed. In fact,
the eigenvectors and eigenvalues of MSI are computed. Since the rightmost eigenval-
ues (and associated eigenvectors) of (1) are recovered from the eigenvectors computed
by Arnoldi’s method, the eigenvectors of MSI and of Ax = µBx should lie close to
each other. To achieve this, the linear system (4) must be solved accurately, which
can be very expensive.

However, we can take advantage of the fact that we are interested only in the
rightmost eigenvalues of (1); thus only a few eigenvectors of MSI must be very good
approximate eigenvectors of (1). We suggest the use of

MC = (MA − αMB)−1(A− λB)(8)

in Arnoldi’s method and Lanczos’s method instead ofMSI. Here λ is an approximation
to the rightmost eigenvalue µ1 of Ax = µBx. In section 3, we show the relation with
the Cayley transform TC = (A− αB)−1(A− λB). The link with shift-invert Arnoldi
is then clear, since Arnoldi’s method applied to TC produces in exact arithmetic the
same results as TSI [10]. To understand the transformation MC, we consider the
following example.

Example 1. Consider the standard eigenvalue problem with

A =


−2 1 0 0

1 −3 1 0
0 1 −4 1
0 0 1 −5

 .
The eigenvalues µi and eigenvectors xi, i = 1, . . . , 4 are

[µi]
4
i=1 =


−1.2547
−2.8227
−4.1773
−5.745


and

[x1, . . . , x4] =


0.7780 0.5533 0.2912 0.0625
0.5798 −0.4552 −0.6340 −0.2339
0.2339 −0.6340 0.4552 0.5798
0.0625 −0.2912 0.5533 −0.7780

 .
Let α = 0. We use one iteration of the Jacobi method with w0 = 0 for solving (4),
so MSI = M−1

A = [diag(A)]−1 = diag(−0.5,−0.333,−0.25,−0.2). The eigenvectors of
M−1

A are the columns of the unit matrix and differ greatly from the eigenvectors of
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A. Hence, Arnoldi’s method applied to MSI cannot be used to recover eigenvalues of
A. For λ = µ1, the matrix MC = [diag(A)]−1(A− λI) is

MC =


0.3726 −0.5000 0 0

−0.3333 0.5818 −0.3333 0
0 −0.2500 0.6863 −0.2500
0 0 −0.2000 0.7491

 .
(λ=µ1, x1) is an eigenpair of A, so (A− λI)x1 = 0 and hence (0, x1) is an eigenpair
of MC. The eigenvalues ηi and the (normalized) eigenvectors u1, . . . , u4 of MC are

[ηi]
4
i=1 =


0

1.1064
0.8175
0.4659

 , [u1, . . . , u4] =


0.7780 0.4301 −0.5675 −0.6047
0.5798 −0.6312 0.5049 0.1128
0.2339 0.5633 0.2105 0.6439
0.0625 −0.3153 −0.6153 0.4549

 .
It can be seen that x1 = u1, so µ1 can be computed as µ1 = uH1 Au1. The other
eigenvectors of MC differ a lot from those of A, which makes recovering µ2, µ3, or µ4

from u2, u3, or u4 impossible.
In this example, λ = µ1 is used, but in practice µ1 is unknown, so a practical

algorithm will vary the parameter λ until λ = µ1; see sections 4 and 5. This transfor-
mation was presented first for use in Davidson’s method by Morgan and Scott [14],
Morgan [13], Sadkane [24], and Crouzeix, Philippe, and Sadkane [4], often with α = λ
(see also Remark 3.2 at the end of section 3), and in the Jacobi–Davidson method by
Sleijpen and Van der Vorst [27]. A similar transformation was suggested for Lanczos’s
method by Morgan and Scott [15].

3. Spectral properties ofMC. In this section, we derive relations between the
eigenpairs of MC and TC. Note that the analysis in this section does not relate to
the convergence of Arnoldi’s method applied to MC. We denote the eigenpairs of MC

and TC by (ηk, uk) and (θi, xi), respectively. The following lemma forms the basis for
the analysis of this section.

Lemma 3.1. The transformation MC consists of two parts:

MC = TC −GTC(9)

with TC = (A− αB)−1(A− λB) and with G given by (6).
Proof.

MC = (MA − αMB)−1(A− λB)
= [(MA − αMB)−1(A− αB)] · [(A− αB)−1(A− λB)]
= [I −G] · [TC]
=TC −GTC.

The matrix G provides a measure for the deviation of MSI and TSI. When ‖G‖
is small, (MA −αMB)−1 represents a good linear system solver. The matrix MC can
be viewed as a perturbation of the matrix TC. Perturbation analysis and a posteriori
error analysis [28, 3, 21] can help find bounds on the eigenvalues and eigenvectors
of MC. However, the classical bounds for T = M + tE are derived in function of
a norm of E and t. They are first-order approximations in t, assuming t is small.
In this application, the perturbation tE is not always small and has a special form.
Therefore, we derive bounds for this specific problem. In the following analysis, the
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iterative linear system solver is supposed to be stationary; see section 2. Theorem 3.3
gives a bound on the eigenvalues of MC. Theorem 3.4 provides a bound on the
eigenvectors of MC.

First, we define the (spectral) projector Pi such that

Pixi = xi,(10)

Pixj = 0, i 6= j

and the complementary projector (or complement) Qi = I − Pi such that

Qixi = 0,(11)

Qixj = xj , i 6= j.

If xi and yi are the right and left eigenvectors of TC corresponding to θi, then yHi xj =
0 when j 6= i and yi can be scaled such that yHi xi = 1. Hence Pi = xiy

H
i and

Qi = I − xiy
H
i . We also recall the following lemma.

Lemma 3.2 (Bauer–Fike [21, 3]). Consider a matrix T ∈ CN×N with (sim-
ple) eigenvalues θ1, . . . , θN and eigenvectors denoted by the matrix X = [x1, . . . , xN ].
Given an approximate eigenpair (σ, s) with ‖s‖2 = 1 for which the residual

Ts− σs = e,(12)

there is an eigenvalue θk of T such that

|θk − σ| ≤ cond2(X) ‖e‖2
with cond2(X) = ‖X‖2‖X−1‖2.

There also exist similar formulae for multiple eigenvalues. In our analysis, we
suppose MC to have N simple eigenvalues.

Theorem 3.3. Suppose that MC has N simple eigenvalues η1, . . . , ηN and that
the eigenvectors are denoted by the matrix U = [u1, . . . , uN ]. For each eigenvalue θi
of TC, i = 1, . . . , N , there is an eigenvalue ηk of MC, such that

|θi − ηk| ≤ |θi| cond2(U) ‖GPi‖2.

Proof. From (9), it follows that

(MC − TC)xi = −GTCxi,

MCxi − θixi = −θiGxi
= −θiGPixi.

By applying Lemma 3.2 with ‖xi‖2 = 1, we see that there is an ηk, 1 ≤ k ≤ N such
that

|ηk − θi| ≤ |θi| cond2(U) ‖GPi‖2.

From the definition of MC, it can be seen that the eigenvectors xi of TC corre-
sponding to θi close to zero are nearly eigenvectors of MC. However, eigenvectors of
MC are not necessarily approximate eigenvectors of TC. For the link between xi and
uk, we prove Theorem 3.4.



6 KARL MEERBERGEN AND DIRK ROOSE

Theorem 3.4. Suppose that MC has distinct eigenvalues. Consider an eigenvec-
tor xi of TC with associate eigenvalue θi and let ‖xi‖1 = 1. Then for each i = 1, . . . , N
there is an eigenpair (ηk, uk) of MC with xi = ωkuk − e, ‖uk‖1 = 1, and

‖e‖1 ≤ 2Ncond1(U)
|θi| ‖QiGPi‖1

minj 6=k |ηj − ηk| ,(13)

|ωk| ≥ 1− ‖e‖1.(14)

A consequence is that when ‖e‖1 is small, |ωk| ' 1.
Proof. Using the spectral projectors Pi and Qi defined by (10) and (11), MC can

be written as

MC = TC − PiGTC −QiGTC

= (I − PiG)TC −QiGTC.

From the definition of Pi, it turns out that there is a γi ∈ C such that (I −PiG)xi =
γixi. As a result,

(I − PiG)TCxi = γiθixi.(15)

Now define ε such that ηk = γiθi + ε. Let xi =
∑N

j=1 ωjuj , ‖uj‖1 = 1, and so,

e = −∑N
j=1,j 6=k ωjuj . Since MC(xi + e) = ηk(xi + e), it follows that

(MC − ηkI)e = ηkxi −MCxi.

From ηkxi = γiθixi + εxi and (15), it follows that ηkxi = (I − PiG)TCxi + εxi and

(MC − ηkI)e = εxi + ((I − PiG)TC −MC)xi

= εxi + θiQiGxi.(16)

Denote the left eigenvector of MC associated with ηj by sj scaled such that sHj uj = 1.

Multiply (16) by sHj ; then we have

sHj (MC − ηkI)e = εsHj xi + θis
H
j QiGxi.(17)

Since sHj MC = ηjs
H
j and, for j 6= k, sHj e = −ωj , we have

−(ηj − ηk)ωj = εsHj xi + θis
H
j QiGxi.(18)

For j = k, (17) becomes

0 = εsHk xi + θis
H
k QiGxi.

We choose k such that |sHj xi| is maximal for j = k, so sHk xi 6= 0, and hence

ε = −θi s
H
k QiGxi
sHk xi

(19)

exists. Since ηj 6= ηk for k 6= j, and by combining (18) and (19), we find that

ωj =
θi

ηk − ηj

(
sHj −

sHj xi

sHk xi
sHk

)
QiGsi.
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Note that k is chosen such that |sHj xi|/|sHk xi| ≤ 1 and note also that Gxi = GPixi.
Hence,

|ωj | ≤ |θi|
|ηj − ηk|2 max

j
(‖sj‖)‖QiGPi‖ ‖xi‖.

Recall that ‖U‖1 = maxj(‖uj‖1) = 1 and ‖U−1‖1 = maxj(‖sj‖1). Thus,

|ωj | ≤ 2
|θi|

|ηj − ηk| ‖U‖1‖U
−1‖1‖QiGPi‖1‖xi‖1

for j = 1, . . . , k− 1, k+ 1, . . . , N . From ‖e‖1 ≤
∑

j 6=k |ωj | (13) follows. Equation (14)
follows from ‖xi‖1 ≤ |ωk|‖uk‖1 + ‖e‖1.

From (13) it follows that there is an eigenvector uk of MC that approximates
the eigenvector xi well if (a) ‖QiGPi‖1 is small, (b) |θi| is small, and (c) ηk is a
well-separated eigenvalue of MC. These three conditions play an important role in
the mapping of an eigenvector uk of MC to an eigenvector xi of TC. In the following
paragraphs, each of these conditions is discussed.

(a) Small ‖QiGPi‖1. The norm ‖QiGPi‖1 is a measure of the portion of xj
in Gxi, j 6= i. It depends on the linear system solver used, the shift α, and the
eigenstructure of (1). A general analysis of all these parameters is hard to do, but a
few general properties can be given. We restrict the analysis in this paragraph to the
standard case B = I. (The extension to the generalized case is not obvious, but some
properties are easily transferred.) In the standard case, G may be written as

G = I − (MA − αI)−1(A− αI).

We demonstrate the influence of α on ‖G‖ and ‖QiGPi‖ by Lemma 3.5 and Theo-
rem 3.6.

Lemma 3.5. Define L by A−αI = MA−αI+L. Let (A−αI)−1 be diagonalizable
and XZX−1 be its Jordan canonical form. If ‖(A− αI)−1L‖2 = ε < 1, then

‖G‖2 ≤ ε

1− ε
.

Moreover,

ε ≤ ‖L‖2
minj |µj − α|cond2(X).

Proof. From (6) and A− αI = MA − αI + L,

G = I − (MA − αI)−1(A− αI),

(MA − αI)G = (MA − αI)− (A− αI),

(A− αI − L)G = −L,(20)

(I − (A− αI)−1L)G = (A− αI)−1L,

G = (I − (A− αI)−1L)−1(A− αI)−1L.

Hence

‖G‖2 ≤ ‖(I − (A− αI)−1L)−1‖2‖(A− αI)−1L‖2.
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From Lemma 2.3.3 in Golub and Van Loan [8, p. 59] it follows that

‖(I − (A− αI)−1L)−1‖2 ≤ 1

1− ‖(A− αI)−1L‖2
if ‖(A− αI)−1L‖2 < 1. This shows the first part of the lemma.

Let us now prove the second part. By using the Jordan canonical form of (A −
αI)−1, we find that

(A− αI)−1L = XZX−1L.

Hence

‖(A− αI)−1L‖2 ≤ ‖X‖2‖Z‖2‖X−1‖2‖L‖2,
from which the second part of the lemma follows.

A similar property is shown for ‖QiGPi‖. (An analogous result was proven by
Morgan [13, Theorem 2].)

Theorem 3.6. Under the conditions and definitions in Lemma 3.5,

‖QiGPi‖2 ≤ ‖L‖2
minj 6=i |µj − α|cond2(X)

1

1− ε
‖Pi‖2.

Proof. From (20),

(A− αI)G = LG− L,

QiGPi = Qi(A− αI)−1L(G− I)Pi.
Hence

‖QiGPi‖2 ≤ ‖Qi(A− αI)−1‖2‖L‖2‖Pi‖2(1 + ‖G‖2)
≤ cond2(X)

minj 6=i |µj − α| ‖L‖2‖Pi‖2
(

1 +
ε

1− ε

)
.

Suppose that L is independent of α, which is the case in iterative linear system
solvers such as Jacobi and Gauss–Seidel. (Note that this is not the case in general,
e.g., for incomplete factorizations.) Then, following Theorem 3.6, ‖QiGPi‖ can be
very small when the eigenvalues µj , j 6= i lie far from α, even when µi lies close
to α. Unfortunately, this implies that µi should be a well-separated eigenvalue of
Ax = µBx and this is, in general, not the case. Therefore, the only practical way to
reduce ‖QiGPi‖ is to move α away from the spectrum. We illustrate this in Example 2.
Since, in general, L depends on α, this can only be viewed as a qualitative statement.

Example 2. The Olmstead model [16] represents the flow of a layer of viscoelastic
fluid heated from below. The equations are

∂u

∂t
= (1− C)

∂2v

∂X2
+ C

∂2u

∂X2
+Ru− u3,

B
∂v

∂t
=u− v

with boundary conditions u(0) = u(1) = 0 and v(0) = v(1) = 0. u represents the
speed of the fluid and v is related to viscoelastic forces. The equation was discretized
with central differences with grid size h = 1/(N/2). After discretization, the equation
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may be written as ẋ = f(x) with x = [u1, v1, u2, v2, . . ., uN/2, vN/2]
T . For the

parameter values B = 2, C = 0.1, and R = 4.7, the equation has the trivial steady
state solution [u, v] = 0. The size of the Jacobian matrix A = ∂f/∂x is 1000, and the
rightmost eigenvalue of Ax = λx is µ1 = 4.510184. Linear systems with A− αI were
solved approximately by the Sparskit routine ILUT(lfil=2, tol=0.001) [22]. Table 1
shows ‖G‖ and ‖Q1GP1‖ for three values of α.

Table 1

α ‖G‖1 ‖Q1GP1‖1
4.6 2 106 5 102

6 3 10−1 3 10−6

10 1 10−12 2 10−14

It is clear that shifting α to the right makes ‖G‖ and ‖Q1GP1‖ smaller. It is also
clear in this example that ‖Q1GP1‖ � ‖G‖ if α lies close to µ1.

(b) Small |θi|. Recall that TC = (A− αB)−1(A− λB); hence the transformation
TC has eigenvalues

θi =
µi − λ

µi − α
= 1 + (α− λ)

1

µi − α
.(21)

In fact, the θi are given by the Cayley transform or Möbius transform [25] of µi. |θi|
is small when ∣∣∣∣µi − λ

µi − α

∣∣∣∣ ≤ ε(22)

for a given positive ε. Formula (22) holds for µi lying in the disk with center (ε2α−
λ)/(ε2−1) and radius |α−λ|ε/|1−ε2| [10]. When ε is small, the center is approximately
λ and the radius is |α − λ|ε. Also note that when α moves away from λ, the radius
of the circle becomes larger. This means that the region of eigenvalues in which the
associated eigenvectors correspond well to those of MC becomes larger.

(c) Well-separated eigenvalues. Recall that µ1 is the rightmost eigenvalue. Sup-
pose that λ = µ1. Then TC maps the rightmost eigenvalue µ1 to θ1 = 0. If α lies to
the right of λ, the other eigenvalues lie relatively far from α and are mapped relatively
close to 1 (see the second expression in (21)). A typical situation is shown in Figure 1.
The “gap” σ between θ1 and the cluster of eigenvalues close to 1 becomes larger when
α moves to λ. If ‖G‖ is small, then the spectrum of MC is similar in shape to the
spectrum of TC. Hence the eigenvalues of MC are well separated when α lies close to
λ (see Figure 1).

It appears that α plays a conflicting role concerning the mapping from Ax = µBx
to MCu = ηu: when α moves further to the right of µ1, we see that

(i) ‖Q1GP1‖ is smaller, which is good,
(ii) the disk (22) becomes larger, which is also good,
(iii) the eigenvalues of TC become less separated, which implies less separation

of the eigenvalues of MC, which is bad.
Thus the conditions are difficult to reconcile.
Remark 3.1. Note that in the analysis above the parameter λ may take arbi-

trary values. If λ is a simple eigenvalue of Ax = µBx, say λ = µ1, the bounds in
Theorems 3.3 and 3.4 can be made sharper. Since θ1 = 0 and θi 6= 0 for i > 1, we
have TC = Q1TC. Hence

MC = TC −GTC = TC −GQ1TC.
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Fig. 1. Spectrum of TC and MC for α = 5 and λ = µ1 ' 1.695 for the Olmstead model for
R = 2 and N = 100. MC is formed by 10 Gauss–Seidel iterations.

If the matrix TC is normal, then Q1 is an orthogonal projector, so ‖Q1‖2 = 1. As a
result ‖GQ1‖2 ≤ ‖G‖2. If TC is slightly nonnormal ‖GQ1‖ < ‖G‖ is often valid, but
if TC is highly nonnormal, i.e., when left and right eigenvectors y1 and x1 are nearly
orthogonal, then ‖GQ1‖ > ‖G‖ is possible. By replacing G by GQ1 in Theorems 3.3
and 3.4, the bounds on ‖xi − uk‖ and |θi − ηk| are sharper for normal and slightly
nonnormal matrices when λ is an eigenvalue of Ax = µBx.

Remark 3.2. In Davidson’s method the choice of α = λ is very popular. If
λ = α = µ1, then

MC = (MA − λMB)−1(A− λB) = I −G.

Because (0, x1) is an eigenpair of MC,

MC = Q1 −GQ1.

The theorems above can still be used with TC = Q1. For the details of this choice of
α, see the work of Morgan [13] and Crouzeix, Philippe, and Sadkane [4].

4. Algorithms.

4.1. Implementation ofMC. A black box iterative linear system solver applied
to the linear system (A− αB)z = b improves an initial guess z0 by

z1 = Gz0 + (MA − αMB)−1b(23)

with G given by (6). G can be viewed as the iteration matrix of a solver consisting of
one iteration of (23). The input of the black box iterative solver consists of the matrix
(A−αB), the initial solution z0, and the right-hand side b. The multiplication MC ·v
can be written as follows:

w = MCv = (MA − αMB)−1(A− λB)v.(24)

Expression (24) is computed from (23) with z0 = 0, b = (A− λB)v, and w = z1. The
calculation of b = (A−λB)v requires two matrix–vector products. The multiplication
by A can be avoided as follows. Rewrite (24) as

w = MCv = (MA − αMB)−1(A− αB)v + (MA − αMB)−1(α− λ)Bv

= (I −G)v + (MA − αMB)−1(α− λ)Bv

= v − [Gv − (MA − αMB)−1(α− λ)Bv].(25)

Expression (25) is computed as w = v − z1, where z1 results from (23) with b =
−(α− λ)Bv and z0 = v. Note that in Arnoldi’s process w = z1 = (I −MC)v can be
used rather than w = v − z1 such that the first term in the right-hand side of (25)
can be thrown away, since MC and I −MC give the same Krylov basis.
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4.2. The restarted Arnoldi method. Arnoldi’s process (inner loop in Algo-
rithm 1) computes an orthonormal basis {v1, . . . , vm} of the Krylov space Km =
Km(MC, v1). It is well known that Km is rich in eigenvectors of MC associated with
the well-separated extreme eigenvalues of MC [21]. If α is chosen as explained at the
end of section 3, then the eigenvalues of MC close to zero are well separated. Hence
Km is rich in the eigenvectors xi associated with eigenvalues of Ax = µBx close to λ.
An approximate eigenpair (µ̂i, x̂i) is recovered from the eigenpairs of Hmz = µFmz
with Hm = V H

m AVm and Fm = V H
m BVm by the QZ method; see Algorithm 1. If

B = I, then the eigenvalues are computed from Hmz = µz by the QR method. In
each outer iteration, i.e., after each Arnoldi process, the parameters λ and α are reset
and the process is restarted. The approximate eigenvector x̂1 is used as initial vector
v1. After each outer iteration, the convergence is tested by use of the residual norm
‖Ax̂1 − µ̂1Bx̂1‖2/‖x̂1‖2.

Algorithm 1 (the restarted Arnoldi method applied to MC).
Given α, λ, and v1 with ‖v1‖2=1.
repeat

Set up the linear system solver for (A− αB)w = Bv.
for i = 1 to m− 1 do

Form wi = MCvi.
Orthonormalize wi against v1, . . . , vi.
Let vi+1 = wi.

end for
Compute Hm = V H

m AVm and Fm = V H
m BVm ∈ Cm×m with Vm = [v1, . . . , vm].

Compute the eigenpairs (µ̂j , ẑj) of Hmz = µFmz by the QZ method.
Form x̂1 = Vmẑ1.
Set λ = µ̂1 and reset α (e.g., α = Re(λ)).
Set v1 = x̂1/‖x̂1‖2.

until ‖Ax̂1 − µ̂1Bx̂1‖2 < ε‖x̂1‖2
Before we analyze the convergence of Arnoldi’s method, we consider the following

example.
Example 3. Recall the Olmstead model from Example 2. Here we consider the

matrix of size N = 100 for the parameter value R = 2. The rightmost eigenvalue of
A is the real value µ1 = 1.6905. One iteration of Algorithm 1 was run with m = 20,
λ = µ1 = 1.6905, and α, as shown in Table 2. Of course, since µ1 is unknown,
this can never be done in practice, but the results give us interesting information on
the convergence of Algorithm 1. The linear systems were solved approximately by 10
Gauss–Seidel iterations (Figure 2.2 in [2]). The initial vector was v1 = [1, . . . , 1]T /

√
N .

Figure 2 shows the rightmost part of the spectrum of A and the spectrum of TC for
α = 5. It also shows the radius ρ of the circle centered at 1, enclosing the nonzero
eigenvalues of TC. Figure 1 compares the spectra of TC and MC for α = 5. Note that
ρ is a measure of the separation of the eigenvalues of TC and MC. From the results
in Table 2, the following conclusions can be drawn.

1. If α is moved away from λ, then the linear systems are easier to solve since
‖G‖1 is smaller.

2. If α is moved to the right, then the eigenvalues of TC are less well separated
since ρ is larger.

3. There is an optimum (α = 5) that makes the residual norm minimal. For
this value, both ρ and ‖G‖ are small, and this explains the faster convergence for this
case. As we shall see in Theorem 4.2, ‖Q1GQ1‖ should be considered to explain the
convergence.
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Table 2

One iteration of the restarted Arnoldi algorithm for the Olmstead model.

α Residual norms ‖G‖1 ‖Q1GQ1‖1 ρ

λ1 8 102 2 1018 2 1018 0
4 2 100 153 90 0.65
5 3 10−5 13 17 0.73
6 3 10−4 3 4.8 0.78

The eight rightmost eigenvalues of A Plot of Cayley maps θi for α = 5
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Fig. 2. Mapping of eigenvalues of the Olmstead model.

4.3. Asymptotic convergence of the restarted Arnoldi method. Let us
now concentrate on the convergence of one iteration of Algorithm 1. The Arnoldi
process computes approximate eigenpairs (µ̂i, x̂i) with residual

ri = Ax̂i − µ̂iBx̂i ⊥ Km.
In the work by Saad [20], the convergence of an eigenvector xi in m Arnoldi steps is
expressed in terms of

‖(I − PK)xi‖2,(26)

where PKxi with PK = VmV
H
m denotes the orthogonal projection of xi on the space

Km. Equation (26) can be viewed as the sine of the acute angle between xi and the
space Km. In general, the computed eigenvector x̂i is an approximation of PKxi and
the actual error ‖x̂i − xi‖2 is larger than (26). Using standard perturbation analysis
(e.g., [3, Chapters 2 and 4]), one can bound |µ1− µ̂1| and ‖x1− x̂1‖2 from the residual
norm ‖(Hm − µ1Fm)z1‖2 with z1 = V H

m x1/‖V H
m x1‖2. This residual can be bounded

as follows.
Lemma 4.1. Let (µ, x) be an eigenpair of Ax = µBx. Let Vm, Hm, and Fm be

computed by one iteration in Algorithm 1; then for z = V H
m x/‖V H

m x‖2,

‖(Hm − µFm)z‖2 ≤ γ
‖(I − PK)x‖2
‖PKx‖2

with γ some constant.
Proof. See [21, p. 130] for the standard case B = I. A similar expression is derived

for the generalized case by computing an upper bound on ‖(Am − µBm)PKx‖2 in
equation (4.23) in [21] with Am = PKAPK = V HmV

H and Bm = PKBPK = V FmV
H

and γ = ‖PK(A− µB)(I − PK)‖2.
This lemma shows that it is meaningful to derive upper bounds to (26) to judge

the convergence rate of Arnoldi’s process. The following theorem gives such an upper
bound when Km is a Krylov space of MC.
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Theorem 4.2. Let P1 be the spectral projector P1 = x1y
H
1 with xH1 y1 = 1 and let

Q1 be its spectral complement. Let TC be diagonalizable with Jordan canonical form
XZX−1. Consider v1 = δxx1 + δtt with P1t = 0 and ‖v1‖2 = ‖x1‖2 = ‖t‖2 = 1.
Then for any ζ ∈ C, and if θ1 = 0,

‖x1 − PKx1‖2 ≤ |γ|(cond2(X))m−1

(
max
j>1

∣∣∣∣ ζ − θj
ζ − θ1

∣∣∣∣+ ‖Q1GQ1‖2 max
j>1

∣∣∣∣ θj
ζ − θ1

∣∣∣∣)m−1

,

(27)
with

γ =
δt

δx + δtyH1 (ζI −MC)m−1t/(ζ − θ1)m−1
.(28)

Note that for normal matrices, P1 andQ1 are orthogonal projectors, since y1 = x1,
and cond2(X) = 1.

Proof. Consider the vector v1 as defined above. Following [21, Theorem 3.1],
the orthogonal projection PKx1 makes ‖x1 − w‖2 minimal for all w ∈ Km(MC, v1).
Therefore, ‖x1 − PKx1‖2 ≤ ‖x1 − w‖2 for any w ∈ Km(MC, v1), so also for

w =
γ

δt(ζ − θ1)m−1
(ζI −MC)m−1v1.

We shall first prove that

‖δt(ζ − θ1)
m−1/γ(x1 − w)‖2 ≤ |δt| (‖Q1(ζI − TC)Q1‖2

+ ‖Q1GQ1‖2 ‖Q1TC‖2)m−1
.(29)

From (ζI −MC) = (ζI − TC) +GTC, θ1 = 0, and v1 = δxx1 + δtt, we derive that

(ζI −MC)m−1v1 = δx(ζ − θ1)
m−1x1 + δt(ζI −MC)m−1t.(30)

To prove (29), observe that I = P1 +Q1, Q1 · P1 = 0, and t = Q1t. Hence

(ζI −MC)m−1t = P1(ζI −MC)m−1t+Q1(ζI −MC)m−1Q1t,

with

P1(ζI −MC)m−1t = (yH1 (ζI −MC)m−1t)x1

and

Q1(ζI −MC)m−1Q1t = (Q1(ζ −MC)Q1)
m−1t

= (Q1(ζI − TC)Q1 +Q1GTCQ1)
m−1t.

Thus (30) becomes

(ζI −MC)m−1v1 = (δx(ζ − θ1)
m−1 + δty

H
1 (ζI −MC)m−1t)x1

+δt(Q1(ζI − TC)Q1 +Q1GTCQ1)
m−1t,

from which (29) follows. Since ‖Q1TC‖2 ≤ cond2(X) maxj>1 |θj | and ‖Q1(ζI −
TC)‖2 ≤ cond2(X) maxj>1 |ζ − θj |, (27) immediately follows from (29).

The theorem covers two extremal cases.
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Fig. 3. Illustration of the choice of ζ.

1. If G = 0, then γ = δt/δx since MC = TC and yH1 (ζI − TC)t = 0. In this case,

‖x1 − PKx1‖ ≤ cond2(X)m−1

∣∣∣∣ δtδx
∣∣∣∣max
j>1

∣∣∣∣ ζ − θj
ζ − θ1

∣∣∣∣m−1

,

which depends only on spectral properties of TC, just as in the shift-invert Arnoldi
method. ‖x1−PKx1‖ is small if |ζ−θj | � |ζ−θ1| for j = 2, . . . , N . This is equivalent
to the condition that there is a circle C with center ζ that encloses the eigenvalues θj ,
j = 2, . . . , N of TC without enclosing θ1; see Figure 3. In fact, maxi>1 |ζ − θi| is the
radius ρ of C such that the ratio ρ/|ζ − θ1| determines the convergence rate. Clearly,
the ratio ρ/|ζ− θ1| is smaller when α lies closer to µ1 (see, e.g., Example 3 for ζ = 1).
This explains why one traditionally picks α as close as possible to the eigenvalue µ1

in shift-invert Arnoldi.
2. If ‖G‖ � ‖TC‖ and δx is small, then ζI −MC ' GTC and

‖x1 − PKx1‖ ≤ cond(X)m−1 (‖Q1GQ1‖maxj>1 |θj |)m−1

|yH1 (GTC)m−1t| .

Thus, roughly speaking, the convergence depends on the ratio ‖Q1GQ1‖/‖P1GQ1‖.
Theorem 4.2 can also be used to explain the asymptotic convergence of the

restarted Arnoldi method. Assuming that after a number of iterations the vector
x̂1 is rich in x1 such that in the next iteration δx � δt and λ ' µ1, the error reduc-
tion is given by (27) with γ ' δt/δx. Fast asymptotic convergence is thus reached
by a compromise between a good separation of eigenvalues of TC (i.e., small ρ) and
small ‖Q1GQ1‖. On the one hand, α should lie close to µ1 to make ρ/|ζ − θ1| small,
but on the other ‖Q1GQ1‖ must be small, which often can be obtained by choosing
α far away from µ1. These points agree with the results in Example 3. Shifting α
to the right also provides good mapping properties between the eigenvectors xi of
TC and uk of MC, as was explained at the end of section 3. Note that Theorem 4.2
does not provide a sharp bound, but rather shows the factors that play a role in the
convergence.

Remark 4.1. Note that a similar bound on the asymptotic convergence can be
derived instead of (27); namely,

‖x1−PKx1‖2 ≤ |γ|cond2(X)

(
max
j>1

∣∣∣∣ ζ − θj
ζ − θ1

∣∣∣∣+ cond2(X)‖Q1GQ1‖2 max
j>1

∣∣∣∣ θj
ζ − θ1

∣∣∣∣)m−1

.

This upper bound is more sensitive to the solution of the linear system, but less to
the separation of the eigenvalues of TC if cond2(X) is large.
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4.4. The restarted Davidson method. For comparison, we give a short dis-
cussion of Davidson’s method. In this method (inner loop in Algorithm 2), the pa-
rameter λ is updated before each matrix–vector multiplication wi = MCx̂1. In fact,
in each step of the method the eigenvector x̂1 becomes richer in the eigenvector x1.
Note that the subspace Km spanned by v1, . . . , vm is no longer a Krylov space since
the matrix MC changes in each step. Also note that wi is computed from the approx-
imate rightmost eigenvector x̂1 and not from the basis vector vi. A detailed analysis
of Davidson’s method is given in [14, 13, 24, 4]. Note that if λ = µ1, Theorem 4.2
also holds for the asymptotic convergence of the restarted Davidson method, since in
this case Arnoldi and Davidson produce the same space. Nevertheless, we shall see
in the examples in section 5 that the choice of α seems to have less influence on the
convergence than in the restarted Arnoldi method.

Algorithm 2 (a restarted Davidson algorithm applied to MC).
Given α and x̂1.
repeat

Set up the linear system solver applied to (4).
Let v1 = x̂1/‖x̂1‖.
for i = 1 to m do

Compute Hi = V H
i AVi and Fi = V H

i AVi ∈ Ci×i with Vi = [v1, . . . , vi].
Compute the eigenpairs (µ̂j , ẑj) of Hi = µFiz by the QZ method.
Form x̂1 = Viẑ1.
Set λ = µ̂1.
if i = m then exit loop
Form wi = MCx̂1.
Orthonormalize wi against v1, . . . , vi.
Let vi+1 = wi.

end for
Reset α.

until ‖Ax̂1 − µ̂1Bx̂1‖2 < ε‖x̂1‖2
4.5. How to manage complex arithmetic. In general, µ1 is complex. There-

fore, λ and α can take complex values. This makes complex vectors in Algorithms 1
and 2 inevitable. We now explain how complex arithmetic can be restricted.

The use of shift-invert with complex shift for real matrices has been studied by
Parlett and Saad [17] and Ruhe [19]. Following the former approach, the eigenpairs
are computed from the Krylov space Km(Re(MC), v1) rather than Km(MC, v1), which
involves only real vectors. However, this approach is useful only when Im(λ) is very
small, since when α is real,

Re(MC) = (MA − αMB)−1(A− Re(λ)B),

and eigenvectors of Ax = µBx corresponding to the eigenvalues close to λ do not
correspond well to those of Re(MC). On the other hand, the approach by Ruhe is
very useful in this application. He uses the subspace R spanned by

BR = {Re(v1), Im(v1), . . . ,Re(vm), Im(vm)},
where v1, . . . , vm are the (complex) Arnoldi vectors that span Km(MC, v1). Because
BR is real, we refer to projection on R as real projection and projection on Km as
complex projection. In general, the dimension of R lies between m and 2m.

One advantage of using R instead of Km is that V TAV can be computed by
real arithmetic. The most important advantage is that the subspace R contains Km.
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Hence eigenvectors are approximated better by orthogonal projection on R than on
Km. We will illustrate the difference between real and complex projection in the
examples in section 5.

A similar treatment for avoiding complex arithmetic can be used in Davidson’s
method by splitting the vectors vi, i = 1, . . . ,m in Algorithm 2 into their real and
imaginary parts and adding these parts separately to the subspace. This is suggested
by Morgan [13] and Sadkane [24].

Remark 4.2. In each outer iteration of Arnoldi’s method and in each step of
Davidson’s method, λ is set to the rightmost approximate eigenvalue µ̂1. With this
choice, we hope that λ lies close to µ1 in order to achieve a good link between the
eigenvectors of MC and Ax = µBx. Suppose that the rightmost eigenvalues of Ax =
µBx are complex and µ2 = µ̄1. With complex projection, µ̂1 and µ̂2 are the rightmost
eigenvalues of Hmz = µFmz. Because Hm and Fm are complex, µ̂2 = ¯̂µ1 is not true
in general. Both µ̂1 and µ̂2 can be selected as the next λ. We always choose λ as the
computed rightmost eigenvalue in the upper half plane. In the case of real projection,
this selection strategy is not necessary since Hm is real and so µ̂1 = ¯̂µ2.

5. Numerical examples. For the restarted Arnoldi method, we illustrate the
influence of m on the convergence rate (Example 4). We also compare the restarted
Arnoldi and Davidson methods (Examples 5 and 6) and real and complex projection
(Example 5). In our experiments, the first iteration of Algorithms 1 and 2 consists
of m steps of Arnoldi’s process applied to MC with α = λ = 0 and with v1 =
[1, . . . , 1]T /

√
N .

Example 4. This example originates from the system{
ut = uss + 5vss,
vt = vss + u

with spatial coordinate s ∈ [0, 1] subject to homogeneous Dirichlet boundary con-
ditions. After discretization with central differences with grid size h = 1

N/2 , the

equations are written as ẋ = f(x) with x = [u1, v1, u2, v2, . . . , uN/2, vN/2]
T and the

problem leads to a standard eigenvalue problem. The size of the Jacobian matrix is
N = 3070 and µ1,2 ' −9.87 ± 7.02i. We used Arnoldi’s method (Algorithm 1) with
complex projection. The linear systems were solved by one Gauss–Seidel multigrid
V-cycle without presmoothing and with two postsmoothing steps. Formula (25) was
used to compute w = MCv. We examine the choice of m in the restarted Arnoldi
process. In each iteration of Algorithm 1, α = 0 was used, so α was not reset. The
history of the residual norm r1 = ‖Ax̂1 − λx̂1‖2/‖x̂1‖2 and the execution times for
one processor of the IBM SP2 are given in Table 3 for various values of m.

The following observations are now made. The asymptotic convergence is almost
linear and the convergence speed increases with increasing m, which was predicted by
Theorem 4.2. Nevertheless, the total execution time increases for larger m. This can
be explained by the fact that at least two iterations are necessary to find a λ that lies
in the neighborhood of µ1, independent of m, which is very expensive for large m. In
fact, a large number of inner Arnoldi steps find the eigenvectors of MC better, but do
not necessarily find a better λ, since the eigenvectors of MC do not correspond very
well to those of the original eigenvalue problem in the first iterations.

Example 5. Here we compare Arnoldi’s and Davidson’s methods (Algorithms 1
and 2) for different strategies for choosing α, and we also compare real and complex
projection. We solved the problem in Example 4 forN = 3070 with the same multigrid
solver. In a first run, α was reset to λ in each (outer) iteration and in a second run
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Table 3

Influence of m on the convergence of the restarted Arnoldi method: residual norms and execu-
tion times for Example 4.

m 3 5 10 20 30

iteration 1 3 105 1 105 1 104 7 103 6 103

2 2 102 2 101 9 100 6 100 5 100

3 7 103 1 100 9 10−3 3 10−3 2 10−3

4 4 102 2 10−2 9 10−7 3 10−7 8 10−8

5 4 102 4 10−4 1 10−9 1 10−9 1 10−9

6 3 101 8 10−6

7 5 100 2 10−7

8 6 10−1 4 10−9

9 9 10−2

10 7 10−3

11 8 10−4

12 2 10−4

13 8 10−5

14 2 10−5

15 2 10−6

16 3 10−7

17 1 10−7

18 2 10−8

19 2 10−9

time (sec) 2.4 2.2 3.8 12 25

Table 4

Comparison of the restarted Arnoldi and Davidson methods: results for Example 5.

α = λ α = 0
Arnoldi Davidson Arnoldi Davidson

projection complex real complex real complex real complex real

iter. 1 1.4 104 1.4 104 1.4 104 1.4 104 1.4 104 1.4 104 1.4 104 1.4 104

2 5.4 102 5.4 102 3.0 102 5.1 102 8.6 100 8.6 100 6.4 10−2 6.8 10−3

3 7.7 101 1.9 101 1.4 101 3.0 10−3 8.7 10−3 3.6 10−4 1.3 10−7 6.1 10−9

4 6.9 10−1 4.6 10−2 3.7 10−6 2.1 10−9 9.2 10−7 1.8 10−9 1.2 10−9

5 2.7 10−2 2.9 10−8 1.3 10−9 1.2 10−9

6 1.1 10−3 1.6 10−9

7 7.8 10−5

8 1.5 10−6

9 5.3 10−7

10 1.8 10−7

11 3.5 10−8

12 8.1 10−9

iterations 12 5 5 5 5 4 4 3
time (sec.) 10 5.3 4.9 4.4 3.8 3.4 3.8 3.4

ρ(G) 3.5 0.11

α was kept equal to zero. The subspace dimension m is set to 10. Table 4 shows the
residual norm r1 per outer iteration. Also, the number of iterations, the execution
times, and the spectral radius of G in the last iteration are given.

It appears that in the first iteration(s), real and complex projection have the same
residuals. This is because λ takes real values in the first iterations, and so there is no
difference between real and complex projection.

Recall from the numerical results from Example 4 that frequent updates of λ
often lead to faster convergence. This explains why Davidson’s method converges
faster than Arnoldi’s method. However, note that one iteration of Davidson’s method
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Fig. 4. Influence of the choice of α on the convergence of the restarted Arnoldi method: spectra
of TC and MC and norms of G for Example 5 with λ = µ1 and N = 46.

is more expensive because of the orthogonal projections in the inner iterations of the
algorithm.

In Arnoldi’s method, real projection produces smaller residuals than complex
projection for the same number of iterations, especially when α lies close to λ. In
Davidson’s method, the advantage of real projection is less pronounced.

This example also illustrates the influence of moving α to the right of the spec-
trum. To explain the difference in convergence speed for Arnoldi’s method (12 iter-
ations for α = λ and 6 iterations for α = 0), we refer to Theorem 4.2 and section 3.
Figure 4 shows the spectra of TC and MC for N = 46, λ = µ1, and α = λ and α = 0.
Note that α = 0 lies further from the spectrum than α = λ. First consider α = λ = µ1.
Recall from Remark 3.2 that TC = Q1 when α = λ. Hence, TC has eigenvalues zero
and 1. The large eigenvalue η2 = 6.4 + 1.3i seems to hinder the convergence. ρ(G)
and ‖Q1GQ1‖2 are quite large. For α = 0, the spectral radius ρ(G) and ‖Q1GQ1‖
are rather small. This makes the second term in (27) smaller. Although moving α
away from λ makes the eigenvalues of TC less separated, they are separated enough
to make the first term in (27) small for a well-chosen ζ. A similar conclusion holds
for Davidson’s method, but the choice of α seems to be less important.

Example 6. We have studied the influence of the choice of α on the convergence
of the restarted Arnoldi method and restarted Davidson method for the Olmstead
eigenvalue problem from Example 3 with rightmost eigenvalue µ1 = 1.6905 (see Fig-
ure 2). The linear systems were solved approximately by 10 Gauss–Seidel iterations.
Formula (24) was used to compute w = MCv. The algorithms were run with m = 10.
Since λ is real, it is sufficient to compare the results for real projection. It is clear
from Table 5 that Davidson is less susceptible to α, while Arnoldi’s method is very
sensitive to α. We found that both methods stagnate for σ = λ̂+ 2.

6. Conclusions. This paper presents and analyzes the use of MC = (MA −
αMB)−1(A − λB) in the restarted Arnoldi method. The analysis is general in the
sense that no restrictions are imposed on the linear system solver that is used to solve
(A − αB)z = b, and is particularly useful to explain the asymptotic convergence of
restarted Arnoldi and Davidson. If the eigenvalues are complex λ is also complex,
and this fact involves complex arithmetic. However, the complex work is reduced by
using a real α and by the use of real projection. If a good iterative linear system
solver is used, then Arnoldi’s method quickly converges to a good approximation of
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Table 5

Influence of the choice of α on the convergence of the restarted Arnoldi and Davidson methods:
results for the Olmstead model in Example 6.

α = Re(λ) + 2.5 α = Re(λ) + 3 α = Re(λ) + 4
iteration Arnoldi Davidson Arnoldi Davidson Arnoldi Davidson

1 2.1 102 2.1 102 2.1 102 2.1 102 2.1 102 2.1 102

2 3.0 10−1 5.7 10−1 3.1 10−1 7.3 10−1 4.7 10−1 1.4 100

3 3.4 10−1 3.0 10−1 6.8 10−2 1.3 10−2 4.3 10−3 5.2 10−2

4 1.0 10−1 6.1 10−2 6.3 10−4 2.1 10−5 3.8 10−5 4.0 10−4

5 5.0 10−2 1.4 10−3 2.7 10−5 4.3 10−8 3.3 10−7 2.4 10−6

6 2.5 10−2 1.1 10−4 5.5 10−6 4.6 10−11 3.9 10−9 1.0 10−8

7 5.2 10−3 1.3 10−5 3.5 10−9 7.9 10−11

8 2.3 10−3 5.5 10−7

9 1.3 10−4 7.4 10−8

10 2.4 10−5 6.0 10−9

11 1.4 10−6

12 1.1 10−7

13 4.7 10−9

iterations 13 10 7 6 6 7
time (sec.) 0.15 0.21 0.09 0.14 0.08 0.15
‖Q1GQ1‖1 63 27 6.7

µ1. Davidson’s method quickly converges to accurate estimates of µ1, in general faster
than Arnoldi’s method. In our applications, however, Arnoldi’s method is competitive
with Davidson’s method.

There is no general guideline for choosing α. When a direct linear system solver
is used all arguments are in favor of choosing α close to µ1, but from the experiments
it looks as though an α further away gives smoother convergence behavior and shorter
overall solution time with an iterative solver. Of course, it depends on the system
solver whether and how far α should be moved away. Perhaps this question needs
further investigation. The convergence of the generalized problem depends on the
matrix B and thus it is much harder to formulate a general convergence result in this
case.
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Abstract. Let H be a Hermitian matrix, X an orthonormal matrix, and M = X∗HX. Then
the eigenvalues of M approximate some eigenvalues of H with an absolute error bounded by ‖R‖2,
R = HX−XM . This work contains estimates of |λ−µ|/|µ| and |λ−µ|/|λ|, where µ, λ is a matching
pair of the eigenvalues of M and H when H is semidefinite. The general bound is expressed in terms
of sines of the canonical angles between certain subspaces associated with H and X. A more refined
quadratic bound which uses the relative distances between eigenvalues is also proved.
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Introduction. Let H ∈ Cn×n be Hermitian, X ∈ Cn×m orthonormal, and

M = X∗HX, R = HX −XM.

Let X = R(X) be the range of X and σ(H) = {λj}, σ(M) = {µk} the spectra of H,
M , respectively. For the eigenvalues of H and M we assume

λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm,

respectively. If X is an invariant subspace of H, then R = 0 and σ(M) ⊆ σ(H). If
X is close to an invariant subspace of H, then R is close to 0 and each eigenvalue of
M is close to an eigenvalue of H. This claim is quantified by the following classical
results.

Theorem 0.1 (see Kahan [8]). There are eigenvalues λjk , k = 1, . . . ,m of H
such that

| λjk − µk |≤ ‖R‖2, k = 1, . . . ,m.(1)

Theorem 0.2 (see Sun [13]). Let Y = R(Y ) be an invariant subspace of H with
orthonormal basis Y ∈ Cn×m. Let λj1 ≥ · · · ≥ λjm be the eigenvalues of Y ∗HY , and
ΛY = diag (λj1 , . . . , λjm), ΛX = diag (µ1, . . . , µm). If for some α, β ∈ R and δ0 > 0,

σ(M) ⊂ [α, β], σ(H) \ σ(Y ∗HY ) ⊂ (−∞, α− δ0]
⋃

[β + δ0,+∞) (or vice versa)

and if ρ ≡ ‖R‖2/δ0 < 1, then for any unitarily invariant norm ‖ · ‖,

‖ΛY − ΛX ‖ ≤ 1√
1− ρ2

‖R‖2‖R‖
δ0

.
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Furthermore, if δ ≡ min{|µ − λ| : µ ∈ σ(M), λ ∈ σ(H) \ σ(Y ∗HY )} > 0, and
ρF ≡ ‖R‖F /δ < 1, then

‖ΛY − ΛX ‖F ≤ 1√
1− ρ2

F

‖R‖2F
δ

.(2)

In the above estimates ‖ · ‖2 and ‖ · ‖F denote the spectral and the Frobenius matrix
norms, respectively. Theorem 0.1 is a corollary of a more general result [8] that treats
the case of an arbitrary m × m Hermitian matrix in place of M and an arbitrary
n×m full column rank matrix instead of X. For other bounds of this kind, see [10],
[3], [12], [11], [2]. All these results estimate absolute distance between two matching
eigenvalues of M and H. The bounds use the norm of the residual (thus, an absolute
measure of R) and the (absolute) distance δ between σ(M) and the “nonmatching”
part of σ(H). Often the assumptions of Theorem 0.2 are not met (see Example 2.4
below). Note also that the bound in (2) becomes large (and thus useless) if δ gets
tiny enough.

Our aim is to bound |λjk − µk|/|µk| and consequently |λjk − µk|/|λjk |, where
µk , λjk , k = 1, . . . ,m are appropriately matching pairs of eigenvalues. Note that the
appropriate relative error bounds derived from Theorem 0.1 and Theorem 0.2 can
become useless for small or close eigenvalues.

We seek bounds dependent on relative quantities such as (canonical) angles be-
tween subspaces and relative distances between eigenvalues. The first such estimates
were proved in [6] and the following two theorems summarize them.

Theorem 0.3. Let H be nonsingular and Y = HX , Z = H−1X . There are at
least m eigenvalues λjk , k = 1, . . . ,m of H for which

|λjk − µk|
|λjk |

≤ ‖(I − PX )PY,Z + PX (I − PY,Z)‖2, k = 1, . . . ,m(3)

holds, provided that the right-hand side is less than one. Here PX denotes the or-
thogonal projector on X and PY,Z is the projector on Y along Z⊥. Furthermore, the
right-hand side in (3) is bounded by sin ξ + tan ζ, where ξ is the maximal acute angle
between X and Y and ζ is the maximal acute angle between Y and Z.

In Theorem 0.3 Z⊥ denotes the orthogonal complement of Z. By an abuse of
notation we have denoted by H the operator whose matrix in the standard basis is
H. This will be repeated with the matrix L below.

Theorem 0.4. Let H = LL∗ be positive definite, YL = L∗X , ZL = L−1X and
let ψ be the maximal acute angle between YL and ZL. Then there are at least m
eigenvalues λjk , k = 1, . . . ,m of H for which

|λjk − µk|
λjk

≤ sinψ

1− sinψ
, k = 1, . . . ,m(4)

holds, provided that sinψ/(1− sinψ) is less than one.
If X is invariant for H from Theorem 0.4, we have LL∗X ⊆ X , that is, YL ⊆ ZL.

Since YL and ZL have the same dimension, we have YL = ZL and ψ = 0. Note
that the converse is also true, hence we have ψ = 0 iff µk = λjk , k = 1, . . . ,m. The
bounds (3), (4) are derived using the backward perturbation δH = RX∗ + XR∗,
relative eigenvalue perturbation estimates from [4], [14], [5], and special geometric
structure of the operators δHH−1 and L−1δHL−∗.
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In this paper we derive new bounds for |λjk − µk|/|µk| provided the matrix H is
semidefinite. One of them is similar to that of Theorem 0.4 but uses another pair of
subspaces and a slightly different angle function. The others assume sufficiently small
canonical angles between subspaces but in return deliver bounds which are quadratic
in the sine of the maximal angle between subspaces.

1. Relative estimates for semidefinite matrices. Here we derive a new rel-
ative a posteriori bound for the eigenvalues of a Hermitian semidefinite matrix H
obtained from the subspace X ⊂ Cn. For obvious reasons (replacing H by −H if
needed) we can assume that H is positive semidefinite. Hence, in what follows, all
the results are stated for positive semidefinite H.

Let H = LL∗ be any factorization of H. If X is invariant for H we have

(L∗x | L∗y) = (LL∗x | y) = (Hx | y) = 0, x ∈ X , y ∈ X⊥,

where (a | b) = b∗a for a, b ∈ Cn. Hence for the subspaces

YL = L∗X , UL = L∗X⊥

we have YL ⊆ U⊥L and UL ⊆ Y⊥L . This indicates that, at least if L is square and
nonsingular, the maximal canonical angle between subspaces YL and U⊥L as well as
between UL and Y⊥L is zero. Note that YL, Y⊥L , UL, and U⊥L are subspaces of Cr where
r is the number of columns of L. Since L can be rectangular and rank deficient, the
dimensions of YL and U⊥L (Y⊥L and UL) can differ. Therefore, we shall use the angle
function 6 (M1,M2) between arbitrary subspaces M1 and M2 of Cr, defined by (see
[15])

6 (M1,M2) = sin−1 min {‖ (I − PM2)PM1‖2 , ‖ (I − PM1)PM2‖2} .

Here PMi
is the orthogonal projector onto Mi, i = 1, 2. From the definition one

obtains 6 (M1,M2) = 6
(M⊥

2 ,M⊥
1

)
. Hence for our pairs of subspaces we have

6
(YL,U⊥L ) = 6

(Y⊥L ,UL) =: φL. Let us yet show that φL actually does not de-
pend on L but H. Indeed, let H = L1L

∗
1 be another factorization, where L1 has

the same number of columns1 as L. Then we must have L1 = LQ for some unitary
Q. This implies YL1 = L∗1X = Q∗L∗X = Q∗YL and hence Y⊥L1

= Q∗Y⊥L . In the

same way one obtains UL1 = Q∗UL and U⊥L1
= Q∗U⊥L . Since the angle function is

unitarily invariant (see [15]) we have 6
(YL1 ,U⊥L1

)
= 6

(
Q∗YL, Q∗U⊥L

)
= 6

(YL,U⊥L )
and similarly 6

(Y⊥L1
,UL1

)
= 6

(Y⊥L ,UL). Thus, φL1
= φL =: φH . Since H is fixed,

in what follows we write φ = φH .

Let X ∈ Cn×m, X⊥ ∈ Cn×(n−m) be any orthonormal bases of X , X⊥. Let M
= X∗HX, N = X∗⊥HX⊥ be restrictions of H on X , X⊥, respectively. Since every
transition to new orthonormal bases X ′, X ′⊥ induces unitary matrices U , V such that
X ′ = XU , X ′⊥ = X⊥V , we have M ′ = X ′∗HX ′ = U∗MU , N ′ = X ′⊥

∗
HX ′⊥ = V ∗NV .

This shows that the eigenvalues of M and N depend only on H and X .

Theorem 1.1. Suppose H ∈ Cn×n is Hermitian positive semidefinite and X is
an m-dimensional subspace of Cn. Let µ1 ≥ · · · ≥ µm and ηm+1 ≥ · · · ≥ ηn be the
eigenvalues of the restrictions of H on X and X⊥, respectively. Let H = LL∗ and φ

1 If L1 has fewer (more) columns than L, an appropriate number of zero columns can be appended
to L1 (L).
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= 6 (L∗X , (L∗X⊥)⊥). If φ < π/2, there is an ordering λj1 ,. . . , λjn of the eigenvalues
of H such that

| µk − λjk |
| µk | ≤ sinφ, k = 1, . . . , dim (L∗X ) ,

µk = λjk = 0, k = dim (L∗X ) + 1, . . . ,m,

| ηk − λjk |
| ηk | ≤ sinφ, k = m+ 1, . . . ,m+ dim

(
L∗X⊥) ,

ηk = λjk = 0, k = m+ dim
(
L∗X⊥)+ 1, . . . , n.

Proof. Let us select orthonormal bases X, X⊥ of X , X⊥, respectively, such that

M = X∗HX =

[
O

Λ1

]
m− rM
rM

, N = X∗⊥HX⊥ =

[
Λ2

O

]
rN
n−m− rN

,

where rM = rank (M), rN = rank (N), Λ1 = diag (µ1, . . . , µrM ) and Λ2 =
diag (ηm+1, . . . , ηm+rN ). Since [X,X⊥]∗H[X,X⊥] is positive semidefinite, we have

[X,X⊥]∗H[X,X⊥]

 O

Ĥ
O

 m− rM
rM + rN
n−m− rN

, Ĥ =

[
Λ1 K∗

K Λ2

]
rM
rN

.

Note that Ĥ has full rank. Therefore, Ĥ and Λ1 ⊕ Λ2 are positive definite. By the

inertia theorem [12, Theorem 4.1] we conclude that ĤS = (Λ1 ⊕ Λ2)
− 1

2 Ĥ (Λ1 ⊕ Λ2)
− 1

2

is also positive definite. Hence

Ĥ = (Λ1 ⊕ Λ2)
1
2 Ĥ

1
2

S Ĥ
1
2

S (Λ1 ⊕ Λ2)
1
2

and

Ĥ ′ = Ĥ
1
2

S (Λ1 ⊕ Λ2)
1
2 (Λ1 ⊕ Λ2)

1
2 Ĥ

1
2

S = Ĥ
1
2

S (Λ1 ⊕ Λ2) Ĥ
1
2

S

have the same eigenvalues, counting multiplicities. Since rank(H) = rM + rN , they
are exactly the positive eigenvalues of H. Since Ĥ ′ is related to Λ1 ⊕ Λ2 via the

congruence transformation with Ĥ
1
2

S we can apply Ostrowski’s theorem (see [9] or [7,

Theorem 4.5.9]) to Ĥ ′. We obtain

λi(Ĥ
′) = θiλi (Λ1 ⊕ Λ2) , i = 1, . . . , n(5)

with

1− ‖KS‖2 ≤ λrM+rN (ĤS) ≤ θi ≤ λ1(ĤS) ≤ 1 + ‖KS‖2,(6)

where KS = Λ
− 1

2
2 KΛ

− 1
2

1 . Here λi(·) denotes the ith largest eigenvalue of a matrix.
Note, if we prove

‖KS‖2 = sinφ,(7)

then the relations (5) and (6) will imply all the assertions of the theorem.
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To prove (7) we use partitions: X = [X1, X2], X⊥ = [X⊥,1, X⊥,2], where X2 ∈
Cn×rM , X⊥,1 ∈ Cn×rN . Then we have

KS = Λ
− 1

2
2 KΛ

− 1
2

1 = Λ
− 1

2
2 X∗⊥,1HX2Λ

− 1
2

1 = Λ
− 1

2
2 X∗⊥,1LL

∗X2Λ
− 1

2
1(8)

=
(
L∗X⊥,1Λ

− 1
2

2

)∗ (
L∗X2Λ

− 1
2

1

)
= U∗Y.

Note that

Y ∗Y = Λ
− 1

2
1 X∗2LL

∗X2Λ
− 1

2
1 = Λ

− 1
2

1 X∗2HX2Λ
− 1

2
1 = Λ

− 1
2

1 Λ1Λ
− 1

2
1 = IrM ,

U∗U = Λ
− 1

2
2 X∗⊥,1LL

∗X⊥,1Λ
− 1

2
2 = Λ

− 1
2

2 X∗⊥,1HX⊥,1Λ
− 1

2
2 = Λ

− 1
2

2 Λ2Λ
− 1

2
2 = IrN ,

R (Y ) = R
(
L∗X2Λ

− 1
2

1

)
= R (L∗X2) ⊆ R (L∗X) =: YL,

R (U) = R
(
L∗X⊥,1Λ

− 1
2

2

)
= R (L∗X⊥,1) ⊆ R (L∗X⊥) =: UL.

Since 0 = X∗1HX1 = X∗1LL
∗X1 = (L∗X1)

∗
L∗X1 we have L∗X1 = 0. Similarly, we

obtain L∗X⊥,2 = 0. Thus dim (R (L∗X2)) = dim (YL), dim (R (L∗X⊥,1)) = dim (UL),
whence R (Y ) = YL and R (U) = UL. We have shown that Y and U are orthonormal
bases for YL and UL, respectively. Since YL = L∗X , UL = L∗X⊥, we have

sinφ = sin 6
(YL,U⊥L ) = min

{
‖PULPYL‖2 , ‖PY⊥

L
PU⊥

L
‖2
}
.

Using [15, Section 2] we can choose an orthogonal basis of Cn such that matrix
representations of (the linear operators defined by) PULPYL , PY⊥

L
PU⊥

L
with respect to

that basis are block diagonal matrices. Since sinφ < 1, the nonzero diagonal blocks
are of order two. Furthermore, if cos ξ1 ≥ · · · ≥ cos ξ` are the nonzero singular values
of KS , then the nontrivial diagonal blocks of PULPYL and PY⊥

L
PU⊥

L
in the new basis

have forms

cos ξi

[
cos ξi sin ξi

0 0

]
and cos ξi

[
0 − sin ξi
0 cos ξi

]
,

respectively. Hence sinφ = cos ξ1 = ‖KS‖2. This proves the relation (7) and com-
pletes the proof of the theorem.

We call the reader’s attention to the beautiful dualities in Theorems 0.4 and 1.1.
Theorem 0.4 can be applied to H−1 with the same right-hand side in (4). This is
in accordance with the fact that H and H−1 have the same invariant subspaces.
Similarly, in Theorem 1.1 the subspace X can be replaced by X⊥ without changing
the bound. This corresponds to the fact that X and X⊥ are complementary and
one is H invariant iff the other is such. In fact, in the case of positive definite H,
Theorem 0.4 follows from Theorem 1.1, because in that case (L∗X⊥)⊥ = L−1X . In
the semidefinite case one can easily show that (L∗X⊥)⊥ = {x : Lx ∈ X}.

2. Quadratic residual bounds. In this section we show how to replace the
linear bound of Theorem 1.1 by a bound of order sin2 φ. Our estimate will differ from
that of Theorem 0.2 because we use the relative gap in the spectrum and estimate the
relative distance between the spectrum of M and the matching part of the spectrum
of H. Note an important restriction in Theorem 0.2. It lies in the definitions of δ0
and δ: if an eigenvalue of H is approximated by some µj , then the whole eigenspace
of H corresponding to that eigenvalue has to be approximated by some subspace of
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X . Such a condition is unlikely to be met in applications and fortunately it can be
removed.

In the following theorem which refines Theorem 1.1, σmin(·) denotes the smallest
singular value of a matrix and ‖·‖ denotes any unitarily invariant matrix norm. We let
Sin Φ denote the diagonal matrix with sines of the canonical angles between L∗X and(
L∗X⊥)⊥ as diagonal elements. It is actually the diagonal matrix in the singular value

decomposition of KS = U∗Y from the proof of Theorem 1.1. To simplify notation,
for a given nonzero eigenvalue λ of H we shall choose the bases X and X⊥ so that

Λ1 = Ξλ ⊕ Ξ̂λ , Λ2 = Ωλ ⊕ Ω̂λ,(9)

where the diagonals of Ξλ and Ωλ approximate λ in the sense of Theorem 1.1. Note
that the diagonals of Λ1 and Λ2 need not be in the monotone ordering anymore.

Theorem 2.1. Let H, X and φ < π/2 be as in Theorem 1.1. Let λ > 0 be an
eigenvalue of H of multiplicity n(λ). Let the orthonormal bases of X and X⊥ be so
chosen that (9) holds. Suppose there exist constants α > sinφ and β > sinφ such that

‖λΞ−1
λ − I‖2 ≤ sinφ, σmin(λΞ̂−1

λ − I) ≥ α,(10)

‖λΩ−1
λ − I‖2 ≤ sinφ, σmin(λΩ̂−1

λ − I) ≥ β.(11)

If Ξλ ⊕ Ωλ is of order n(λ), then

‖I − λΞ−1
λ ‖ ≤ 1

1− sin2 φ

αβ

‖ Sin Φ‖2‖ Sin Φ‖
β

,

‖I − λΩ−1
λ ‖ ≤ 1

1− sin2 φ

αβ

‖ Sin Φ‖2‖ Sin Φ‖
α

.

Proof. Without loss of generality we can assume

H =

[
Λ1 K∗

K Λ2

]
,

where Λ1 and Λ2 are given by (9). Otherwise one can work with Ĥ from the proof of
Theorem 1.1. Since λ is fixed we omit it as matrix subscript. By Sylvester’s law of
inertia, the matrix

HS(λ) = (Λ1 ⊕ Λ2)
− 1

2 (H − λI)(Λ1 ⊕ Λ2)
− 1

2

has rank n− n(λ). It has the following block structure:

HS(λ) =


I − λΞ−1 O (K

(1,1)
S )∗ (K

(2,1)
S )∗

O I − λΞ̂−1 (K
(1,2)
S )∗ (K

(2,2)
S )∗

K
(1,1)
S K

(1,2)
S I − λΩ−1 O

K
(2,1)
S K

(2,2)
S O I − λΩ̂−1

 .
For technical reasons we replace HS(λ) by a similar matrix

ĤS(λ) = ΠτHS(λ)Π =


I − λΞ−1 (K

(1,1)
S )∗ O (K

(2,1)
S )∗

K
(1,1)
S I − λΩ−1 K

(1,2)
S O

O (K
(1,2)
S )∗ I − λΞ̂−1 (K

(2,2)
S )∗

K
(2,1)
S O K

(2,2)
S I − λΩ̂−1

 ,
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where Π denotes an appropriate permutation matrix. Since the spectral norm of a
submatrix is not larger than the norm of the whole matrix, the assumptions (10) and
(11) imply

σmin((I − λΞ̂−1)⊕ (I − λΩ̂−1)) ≥ min{α, β} > sinφ(12)

= ‖ Sin Φ‖2 ≥ ‖KS‖2 ≥ max
1≤i,j≤2

‖K(i,j)
S ‖2,

where KS = Λ
− 1

2
2 KΛ

− 1
2

1 . Hence the matrix

C =

[
I − λΞ̂−1 (K

(2,2)
S )∗

K
(2,2)
S I − λΩ̂−1

]
=

[
C11 C12

C21 C22

]
, C12 = C∗21

and its diagonal blocks C11 and C22 are nonsingular. Therefore (see [7, Section 0.7.3])

C−1 =

[ [
C11 − C12C

−1
22 C21

]−1
C−1

11 C12

[
C21C

−1
11 C12 − C22

]−1[
C21C

−1
11 C12 − C22

]−1
C21C

−1
11

[
C22 − C21C

−1
11 C12

]−1

]
,

provided that all matrices in brackets are nonsingular. However, this follows since
these matrices are (signed) Schur complements of C11 and C22 in C. By the last
assumption, C is of order n − n(λ) what is also the rank of ĤS(λ). Since C is
nonsingular its Schur complement in ĤS(λ) must be zero (cf. [10, p. 183]). Hence[

I − λΞ−1 (K
(1,1)
S )∗

K
(1,1)
S I − λΩ−1

]
=

[
O (K

(2,1)
S )∗

K
(1,2)
S O

]
C−1

[
O (K

(1,2)
S )∗

K
(2,1)
S O

]
.(13)

The rest of the proof is obvious. Indeed, using (13) and the structure of C−1 we
obtain

I − λΞ−1 = (K
(2,1)
S )∗[I − λΩ̂−1 −K

(2,2)
S (I − λΞ̂−1)−1(K

(2,2)
S )∗]−1K

(2,1)
S ,

I − λΩ−1 = K
(1,2)
S [I − λΞ̂−1 − (K

(2,2)
S )∗(I − λΩ̂−1)−1K

(2,2)
S ]−1(K

(1,2)
S )∗.

Applying an arbitrary unitarily invariant matrix norm to the expressions on the left-
and right-hand sides and using its relation to the spectral norm (cf. [12, Theorem 3.9]),
we obtain

‖I − λΞ−1‖ ≤ ‖K(2,1)
S ‖2‖K(2,1)

S ‖

β − ‖K(2,2)
S ‖22
α

=
1

1− ‖K(2,2)
S ‖22
αβ

‖K(2,1)
S ‖2‖K(2,1)

S ‖
β

,

‖I − λΩ−1‖ ≤ ‖K(1,2)
S ‖2‖K(1,2)

S ‖

α− ‖K(2,2)
S ‖22
β

=
1

1− ‖K(2,2)
S ‖22
αβ

‖K(1,2)
S ‖2‖K(1,2)

S ‖
α

.

Since for any unitarily invariant norm (cf. [12, Corollary 3.8])

max
1≤i,j≤2

‖K(i,j)
S ‖ ≤ ‖KS‖ = ‖ Sin Φ‖,

the proof is completed.
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If the matrices Ξ̂λ and Ωλ in Theorem 2.1 are void, i.e., in the proof of Theo-
rem 2.1, Λ1 = Ξλ and Λ2 = Ω̂λ, then the assertion of the theorem reduces to

‖I − λΞ−1
λ ‖ ≤ ‖ Sin Φ‖2‖ Sin Φ‖

β
.(14)

This is the first assertion of Theorem 2.1 with a simplified bound.
Specifying ‖·‖ to be the spectral and the Frobenius norm, we obtain the following

useful relative a posteriori estimates.
Corollary 2.2. Let L denote the set of all λ ∈ σ(H) for which the assumptions

of Theorem 2.1 hold. For λ ∈ L let Ξλ, Ωλ, αλ, and βλ be as in Theorem 2.1. If
α = minλ∈L αλ, β = minλ∈L βλ then

max
λ∈L

max
µ∈σ(Ξλ)

|µ− λ|
|µ| ≤ 1

1− sin2 φ

αβ

sin2 φ

β
,

max
λ∈L

max
η∈σ(Ωλ)

|η − λ|
|η| ≤ 1

1− sin2 φ

αβ

sin2 φ

α
,

√√√√∑
λ∈L

∑
µ∈σ(Ξλ)

(
µ− λ

µ

)2

≤ 1

1− sin2 φ

αβ

‖ Sin Φ‖2F
β

,

√√√√∑
λ∈L

∑
η∈σ(Ωλ)

(
η − λ

η

)2

≤ 1

1− sin2 φ

αβ

‖ Sin Φ‖2F
α

.

Remark 2.3. One can easily check that the assumptions (10) and (11) of Theo-
rem 2.1 are satisfied if, e.g., for some λ ∈ σ(H)

sinφ ≤ 1

3
min
λi 6=λ

|λi − λ|
λi + λ

≡ δλ.

In such a case α and β in Theorem 2.1 can be replaced by δλ.
Example 2.4. Let

H =

 1010 1 10−13

1 2 · 10−5 10−7

10−13 10−7 10−5

, X =

 0
1
0

 , X⊥ =

 1 0
0 0
0 1

 .
Then

M =
[
2 · 10−5

]
, R =

[
10−7 0 1

]∗
.

Thus, the result of Theorem 0.1 is not useful because ‖R‖2 ≈ 1. Since

HS = diag (H
− 1

2
ii )Hdiag (H

− 1
2

ii ) = I + E, ‖E‖∞ < 10−2,

we know from the theory of Barlow and Demmel [1] that

1− 10−2 <
Hjj

λj
< 1 + 10−2, j = 1, 2, 3,
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where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of H. This means that in this example
the separation δ from Theorem 0.2 is of order 10−5 and that Theorem 0.2 is not
applicable. On the other hand, both Theorem 0.4 and Theorem 1.1 ensure that
for some j0 ∈ {1, 2, 3} (check that j0 = 2) holds |λj0 − 2 · 10−5|/λj0 < 7.5 · 10−3.
Note that N = (X⊥)∗HX⊥ is scaled diagonally dominant in the sense of [1] and its
diagonal elements approximate the eigenvalues of N to 15 significant digits. Hence
one can check that the eigenvalue λj0 is well separated (in the relative sense) from
the spectrum of N . An easy calculation shows that we can take β = 0.9. Since φ
is the angle between two one-dimensional subspaces, the relation (14) and an easy
calculation yield |λj0 − 2 · 10−5|/λj0 < 6.2 · 10−5. Note that |λj0 − 2 · 10−5|/λj0 ≈
|λj0 − 2 · 10−5|/2 · 10−5 ≈ 4.5 · 10−5.
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[14] K. Veselić and I. Slapničar, Floating-point perturbations of Hermitian matrices, Linear

Algebra Appl., 195 (1993), pp. 81–116.
[15] P. A. Wedin, On angles between subspaces of a finite dimensional inner product space, in

Matrix Pencils Proceedings of a Conference, Springer-Verlag, Berlin, 1982.



GMRES VS. IDEAL GMRES∗

KIM-CHUAN TOH†

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 30–36, January 1997 003

Abstract. The GMRES algorithm minimizes ‖p(A)b‖ over polynomials p of degree n normalized
at z = 0. The ideal GMRES problem is obtained if one considers minimization of ‖p(A)‖ instead.
The ideal problem forms an upper bound for the worst-case true problem, where the GMRES norm
‖pb(A)b‖ is maximized over b. In work not yet published, Faber, Joubert, Knill, and Manteuffel have
shown that this upper bound need not be attained, constructing a 4× 4 example in which the ratio
of the true to ideal GMRES norms is 0.9999. Here, we present a simpler 4× 4 example in which the
ratio approaches zero when a certain parameter tends to zero. The same example also leads to the
same conclusion for Arnoldi vs. ideal Arnoldi norms.

Key words. GMRES, ideal GMRES, Arnoldi, ideal Arnoldi
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1. Introduction. The GMRES algorithm [7] is an iterative method for solving
non-hermitian linear systems Ax = b (A ∈ C

N×N , b ∈ C
N ). Throughout this paper,

C
N is given the 2-norm ‖ · ‖ and C

N×N is given the corresponding induced matrix
norm. Each step (say the nth) of the GMRES algorithm is mathematically equivalent1

to minimizing ‖p(A)b‖ over the polynomials in Pn, where

Pn = {polynomials of degree ≤ n with p(0) = 1}.

For each b, the GMRES polynomial (denoted by pb) exists and is unique if ‖pb(A)b‖ >
0.

How fast a GMRES iteration converges, i.e., how fast ‖pb(A)b‖ converges to zero
as n increases, depends on the matrix A and the vector b. In practice, however, unless
b has special properties, it appears to be usually A that predominantly determines
the convergence rate. To understand how the GMRES convergence rate depends
on A without the complicating effect of the right-hand side vector, Greenbaum and
Trefethen [5] introduced the “ideal GMRES matrix approximation problem”: min-
imization of ‖p(A)‖ over polynomials in the same class Pn. The “ideal GMRES
polynomial,” which we will denote by p∗, exists and is unique so long as ‖p∗(A)‖ > 0.
To avoid possible confusion, we will refer to GMRES as true GMRES.

The ideal GMRES convergence curve forms an upper bound for the true GMRES
convergence curves in the sense that for each n,

max
b∈CN , ‖b‖=1

‖pb(A)b‖ ≤ ‖p∗(A)‖.(1.1)

This inequality is actually an equality for many matrices, including normal matrices
[3], [4], triangular Toeplitz matrices with p∗(z) = 1 [2], and matrices A whose ideal
GMRES matrix p∗(A) has a simple maximal singular value [5]. It is also an equality for

∗Received by the editors December 23, 1994; accepted for publication (in revised form) by R.
Freund December 18, 1995.
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pore Graduate Scholarship, NSF grant DMS-9116110, and DOE grant DE-FG02-94ER25199.

1We have assumed, without loss of generality, that the initial guess for the iteration is x0 = 0.
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arbitrary matrices at step n = 1 [3],[4]. Positive results such as these led Greenbaum
and Trefethen [5] to conjecture that (1.1) was an equality, i.e., “the ideal GMRES
bound is attained,” for every matrix A. However, at the 1994 Colorado Conference on
Iterative Methods at Breckenridge, Colorado, Faber, Joubert, Knill, and Manteuffel
presented a counterexample to this conjecture [2]. Their example is a dense 4 × 4
matrix constructed using the theory of generalized fields of values, where the inequality
(1.1) is strict at step n = 3. The degree-3 ideal GMRES polynomial for their example
is p∗(z) = 1; hence ‖p∗(A)‖ = 1. The corresponding quantity on the left-hand side of
(1.1) is 0.99988.

We have found a simpler (bidiagonal) family of 4 × 4 matrices that can achieve
arbitrarily small ratio when a certain parameter in the family tends to zero. The
purpose of this short paper is to present this example and speculate briefly on its
significance.

2. The counterexample: Mathematical proof. Our counterexample is the
4× 4 matrix

A =




1 ε
−1 c/ε

1 ε
−1


 , ε > 0, 0 < c < 2.(2.1)

We would like to note that the parameter c in the example is not crucial to establishing
our goal, namely, to show that the worst-case true and ideal GMRES norms in (1.1)
differ. However, it gives us the freedom to construct examples with an ideal GMRES
norm anywhere between zero and one. For simplicity, the reader can assume c to be
one.

Theorem 2.1. For the matrix A of (2.1), the degree-3 ideal GMRES polynomial
is

p∗(z) = 1 + (α− 1)z2(2.2)

with

α =
2c2

4 + c2
.(2.3)

The corresponding matrix is

p∗(A) =




α 0 γ
α 0 γ

α 0
α


 ,

where

γ = (α− 1)c,(2.4)

with norm

‖p∗(A)‖ =
4c

4 + c2
.(2.5)
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Proof. Since A is real, we have ‖p(A)‖ = ‖p̄(A)‖ for any p. Uniqueness of the
ideal GMRES polynomial then implies that p∗(z) = p̄∗(z), i.e., the coefficients of
p∗(z) are real. Next we observe that AT is unitarily similar to −A via the matrix

Q =




−1
1

−1
1


 ;

i.e., −A = QATQ−1. This implies that ‖p(−A)‖ = ‖p(AT )‖ = ‖p(A)‖ for any p.
By uniqueness, again, we have p∗(−z) = p∗(z); i.e., p∗ is even.

Now consider polynomials of the form (2.2), viewing α as a real parameter. For a
given pair of ε and c, we can find the singular values of p(A) analytically as a function
of α:

σ2
max(α) =

1

2

(
2α2 + γ2 + |γ|

√
4α2 + γ2

)
,(2.6)

σ2
min(α) =

1

2

(
2α2 + γ2 − |γ|

√
4α2 + γ2

)
,(2.7)

with γ related to α and c by (2.4). Each of these singular values has multiplicity
two. The value of α corresponding to the ideal GMRES polynomial p∗(z) is the value
for which σ2

max(α) is minimum. Now we have a calculus problem; we can simply
differentiate (2.6) with respect to α and set the derivative to zero. This gives us the
formula (2.3) for α as a function of c; we omit the details. The corresponding singular
values of p∗(A) are

σmax =
4c

4 + c2
, σmin =

c3

4 + c2
.(2.8)

A biorthogonal set of basis vectors for the maximal left and right singular spaces of
p∗(A) is

U1 =




0 2
2 0
0 −c
−c 0


 , V1 =




0 c
c 0
0 −2
−2 0


 .(2.9)

In what follows, we will denote the columns of U1 and V1, respectively, by ui (i = 1, 2)
and vi (i = 1, 2).

Remark. The results of Theorem 2.1 are valid only for 0 < c < 2. However
we may extend these results to the case c = 2, since p∗(A) is a continuous function
of c. For example, by letting c tend to two in (2.2), we have p∗(z) = 1 and hence
‖p∗(A)‖ = 1.

It is easily shown that for our matrix A, the worst-case true and ideal GMRES
norms differ. Before attempting to quantify this difference, we will show that it exists.

Theorem 2.2. Suppose A is given by (2.1). Then for any vector b ∈ C
4,

the corresponding degree-3 true GMRES polynomial pb for A satisfies ‖pb(A)b‖ <
‖p∗(A)‖‖b‖.

Proof. We prove this by contradiction. Suppose the envelope is attained, i.e.,
equality holds in (1.1) for some b. It is easily shown that b must be a maximal right
singular vector of p∗(A). That is, it lies in the span of v1 and v2, and the corresponding
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true GMRES polynomial must be p∗(z) itself. Without loss of generality, we can
assume that b has the form b = β1v1 + β2v2, where β1, β2 are not both zero. Since pb
is a true GMRES polynomial for b, it is readily shown that p∗(A)b must satisfy the
orthogonality conditions

〈Akb, p∗(A)b〉 = 0, k = 1, 2, 3.

Noting that p∗(A)vi = σmax ui, i = 1, 2 and evaluating the inner products for k = 1
and 3 gives

−4c |β1|2 + 4c |β2|2 − 4
c

ε
β̄1β2 + 4cε β1β̄2 = 0,(2.10)

−4
c

ε
β̄1β2 = 0.(2.11)

Equation (2.11) implies that β1 = 0 or β2 = 0. In either case, substitution into (2.10)
gives c = 0. Since c 6= 0, we have a contradiction.

Our larger goal is to show that the worst-case true and ideal GMRES norms
do not merely differ but can have a ratio arbitrarily small. For this we can use the
following more quantitative argument.

Theorem 2.3. Suppose A is given by (2.1) with 0 < ε ≤ 1. Then

max
‖b‖=1

‖pb(A)b‖ ≤ 2(1 + c)
√
ε + (2 + 3c)ε.(2.12)

Thus for each 0 < c < 2,

max‖b‖=1 ‖pb(A)b‖
‖p∗(A)‖ −→ 0 as ε→ 0.(2.13)

Proof. We will show that for each b ∈ C
4 with ‖b‖ = 1, there exists a polynomial

p ∈ Pn such that ‖p(A)b‖ is less than or equal to the right-hand side of (2.12). Then
(2.12) follows from the optimality property of GMRES.

Let b = (b1, b2, b3, b4)
T . We have

Ab =




b1
−b2 + cb3/ε

b3
−b4


+ ε




b2
0
b4
0


 , A2b = b + c




b3
b4
0
0


 ,

A3b = Ab + c




b3
−b4
0
0


+ cε




b4
0
0
0


 .

Consider polynomials p ∈ Pn of the form

p(z) = 1 + ξz − z2 + (η − ξ)z3.

Then

p(A)b =




−cb3 + (η − ξ)cb3 + ηb1
−cb4 − (η − ξ)cb4 − ηb2 + ηcb3/ε

ηb3
−ηb4


 + ε r,
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where

r = η




b2
0
b4
0


 + (η − ξ)c




b4
0
0
0


 .

Now we have two cases to consider. For each, we will show that ‖p(A)b‖ is less than
or equal to the right-hand side of (2.12) with appropriately chosen ξ and η.

Case 1. Suppose |b3| ≥
√
ε. Take ξ = −1 and η = 2εb4/b3. Then |η| ≤ 2

√
ε and

p(A)b = η




b1 + cb3
−b2 − cb4

b3
−b4


 + ε r.

Hence

‖p(A)b‖ ≤ (1 + c) |η| + (2 + 3c) ε ≤ 2(1 + c)
√
ε + (2 + 3c) ε.

Case 2. Suppose |b3| ≤
√
ε. Take ξ = 1 and η = ε. Then

p(A)b = c




−2b3
b3
0
0


 + η




b1 + cb1
−b2 − cb4

b3
−b4


 + ε r.

Thus

‖p(A)b‖ ≤
√

5c |b3| + (1 + c) |η|+ (1 + 2c) ε

≤ 2(1 + c)
√
ε + (2 + 3c) ε.

Remark. Note that (2.12) in fact holds for all c > 0. Since ‖p∗(A)‖ = 1 for all
ε > 0 when c = 2, as a result (2.13) also holds for c = 2.

3. The counterexample: Numerical evidence. Theorem 2.3 shows that the
ratio of the true to ideal GMRES norms for our matrix A is no greater than order

√
ε

as ε → 0. In fact, numerical experiments indicate that this square root dependence
is sharp. We have used the Matlab optimization routine fminu [6] to maximize
‖pb(A)b‖ over b ∈ C

4 with ‖b‖ = 1. To ensure that we have the global maximum for
the worst-case true GMRES, numerous trails with different initial guesses are carried
out with fminu. The ideal GMRES polynomial is computed from (2.2).

Figure 3.1 plots the ratio between the worst-case true GMRES and the ideal
GMRES norms for the matrix A of (2.1) with 0 < ε ≤ 10 and c = 1. The dashed
curve shows an upper bound on the ratio obtained by dividing the right-hand quantity
of (2.12) by the ideal GMRES norm of A in (2.5). The slope of the curves in the figure
is 0.5.

By extending the matrix A of (2.1) to higher dimensions, say to an even integer
N (with ±1 alternating along the diagonal and ε, c/ε alternating along the first
superdiagonal), we obtain examples where the ideal GMRES envelope is not attained
at step n = N − 1. For such matrices, again, the ideal GMRES polynomials do not
depend on ε. We have used codes provided by Michael Overton to compute the ideal
GMRES polynomials. Numerical experiments also indicate that the worst-case true
GMRES norms at step n = N − 1 are no greater than order

√
ε as ε → 0. Thus the

ratio between the worst-case true GMRES and ideal GMRES norms at step n = N−1
approaches zero as ε tends to zero.
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Fig. 3.1. Ratio between the worst-case true GMRES and ideal GMRES norms at step n = 3
for the matrix A of (2) with c = 1, as a function of ε (numerically computed). The plateau portion
of the solid curve is strictly below 1 for all ε, by Theorem 2.2. The dashed curve represents the upper
bound of Theorem 2.3.
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Fig. 4.1. Analogous plot for true vs. ideal Arnoldi approximation of the same matrix A with
c = 1. The ratio is exactly 1 for ε approximately greater than 0.459.

4. Discussion. The true and ideal Arnoldi problems are the analogs of the true
and ideal GMRES problems, except that the minimizations are over the class of monic
polynomials of degree ≤ n instead of Pn. Numerical evidence again suggests that for
the matrix A of (2.1), the ratio between the worst-case true Arnoldi and the ideal
Arnoldi norms at step n = 3 approaches zero as ε tends to zero. Figure 4.1 plots the
ratio associated with the Arnoldi problems for our matrix A with 10−3 ≤ ε ≤ 1 and
c = 1.

Finally, we must raise the question of the practical significance of our results.
Greenbaum and Trefethen [5], as well as others, have assumed that for most non-
symmetric matrix iterations in most applications, convergence rates can be analyzed
in terms of a matrix approximation problem. Our result introduces the possibility
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that this might not be true. There may be applications in which Krylov subspace
iterations perform much better than analysis of matrix approximation problems can
explain, and conceivably, such applications might be common. Our guess is that this
will not prove to be the case, but it must be admitted that at the moment there is
very little evidence one way or the other.

Acknowledgments. The author thanks Anne Greenbaum and Nick Trefethen
for many stimulating discussions. Nick Trefethen also carefully read drafts of this pa-
per and suggested numerous improvements. The author also thanks Michael Overton
for providing him with Matlab codes designed to find the minimum largest eigen-
value of functions of symmetric matrices [1]. These codes were used to compute the
ideal GMRES and ideal Arnoldi polynomials. Finally, the author thanks one of the
referees for pointing out a mistake in the original manuscript submitted.

REFERENCES

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, Report
721, Computer Science Department, New York University, New York, 1996.

[2] V. Faber, W. Joubert, E. Knill, and T. Manteuffel, Minimal residual method stronger
than polynomial preconditioning, in Proc. Colorado Conference on Iterative Methods,
Breckenridge, CO, 1994.

[3] W. A. Joubert, A robust GMRES-based adaptive polynomial preconditioning algorithm for
nonsymmetric linear systems, SIAM J. Sci. Comput., 15 (1994), pp. 427–439.

[4] A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms, SIAM J. Sci.
Comput., 15 (1994), pp. 348–358.

[5] A. Greenbaum and L. N. Trefethen, GMRES/CR and Arnoldi/Lanczos as matrix approx-
imation problems, SIAM J. Sci. Comput., 15 (1994), pp. 359–368.

[6] The MathWorks, Inc., Optimization Toolbox, The MathWorks, Inc., Natick, MA, 1992.
[7] Y. Saad and M. H. Schultz, GMRES: A generalized minimum residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.



GMRES ON (NEARLY) SINGULAR SYSTEMS∗

PETER N. BROWN† AND HOMER F. WALKER‡

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 37–51, January 1997 004

Abstract. We consider the behavior of the GMRES method for solving a linear system Ax = b
when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not
affect the performance of GMRES, depending on the nature of the system and the initial approxi-
mate solution. For singular A, we give conditions under which the GMRES iterates converge safely
to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual
minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical pro-
cedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes
a threat to the performance of GMRES.
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1. Introduction. The generalized minimal residual (GMRES) method of Saad
and Schultz [16] is widely used for solving a general linear system

Ax = b, A ∈ Rn×n,(1.1)

and its behavior is well understood when A is nonsingular. Our purpose here is to
examine the behavior of GMRES when A is singular or nearly so, i.e., ill conditioned,
and to formulate practically effective ways of recognizing singularity or ill conditioning
when it might significantly affect the performance of the method.

Abstractly, GMRES begins with an initial approximate solution x0 and initial
residual r0 ≡ b−Ax0 and characterizes the kth approximate solution as xk = x0 +zk,
where zk solves

min
z∈Kk

‖b−A(x0 + z)‖2 = min
z∈Kk

‖r0 −Az‖2.(1.2)

Here, Kk is the kth Krylov subspace determined by A and r0, defined by

Kk ≡ span{r0, Ar0, . . . , Ak−1r0}.

There are a number of ways of implementing GMRES, but in each one generates a
basis of Kk and then replaces (1.2) by an unconstrained k-dimensional least-squares
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problem. We shall not be more specific about the basis generating process at this
point, except to assume that it successfully generates a basis if and only if dimKk = k,
where “dim” denotes dimension.

Note that, trivially, dimA(Kk) ≤ dimKk ≤ k for each k. We shall say that
GMRES does not break down at the kth step if dimA(Kk) = k. In this case,
dimA(Kk) = dimKk and, hence, (1.2) has a unique solution. Furthermore, since
dimKk = k, a basis of Kk is successfully generated and the k-dimensional least-
squares problem also has a unique solution. This definition addresses two distinct
kinds of breakdown: rank deficiency of the least-squares problem (1.2), which occurs
when dimA(Kk) < dimKk, and degeneracy of Kk, which occurs when dimKk < k.
The definition is intended to focus on essential breakdown of the method, as opposed
to breakdown associated with any particular implementation or ancillary algorithm
used in it. Note that if dimA(Kk) < k for some k, then Kj = Kk for all j ≥ k and no
further improvement is possible, even if subsequent zj ∈ Kj are well defined in some
way.

For perspective, we recall that Proposition 2, p. 865, of [16] ensures that, if A is
nonsingular, then GMRES does not break down until the solution of (1.1) has been
found. Breakdown in [16, Prop. 2, p. 865] is associated specifically with breakdown
of the Arnoldi process used in the GMRES implementation in [16], but the statement
remains true with our definition (see section 2 below).

In contrast to the nonsingular case, anything may happen when A is singular.
Example 1.1 below shows that GMRES may break down before getting anywhere at
all, even when the system has a solution, or it may determine a least-squares solution1

or the pseudoinverse solution2 without breaking down. Example 1.2 shows that even
if a least-squares solution or the pseudoinverse solution is reached, this may not be
evident from the behavior of GMRES; indeed, GMRES may continue for a number
of additional steps without breakdown (or further progress).

Example 1.1. Suppose that

A =

(
0 1
0 0

)
, b =

(
1
0

)
, x0 =

(
0
0

)
.

Then r0 = (1, 0)T and Ar0 = (0, 0)T , and GMRES breaks down at the first step. Note
that x0 is not a (least-squares) solution. If A is changed to

A =

(
1 1
0 0

)
,

then, for the same b and x0, we have r0 = (1, 0)T = Ar0, and GMRES determines
without breakdown x1 = (1, 0)T , which is a least-squares solution but not the pseudo-
inverse solution. If we also change b to b = (1, 1)T , then, for the same x0, we have
r0 = (1, 1)T and Ar0 = (2, 0)T , and GMRES determines without breakdown x1 =
(1/2, 1/2)T , which is the pseudoinverse solution. Note that dimA(K2) = 1 in these
last two cases, so GMRES breaks down at the step after the least-squares or pseudo-
inverse solution has been found.

Example 1.2. For arbitrary n, let A be the “shift” operator with ones on the first
subdiagonal and zeros elsewhere. Then for b = (1, 0, . . . , 0)T and x0 = (0, . . . , 0)T ,

1 An x ∈ Rn for which ‖b−Ax‖2 is minimal.
2 The least-squares solution x such that ‖x‖2 is minimal.
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x0 itself is the pseudoinverse solution, but GMRES proceeds without breakdown (or
progress) until the nth step, at which point it breaks down with dimA(Kn) = n− 1.

In section 2 below, we explore the theoretical behavior of GMRES whenA is singu-
lar and, in particular, determine circumstances in which the GMRES iterates converge
without breakdown to a least-squares solution or the pseudoinverse solution of (1.1).
We also discuss the conditioning of the least-squares problem (1.2) prior to breakdown,
since this is crucial to the practical performance of the method. The results in sec-
tion 2 apply not only to GMRES but also to any mathematically equivalent method,
i.e., any method that takes steps characterized by the residual minimizing property
(1.2). (See [8, sect. 2.4] for a discussion of mathematically equivalent methods.) Thus
in section 2, one can think of GMRES as a generic minimal residual method that
characterizes corrections by (1.2). In section 3, we discuss further how singularity
or ill conditioning can appear in GMRES and affect its practical performance. We
outline an efficient and reliable way of detecting singularity or ill conditioning when
it threatens to cause breakdown or otherwise degrade the performance of the method.
In section 4, we discuss several illustrative numerical experiments.

Others have considered GMRES and related methods on singular or ill-conditioned
systems. It is noted in [3] and [15] that GMRES can be used to solve singular ho-
mogeneous systems that arise in Markov chain modeling. In [9], conditions are given
for the convergence of general Krylov subspace methods on singular systems, and
particular results are derived for the QMR [10] and TFQMR [7] methods (see section
2 below), with applications to Markov chain modeling. Deflation-like modifications
of GMRES based on truncated singular value decomposition solutions have recently
been considered in [12]; see also [13] and the references in [12] and [13] for more on
deflation techniques for nearly singular systems. In [14], extensions of GMRES are
considered in which Krylov subspaces are augmented with approximate eigenvectors
generated during previous iterations. These extensions appear to be most effective
when there are a few relatively small eigenvalues.

In the following, we denote the null space and range of A by N (A) and R(A),
respectively, and say that (1.1) is consistent if b ∈ R(A). We set rk ≡ b − Axk for
each k and denote the restriction of A to a subspace S ⊆ Rn by A|S . As a convention,
we always regard x0 as determined without breakdown at the “0th” step and define
K0 ≡ {0}. Also, we assume that GMRES terminates immediately upon breakdown.

2. Theoretical discussion. Although our interest is primarily in (1.1) when A
is singular, the results in this section also apply, as appropriate, whenA is nonsingular.
The questions of interest are the following:

• Will GMRES determine a least-squares solution without breakdown?
• When has a least-squares solution been reached by GMRES?
• When is a least-squares solution determined by GMRES the pseudoinverse

solution?
• How ill conditioned can the GMRES least-squares problem (1.2) become?

We begin with several general results.
Lemma 2.1. Apply GMRES to (1.1) and suppose that dimKk = k for some

k ≥ 0. Then exactly one of the following holds:
(i) dimA(Kk) = k − 1 and A(x0 + z) 6= b for every z ∈ Kk;
(ii) dimA(Kk) = k, dimKk+1 = k, xk is uniquely defined, and Axk = b;
(iii) dimA(Kk) = k, dimKk+1 = k + 1, xk is uniquely defined, and Axk 6= b.
Proof. First, note that if dimKk = k and k > 0, then dimA(Kk−1) = k − 1.

Indeed, in this case r0, Ar0, . . . , A
k−1r0 constitute a basis of Kk and, therefore,
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Ar0, . . . , A
k−1r0 constitute a basis of A(Kk−1). With this observation and the fact

that A(Kk−1) ⊆ A(Kk) for k > 0, it is clear that the assumption dimKk = k implies
k − 1 ≤ dimA(Kk) ≤ k for all k ≥ 0. Note also that r0 6∈ A(Kk−1) if k > 0.

If dimA(Kk) = k − 1, then conclusions (ii) and (iii) cannot hold. Furthermore,
k > 0 and A(Kk−1) = A(Kk) in this case, and, since r0 6∈ A(Kk−1), it follows that
r0 6∈ A(Kk). Then A(x0 + z) 6= b for every z ∈ Kk, and (only) conclusion (i) holds.

Suppose that dimA(Kk) = k. Then xk is uniquely defined; furthermore, since
A(Kk) ⊆ Kk+1, we have k = dimA(Kk) ≤ dimKk+1 ≤ k + 1. If dimKk+1 = k,
then we must have A(Kk) = Kk+1 and, hence, r0 ∈ A(Kk). It follows from (1.2) that
rk = 0 and Axk = b; thus (only) conclusion (ii) holds. If dimKk+1 = k + 1, then
r0 6∈ A(Kk), rk 6= 0, Axk 6= b, and (only) conclusion (iii) holds.

This lemma implies the following result.
Theorem 2.2. Apply GMRES to (1.1). Then, at some step, either
(a) GMRES breaks down through rank deficiency of the least-squares problem

(1.2) without determining a solution or
(b) GMRES determines a solution without breakdown and then breaks down at

the next step through degeneracy of the Krylov subspace.
Proof. We have dimK0 = 0. Assume that for some k ≥ 0 GMRES has proceeded

to the kth step with dimKk = k. Then exactly one of the three conclusions of Lemma
2.1 must hold. If conclusion (i) holds, then we have (a) above. If conclusion (ii) holds,
then we have (b). If conclusion (iii) holds, then Axk 6= b and the iteration continues
to the next step. The theorem follows by induction.

The alternatives of this theorem give useful insights into the eventual outcome of
applying GMRES to (1.1). For example, if (1.1) is not consistent, then breakdown
through rank deficiency of (1.2) will eventually occur; in practice, this may be preceded
by dangerous ill conditioning, as discussed further below. Conversely, breakdown
through degeneracy of the Krylov subspace occurs if and only if (1.1) is consistent
and the solution has been found. Also, these results imply the result in [16, Prop.
2, p. 865] cited earlier: if A is nonsingular, then GMRES does not break down
until the solution of (1.1) has been found. Indeed, if A is nonsingular, then GMRES
cannot break down through rank deficiency of (1.2), and the second alternative must
hold. However, the reader is cautioned to make inferences carefully; e.g., Example 1.1
above shows that there can be breakdown through rank deficiency in the consistent
case before a solution is found.

The next result characterizes circumstances in which a least-squares solution has
been reached.

Lemma 2.3. At the kth step, GMRES determines a least-squares solution of (1.1)
without breakdown if and only if

dimAT (Kk+1) = dimA(Kk) = k.(2.1)

Proof. By definition, GMRES does not break down at the kth step if and only if
dimA(Kk) = k. Thus we need only show that xk is a least-squares solution of (1.1)
if and only if dimAT (Kk+1) = dimA(Kk).

From (1.2), we have that xk is a least-squares solution of (1.1) if and only if it is
possible to reach a least-squares solution of (1.1) through some correction in Kk, i.e.,
if and only if there is some z ∈ Kk such that

0 = AT [b−A(x0 + z)] = AT (r0 −Az).(2.2)

But (2.2) holds for some z ∈ Kk if and only if AT r0 ∈ ATA(Kk), which is equivalent
to AT (Kk+1) = ATA(Kk). To complete the proof, we note that dimATA(Kk) =
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dimA(Kk). Indeed, we clearly have dimATA(Kk) ≤ dimA(Kk). If dimATA(Kk) <
dimA(Kk), then there is a w ∈ Kk such that Aw 6= 0 and ATAw = 0. But then
0 = wTATAw = ‖Aw‖22, which is a contradiction.

With Lemma 2.1, one can easily extend Lemma 2.3 to conclude additionally that
if (2.1) holds, then (1.1) is consistent if and only if dimKk+1 = k; i.e., GMRES breaks
down at step k + 1 through degeneracy of the Krylov subspace.

We use Lemma 2.3 to characterize the property of A that yields the most satis-
factory answers to the questions posed at the beginning of this section. This property
is N (A) = N (AT ), equivalently, N (A) = R(A)⊥, which holds when A is normal, e.g.,
when it is symmetric or skew symmetric. It also clearly holds when A is nonsingular.
In general, this property holds if and only if N (A)⊥ is an invariant subspace of A.
Also, it holds only if all eigenvectors of A associated with nonzero eigenvalues are
orthogonal to N (A). Note that it does not hold for the matrices of Example 1.1;
indeed, it holds for A ∈ R2×2 if and only if A is either nonsingular or symmetric.
Neither does it hold for the “shift” operator of Example 1.2.

Theorem 2.4. GMRES determines a least-squares solution of (1.1) without
breakdown for all b and x0 if and only if N (A) = N (AT ). If N (A) = N (AT ) and a
least-squares solution is reached at some step, then GMRES breaks down at the next
step, with breakdown through degeneracy of the Krylov subspace if (1.1) is consistent
and through rank deficiency of the least-squares problem (1.2) otherwise. Furthermore,
if (1.1) is consistent and x0 ∈ R(A), then the solution reached is the pseudoinverse
solution.

Proof. First, suppose that N (A) 6= N (AT ). One can choose b and x0 such that
r0 ∈ N (A) and AT r0 6= 0. Then x0 is not a least-squares solution. Furthermore,
dimA(K1) = 0, so GMRES breaks down at the first step before reaching a least-
squares solution.

Now assume N (A) = N (AT ). Then for each k, we have dimAT (Kk+1) =
dimA(Kk+1), and (2.1) becomes

dimA(Kk+1) = dimA(Kk) = k.

This condition must hold for some k, 0 ≤ k ≤ n, and it follows from Lemma 2.3
that GMRES determines a least-squares solution xk without breakdown at the kth
step. Furthermore, since dimA(Kk+1) = k, GMRES breaks down at step k + 1. One
concludes from Theorem 2.2 that breakdown is through degeneracy of the Krylov
subspace if (1.1) is consistent and through rank deficiency of the least-squares problem
(1.2) otherwise. If (1.1) is consistent, then xk is a solution and, furthermore, Kk ⊆
R(A). If in addition x0 ∈ R(A), then xk = x0 + zk ∈ x0 + Kk ⊆ R(A) = N (A)⊥.
Since a (least-squares) solution of (1.1) is the pseudoinverse solution if and only if it
lies in N (A)⊥, it follows that xk is the pseudoinverse solution.

If it is known that N (A) = N (AT ), then Theorem 2.4 provides theoretical assur-
ance not only that GMRES will determine a least-squares solution of (1.1) without
breakdown but also that reaching it will be indicated by breakdown at the next step.
If (1.1) is consistent as well, then choosing x0 ∈ R(A), e.g., x0 = 0, will yield the
pseudoinverse solution without breakdown, and reaching it will be indicated by zero
residual norm.

If N (A) = N (AT ) and (1.1) is consistent, then the least-squares problem (1.2)
will remain as well conditioned as the nature of A will allow until a solution of (1.1)
is reached. Indeed, if we denote

Ak ≡ A|Kk ,
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then the appropriate condition number for (1.2) is κ2(Ak), which satisfies

κ2(Ak) ≡
max

z∈Kk, z 6=0
‖Az‖2

/
‖z‖2

min
z∈Kk, z 6=0

‖Az‖2
/
‖z‖2

≤
max

z∈R(A), z 6=0
‖Az‖2

/
‖z‖2

min
z∈R(A), z 6=0

‖Az‖2
/
‖z‖2

≡ κ2(A|R(A))(2.3)

since Kk ⊆ R(A) in the consistent case. Note that, since R(A) = N (AT )⊥ = N (A)⊥,
κ2(A|R(A)) is just the ratio of the largest singular value of A to the smallest positive
one. Also, recall from above that, in the consistent case, if a solution is reached at
some step, then breakdown of GMRES at the next step occurs because of degeneracy
of the Krylov subspace and not because of rank deficiency of the least-squares problem
(1.2). These reassuring results are to be expected, for if N (A) = N (AT ) and (1.1) is
consistent, then everything reduces to the nonsingular case on R(A) = N (A)⊥.

If N (A) = N (AT ) but (1.1) is not consistent, then, despite the theoretical guar-
antee of Theorem 2.4 that GMRES will not break down, the least-squares problem
(1.2) may necessarily become dangerously ill conditioned before a least-squares solu-
tion of (1.1) is reached, regardless of the conditioning of A|R(A). This is shown by
Theorem 2.5 below. It is, perhaps, not surprising, because if a least-squares solu-
tion is reached at some step, then, in the inconsistent case, breakdown at the next
step occurs because of rank deficiency of the least-squares problem (1.2), rather than
degeneracy of the Krylov subspace.

Theorem 2.5. Suppose that N (A) = N (AT ), and denote the least-squares resid-
ual for (1.1) by r∗. If rk−1 6= r∗ for some k, then

κ2(Ak) ≥ ‖Ak‖2
‖Āk‖2 ·

‖rk−1‖2√
‖rk−1‖22 − ‖r∗‖22

,(2.4)

where Ak ≡ A|Kk and Āk ≡ A|Kk+span {r∗}.
Proof. Note that r∗ ∈ R(A)⊥ = N (A) and rk−1 − r∗ ∈ R(A) = N (A)⊥. Then,

since rk−1 − r∗ ∈ Kk + span {r∗}, we have

‖Ark−1‖2 = ‖A(rk−1 − r∗ + r∗)‖2 = ‖A(rk−1 − r∗)‖2
≤ ‖Āk‖2 · ‖rk−1 − r∗‖2 = ‖Āk‖2 ·

√
‖rk−1‖22 − ‖r∗‖22,

whence

‖Ark−1‖2
‖rk−1‖2 ≤ ‖Āk‖2 ·

√
‖rk−1‖22 − ‖r∗‖22
‖rk−1‖2 .(2.5)

Since rk−1 ∈ Kk, (2.4) follows from (2.5) and the definition of κ2(Ak) (see (2.3)).
If (1.1) is consistent, then r∗ = 0 and Āk = Ak. It follows that (2.4) is just

the trivial bound κ2(Ak) ≥ 1 in this case. In general, we have 1 ≥ ‖Ak‖2/‖Āk‖2 ≥
‖Ak‖2/‖A‖2, and (2.4) yields

κ2(Ak) ≥ ‖Ak‖2
‖A‖2 · ‖rk−1‖2√

‖rk−1‖22 − ‖r∗‖22
,(2.6)

which may be more easily applied in the inconsistent case.
If A is singular and N (A) = N (AT ), then it is evident from (2.6) that, for an

unfortunate choice of b and x0, the least-squares problem (1.2) will become so ill
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conditioned before breakdown that little or no accuracy can be expected in a solution
computed in finite-precision arithmetic. Indeed, in view of (2.6), one would expect
that, in many cases, the residual for the computed solution will first decrease in norm
for a number of iterations and then lose accuracy and perhaps increase as a least-
squares solution is approached and accuracy is degraded by increasing ill conditioning.
(This is seen in Experiment 4.2 below.) In such cases, it would clearly be desirable
to terminate the iterations when approximately optimal accuracy has been reached.
Note that the usual termination criteria based on the size of the residual norm are
unlikely to be of any use in this case; some alternative criterion is needed.

We show how (2.6) can be used to derive a heuristic guideline for terminating the
iterations at an approximately optimal point in finite-precision arithmetic. We make
two assumptions that are reasonable but by no means the only possible assumptions;
our main purpose is to demonstrate the method of derivation. (The guideline result-
ing from these assumptions is borne out well in Experiment 4.2 below.) The first
assumption is that κ2(Ak) is about as small as possible, given the lower bound (2.6),
i.e., that

κ2(Ak) ≈ ‖Ak‖2
‖A‖2 · ‖rk−1‖2√

‖rk−1‖22 − ‖r∗‖22
.

The second assumption is that the computed value of rk, denoted by r̂k, satisfies

‖r̂k − rk‖2
‖r0‖2 ≈ uκ2(Ak),

where u is unit rounding error. A rigorous worst-case bound on ‖r̂k − rk‖2/‖r0‖2
would require uκ2(Ak) multiplied by a polynomial of low degree in n and k (see [11,
Chap. 5]), but this is not necessary here. With these assumptions, we have

‖r̂k − r∗‖2
‖r0‖2 ≤ ‖r̂k − rk‖2

‖r0‖2 +
‖rk − r∗‖2
‖r0‖2

≈ uκ2(Ak) +

√
‖rk‖22 − ‖r∗‖22
‖r0‖2

≤ uκ2(Ak) +

√
‖rk−1‖22 − ‖r∗‖22

‖r0‖2

≈ uκ2(Ak) +
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

κ2(Ak)

= B(κ2(Ak)),

(2.7)

where

B(κ) ≡ uκ+
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

κ
.

It is easily seen that B is minimized when

κ = κmin ≡
√
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · 1

u
,(2.8)
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which suggests a heuristic guideline as follows: If the iterations are terminated with
κ2(Ak) ≈ κmin given by (2.8), then (2.7) gives an approximate minimal bound

‖r̂k − r∗‖2
‖r0‖2 ≤ B(κmin) = 2

√
‖Ak‖2
‖A‖2 · ‖rk−1‖2

‖r0‖2 · u .(2.9)

This can be simplified for practical purposes by assuming that ‖Ak‖2/‖A‖2 ≈ 1 and
‖rk−1‖2 ≈ ‖r̂k−1‖2. We discuss how to monitor κ2(Ak) efficiently in practice in section
3.

If N (A) 6= N (AT ), then it follows from Theorem 2.4 that, for some b and x0,
GMRES will break down before determining a least-squares solution of (1.1). How-
ever, there is an important special case in which GMRES still reliably determines a
least-squares solution, viz., that in which N (A)∩R(A) = {0} and (1.1) are consistent.
This occurs, e.g., in Experiment 4.3 below.

Theorem 2.6. Suppose that N (A) ∩ R(A) = {0}. If (1.1) is consistent, then
GMRES determines a solution without breakdown at some step and breaks down at
the next step through degeneracy of the Krylov subspace.

Proof. Since (1.1) is consistent, r0 ∈ R(A) and Kk ⊆ R(A) for each k. Since
N (A) ∩ R(A) = {0}, this implies that dimA(Kk) = dimKk for each k. Then there
cannot be breakdown through rank deficiency of the least-squares problem (1.2), and
the theorem follows from Theorem 2.2.

Conditions that are essentially equivalent to those in Theorem 2.6 appear in
[9]. The index of A, denoted index(A), is defined to be the smallest integer q such
that Aq and Aq+1 have the same rank. It is easily seen that index(A) = 1 if and
only if A is singular and N (A) ∩ R(A) = {0}. For a consistent system (1.1) with
index(A) = 1, general conditions are given in [9] under which a Krylov subspace
method is convergent. It is further shown in [9] that the QMR and TFQMR methods
are convergent for such a system.

IfN (A)∩R(A) = {0} and (1.1) is consistent, then κ2(Ak) satisfies (2.3). However,
note that if N (A) 6= N (AT ), then minz∈R(A), z 6=0 ‖Az‖2

/‖z‖2 may be smaller than
the smallest positive singular value of A, and so κ2(A|R(A)) may be larger than the
ratio of the largest singular value of A to the smallest positive one. Still, the least-
squares problem (1.2) is as well conditioned as the nature of A will allow and cannot
become arbitrarily ill conditioned before a solution is determined by GMRES through
an unfortunate choice of b and x0. This is not surprising, since GMRES breakdown
occurs because of degeneracy of the Krylov subspace, rather than rank deficiency of
the least-squares problem (1.2). As when (1.1) is consistent and N (A) = N (AT ),
the setting reduces to the nonsingular case on R(A), although now R(A) may not
be N (A)⊥. When (1.1) is not consistent, breakdown must occur because of rank
deficiency of (1.2), and in general we cannot expect (1.2) to remain well conditioned,
whether or not a least-squares solution is reached.

We conclude this section by noting that, in some applications, one can easily
project b onto R(A). For example, in each of Experiments 4.2 and 4.3 below, N (AT )
is one dimensional, and it is not difficult to determine a unit vector inN (AT ) and then
to project b ontoN (AT )⊥ = R(A). In such an application, if GMRES can be expected
to behave well on a consistent system, e.g., if N (A) = N (AT ) or N (A)∩R(A) = {0},
then it is clearly desirable to project b onto R(A) before starting GMRES. By doing
this, one can determine a least-squares solution for the original b without risking the
dangerous ill conditioning that may precede GMRES breakdown with rank deficiency
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of (1.2). In addition, if N (A) = N (AT ), then one can determine the pseudoinverse
solution by taking x0 ∈ R(A), e.g., x0 = 0.

3. Practical handling of (near) singularity. In section 2, we considered the
conditioning of the least-squares problem (1.2) and how it might be affected by A
and perhaps b and x0. In this section, we look further into how singularity or ill
conditioning can arise in GMRES and discuss how conditioning can be monitored
efficiently in practice.

Recall from section 1 that, prior to breakdown, an implementation of GMRES
generates a basis of Kk for each k. We denote the matrix having the basis vectors
as columns by Bk ∈ Rn×k. The kth GMRES correction zk, which is the solution of
(1.2), is not computed for each k, but when desired, it is determined by first finding
yk that solves

min
y∈Rk

‖r0 −ABky‖2(3.1)

and then forming zk = Bkyk. Thus ill conditioning or singularity is a concern in
GMRES only if it becomes manifested in ill conditioning or rank deficiency of ABk

or Bk.
Sound GMRES implementations are designed so that, as much as possible, each

Bk is well conditioned regardless of the conditioning of A. For example, the standard
implementation of [16] and Householder variants in [18] determine ideally conditioned
Bk such that BT

k Bk = Ik (in exact arithmetic). Other implementations in [2] and [19]
generate Bk that are usually well conditioned, if not ideally conditioned. In any event,
in well-constructed GMRES implementations, the conditioning of Bk does not suffer
directly from ill conditioning of A; furthermore, any ill conditioning of Bk seems likely
to be reflected in ill conditioning of ABk. Therefore, we focus on the conditioning of
ABk here.

In practice, a reasonable course is to monitor the conditioning of ABk and ter-
minate the GMRES iterations if excessive ill conditioning or rank deficiency appears.
Typically, the solution of (3.1) is computed using a factorization ABk = QkRk, where
Qk ∈ Rn×k has orthonormal columns and Rk ∈ Rk×k is upper triangular. It is
reasonable to assume that this factorization is determined using one or more sta-
ble factorization techniques. For example, the implementations of [16] and [18] first
use modified Gram–Schmidt or, respectively, Householder transformations to produce
ABk = Bk+1Hk, where Hk ∈ R(k+1)×k is upper Hessenberg, and then use plane ro-
tations J1, . . . , Jk to obtain AkBk = QkRk with Qk = Bk+1J

T
1 . . . JTk (Ik, 0)T and

Rk = (Ik, 0)Jk . . . J1Hk. In general, each Qk may be only implicitly specified, as
in the implementations of [16] and [18], but each Rk is always produced explicitly.
Then, since the conditioning of ABk is determined by that of Rk, it suffices to moni-
tor the conditioning of Rk and terminate the iterations if excessive ill conditioning or
singularity appears.

In the important case in which BT
k Bk = Ik, as in the implementations of [16] and

[18], we have κ2(Rk) = κ2(ABk) = κ2(Ak) ≤ κ2(A), where Ak = A|Kk as above. This
inequality need not be strict; for example, if A is nonsingular and GMRES proceeds
for n steps without breakdown, then An = A and κ2(Rn) = κ2(An) = κ2(A). Thus
Rk can become fully as ill conditioned as A. However, if r0 lies in an invariant proper
subspace, then κ2(Rk) may remain much less than κ2(A). The following example
illustrates extreme behavior.

Example 3.1. Assume that BT
k Bk = Ik for each k. Suppose that we have σ1 ≥
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· · · ≥ σn−1 = σn > 0, and define

A ≡



0 · · · 0 σn−1 0

σ1
. . .

... 0 0

0
. . . 0

...
...

...
. . . σn−2 0 0

0 · · · 0 0 σn

 .

Clearly, σ1, . . . , σn are the singular values of A, and κ2(A) = σ1/σn. For i = 1, . . . ,
n, let ei denote the ith column of In. If r0 = e1, then we have Kk = span{e1, . . . , ek}
and κ2(Rk) = κ2(Ak) = σ1/σk for k = 1, . . . , n − 1. In particular, the solution is
reached at the (n− 1)st step with κ2(Rn−1) = σ1/σn−1 = σ1/σn = κ2(A). However,
if r0 = en, then the solution is reached at the first step with κ2(R1) = σn/σn = 1.

A very efficient means of monitoring the conditioning of Rk is provided by incre-
mental condition estimation (ICE) [4], [5]. This determines estimates of the largest
and smallest singular values of each Rk in O(k) arithmetic operations, given estimates
of the largest and smallest singular values of Rk−1. Thus one can begin with k = 1
and use ICE to estimate incrementally the condition number of each successive Rk

as k increases. Over a cycle of m GMRES steps, the total cost of estimating the
condition number of each Rk, 1 ≤ k ≤ m, is O(m2) arithmetic operations, which is
negligible in most applications. A well-developed Fortran implementation of ICE is
provided by auxiliary routine xLAIC1 of LAPACK [1], where x = S for single precision
or x = D for double precision. This implementation was used in all of the numerical
experiments reported in section 4.

4. Numerical experiments. In this section, we discuss several numerical ex-
periments that illustrate the theoretical and practical points brought out above. A
standard modified Gram–Schmidt GMRES implementation, as originally outlined in
[16], was used in all experiments. Recall that with this implementation, the basis ma-
trix Bk is ideally conditioned, with BT

k Bk = Ik. This implementation was augmented
with routine DLAIC1 of LAPACK for monitoring conditioning of the triangular fac-
tor of ABk as discussed above. In all experiments, we took the zero vector to be the
initial approximate solution and specified a stopping tolerance tol so that the GMRES
iterations would terminate when ‖rk‖2 ≤ tol‖b‖2. Of course, there was no expectation
of stopping on the basis of such a test in cases in which (1.1) was not consistent; in
these cases, termination was based on other criteria noted below. All computing was
done in double precision Fortran on Sun Microsystems Sparc architectures.

Experiment 4.1. This experiment, which involves a contrived problem, points out
the danger of not monitoring the conditioning of ABk and terminating when excessive
ill conditioning appears. The matrix A is from the example in [6, sect. 6],

A =


0 1

−1
. . .

. . .
. . .

. . . 1
−1 0

 .

We assume that n is odd, in which case A is singular with

N (A) = span{(1, 0, 1, 0, . . . , 0, 1)T }.
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Since A is skew symmetric, the conclusions of Theorem 2.4 hold, at least in exact
arithmetic, and GMRES should find a least-squares solution of (1.1) without break-
down and then exhibit breakdown at the next step. In floating point arithmetic,
however, GMRES produced misleading results.

We took n = 49, tol = 10−6 and first ran GMRES with

b = (1/
√

2, 0, . . . , 0,−1/
√

2)T ,

for which (1.1) is consistent. GMRES safely terminated with a computed residual
norm of 1.57× 10−16 when the pseudoinverse solution was reached at the 24th step;
the largest observed condition number estimate was 12.7. We then ran GMRES
with b = (1/

√
2, 0, . . . , 0, 1/

√
2)T , for which (1.1) is not consistent; the least-squares

residual norm is
√

2/5. In exact arithmetic, a least-squares solution would have been
obtained at the 24th step, and this would have been indicated by breakdown at the
25th step in the form of rank deficiency in the least-squares problems (1.2) and (3.1).
Because of rounding error, exact breakdown did not occur, nor were any arithmetic
exceptions such as overflow observed. However, the condition number estimate went
from 12.7 at the 24th step to 1.47 × 1016 and 1.79 × 1030 at the 25th and 26th
steps, respectively. We allowed GMRES to continue, restarting every 49 steps, until
it declared successful termination at the 185th step with a computed residual norm of
6.68×10−7. Of course, this was the value of the residual norm maintained recursively
by GMRES and not the true residual norm, which was 9.14× 1012 on termination!

We also note that the GMRES implementation used in these experiments did not
re-evaluate the residual and its norm directly at each restart; i.e., it did not multiply
the current approximate solution by A and subtract the result from b. Instead, it
updated the residual at each restart by forming a certain linear combination of the
Arnoldi basis vectors generated in the previous cycle of steps. Such updating saves
an A-product at each restart and is usually a safe thing to do, unless extreme residual
norm reduction is desired. In this example, however, it was not safe, and re-evaluating
the residual directly at restarts would have indicated that GMRES had gone astray.

The next two experiments involve discretizations of boundary value problems for
the partial differential equation

∆u+ d
∂u

∂x1
= f(x), x = (x1, x2) ∈ Ω ≡ [0, 1]× [0, 1],(4.1)

where d is a constant and f is a given function. In the experiments reported here,
we discretized (4.1) with the usual second-order centered differences on a 100 × 100
mesh of equally spaced discretization points, so that the resulting linear systems were
of dimension 10, 000. We took d = 10 and preconditioned the discretized problems
on the right with a fast Poisson solver from FISHPACK [17]. This preconditioner
is very effective for this fairly small value of d. We took tol = 10−10 in order to
see how GMRES behaved with a tight stopping tolerance. We also stopped the
iterations when the condition number estimate became greater than 1/(50u) ≈ 1014.
In the trials outlined below, there was no need to restart GMRES; in each case,
there was termination because of either sufficient residual norm reduction or excessive
ill conditioning before the maximum allowable number of iterations (50) had been
reached.

In each of these two experiments, it is possible to give a simple characterization
of N (AT ). In each, then, we first consider a b for which (1.1) is not consistent and
then project it onto R(A) to obtain a consistent system that is effectively solved by



48 PETER N. BROWN AND HOMER F. WALKER

Table 4.1

GMRES iterations 9–19 on problem (4.1) with periodic boundary conditions.

Iteration GMRES recursive Computed Condition no.
no. residual norm residual norm estimate

9 99.000000080681 99.000000080680 7.80× 103

10 99.000000005202 99.000000005201 4.17× 104

11 99.000000000146 99.000000000145 1.65× 105

12 99.000000000008 99.000000000007 9.97× 105

13 99.000000000002 99.000000000000 4.71× 106

14 99.000000000002 99.000000000000 3.20× 107

15 99.000000000001 99.000000000001 1.76× 108

16 98.999999999935 99.000000000068 1.33× 109

17 98.999999997323 99.000000002679 8.41× 109

18 98.999999811806 99.000000188196 7.05× 1010

19 98.999990468226 99.000009534599 5.02× 1011

GMRES. The result is both an approximate solution of the consistent system and an
approximate least-squares solution of the original inconsistent system.

Experiment 4.2. In this experiment, we imposed periodic boundary conditions:
u(x1, 0) = u(x1, 1) and u(0, x2) = u(1, x2) for 0 ≤ x1, x2 ≤ 1. The matrix A is given
as follows:

A =
1

h2


Tm Im Im

Im
. . .

. . .
. . .

. . . Im
Im Im Tm

 , Tm =


−4 α+ α−

α−
. . .

. . .
. . .

. . . α+

α+ α− −4

 ∈ Rm×m,

and m =
√
n = 100, h = 1/m, and α± = 1 ± dh/2. It is easy to verify that A is

normal and that

N (A) = N (AT ) = span{(1, 1, . . . , 1)T };(4.2)

then Theorems 2.4 and 2.5 are applicable.
We first took b to be a discretization of f(x) = x1 + x2. For this b, (1.1) is

not consistent; the least-squares residual norm is 99. GMRES began with an initial
residual norm of 107.1 and terminated after 21 iterations with a condition number
estimate greater than the termination value 1/(50u) ≈ 1014. A subset of the itera-
tions is shown in Table 4.1, which gives to 14-digit accuracy both the residual norm
values maintained recursively by GMRES and the directly computed residual norms,
as well as the condition number estimates. Note that the two norm values agree well
and decrease toward the least-squares residual norm through iteration 15, but then
the computed norms begin to increase while the recursive norm values continue erro-
neously to decrease below the least-squares residual norm. Since u ≈ 2.2×10−16 here,
the heuristic guideline developed in section 2 would have called for termination when
the condition number estimate was about 108. Table 4.1 shows that this would have
been a very good point at which to terminate: the computed residual norm would
have been near its minimum value, and the recursive residual norm value would have
still been accurate. Note the pessimism of the bound (2.9) in this case.

Using the characterization of N (AT ) in (4.2), we next projected the above b onto
R(A) to obtain a consistent system. The initial residual norm was 40.82. After 17
iterations, GMRES successfully met the termination test based on tol = 10−10 and
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terminated with a residual norm of 2.441× 10−9. No major inaccuracy was observed;
the recursive residual norm value agreed with the directly computed residual norm to
five significant digits. Since N (A) = N (AT ) and the initial guess was zero, the final
iterate was an approximate pseudoinverse solution of not only the consistent system
but also the inconsistent system with the original b.

Experiment 4.3. In this experiment, we imposed Neumann boundary conditions:
∂u(x)/∂ν = 0 for x ∈ ∂Ω. The matrix A is now given by

A =
1

h2


Tm 2Im
Im Tm Im

. . .
. . .

. . .

Im Tm Im
2Im Tm

 , Tm =


−4 2
α− −4 α+

. . .
. . .

. . .

α− −4 α+

2 −4

 ∈ Rm×m,

and m, h, and α± are as in Experiment 4.2. We have N (A) = span{(1, 1, · · · , 1)T } as
before, but now N (AT ) 6= N (A). Indeed, we determine N (AT ) as follows: Set

Dm ≡ diag (1, 2/α−, 2α+/α
2
−, . . . , 2α

m−3
+ /αm−2

− , αm−2
+ /αm−2

− ) ∈ Rm×m,

and define a block-diagonal matrix D = diag (Dm, 2Dm, . . . , 2Dm, Dm) ∈ Rn×n.
Then one can verify that DA is symmetric, and it therefore follows that N (AT ) =
span{D(1, 1, . . . , 1)T }. With this characterization of N (AT ), one sees that N (A) ∩
R(A) = {0}; then Theorem 2.6 applies when (1.1) is consistent.

The procedures and observations in this experiment were much like those in Ex-
periment 4.2. We first took b to be a discretization of f(x) = x1+x2+sin 10x1 cos 10x2+
e10x1x2 . This gave somewhat more dramatic results than the choice of f in Experi-
ment 4.2. For this b, (1.1) is not consistent; the least-squares residual is 5.302× 104.
GMRES began with an initial residual norm of 1.232 × 105 and terminated after
30 iterations with a condition number estimate greater than 1/(50u) ≈ 1014. The
final computed residual norm was 6.305 × 104, which suggests that the GMRES it-
erates were not converging to a least-squares solution (at least not in any practical
sense, given the very large condition number). We next used the characterization
N (AT ) = span{D(1, 1, . . . , 1)T } to project this b onto R(A) and to obtain a consis-
tent system. The initial residual norm was 1.112× 105. After 23 iterations, GMRES
successfully met the termination test based on tol = 10−10 and terminated with a
residual norm of 8.716 × 10−6. No major inaccuracy was observed; the recursive
residual norm agreed with the directly computed residual norm to three significant
digits. In this case, the final iterate was not a pseudoinverse solution of either the
consistent system or the inconsistent system with the original b.

5. Summary discussion. We have addressed the performance of GMRES on
a linear system Ax = b when A is singular or ill conditioned. Theoretical results
are given that are of interest primarily in the singular case; these hold not only for
GMRES but also for any mathematically equivalent method. In general, at some
step, GMRES will either (a) break down through rank deficiency of the GMRES
least-squares problem without determining a solution or (b) determine a solution
without breakdown and then break down at the next step through degeneracy of the
Krylov subspace.

More extensive results hold when N (A) = N (AT ). This condition is necessary
and sufficient for GMRES to determine a least-squares solution without breakdown
for all b and x0. If N (A) = N (AT ) and the system is consistent, then the condition
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number of the GMRES least-squares problem remains bounded by κ2(A|R(A)), which,
in this case, is the ratio of the largest singular value of A to the smallest positive one.
If x0 ∈ R(A) as well, then the solution determined by GMRES is the pseudoinverse
solution. If N (A) = N (AT ) and the system is not consistent, then, for some b and x0,
the GMRES least-squares problem will necessarily become dangerously ill conditioned
before a least-squares solution is reached, despite the theoretical guarantee of no
breakdown. However, one may be able to use the condition number of the GMRES
least-squares problem to determine when to terminate with nearly the best obtainable
accuracy.

If N (A) ∩ R(A) = {0} and the system is consistent, then GMRES will produce
a solution without breakdown, even if N (A) 6= N (AT ). In this case, the condition
number of the GMRES least-squares problem again remains bounded by κ2(A|R(A)),
but this may be larger than the ratio of the largest singular value of A to the smallest
positive one. Still, this condition number cannot become arbitrarily large through an
unfortunate choice of b and x0.

In some applications in which the system is not consistent, it may be possible
to project b onto R(A). If GMRES can be expected to solve consistent systems
reliably, e.g., if N (A) = N (AT ) or N (A) ∩ R(A) = {0}, then applying GMRES to
the consistent system with the projected b will safely yield a least-squares solution of
the original inconsistent system.

In practice, the kth GMRES step is obtained by reducing the GMRES least-
squares problem to an unconstrained k-dimensional least-squares problem, which is
solved through QR factorization. In numerically sound GMRES implementations,
singularity or ill conditioning of A is a concern only if it becomes manifested in
singularity or ill conditioning of the upper-triangular factors, which may or may not
occur before a solution is found. The condition numbers of these factors can be
estimated very efficiently using incremental condition estimation (ICE) [4], [5].
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Abstract. LAPACK and LINPACK both solve symmetric indefinite linear systems using the
diagonal pivoting method with the partial pivoting strategy of Bunch and Kaufman [Math. Comp.,
31 (1977), pp. 163–179]. No proof of the stability of this method has appeared in the literature. It
is tempting to argue that the diagonal pivoting method is stable for a given pivoting strategy if the
growth factor is small. We show that this argument is false in general and give a sufficient condition
for stability. This condition is not satisfied by the partial pivoting strategy because the multipliers
are unbounded. Nevertheless, using a more specific approach we are able to prove the stability of
partial pivoting, thereby filling a gap in the body of theory supporting LAPACK and LINPACK.
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1. Introduction. LAPACK is renowned for the numerical reliability of the al-
gorithms it employs. The LAPACK Users’ Guide [1] states that “almost all the
algorithms in LAPACK (as well as LINPACK and EISPACK) are [normwise back-
ward] stable” [1, page 74], and the algorithms not covered by this statement are known
to be stable in appropriately weakened senses. The analyses to back up these claims
of stability are spread throughout the research literature of the last 35 years. While
writing the book Accuracy and Stability of Numerical Algorithms [14] we realized that
there is no proof in the literature of the stability of the method used in LAPACK and
LINPACK for solving symmetric indefinite linear systems. Furthermore, the stability
is not a direct consequence of existing results. The purpose of this paper is to prove
the stability of the method and thereby to fill a gap in the body of theory supporting
LAPACK and LINPACK.

In the remainder of the introduction we briefly describe the method to be ana-
lyzed: the diagonal pivoting method with the partial pivoting strategy of Bunch and
Kaufman [5].

Let A ∈ Rn×n be symmetric. If A is nonzero, we can find a permutation Π and
an integer s = 1 or 2 so that

ΠAΠT =

[ s n−s
s E CT

n−s C B

]
,

with E nonsingular. Then we can compute the factorization

ΠAΠT =

[
Is 0

CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
.(1.1)

This process can be repeated recursively on the (n− s)× (n− s) Schur complement

S = B − CE−1CT .
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The result is a factorization

PAPT = LDLT ,(1.2)

where L is unit lower triangular and D is block diagonal with each diagonal block
having dimension 1 or 2. This factorization is essentially a symmetric block form
of Gaussian elimination, with pivoting, and it costs n3/3 flops1 (the same cost as
Cholesky factorization of a positive definite matrix) plus the cost of determining the
permutations Π. This method for computing a block LDLT factorization is called the
diagonal pivoting method. Given the factorization (1.2) of a nonsingular A, a linear
system Ax = b is readily solved by substitution and by solving 2 × 2 linear systems
corresponding to any 2× 2 diagonal blocks of D.

The strategy for choosing Π is crucial for achieving stability. Bunch and Parlett
[7] proposed a complete pivoting strategy, which requires the whole active submatrix
to be searched on each stage of the factorization and therefore requires up to n3/6
comparisons. Bunch [3] proved that the diagonal pivoting method with complete piv-
oting satisfies a backward error bound almost as good as that for Gaussian elimination
with complete pivoting. Bunch and Kaufman [5] devised a partial pivoting strategy
that searches at most two columns at each stage and so requires only O(n2) com-
parisons. The LAPACK driver routines xSYSV (simple) and xSYSVX (expert) and the
LINPACK routines xSIFA/xSISL all use the diagonal pivoting method with partial
pivoting to solve a linear system with a symmetric (indefinite) coefficient matrix.

To describe the partial pivoting strategy it suffices to define the pivot choice for
the first stage of the factorization. Recall that s denotes the size of the pivot block.

Algorithm 1 (Bunch–Kaufman partial pivoting strategy). This algorithm de-
termines the pivot for the first stage of the diagonal pivoting method with partial
pivoting applied to a symmetric matrix A ∈ Rn×n.

α: = (1 +
√

17)/8 (≈ 0.64)
λ := ‖A(2:n, 1)‖∞
If λ = 0 there is nothing to do on this stage of the elimination.
r := min{i ≥ 2: |ai1| = λ}
if |a11| ≥ αλ

(1) s = 1, Π = I
else

σ: =

∥∥∥∥[A(1: r − 1, r)
A(r + 1:n, r)

]∥∥∥∥
∞

if |a11|σ ≥ αλ2

(2) s = 1, Π = I
else if |arr| ≥ ασ

(3) s = 1 and choose Π to swap rows and columns 1 and r.
else

(4) s = 2 and choose Π to swap rows and columns 2 and r,
so that |(ΠAΠT )21| = λ.

end
end

1A flop is a floating point addition, subtraction, multiplication, or division.
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To understand the partial pivoting strategy it helps to consider the matrix

a11 . . . λ . . . . . . . . .
...

...
λ . . . arr . . . σ . . .
...

...
... σ
...

...


and to note that the pivot is one of a11, arr, and

[
a11

λ
λ

arr

]
(or, rather, since λ = |ar1|,

this matrix with λ replaced by ar1).
The value of the constant α = (1+

√
17)/8 is determined by regarding α as a free

parameter and equating a bound for the element growth over two s = 1 stages to a
bound for the element growth over one s = 2 stage; see [5] or [14] for the details.

A growth factor can be defined for the diagonal pivoting method in just the same
way as for Gaussian elimination:

ρn =
maxi,j,k |a(k)

ij |
maxi,j |aij | ,

where the a
(k)
ij are the elements of the Schur complements arising in the course of

the factorization. From the derivation of the constant α it is easy to show that
ρn ≤ (1 + 1/α)n−1 = (2.57)n−1 for partial pivoting, which is larger than the bound
2n−1 for Gaussian elimination with partial pivoting (GEPP). But, it seems that as
for GEPP, large element growth is rare in practice [5], [9].

2. Stability of the diagonal pivoting method. Since the growth factor for
the diagonal pivoting method with partial pivoting is bounded and is usually small
in practice, does it not follow that the method is stable in the same sense as for
GEPP? This is a tempting argument, and one that is neither used nor warned against
in the existing literature. However, it is easy to show that the argument is false by
exhibiting an example where the diagonal pivoting method has a small growth factor
but is unstable. An example (not produced by partial pivoting) is, with n = 3 and
with a 2× 2 pivot followed by a 1× 1 pivot,

A =

 1 −(1 + ε2) −ε
−(1 + ε2) 1 −ε

−ε −ε −1


=

 1
0 1
ε−1 ε−1 1

 1 −(1 + ε2)
−(1 + ε2) 1

1

 1 0 ε−1

1 ε−1

1

 = LDLT ,(2.1)

where ε > 0. The growth factor ρn is 1, yet ‖L‖∞/‖A‖∞ is unbounded as ε → 0,
which suggests that the factorization, however it is computed, may not provide a stable
way to solve linear systems Ax = b in finite precision arithmetic. The instability is
confirmed by a Matlab experiment, in which the unit roundoff u = 2−53 ≈ 1.1 ×
10−16. We solved a linear system Ax = b, where b = A [1 2 3]T , in two different ways.
First, we computed the factorization in (2.1) using the diagonal pivoting method, as
specified in (1.1) (with Π = I), taking a 2×2 pivot on the first step and using GEPP
to solve linear systems involving this pivot. For comparison, we evaluated the explicit
formulae for the LDLT factors in (2.1) and used the explicit inverse of D(1: 2, 1: 2)
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Table 2.1

Backward error for computed solution of indefinite system of order 3.

Diagonal Explicit
ε pivoting factors

10−1 9e−17 6e−16
10−2 5e−17 2e−14
10−3 3e−15 5e−11
10−4 7e−14 4e−9
10−5 6e−13 6e−8
10−6 1e−13 1e−6
10−7 4e−11 1e−7

when solving the linear system involving D. Table 2.1 shows the normwise relative
backward error of the computed solution x̂,

η∞(x̂) := min{ ε : (A+∆A)x̂ = b+∆b, ‖∆A‖∞ ≤ ε‖A‖∞, ‖∆b‖∞ ≤ ε‖b‖∞ }
=

‖b−Ax̂‖∞
‖A‖∞‖x̂‖∞ + ‖b‖∞

(see [16] or [14, Theorem 7.1] for a proof of the latter equality), which would be
of order u for a stable solution method. As ε decreases the computations become
unstable. We note that stability is obtained if, in (1.1), we take the natural 1 × 1
pivot a11 instead of the ill conditioned 2× 2 pivot A(1: 2, 1: 2); interestingly, though,
the 2 × 2 pivot shares with those chosen by the Bunch–Kaufman partial pivoting
strategy the property that it is indefinite. Partial pivoting is stable on this example.

We conclude that a small growth factor is not, by itself, enough to guarantee
stability of the diagonal pivoting method. A sufficient condition for stability can
be obtained by regarding the block LDLT factorization computed by the diagonal
pivoting method as a special case of a block LU factorization. Error analysis for
block LU factorization is given by Demmel, Higham, and Schreiber [8], and a suitable
modification of this analysis gives the following result: if linear systems involving 2×2
pivots are solved in a normwise backward stable fashion then the condition

‖L‖∞‖D‖∞‖LT ‖∞ ≤ cn‖A‖∞,(2.2)

for a modest constant cn, is sufficient to ensure that the diagonal pivoting method
produces a factorization with a small relative residual and provides computed solutions
to linear systems that have a small backward error. Unfortunately, condition (2.2)
does not hold for the partial pivoting strategy of Bunch and Kaufman, as is shown by
the following example. For ε > 0, the diagonal pivoting method with partial pivoting
produces the factorization, with P = I,

A =

 0 ε 0
ε 0 1
0 1 1

 =

 1
0 1

1/ε 0 1

 0 ε
ε 0

1

 1 0 1/ε
1 0

1

 = LDLT .

As ε→ 0, ‖L‖∞‖D‖∞‖LT ‖∞/‖A‖∞ →∞, and indeed the multipliers are unbounded.
Even 1×1 pivots can lead to arbitrarily large elements in L, as the following example
with 0 < ε < α shows (again, partial pivoting selects P = I):

A =

 ε2 ε ε
ε 0 1
ε 1 0

 =

 1
1/ε 1
1/ε 0 1

 ε2 −1
−1

 1 1/ε 1/ε
1 0

1

 = LDLT .
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It is worth emphasizing that large elements in a factor of a matrix do not nec-
essarily imply that the factorization is unstable. For example, in the (point) LDLT

factorization of a symmetric positive definite matrix A with D = diag(dii), dii > 0,
the ratio ‖L‖∞/‖A‖∞ can be arbitrarily large, yet the factorization is guaranteed to
be stable. One such example is, with ε > 0,

A =

[
ε2 ε
ε 2

]
=

[
1 0
ε−1 1

] [
ε2 0
0 1

] [
1 ε−1

0 1

]
.

Our conclusion is that existing results for LU factorization and block LU fac-
torization do not directly imply the stability of the diagonal pivoting method with
partial pivoting. Any proof of stability must make use of the particular properties of
the partial pivoting strategy.

The only claims of stability that we have found in the literature are in the paper
by Bunch, Kaufman, and Parlett [6] and in the LINPACK Users’ Guide [9, p. 5.19];

in both cases, residual bounds of the form ‖A− L̂D̂L̂T ‖∞ ≤ p(n)ρn‖A‖∞u are stated
without proof, where p is a polynomial; we prove a result of this form and, in Theo-
rem 4.2, a backward error result for the computed solution of Ax = b. We note that
much of Bunch’s analysis of the diagonal pivoting method in [3] is specific to complete
pivoting, so his analysis does not readily yield results for partial pivoting.

In the rest of the paper we present a new analysis to show that partial pivoting
is indeed a stable pivoting strategy for the diagonal pivoting method.

3. Background results from error analysis. We collect in this section some
standard error analysis results that will be needed later. For our model of floating
point arithmetic we take

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,(3.1)

where u is the unit roundoff. All the results we quote remain true under a weaker
model that accommodates machines without a guard digit [14, section 2.4], provided
some of the constants are increased slightly.

We introduce the constant

γn =
nu

1− nu
,

which carries with it the implicit assumption that nu < 1. Useful properties are (a)
γm + γn + γmγn ≤ γm+n and (b) if c ≥ 1 then cγn ≤ γcn.

Proofs of the following results can be found in [14]. First, for matrix multiplica-
tion,

fl(AB) = AB +∆, |∆| ≤ γn|A||B|, A ∈ Rm×n, B ∈ Rn×p.

Second, if T ∈ Rn×n is a nonsingular triangular matrix and the system Tx = b is
solved by substitution then

(T +∆T )x̂ = b, |∆T | ≤ γn|T |.(3.2)

Third, if a linear system Ax = b, where A ∈ Rn×n, is solved without breakdown by
Gaussian elimination without pivoting, then the computed solution satisfies

(A+∆A)x̂ = b, |∆A| ≤ 2γn|L̂||Û |,(3.3)

where L̂ and Û are the computed LU factors.
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We will use the norm defined by

‖A‖M = max
i,j

|aij |

(for which ‖AB‖M ≤ n‖A‖M‖B‖M is the best bound of this form that holds for all
A ∈ Rm×n and B ∈ Rn×p).

4. Error analysis.

4.1. 2× 2 linear systems. Crucial to the error analysis that follows is a back-
ward error result for the solution of linear systems involving 2× 2 pivots. Note that,
in the notation of Algorithm 1, the pivot is

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

For this subsection and the later analysis, it is convenient to tabulate the condi-
tions that must hold for a 2× 2 pivot to be selected:

|a11| < αλ,(4.1a)

|a11|σ < αλ2,(4.1b)

|arr| < ασ,(4.1c)

|a11||arr| < α2λ2,(4.1d)

where the fourth inequality is a consequence of the previous two (note that (4.1c)
implies σ 6= 0).

Suppose, first, that linear systems Ex = b are solved by GEPP. By (4.1a),
|a11| < α|ar1| < |ar1|, so GEPP interchanges rows 1 and 2 of E and computes the LU
factorization

PE =

[
ar1 arr
a11 ar1

]
=

 1 0

a11

ar1
1

 ar1 arr

0 ar1 − a11arr
ar1

 = LU.

From (3.3), we have the backward error result

(PE +∆E)x̂ = Pb, |∆E| ≤ 2γ2|L̂||Û |.
Now

|L||U | ≤
 |ar1| |arr|
|a11|

∣∣∣∣a11arr
ar1

∣∣∣∣+ ∣∣∣∣ar1 − a11arr
ar1

∣∣∣∣
 ≤ [ |ar1| |arr|

|a11| (2α2 + 1)|ar1|
]
,

using (4.1d). It follows that

(E + ∆̃E)x̂ = b, |∆̃E| ≤ 2γ2

[ |a11| 2|ar1|
|ar1| |arr|

]
≤ 4γ2|E|,(4.2)

using the numerical value of α specified in Algorithm 1. Strictly, we should append
“+O(u2)” to this bound to account for replacing |L̂||Û | by a bound for |L||U |; we omit
the second-order term for the moment and reinstate it later. Note that the result (4.2)
holds trivially for a 1× 1 pivot E.

The main alternative to using GEPP to solve the systems Ex = b is to use the
explicit inverse of E, as is done in the implementations of the diagonal pivoting method
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with partial pivoting in LAPACK and LINPACK (see the auxiliary routine xLASYF

in LAPACK and xSIFA in LINPACK). In both LAPACK and LINPACK, Ex = b is
solved by evaluating

x =
1

ar1

(
a11

ar1
· arr
ar1

− 1

)


arr
ar1

−1

−1
a11

ar1

 b,(4.3)

which corresponds to using an explicit formula for the inverse of a 2× 2 matrix (or,
equivalently, Cramer’s rule), with scaling to avoid overflow. The term

µ =
a11

ar1
· arr
ar1

− 1

appears to be a potential source of instability, since for arbitrary a11, ar1, and arr the
relative error in the computed µ̂ is unbounded. However, by exploiting the condition
(4.1d) for a 2× 2 pivot, which we rewrite as

|a11||arr|
a2
r1

≤ α2,

we can obtain a very satisfactory error bound for µ̂. Using the model (3.1) we have

µ̂ =

(
a11

ar1
· arr
ar1

(1 + δ1)(1 + δ2)(1 + δ3)− 1

)
(1 + δ4),

where |δi| ≤ u, i = 1: 4, which implies [14, Lemma 3.1]

µ̂ =
a11

ar1
· arr
ar1

(1 + θ4)− (1 + δ4), |θ4| ≤ γ4.

Hence

|µ− µ̂| ≤ γ4

( |a11arr|
a2
r1

+ 1

)
≤ γ4(α

2 + 1)

≤ γ4

(
1 + α2

1− α2

)
|µ| < 3γ4|µ|.

It is then straightforward to show that, denoting the matrix in (4.3) by Z,

x̂ = (ar1µ)−1(Z +∆Z)b, |∆Z| ≤ γ30|Z|.
Thus b− Ex̂ = −E((ar1µ)−1∆Z)b, so that

|b− Ex̂| ≤ γ30|E||E−1||b|
≤ γ30|E||E−1||E||x|
≤ γ180|E||x|,(4.4)

using (A.3). The Oettli–Prager theorem [15], [14, Theorem 7.3] then implies that

(E +∆E)x̂ = b, |∆E| ≤ γ180|E|.
Again, strictly a second-order term should be added to the bound, this time to account
for the fact that |x| rather than |x̂| appears on the right-hand side of (4.4).

The conclusion is that whether the linear system Ex = b involving the 2×2 pivot
is solved by GEPP or by using the explicit inverse, we have

(E +∆E)x̂ = b, |∆E| ≤ γc|E|(4.5)

for an integer constant c. It is worth stressing that such a result does not hold for an
arbitrary 2×2 (symmetric) matrix E—we have fully exploited the pivoting conditions
in the derivation.
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4.2. Componentwise backward error analysis. Now we carry out a com-
ponentwise backward error analysis of the diagonal pivoting method. We make only
one assumption about the pivoting strategy: that (4.5) holds for the 2×2 pivots. For
convenience, we assume, without loss of generality, that no interchanges are needed,
which amounts to redefining A := PAPT in (1.2).

To begin, we consider the first stage of the factorization, using the notation of
(1.1). The submatrix L21 = CE−1 ∈ R(n−s)×s satisfies L21E = C or ELT21 = CT . If
lj is the jth column of LT21 and cj is the jth column of CT , then, from (4.5),

(E +∆Ej)l̂j = cj , |∆Ej | ≤ γc|E|.

Hence, overall,

L̂21E = C +∆C, |∆C| ≤ γc|L̂21||E|.(4.6)

We assume that the Schur complement is computed as S = B − L21C
T , so that2

Ŝ = B − L̂21C
T +∆S, |∆S| ≤ γs+1

(|B|+ |L̂21||CT |).(4.7)

The remaining stages of the diagonal pivoting method factorize the Schur com-
plement as S = LSDSL

T
S , and we assume, inductively, that the computed factors

satisfy

L̂SD̂SL̂
T
S = Ŝ +∆S , |∆S | ≤ d(n− s, u)

(|Ŝ|+ |L̂S ||D̂S ||L̂TS |
)
,

where d(n−s, u) is a constant depending on n−s and u. We therefore have computed

factors L̂ and D̂ of A that satisfy

L̂D̂L̂T :=

[
I 0
L̂21 L̂S

] [
E 0
0 D̂S

] [
I L̂T21
0 L̂TS

]

=

[
E EL̂T21

L̂21E L̂21EL̂
T
21 + L̂SD̂SL̂

T
S

]

=

[
E (C +∆C)T

C +∆C L̂21EL̂
T
21 + Ŝ +∆S

]

=

[
E (C +∆C)T

C +∆C B + (L̂21EL̂
T
21 − L̂21C

T ) +∆S +∆S

]
.

Now, from (4.6) we have the inequalities

|L̂21EL̂
T
21 − L̂21C

T | ≤ γc|L̂21||E||L̂T21|

and

|L̂21||CT | ≤ (1 + γc)|L̂21||E||L̂T21|.(4.8)

Using (4.7) and (4.8) we have

|Ŝ| ≤ (1 + γs+1)(|B|+ (1 + γc)|L̂21||E||L̂T21|).
2If the Schur complement is computed as S = B − L21EL

T
21 then the same bound (4.9) ensues.
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Overall, then, we have

L̂D̂L̂T = A+∆A,

where ∆A11 = 0, |∆A21| ≤ γc|L̂21||E|, and

|∆A22| ≤ γc|L̂21||E||L̂T21|+ γs+1

(|B|+ (1 + γc)|L̂21||E||L̂T21|
)

+ d(n− s, u)
(
(1 + γs+1)(|B|+ (1 + γc)|L̂21||E||L̂T21|) + |L̂S ||D̂S ||L̂TS |

)
≤ (γc + d(n− s, u)(1 + γc))|B|+

(
γc(2 + γc) + d(n− s, u)(1 + γc)

2
)|L̂21||E||L̂T21|

+ d(n− s, u)|L̂S ||D̂S ||L̂TS |
≤ (γc(2 + γc) + d(n− s, u)(1 + γc)

2)
(|B|+ |L̂21||E||L̂T21|+ |L̂S ||D̂S ||L̂TS |

)
.

Hence

L̂D̂L̂T = A+∆A, |∆A| ≤ d(n, u)
(|A|+ |L̂||D̂||L̂T |),(4.9)

where d(n, u) is clearly of the form p(n)u+O(u2), where p is a linear polynomial.
Now we analyze the substitution stages when the LDLT factorization is used to

solve a linear system Ax = b. From (3.2) and (4.5), the computed solutions to the
three systems Ly1 = b, Dy2 = y1, L

Tx = y2 satisfy

(L̂+∆L1)ŷ1 = b, |∆L1| ≤ γn|L̂|,
(D̂ +∆D)ŷ2 = ŷ1, |∆D| ≤ γc|D̂|,

(L̂+∆L2)
T x̂ = ŷ2, |∆L2| ≤ γn|L̂|.

Thus

b = (L̂+∆L1)(D̂ +∆D)(L̂+∆L2)
T x̂ = (A+∆A+∆A2)x̂,

where |∆A| is bounded in (4.9) and

|∆A2| ≤ γ2n+c |L̂||D̂||L̂T |+O(u2).

On bringing back into account the row and column interchanges, we obtain the fol-
lowing result.

Theorem 4.1. Let A ∈ Rn×n be symmetric and let x̂ be a computed solution to
the linear system Ax = b produced by the diagonal pivoting method with any pivoting
strategy. If for all linear systems involving 2× 2 pivots (4.5) holds, then

(A+∆A)x̂ = b, |∆A| ≤ p(n)u
(|A|+ PT |L̂||D̂||L̂T |P )+O(u2),(4.10)

where p is a linear polynomial and PAPT ≈ L̂D̂L̂T is the factorization computed by
the diagonal pivoting method.

The bound in (4.10) is analogous to the bound in (3.3) that holds for Gaussian
elimination. We have already seen that the assumption (4.5) used in Theorem 4.1
holds for the partial pivoting strategy of Bunch and Kaufman, provided linear systems
Ex = b are solved by GEPP or by using the explicit inverse. It is easy to show that
this assumption also holds for the complete pivoting strategy of Bunch and Parlett [7]
under the same conditions. (Interestingly, for the 2× 2 pivots E that arise with the
Bunch–Parlett strategy, GEPP applied to Ex = b is identical to Gaussian elimination
with complete pivoting.)
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4.3. Normwise analysis for partial pivoting. To show that the diagonal
pivoting method is stable for a particular pivoting strategy, we need to show that
the matrix |L̂||D̂||L̂T | is suitably bounded. We now focus on partial pivoting. For

partial pivoting, L̂ can be arbitrarily large, so stability is not an immediate conse-
quence of Theorem 4.1. We therefore need to look closely at the elements of the
matrix |L̂||D̂||L̂T |. For simplicity, we bound the matrix |L||D||LT | containing the
exact factors, which makes only a second-order change to the overall bounds, since
|L̂||D̂||L̂T | = |L||D||LT |+O(u).

Initially, we examine the contribution from the blocks of L and D produced by
the first stage of the factorization. For this more delicate part of the analysis we take
full account of the interchanges in our notation. Note that

|L||D||LT | =
[

I
|L21| |LS |

] [ |E|
|DS |

] [
I |LT21|

|LTS |
]

=

[ |E| |E||LT21|
|L21||E| |L21||E||LT21|+ |LS ||DS ||LTS |

]
.(4.11)

We first bound

F := |L21||E| = |CE−1||E| ∈ R(n−s)×s.

For a 1 × 1 pivot, F is a vector with elements |cie−1
11 ||e11|, each of which is trivially

bounded by maxi,j |aij |.
Now consider a 2× 2 pivot. Algorithm 1 dictates that Π in (1.1) swaps rows and

columns 2 and r so that, as noted earlier,

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

Using (A.1) and (4.1a), we have

eTi F ≤ (eTi |C|)|E−1||E|

≤ 1

1− α2
[λ σ ]

 1 + α2 2|arr|
λ

2|a11|
λ

1 + α2


≤ 1

1− α2
[ (1 + α2)λ+ 2ασ 2|arr|+ (1 + α2)σ ]

≤ maxi,j |aij |
1− α2

[α2 + 2α+ 1 α2 + 3 ]

≤ max
i,j

|aij | [ 5 6 ] .(4.12)

Next, we need to bound

G := |L21||E||LT21| = |CE−1||E||E−1CT |.
First, consider a 1× 1 pivot. In cases (1) and (2) of Algorithm 1 we have

gij = |cie−1
11 ||e11||e−1

11 cj | =
|ai+1,1||aj+1,1|

|a11| ≤ λ2

|a11| ≤


λ

α
, case (1),

σ

α
, case (2).
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In case (3),

|gij | = |alr||amr|
|arr| (l,m 6= r)

≤ σ2

|arr| ≤
σ

α
.

For a 1× 1 pivot, then, |gij | ≤ α−1 maxi,j |aij | < 2 maxi,j |aij |.
For a 2× 2 pivot (case (4) of Algorithm 1), using (A.2) we have

|gij | ≤ (eTi |C|)
(|E−1||E||E−1|)|CT |ej

≤ 3 + α2

(1− α2)2λ2
[λ σ ]

[ |arr| λ

λ |a11|

] [
λ
σ

]

=
3 + α2

(1− α2)2λ2

(
λ2(|arr|+ σ) + σ(λ2 + |a11|σ)

)
=

3 + α2

(1− α2)2

(
|arr|+ 2σ +

σ2|a11|
λ2

)

≤ 3 + α2

(1− α2)2
(3 + α) max

i,j
|aij | (using (4.1b))

= 36 max
i,j

|aij |.(4.13)

The remaining blocks of |L||D||LT | are composed of blocks of L and D that make
up LDLT factors of Schur complements of A. But every Schur complement satisfies

‖S‖M ≤ ρn‖A‖M ,

where ρn is the growth factor. Hence, applying the bounds above recursively to the
(2, 2) block in (4.11), we deduce the (pessimistic) bound

‖ |L||D||LT | ‖M ≤ 36nρn‖A‖M .(4.14)

We mention in passing that in early drafts of this paper we had a weaker version
of (4.5) in which |E| in the bound was replaced by |E|+ |ar1|e2eT2 . We were still able
to obtain a satisfactory bound for ‖ |L||D||LT | ‖M , indicating that partial pivoting is
somewhat more tolerant of how the 2 × 2 systems are solved than might be thought
from the analysis above.

Using the bound (4.14) in Theorem 4.1 we obtain the following normwise back-
ward stability result for partial pivoting.

Theorem 4.2. Let A ∈ Rn×n be symmetric and let x̂ be a computed solution to
the linear system Ax = b produced by the diagonal pivoting method with the partial
pivoting strategy of Bunch and Kaufman, where linear systems involving 2× 2 pivots
are solved by GEPP or by use of the explicit inverse. Then

(A+∆A)x̂ = b, ‖∆A‖M ≤ p(n)ρnu‖A‖M +O(u2),(4.15)

where p is a quadratic.
Theorem 4.2 has the same form as Wilkinson’s result for GEPP applied to a

nonsymmetric system (see, e.g., [14, section 9.2]), though of course the numerical
value of ρn is usually different for the two methods.
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5. Discussion. The backward error matrix ∆A in (4.9) is necessarily symmetric,
but that in (4.15) is not, in general. However, we can take ∆A in (4.15) to be
symmetric, at the cost of increasing the bound by a factor n, because of the following
result of Bunch, Demmel, and Van Loan [4]: if (A+G)y = b then there exists H = HT

such that (A+H)y = b with ‖H‖2 ≤ ‖G‖2 and ‖H‖F ≤ √
2‖G‖F .

Sorensen and Van Loan [10, section 5.3.2] modify the Bunch–Kaufman partial
pivoting strategy by redefining, in Algorithm 1,

σ = ‖A(:, r)‖∞.

This small change has the pleasing effect of ensuring that for a positive definite matrix
no interchanges are done (and that, as for the Bunch–Kaufman strategy, only 1× 1
pivots are used in this case). At the same time it leaves the growth factor bound
unchanged, and all our analysis remains valid for this variant.

For sparse symmetric matrices, Duff, Reid, and coauthors compute the block
LDLT factorization using a pivoting strategy very different from that of Bunch and
Kaufman [11], [12], [13]. We describe the strategy in [13] as it applies to the first stage
of the factorization: a11 is defined to be an acceptable 1× 1 pivot, from the point of
view of numerical stability, if

|a11| ≥ θmax
i>1

|ai1|,(5.1)

where θ ∈ (0, 1/2] is a tolerance; the matrix

D1 =

[
a11 ar1
ar1 arr

]
is an acceptable 2× 2 pivot if

‖D−1
k ‖∞max{ |aij | : i 6= 1, r; j = 1, r } ≤ θ−1.(5.2)

From among the acceptable pivots one is chosen that best preserves sparsity, according
to some particular sparsity criterion. Conditions (5.1) and (5.2) ensure that ‖L‖∞
is bounded by a multiple of θ−1, which then implies bounds on the growth factor,
and hence on ‖D‖∞. The stability of this pivoting strategy is therefore immediate,
since (2.2) is satisfied. An interesting contrast is that the Bunch–Kaufman strategy
involves a fixed amount of searching for a pivot, and the reasons for its stability are
subtle, whereas the Duff et al. strategy more directly forces stability by bounding
the multipliers, but gives up the fixed amount of searching of the Bunch–Kaufman
strategy.

We emphasize that the aim of this work was to obtain a rigorous backward error
bound for the diagonal pivoting method with partial pivoting. The actual perfor-
mance of the method is affected by the size of the growth factor. More work is needed
to investigate the behavior of the growth factor, about which less is known than the
growth factor for GEPP. Although the unboundedness of ‖L‖∞ does not preclude
backward stability, it does have implications for the practical behavior of the method;
see Ashcraft, Grimes, and Lewis [2] for a thorough study for both dense and sparse ma-
trices. Finally, we mention that the implementation of the diagonal pivoting method
with partial pivoting in LAPACK 2.0 can be unstable when ‖L‖∞ is large, as pointed
out and explained in [2]. The potential instability stems from replacing a symmetric
rank-2 update by two rank-1 updates, via the use of an eigendecomposition. This
problem will be corrected in a future release of LAPACK.
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Appendix. In this appendix we bound three matrix expressions involving a 2×2
pivot from partial pivoting,

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

First, we note that

| det(E)| = |a2
r1 − a11arr| ≥ λ2 − α2λ2 = (1− α2)λ2,

using (4.1d). Hence

|E−1||E| ≤ 1

(1− α2)λ2

[ |arr| λ
λ |a11|

] [ |a11| λ
λ |arr|

]

=
1

1− α2

 |a11||arr|
λ2

+ 1
2|arr|
λ

2|a11|
λ

|a11||arr|
λ2

+ 1



≤ 1

1− α2

 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2

 ,(A.1)

using (4.1d) again. Next,

|E−1||E||E−1| ≤ 1

(1− α2)2λ2

 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2

[ |arr| λ
λ |a11|

]

=
1

(1− α2)2λ2

 (3 + α2)|arr| (1 + α2)λ+ 2
|a11||arr|

λ

2
|a11||arr|

λ
+ (1 + α2)λ (3 + α2)|a11|


≤ 1

(1− α2)2λ2

[
(3 + α2)|arr| (1 + 3α2)λ
(1 + 3α2)λ (3 + α2)|a11|

]

≤ 3 + α2

(1− α2)2λ2

[ |arr| λ
λ |a11|

]
.(A.2)

Finally,

|E||E−1||E| ≤ 1

1− α2

[ |a11| λ
λ |arr|

] 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2



=
1

1− α2

 (3 + α2)|a11| 2
|a11||arr|

λ
+ (1 + α2)λ

(1 + α2)λ+ 2
|a11||arr|

λ
(3 + α2)|arr|


≤ 1

1− α2

[
(3 + α2)|a11| (1 + 3α2)λ
(1 + 3α2)λ (3 + α2)|arr|

]

≤
(

3 + α2

1− α2

)
|E| ≤ 6|E|.(A.3)
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Abstract. An estimate is given for the support of each component function of a compactly
supported scaling vector satisfying a matrix refinement equation with finite number of terms. The
estimate is based on the highest and lowest degrees of each polynomial in the corresponding matrix
symbol. Only basic techniques from matrix theory are involved in the derivation.
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1. Introduction. In this paper we are interested in measurable functions from
the real R to the complex C; two functions are equal if they are identical almost
everywhere. Let r be a positive integer and F = [f1 . . . fr]

T be a complex vector-
valued function on R, where T denotes the transpose of a matrix. A point t ∈ R is
called a support point of F if the measure of the intersection {x : F (x) 6= 0}∩(t−ε, t+ε)
is not zero for any ε > 0. The support of F , denoted by supp(F ), is defined as the
convex hull of the set of support points of F . Hence equal functions have the same
supports, and the support of a nonzero function is always a close interval with positive
length. Note that, in the literature of wavelet theory with r = 1, the support of a
scaling function is always taken to be a closed interval because of the result in [5]
(also see [1, p. 252]).

Recent interest in multiwavelets led to the study of scaling vector Φ = [φ1 . . . φr]
T ,

which is a vector-valued function satisfying a matrix refinement equation (MRE) with
a finite number of terms

Φ(x) =

N∑
k=0

CkΦ(2x− k),(1)

where Ck’s are r × r matrices. In applications, shortly supported multiwavelets are
always desired. Support of multiwavelets can be obtained easily from the support of
the corresponding scaling vectors. Hence it is useful to estimate the support of scaling
vectors from the defining MRE. However, the determination of the support of a scaling
vector is not straightforward. In [3], Heil and Colella observed that supp(Φ) ⊂ [0, N ]
if Φ is compactly supported. But this estimate is too crude, as the following example,
due to Geronimo, Hardin, and Massopust [2], shows.

Example. Let Φ = [φ1 φ2]
T be a scaling vector satisfying the MRE (1) with

matrix coefficients

C0 =
1

20

[
12 16

√
2

−√2 −6

]
, C1 =

1

20

[
12 0

9
√

2 20

]
,
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C2 =
1

20

[
0 0

9
√

2 −6

]
, C3 =

1

20

[
0 0

−√2 0

]
.

Note that supp(φ1) = [0, 1], supp(φ2) = [0, 2], and so supp(Φ) = [0, 2] 6= [0, 3].
An explanation is the existence of nilpotent matrices. Note that C3 in the above

example is nilpotent. In [6], Massopust, Ruch, and Van Fleet showed that supp(Φ) ⊂
[0, N − 1

2r−1 ] if CN is nilpotent, and supp(Φ) ⊂ [ 1
2r−1 , N ] if C0 is nilpotent. However,

such improved estimates are still not good enough to explain the above example.
In this paper, we give an estimate for each componentwise support supp(φi) and

hence the global support supp(Φ). Sufficient conditions are given for these estimates
to be achieved. The rest of the paper is organized as follows. Our main results are
stated in section 2 with an illustration. Proofs are given in section 3. Section 4 is
devoted to the study of the global support of a scaling vector.

2. Componentwise support of a scaling vector. For the rest of the paper,
let Φ = [φ1 . . . φr]

T be a compactly supported scaling vector satisfying the MRE (1).
In this section we are interested in estimating the support supp(φi) for 1 ≤ i ≤ r. To
this end, we define the associated matrix symbol by

P (z) =
N∑
k=0

Ckz
k,

which is an r × r matrix with polynomial entries. Let h(i, j) (resp., l(i, j)) be the
highest (resp., lowest) degree of the (i, j) entry of P (z). We adopt the convention
that the highest (resp., lowest) degree of the zero polynomial is −∞ (resp., ∞).

Ik denotes the k×k identity matrix and ek denotes the kth column of the identity
matrix whose dimension is determined from the context. For positive integers a, b,
Eab denotes the matrix eae

T
b .

Let J be the set of all integer sequences J = (j1, . . . , jr), where 1 ≤ j1, . . . , jr ≤ r.
For each J = (j1, . . . , jr) ∈ J , define

EJ = 2Ir − E1j1 − · · · − Erjr ,

hJ = [h(1, j1) · · · h(r, jr)]
T , and lJ = [l(1, j1) · · · l(r, jr)]T .

Note that EJ is always invertible (see Lemma 3.2).
Theorem 2.1. For 1 ≤ i ≤ r, the support of φi is a finite closed interval [Li, Ri],

where

Ri ≤ max
{
eTi E

−1
J hJ : J ∈ J }

and

Li ≥ min
{
eTi E

−1
J lJ : J ∈ J } .

In Theorem 2.1, both maximization and minimization are with respect to the
set J which has rr elements. In order to reduce the complexity we introduce the
following concepts. For each J = (j1, . . . , jr) ∈ J and 1 ≤ i ≤ r, define a new integer
sequence γ = (γ0, γ1, . . . , γt) satisfying the following conditions:

1. 1 ≤ t ≤ r,
2. γ0 = i,
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3. γk = jγ(k−1)
for k = 1, . . . , t,

4. γ0, . . . , γt−1 are distinct,
5. γt = γs−1 for some 1 ≤ s ≤ t.

The existence of γ, s, and t is clear, and they are uniquely determined by the sequence
J = (j1, . . . , jr) and the integer i. As an example, take r = 4. If J = (3, 2, 4, 3) and
i = 1, then γ = (1, 3, 4, 3), t = 3, and s = 2. If J = (3, 2, 4, 3) and i = 2, then
γ = (2, 2), t = 1, and s = 1.

For fixed i, let Γi be the collection of all such γ’s. Let s and t be the numbers
corresponding to a given γ ∈ Γi. Define a t× t matrix by

Aγ = 2It − E12 − E23 − · · · − E(t−1)t − Ets.

Note that Aγ = EJ for J = (2, 3, . . . , t−1, s) and so Aγ is invertible (see Lemma 3.2).
Define

hγ = [h(γ0, γ1) h(γ1, γ2) . . . h(γt−1, γt)]
T

and

lγ = [l(γ0, γ1) l(γ1, γ2) . . . l(γt−1, γt)]
T .

Theorem 2.2. For 1 ≤ i ≤ r, the support of φi is a finite closed interval [Li, Ri],
where

Ri ≤ max
{
eT1 A

−1
γ hγ : γ ∈ Γi

}
and

Li ≥ min
{
eT1 A

−1
γ lγ : γ ∈ Γi

}
.

In Theorem 2.2, both maximization and minimization are with respect to the set
Γi. The number of elements in Γi is

∑r−1
k=0(

r−1
k )(k + 1)! which can be proved to be

equal to the integral part of the positive number (r − 1)!(r − 1)e + 1, where e is the
base of natural logarithm. Hence the complexity of the optimization is reduced to
(r − 1)!(r − 1)e + 1 from rr in Theorem 2.1.

Using the classical adjoint formula for a matrix inverse [4, p. 20], it is not hard
to see that the first row of A−1

γ is

eT1 A
−1
γ =

[
1

2
· · · 1

2s−1

(
2t

2t − 2s−1

)
1

2s
· · ·

(
2t

2t − 2s−1

)
1

2t

]
.

Therefore Theorem 2.2 can be restated explicitly as follows.
Theorem 2.3. For 1 ≤ i ≤ r, the support of φi is a finite closed interval [Li, Ri],

where

Ri ≤ max
γ∈Γi

{
s−1∑
k=1

1

2k
h(γ(k−1), γk) +

2t

2t − 2s−1

t∑
k=s

1

2k
h(γ(k−1), γk)

}

and

Li ≥ min
γ∈Γi

{
s−1∑
k=1

1

2k
l(γ(k−1), γk) +

2t

2t − 2s−1

t∑
k=s

1

2k
l(γ(k−1), γk)

}
.
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A family {fi} of functions on R is locally linearly independent if
∑

i cifi(x) = 0 on
any nontrivial interval (a, b) and implies ci = 0 for all i for which supp(fi)∩(a, b) 6= ∅.
Φ = [φ1, . . . , φr]

T is called a locally linearly independent scaling vector if the family
{φj(x− k) : 1 ≤ j ≤ r, k ∈ Z} is locally linearly independent. In this case, the family
{φj(2x− k) : 1 ≤ j ≤ r, k ∈ Z} is also locally linearly independent. This fact will be
used in Lemma 3.4.

Theorem 2.4. If Φ is a locally linearly independent scaling vector then all in-
equalities become equalities in Theorems 2.1, 2.2, and 2.3.

Choosing r = 2 in Theorem 2.3 yields

R1 ≤ max

{
h(1, 1),

2

3
h(1, 2) +

1

3
h(2, 1),

1

2
h(1, 2) +

1

2
h(2, 2)

}
,

R2 ≤ max

{
h(2, 2),

2

3
h(2, 1) +

1

3
h(1, 2),

1

2
h(2, 1) +

1

2
h(1, 1)

}
,

L1 ≥ min

{
l(1, 1),

2

3
l(1, 2) +

1

3
l(2, 1),

1

2
l(1, 2) +

1

2
l(2, 2)

}
,

and

L2 ≥ min

{
l(2, 2),

2

3
l(2, 1) +

1

3
l(1, 2),

1

2
l(2, 1) +

1

2
l(1, 1)

}
.

As an illustration, we use these formulas to estimate the support of the scaling
vector mentioned in the example of section 1. The highest and lowest degree matrices
are, respectively, h = [ 13

0
2 ] and l = [ 00

0
0 ]. Hence 0 ≤ L1 ≤ R1 ≤ 1 and 0 ≤ L2 ≤

R2 ≤ 2. Furthermore, Φ is known to be locally linearly independent [2] and so we
have supp(φ1) = [L1, R1] = [0, 1] and supp(φ2) = [L2, R2] = [0, 2].

3. Proofs. We need two lemmas for the proof of Theorem 2.1.

Lemma 3.1. Let {fi} be a family of functions on R. Then

supp

(∑
i

cifi

)
⊂ conv (∪i supp(fi)) ,

where “conv” denotes the convex hull of a set.

Lemma 3.2. For J ∈ J , the matrix EJ is invertible and its inverse has nonneg-
ative entries.

Proof. Let E = E1jr + · · ·+Erjr . Note that ‖E‖ = 1 where ‖ · ‖ is the maximum
row sum norm. Then EJ = 2Ir − E is invertible and actually

E−1
J =

∞∑
k=0

1

2k+1
Ek,

which has nonnegative entries because E has nonnegative entries.

We are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. For each 1 ≤ i ≤ r, using the MRE (1), we have

φi(x) =
N∑
k=0

r∑
j=1

Ck(i, j)φj(2x− k)

=
r∑

j=1

N∑
k=0

Ck(i, j)φj(2x− k)

=

r∑
j=1

h(i,j)∑
k=l(i,j)

Ck(i, j)φj(2x− k),

where Ck(i, j) is the (i, j) entry of the matrix Ck. Since φi has compact support, we
let supp(φi) = [Li, Ri]. By Lemma 3.1, we have

[Li, Ri] ⊂ conv

∪rj=1 supp

 h(i,j)∑
k=l(i,j)

Ck(i, j)φj(2x− k)


= conv

(
∪rj=1

[
1

2
(Lj + l(i, j)),

1

2
(Rj + h(i, j))

])
.

Hence we have

2Ri ≤ max {Rj + h(i, j) : 1 ≤ j ≤ r}

and

2Li ≥ min {Lj + l(i, j) : 1 ≤ j ≤ r} .

For each 1 ≤ i ≤ r, there exist integers 1 ≤ j1, . . . , jr ≤ r such that

2Ri ≤ Rji + h(i, ji).

In matrix form,

EJ

 R1

...
Rr

 =

(
2I −

r∑
t=1

Etjt

) R1

...
Rr

 ≤
 h(1, j1)

...
h(r, jr)

 = hJ ,

where J = (j1, . . . , jr). By Lemma 3.2, E−1
J is a nonnegative matrix and so R1

...
Rr

 ≤ E−1
J hJ .

Hence

Ri ≤ eTi E
−1
J hJ ≤ max

J∈J
eTi E

−1
J hJ .

Similarly, the lower bound for Li is obtained.
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Lemma 3.3. Let p be a permutation on {1, . . . , r} and P be the r × r matrix
associated with p. Then P−1 = PT , eTk P = eTp−1(k), P

TEabP = Ep−1(a)p−1(b), and

[v1 v2 . . . vr]P = [vp(1) vp(2) . . . vp(r)].
Finally we give the proof of Theorem 2.2.
Proof of Theorem 2.2. Given J ∈ J and 1 ≤ i ≤ r, let γ, s, t be the corresponding

sequence and numbers defined in section 2. It suffices to prove that

eTi E
−1
J hJ = eT1 A

−1
γ hγ .

Take a permutation p on {1, . . . , n} such that p(k) = γ(k−1) for k = 1, . . . , t. Such a
permutation exists because the integers γ0, . . . , γt−1 are distinct. Using Lemma 3.3, we
have PT eγ(k−1)

= ep−1(γ(k−1)) = ek for k = 1, . . . , t. It follows that eTi P = eTp−1(i) = eT1

because p(1) = γ0 = i, PThJ = [hγ∗ ], and

PTEJP = PT

(
2Ir −

r∑
k=1

Ekjk

)
P

= 2Ir − PT

 t∑
k=1

Eγ(k−1)γk +
∑
k 6∈γ

Ekjk

P

= 2Ir −
t∑

k=1

Ep−1(γk−1)p−1(γk) −
∑
k 6∈γ

Ep−1(k)p−1(jk)

= 2Ir −
t∑

k=1

Ek (k+1) −
∑
k>t

Ekjk

=

[
Aγ 0
∗ ∗

]
.

Finally,

eTi E
−1
J hJ = (eTi P ) (PTE−1

J P ) (PThJ)

= (eTi P ) (PTEJP )−1 (PThJ)

= eT1

[
Aγ 0
∗ ∗

]−1 [
hγ
∗
]

= eT1 A
−1
γ hγ .

Lemma 3.4. Let {f1, . . . , fn} be a family of locally linearly independent functions
on R such that supp(fi) = [ai, bi], where ai < bi. Then

supp

(
n∑
i=1

cifi

)
= [a, b] ,

where a = min {ai : ci 6= 0} and b = max {bi : ci 6= 0}.
Proof. Let al = min {ai : ci 6= 0} and bh = max {bi : ci 6= 0}. By Lemma 3.1,∑n

i=1 cifi is compactly supported and

supp

(
n∑
i=1

cifi

)
= [a, b] ⊂ [al, bh] = conv (∪i supp(fi)) .
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It remains to show that a = al and b = bh. Assume the contrary, that b < bh. Then∑n
i=1 cifi(x) = 0 on (bh − ε, bh) for 0 < ε < mini

{
bi−ai

2

}
. Note that [ah, bh] ∩ (bh −

ε, bh) 6= ∅. By the local linear independence of {fi}, ch = 0, which is impossible by
the definition of bh. The argument for a = al is similar.

Proof of Theorem 2.4. It suffices to give the proof involving Theorem 2.1. For
each 1 ≤ i ≤ r, using the MRE (1), we have

φi(x) =
N∑
k=0

r∑
j=1

Ck(i, j)φj(2x− k)

=
r∑

j=1

N∑
k=0

Ck(i, j)φj(2x− k)

=
r∑

j=1

h(i,j)∑
k=l(i,j)

Ck(i, j)φj(2x− k),

where Ck(i, j) is the (i, j) entry of the matrix Ck. Since φi has compact support, we
let supp(φi) = [Li, Ri]. By Lemma 3.4, we have

[Li, Ri] = conv

∪rj=1 supp

 h(i,j)∑
k=l(i,j)

Ck(i, j)φj(2x− k)


= conv

(
∪rj=1

[
1

2
(Lj + l(i, j)),

1

2
(Rj + h(i, j))

])
.

The rest of the proof is exactly the same as the proof of Theorem 2.1 with the
modification that all inequalities are changed to equalities.

4. Global support of a scaling vector. In this section we are interested in
the global support supp(Φ) of Φ satisfying the MRE (1). From the last section
we know that supp(φi) = [Li, Ri] for 1 ≤ i ≤ r. Hence supp(Φ) = [L,R], where
R = max{Ri : 1 ≤ i ≤ r} and L = min{Li : 1 ≤ i ≤ r}. Theorem 2.3 gives the
estimates as

R ≤ max
1≤i≤r

max
γ∈Γi

{
s−1∑
k=1

1

2k
h(γk−1, γk) +

2t

2t − 2s−1

t∑
k=s

1

2k
h(γk−1, γk)

}
and

L ≥ min
1≤i≤r

min
γ∈Γi

{
s−1∑
k=1

1

2k
l(γk−1, γk) +

2t

2t − 2s−1

t∑
k=s

1

2k
l(γk−1, γk)

}
.

Theorem 4.1. (i) If CN is a nilpotent matrix of index m, i.e., (CN )m = 0, then
R ≤ N − 1

2m−1 .

(ii) If C0 is a nilpotent matrix of index m, i.e., (C0)
m = 0, then L ≥ 1

2m−1 .
Proof. Using Lemma 3.1, it is not hard to see that supp(Φ) = supp(AΦ) for any

invertible matrix A.
(i) Without loss of generality, we can assume that CN is reduced to the Jordan

form Jm(0) ⊕ · · · where Jm(0) is a lower triangular Jordan block with largest size.
Hence the highest degree matrix satisfies

h ≤ (N − 1)One(r) + CN ,
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where One(r) is an r× r matrix with all entries equal to 1. Now it is not hard to see
that the maximum is attained at i = m and γ = (m,m − 1, . . . , 1,m). Actually, the
maximum is equal to

2m

2m − 1

m∑
k=1

1

2k
h(γk−1, γk) ≤ N − 1

2m − 1
.

(ii) Without loss of generality, we can assume that C0 is reduced to the Jordan
form Jm(0) ⊕ · · · where Jm(0) is a lower triangular Jordan block with largest size.
Hence the lowest degree matrix satisfies

l ≥ One(r)− C0.

Now it is not hard to see that the minimum is attained at i = m and γ = (m,m −
1, . . . , 1,m). Actually, the minimum is equal to

2m

2m − 1

m∑
k=1

1

2k
l(γk−1, γk) ≥ 1

2m − 1
.

Setting m = r, we obtain the result of Massopust, Ruch, and Van Fleet mentioned
in the introduction.

Corollary 4.2. (i) If CN is nilpotent, then supp(Φ) ⊂ [0, N − 1
2r−1 ].

(ii) If C0 is nilpotent, then supp(Φ) ⊂ [ 1
2r−1 , N ].
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Abstract. The set of all possible determinant values of the sum of a (complex) symmetric
matrix and a skew-symmetric matrix with prescribed singular values is determined. This set can
also be viewed as the best containment region for the determinant of a square matrix X in terms of
the singular values of its symmetric and skew-symmetric parts. The technique is extended to study
the principal minors of X. Similar problems for real matrices are considered.

Key words. determinant, (skew-)symmetric matrix, majorization
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1. Introduction. The determinant of matrices is a very useful tool in both pure
and applied mathematics, and its study has a long history (e.g., see [C] and [Mu]).
Due to motivations arising from theory and applications, there has been a great deal
of interest in estimating det (A + B) based on information of the square matrices A
and B and finding bounds for det (X) based on partial information of the square
matrix X; e.g., see [HJ, section 7.8], [F], [LM], [Ma], [Mi], and [O]. The purpose of
this paper is to determine the set of all possible determinant values of the sum of a
(complex) symmetric matrix and a skew-symmetric matrix with prescribed singular
values. This set can also be viewed as the best containment region for det (X) in
terms of the singular values of (X +Xt)/2 and (X −Xt)/2. (See [HJ, Chapter 3] for
the definition and properties of singular values.)

A complete answer to our question for complex matrices is given in section 2. Our
technique is extended to estimate the principal minors of matrices. Similar problems
for real matrices are studied in section 3. Some remarks and open problems are
mentioned in section 4. In our discussion, we shall use the following notation:

F: the complex field C or the real field R,
Mn(F): algebra of n× n matrices over F,
{E11, E12, . . . , Enn}: the standard basis of Mn(F),
Sn(F): the set of n× n symmetric matrices over F,
Kn(F): the set of n× n skew-symmetric matrices over F,
Un: the group of n× n (complex) unitary matrices,
On: the group of n× n (real) orthogonal matrices,
diag(d1, . . . , dn): the diagonal matrix with d1, . . . , dn as the diagonal entries.

We shall always assume n ≥ 2 to avoid trivial consideration.
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2. Results on complex matrices. The following facts (e.g., see [HJ, Chapter
3] and [Y]) are important to our discussion:

(2.1) every complex symmetric matrix with singular values α1 ≥ · · · ≥ αn can be
written as U t(

∑n
i=1 αiEii)U for some U ∈ Un;

(2.2) the singular values β1 ≥ · · · ≥ βn of a complex skew-symmetric matrix always
satisfy β2k−1 = β2k for all k ≤ n/2, and βn = 0 if n is odd; and the matrix
can be written as V t(

∑
k≤n/2 β2k(E2k−1,2k − E2k,2k−1))V for some V ∈ Un.

Suppose αj ’s and βj ’s satisfy the conditions in (2.1) and (2.2). Let

Ã = diag(αn, . . . , α1) ∈ Sn(R), B̃ =
∑

j≤n/2

β2j(E2j−1,2j − E2j,2j−1) ∈ Kn(R),

and

∆(α, β) := {det (U tÃU + V tB̃V ) : U, V ∈ Un}.

(Note that the diagonal entries of Ã are arranged in ascending order instead of de-
scending order so that it is easier to state our main results: Theorems 2.1 and 3.4.)
We have the following theorem.

Theorem 2.1. The set ∆(α, β) ⊆ C is an annulus centered at the origin with
outer radius equal to det (Ã+ B̃) and inner radius equal to 0 if [αn−1αn, α1α2] ∩ [β2

n, β
2
1 ] 6= φ,

|det (Ã+ iB̃)| otherwise.

The proof of Theorem 2.1 is divided into several lemmas. We shall let

∆̃(α, β) := {U tÃU + V tB̃V : U, V ∈ Un}.

Lemma 2.2. The set ∆(α, β) ⊆ C is an annulus centered at the origin.
Proof. Every z ∈ ∆(α, β) can be regarded as the image of (U, V ) ∈ Un×Un under

the continuous mapping f(U, V ) = det (U tÃU + V tB̃V ). Since Un is path connected,
it follows that ∆(α, β) is path connected. Furthermore, if z = f(U, V ) ∈ ∆(α, β),
then for any µ ∈ C with |µ| = 1 we can find a diagonal unitary matrix D such that
det (D2) = µ so that µz = f(DU,DV ) ∈ ∆(α, β). Thus, µ∆(α, β) = ∆(α, β) for any
µ ∈ C with |µ| = 1. Combining the above arguments, we get the conclusion.

By Lemma 2.2, ∆(α, β) ⊆ C is an annulus. It remains to determine the inner and
outer radii of the annulus. We first study the case when the inner radius is 0, i.e.,
0 ∈ ∆(α, β), or, equivalently, ∆̃(α, β) contains a singular matrix.

Lemma 2.3. Every matrix in ∆̃(α, β) is invertible, i.e., 0 /∈ ∆(α, β) if and only
if

[αn−1αn, α1α2] ∩ [β2
n, β

2
1 ] = φ.

Proof. First, we show that 0 ∈ ∆(α, β) if [αn−1αn, α1α2] ∩ [β2
n, β

2
1 ] 6= φ. If n is

odd, then α1α2 > 0 = β2
n and β2

1 ≥ αn−1αn. Consider A(r) = U(r)A0U(r)t ⊕ A1,
where A0 = diag(αn,−αn−1, αn−2), A1 = diag(αn−3, . . . , α1), and

U(r) = [1]⊕
(

cos r sin r
− sin r cos r

)
.
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Let B = B0 ⊕B1, where

B0 =

(
0 β2

−β2 0

)
⊕ [0], B1 =

(
0 β4

−β4 0

)
⊕ · · · ⊕

(
0 βn−1

−βn−1 0

)
.

One easily shows that the continuous real-valued function g(r) = det (A(r) + B) ∈
∆(α, β) satisfies g(0) ≥ 0 and g(π/2) ≤ 0. Thus there exists r0 ∈ [0, π/2] such that
g(r0) = 0.

Now suppose n is even. Then β2
1 ≥ αn−1αn and α1α2 ≥ β2

n. For n = 2, we have

0 = det

(−α1 β2

−β2 α2

)
.

If n ≥ 4, let A(r) = U(r)A0U(r)t ⊕ A1, where A0 = diag(−αn, αn−1,−α2, α1),
A1 = diag(α3, . . . , αn−2), and

U(r) = [1]⊕
(

cos r sin r
− sin r cos r

)
⊕ [1].

Let

B =

(
0 β2

−β2 0

)
⊕
(

0 βn
−βn 0

)
⊕
(

0 β4

−β4 0

)
⊕ · · · ⊕

(
0 βn−2

−βn−2 0

)
.

Then the real-valued function h(r) = det (A(r) + B) ∈ ∆(α, β) is continuous and
satisfies h(0) ≤ 0 and h(π/2) ≥ 0, and so h(r0) = 0 for some r0 ∈ [0, π/2].

Conversely, suppose [αn−1αn, α1α2]∩ [β2
n, β

2
1 ] = φ. Let z = det (U tÃU+V tB̃V ) ∈

∆(α, β), where U, V ∈ Un. To prove that z 6= 0, we consider two cases (not in terms
of the parity of n).

If αn−1αn > β2
1 , then Ã−1 exists. Let D = Ã−1/2. Then Y = D(U t)∗V tB̃V U∗D

is skew-symmetric, and we have (e.g., see [TT] and [MO, pp. 246–248])

s1(Y )2 = s1(Y )s2(Y ) ≤ s1(D)2s2(D)2s1(B̃)2 ≤ (αn−1αn)−1β2
1 < 1.

As a result, we have (e.g., see [MO, Chapter 9, G.1.e]) sn(I +Y ) ≥ sn(I)− s1(Y ) > 0
and z = det (U tU)det (Ã)det (I + Y ) 6= 0.

Suppose β2
n > α1α2. If Ã = 0, then z = det (V tB̃V ) 6= 0. If Ã has rank k,

set D = {γIn−k ⊕ diag(αk, . . . , α1)}−1/2, where γ = αk if k > 1, and γ satisfies
min{β2

n/α1, α1} > γ > 0 if k = 1. Then Y = D(U t)∗V tB̃V U∗D is skew-symmetric,
and (see [TT] and [MO, pp. 246–248])

sn(Y )2 = sn(Y )sn−1(Y ) ≥ sn(D)2sn−1(D)2sn(B̃)2 =

{
(α1α2)

−1β2
n > 1 if k > 1,

(α1γ)−1β2
n > 1 if k = 1.

As a result, we have (e.g., see [MO, Chapter 9, G.1.e]) sn(E+Y ) ≥ sn(Y )−s1(E) > 0
and z = det (U tU)det (D−2)det (E + Y ) 6= 0, where E = 0n−k ⊕ Ik.

To complete the proof of Theorem 2.1, we need some more notation. Let x =
(x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn. We say that x is weakly majorized by y, denoted
by x ≺w y, if the sum of the k largest entries of x is not greater than that of y for
k = 1, . . . , n. If, in addition,

∑n
j=1 xj =

∑n
j=1 yj , then x is said to be majorized by y,

denoted by x ≺ y. The following result (see [MO, Chapter 2, section C and Chapter
3, section C]) is useful in our discussion.

Lemma 2.4. Let φ be be a continuous convex real-valued function defined on an
open set of R containing the entries of x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn.
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(a) If x ≺ y, then
∑n

j=1 φ(xj) ≤
∑n

j=1 φ(yj).

(b) If x ≺w y and φ is increasing, then (φ(x1), . . . , φ(xn))t ≺w (φ(y1), . . . , φ(yn))t.
We are now ready to complete the proof of Theorem 2.1.
Lemma 2.5. The annulus ∆(α, β) has outer radius det (Ã+B̃). If [αn−1αn, α1α2]∩

[β2
n, β

2
1 ] = φ, then ∆(α, β) has inner radius |det (Ã+ iB̃)|.

Proof. Since the set ∆(α, β) varies continuously as αj ’s and βj ’s, we may focus
our attention on the case when α1 > · · · > αn > 0. For any z ∈ ∆(α, β), there exist
U, V ∈ Un such that z = det (U tÃU + V tB̃V ). Let M = Ã−1/2(U t)∗V tB̃V U∗Ã−1/2.
Then M is skew-symmetric and has eigenvalues ±λ1,±λ2, . . ., with |λ1| ≥ |λ2| ≥ · · ·.
(This follows from the fact that det (tI −M) = det ((tI −M)t) = det (tI + M) =
(−1)ndet ((−t)I −M).) It follows that

|z|/|det (Ã)| = |det (I +M)| =
∣∣∣∣∣∣
∏

j≤n/2

(1− λ2
j )

∣∣∣∣∣∣ .
Note (e.g., see [TT] and [MO, pp. 246–248]) that

p∏
j=1

|λj |2 ≤
p∏

j=1

s2j(M)2 ≤
p∏

j=1

β2
2j/(αn−2j+2αn−2j+1) for all p ≤ n/2.

Let r be the largest integer so that |λr| > 0, and let log(c1, . . . , cr) = (log c1, . . . , log cr).
Then

(2.3)
log(|λ1|2, . . . , |λr|2) ≺w log(s2(M)2, . . . , s2r(M)2)

≺w log ((β1β2)/(αnαn−1), . . . , (β2r−1β2r)/(αn−2r+2αn−2r+1)) .

To determine the outer radius of ∆(α, β), note that the function φ(x) = log(1 + ex)
is convex increasing on R. Thus, we can apply Lemma 2.4 to the vectors in (2.3) and
conclude that

|det (I +M)| =
∣∣∣∣∣∣

r∏
j=1

(1− λ2
j )

∣∣∣∣∣∣ ≤
r∏

j=1

(1 + |λj |2) ≤
r∏

j=1

(1 + s2j(M)2)

≤
r∏

j=1

(
1 +

β2
2j

αn−2j+2αn−2j+1

)
≤ det (Ã+ B̃)

|det (Ã)| .

Since det (Ã+ B̃) ∈ ∆(α, β), it must be the outer radius of ∆(α, β).
Next suppose [αn−1αn, α1α2] ∩ [β2

n, β
2
1 ] = φ, and consider the inner radius of

∆(α, β). By Lemma 2.3, there are two possibilities.
First, assume β2

1 < αn−1αn. Then |λ1|2 ≤ |s1(M)|2 ≤ β2
1/(αn−1αn) < 1. Since

the function φ(x) = − log(1−ex) is convex increasing for x < 0, we can apply Lemma
2.4 to the vectors in (2.3) and conclude that

|det (I +M)| =
∣∣∣∣∣∣

r∏
j=1

(1− λ2
j )

∣∣∣∣∣∣ ≥
r∏

j=1

(1− |λj |2) ≥
r∏

j=1

(1− s2j(M)2)

≥
r∏

j=1

(
1− β2

2j

αn−2j+2αn−2j+1

)
≥ det (Ã+ iB̃)

|det (Ã)| .
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Thus det (Ã+ iB̃) ∈ ∆(α, β) is the inner radius of ∆(α, β) in this case.

Next assume β2
n > α1α2. Then |λn/2|2 ≥ |sn(M)|2 ≥ β2

n/(α1α2) > 1, and hence
M is invertible. As a result, we have r = n/2 in (2.3) and the weak majorizations are
actually majorizations. Since the function φ(x) = − log(ex − 1) is convex for x > 0,
we can apply Lemma 2.4 to the vectors in (2.3) and conclude that

|det (I +M)| =
∣∣∣∣∣∣

r∏
j=1

(1− λ2
j )

∣∣∣∣∣∣ ≥
r∏

j=1

(|λj |2 − 1) ≥
r∏

j=1

(s2j(M)2 − 1)

≥
r∏

j=1

(
β2

2j

αn−2j+2αn−2j+1
− 1

)
=

det (iÃ+ B̃)

|det (Ã)| .

Thus det (iÃ+ B̃) ∈ ∆(α, β) is the inner radius of ∆(α, β) in this case.

Our technique can be used to estimate the principal minors of a given square
matrix X. In particular, we can determine the set ∆k(α, β) of all k × k principal
minors of X ∈ ∆̃(α, β). Since X ∈ ∆̃(α, β) if and only if PXP t ∈ ∆̃(α, β) for any
permutation matrix P , we can focus our attention on the determinant of the leading
k× k principal submatrix X[k] of X ∈ ∆̃(α, β). We have the following result (cf. [T2]
and [Ta] for the case when k = 1).

Theorem 2.6. Suppose 1 ≤ k < n. Then

∆k(α, β) := {det (X[k]) : X ∈ ∆̃(α, β)}

is a circular disk centered at the origin with radius det (Ãk + B̃k), where

Ãk = diag(αk, . . . , α1), B̃k =
∑

j≤k/2

β2j(E2j−1,2j − E2j,2j−1) ∈Mk(C).

Proof. Applying the arguments in the proof of Lemma 2.2 to the continuous
function fk(U, V ) = det ((U tÃU+V tB̃V )[k]) defined on Un×Un, we see that ∆k(α, β)
is an annulus in C centered at the origin.

Next, we show that 0 ∈ ∆k(α, β) to conclude that ∆k(α, β) is a circular disk. To
this end, consider U ∈ Un obtained from I by replacing the (1, 1), (1, n), (n, 1), (n, n)
entries with i cos r, i sin r, sin r, − cos r for some suitable r ∈ R such that the leading
k×k principal submatrix of U t(

∑n
j=1 αjEjj)U is of the form Ak = diag(0, α2, . . . , αk)

∈ Mk(C). Also, there exists a permutation matrix P such that the leading k × k
principal submatrix of P tB̃P is of the form Bk = 01 ⊕ B0 with B0 = −Bt

0 ∈ Mk−1.
Then det (Ak +Bk) = 0 ∈ ∆k(α, β).

To determine the (outer) radius of ∆k(α, β), let Z = Z1+Z2 with Z1 = (U tÃU)[k]
and Z2 = (V tB̃V )[k] such that |det (Z)| attains the radius of ∆k(α, β). By Theorem
2.1, we may assume that

Z1 = diag(µk, . . . , µ1), Z2 =
∑

j≤k/2

ν2j(E2j−1,2j − E2j,2j−1) ∈Mk(C),

where µj = sj(Z1) and ν2j = s2j(Z2). Note that (e.g., see [T1]) µj ≤ αj for j =
1, . . . , k, and ν2j ≤ β2j for all j ≤ k/2. It follows that |det (Z)| =

det (Ãk + B̃k).
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3. Results on real matrices. The results on real matrices are more compli-
cated. One of the reasons is that the topological structure of On is not as nice as
that of Un, and hence the set of real symmetric matrices with prescribed singular
values is more complicated. In fact, we have the following description of the set of
real symmetric and the set of real skew-symmetric matrices with prescribed singular
values (e.g., see [HJ, Chapter 3] and [Y]).

(3.1) every real symmetric matrix with singular values α1 ≥ · · · ≥ αn can be
written as U t(

∑n
i=1 εiαiEii)U for some U ∈ On and (ε1, . . . , εn) ∈ {−1, 1}n;

(3.2) the singular values β1 ≥ · · · ≥ βn of a real skew-symmetric matrix always
satisfy β2k−1 = β2k for all k ≤ n/2, and βn = 0 if n is odd; and the matrix
can be written as V t(

∑
k≤n/2 β2k(E2k−1,2k − E2k,2k−1))V for some V ∈ On.

Suppose αj ’s and βj ’s satisfy the conditions in (3.1) and (3.2). We continue to

use the notation Ã, B̃, ∆(α, β), and ∆̃(α, β) as in the complex case. Let

∆R(α, β) := {det (U tEÃU + V tB̃V ) : E,U, V ∈ On, where E is in diagonal form}.

Clearly, we have

∆R(α, β) = {det (X) : X ∈ ∆̃(α, β) ∩Mn(R)} ⊆ ∆(α, β) ∩ R.

We shall show that the set inclusion is an equality if n is odd (cf. Theorem 3.2), and
the set inclusion may be proper if n is even (cf. Proposition 3.3 and Theorem 3.4).
We first study the following subsets of ∆R(α, β):

∆ε(α, β) := {det (A + B) : A ∈ Sn(R) has eigenvalues ε1α1, . . . , εnαn, B ∈
Kn(R) has singular values β1, . . . , βn}, (ε1, . . . , εn) ∈ {−1, 1}n.

∆ι(α, β) := ∆ε(α, β) with εj = 1 for all j = 1, . . . , n.

∆+(α, β) :=
⋃{

∆ε(α, β) : (ε1, . . . , εn) ∈ {−1, 1}n with
∏n

j=1 εj = 1
}

.

∆−(α, β) :=
⋃{

∆ε(α, β) : (ε1, . . . , εn) ∈ {−1, 1}n with
∏n

j=1 εj = −1
}

.

Evidently,

∆R(α, β) = ∆+(α, β) ∪∆−(α, β),

and by Theorem 2.1 we see that

z0 = det (Ã+ B̃)

is the right endpoint of ∆ι(α, β), ∆+(α, β), and ∆R(α, β). Furthermore, we have the
following result.

Theorem 3.1. The sets ∆+(α, β), ∆−(α, β), and ∆ε(α, β) for any (ε1, . . . , εn) ∈
{−1, 1}n are all closed intervals in R. Moreover, ∆+(α, β) = −∆−(α, β) if n is odd.

Proof. Suppose (ε1, . . . , εn) ∈ {−1, 1}n. Set E = diag(ε1, . . . , εn). For every
z = det (U tEÃU + V tB̃V ) with U, V ∈ On, we can let D = diag(±1, 1, . . . , 1) such
that det (V U tD) = 1 and z = det (EÃ + UV tB̃V U t) = det (EÃ + DUV tB̃V U tD).
Thus

∆ε(α, β) = {det (U tEÃU + V tB̃V ) : U, V ∈ On}
= {det (EÃ+W tB̃W ) : W ∈ On, det (W ) = 1}.
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As a result, the set ∆ε(α, β) can be viewed as the image of the compact connected
set O+

n = {W ∈ On : det (W ) = 1} under the continuous function f(W ) = det (EÃ+
W tB̃W ) and must be a closed interval in R.

To prove that ∆+(α, β) is a closed interval, we show that ∆ε(α, β)∩∆ι(α, β) 6= φ
for any (ε1, . . . , εn) ∈ {−1, 1}n with

∏n
j=1 εj = 1. Suppose k of the εj ’s are −1, where

k ≥ 0 is even. Then there is a permutation matrix P such that P tEP = −Ik ⊕ In−k,
where E = diag(ε1, . . . , εn). It follows that the first k entries of P tEÃP are negative,
and z = det (P tEÃP+B̃) = det (P tÃP+B̃) ∈ ∆ε(α, β)∩∆ι(α, β). Similarly, one can
prove that if η = (1, . . . , 1,−1), then ∆ε(α, β) ∩∆η(α, β) 6= φ for any (ε1, . . . , εn) ∈
{−1, 1}n with

∏n
j=1 εj = −1. Hence ∆−(α, β) is also a closed interval.

Finally, if n is odd, then z = det (A + B) ∈ ∆+(α, β) if and only if −z =
det (−A−B) ∈ ∆−(α, β). The last assertion of the theorem follows.

As a consequence of Theorem 3.1, we see that ∆R(α, β) is the union of the two
closed intervals ∆+(α, β) and ∆−(α, β). We obtain more information for ∆R(α, β) in
the following.

Theorem 3.2. Suppose n > 1 is an odd integer. Then ∆R(α, β) = ∆(α, β)∩R.
Proof. Recall that z0 = det (Ã+B̃) is the right endpoint of ∆+(α, β). By Theorem

3.1, −z0 is the left endpoint of ∆−(α, β).
If [αn−1αn, α1α2] ∩ [β2

n, β
2
1 ] 6= φ, the proof of Lemma 2.3 actually shows that 0 ∈

∆−(α, β), and hence [−z0, 0] ⊆ ∆−(α, β). Thus, [0, z0] ⊆ ∆+(α, β), and ∆R(α, β) =
[−z0, z0] = ∆(α, β) ∩ R.

If [αn−1αn, α1α2]∩[β2
n, β

2
1 ] = φ, then αn−1αn > β2

1 . LetA =
∑n

j=1(−1)j−1αn−j+1Ejj .

If n = 4k+1 for some nonnegative integer k, then det (A+ B̃) ∈ ∆+(α, β) is positive.
If n = 4k+3 for some nonnegative integer k, then det (A+ B̃) ∈ ∆−(α, β) is negative.
In both cases, z1 = |det (A + B̃)| ∈ ∆+(α, β), and hence [z1, z0] ⊆ ∆+(α, β). Note
that z1 = |det (Ã+ iB̃)|. Thus, ∆(α, β) ∩R = [−z0,−z1] ∪ [z1, z0] ⊆ ∆R(α, β).

Next, we turn to the case when n is even.
Proposition 3.3. Suppose n = 2. Then ∆R(α, β) = {β2

1 − α1α2, β
2
1 + α1α2}.

Proof. The proof is by direct verification.
By Proposition 3.3, we see that for even n it is hopeless to get ∆R(α, β) =

∆(α, β) ∩ R in general. Nevertheless, we have the following theorem.
Theorem 3.4. Suppose n ≥ 4 is an even integer. Let z0 = det (Ã + B̃) and

z1 = det (E1Ã+ B̃) with E1 =
∑n

j=1(−1)jEjj. Then one of the following holds.

(a) If [αn−1αn, α1α2] ∩ [β2
n, β

2
1 ] 6= φ, then ∆R(α, β) = [a, z0] for some a ≤ 0,

where a = 0 if and only if α1α2 = β2
n or z0 = 0.

(b) If α1α2 < β2
n, then ∆R(α, β) = [z1, z0] = ∆(α, β) ∩ (0,∞).

(c) If αnαn−1 > β2
1 , then ∆−(α, β) ⊆ (−∞, 0) and ∆+(α, β) ⊆ (0,∞) have no

intersection. Furthermore,

∆R(α, β) = ∆−(α, β) ∪∆+(α, β) =

 [b1, b2] ∪ [z1, z0] if n = 4k,

[c1, z1] ∪ [c2, z0] if n = 4k + 2.

Proof. Let z2 = det (E2Ã + B̃), z3 = det (E3Ã + B̃) ∈ ∆−(α, β), where E2 =
[−1]⊕ In−1 and E3 = In−1 ⊕ [−1].

(a) Suppose [αn−1αn, α1α2]∩[β2
n, β

2
1 ] 6= φ. One can use the arguments in the proof

of Lemma 2.3 to show that 0 ∈ ∆ε(α, β) ⊆ ∆+(α, β), where ε2 = εn = −1 and εj = 1
for all other j. Moreover, z2 ∈ ∆−(α, β) is positive. Thus ∆+(α, β) ∩∆−(α, β) 6= φ
and ∆R(α, β) = [a, z0] with a ≤ z3 ≤ 0. If a = 0, then z3 = 0 and so β2

n = α1α2
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or z0 = 0. Conversely, if β2
n = α1α2, then we have ∆R(α, β) = [z1, z0] (= [0, z0] )

by applying a continuity argument to (b). Also, if z0 = 0, then ∆R(α, β) = {0} by
Theorem 2.1.

(b) Suppose α1α2 < β2
n. Then z2 ∈ ∆−(α, β) is positive. Let z4 = det (E4Ã +

B̃), where E4 = diag(−1, 1,−1) ⊕ In−3. Then z4 ∈ ∆+(α, β) and z4 ≤ z2. Thus
∆+(α, β)∩∆−(α, β) 6= φ and thus ∆R(α, β) = [r, z0]. Since ∆R(α, β) ⊆ ∆(α, β)∩R =
[−z0,−z1] ∪ [z1, z0], and since z1, z0 ∈ ∆R(α, β), we have ∆R(α, β) = [z1, z0].

(c) Suppose αnαn−1 > β2
1 . Then z3 ∈ ∆−(α, β) is negative. Recall that we

always have z0 ∈ ∆+(α, β). Since ∆(α, β)∩R is disconnected and is symmetric about
the origin, we conclude that ∆−(α, β) ⊆ (−∞, 0) and ∆+(α, β) ⊆ (0,∞) have no
intersection. Furthermore, if n = 4k, then z1 > 0 attains the inner radius of ∆(α, β).
Thus ∆+(α, β) = [z1, z0]. If n = 4k + 2, then z1 < 0 and |z1| attains the inner radius
of ∆(α, β). Thus z1 is the right endpoint of ∆−(α, β).

Similar to the complex case, we can get estimates for the principal minors of
matrices of the form X = U tÃU + V tB̃V , where U, V ∈ On. We omit the details.

4. Remarks and open problems. In [LM] (see also [Mi]), it is shown that
there exist A,B ∈Mn(F) with singular values α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn such
that det (A+B) = z if and only if

n∏
j=1

(αj + βn−j+1) ≥ |z| ≥
{

0 if [αn, α1] ∩ [βn, β1] 6= φ,∣∣∣∏n
j=1(αj − βn−j+1)

∣∣∣ otherwise.

Note that in this result the containment region of det (A + B) for the real case is
simply the intersection of the containment region for the complex case and the real
line. Also note that since there are more restrictions on the structure of A and B in
our study, we have better estimates (smaller containment region) for det (A+B).

We were not able to determine the values a, b1, b2, c1, c2 in Theorem 3.4. It
would be nice to find formulae for these quantities. If this is done, then there will be
complete descriptions of ∆R(α, β), ∆+(α, β), and ∆−(α, β).

It is also interesting to determine the intervals ∆ε(α, β). Note that ∆ε(α, β)
can be viewed as the set of numbers of the form det (A + B), where A ∈ Sn(R)
has eigenvalues εjαj ’s and B ∈ Kn(R) has eigenvalues ±iβ2j ’s. One can consider
the following analogous complex problem: Study the set of complex numbers of the
form det (H + iK), where H and K are complex Hermitian matrices with prescribed
eigenvalues.

This is actually a special case of the Marcus–Oliveira conjecture (see [Ma] and
[O]):

Let C = diag(c1, . . . , cn), D = diag(d1, . . . , dn) ∈Mn(C). Suppose

Γ(c, d) = {det (U∗CU + V ∗DV ) : U, V ∈ Un}.
Then Γ(c, d) is a subset of the convex hull of the set

P (c, d) = {det (C + P tDP ) : P is a permutation matrix}.

This conjecture has only been confirmed in some special cases (see [B] and its ref-
erences). Note that if αE = (αn, . . . , α1)E with E = diag(ε1, . . . , εn) ∈ On, and
(d1, . . . , dn) = (iβ2,−iβ2, iβ4,−iβ4, . . .), where dn = 0 if n is odd, then

Γ(αE, d) = {det (U∗EÃU + V ∗B̃V ) : U, V ∈ Un}.
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Thus we have

∆ε(α, β) ⊆ Γ(αE, d) ∩ R

and hence

∆R(α, β) ⊆
⋃

ε∈{−1,1}n
{Γ(αE, d) ∩ R}.

These provide other estimates for ∆ε(α, β) and ∆R(α, β). It is worth mentioning that
when n = 2 the Marcus–Oliveira conjecture is valid, and actually we have

∆ε(α, β) = Γ(αE, d) ∩ R

(cf. [B] and Proposition 3.3).

Acknowledgment. The authors would like to thank the editor and the referees
for many helpful comments.
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Abstract. The normwise distance of a matrix A to the nearest singular matrix is well known
to be equal to ‖A‖/cond(A) for norms subordinate to a vector norm. However, there is no hope for
finding a similar formula or even a simple algorithm for computing the componentwise distance to
the nearest singular matrix for general matrices. This is because Poljak and Rohn [Math. Control
Signals Systems, 6 (1993), pp. 1–9] showed that this is an NP-hard problem.

Denote the minimum Bauer–Skeel condition number achievable by column scaling by κ. Demmel
[SIAM J. Matrix Anal. Appl., 13 (1992), pp. 10–19] showed that κ−1 is a lower bound for the com-
ponentwise distance to the nearest singular matrix. In our paper we prove that 2.4 · n1.7 · κ−1 is an
upper bound. This extends and proves a conjecture by Demmel and Higham (in the cited paper by
Demmel). We give an explicit set of examples showing that such an upper bound cannot be better
than n · κ−1. Asymptotically, we show that n1+ln 2+ε · κ−1 is a valid upper bound.

Key words. componentwise distance, singular matrix, NP-hardness, optimal Bauer–Skeel con-
dition number
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Introduction. Let A be an n-by-n matrix and denote its smallest singular value
by σn(A). It is well known that the distance to the nearest singular matrix in the 2-
norm or Frobenius norm is equal to σn(A). More generally, for any consistent matrix
norm ‖ · ‖ subordinate to a vector norm we have

min { ‖δA‖ | A+ δA singular } =
1

‖A−1‖ =
‖A‖

cond(A)
.(0.1)

An appropriate δA of rank one can be explicitly calculated (cf. [6], [14]). Such a per-
turbation does, in general, alter each component of A. In many practical applications,
one is interested in leaving specific components such as system zeros unaltered, for
example, if the matrix arises from some discretization scheme. More generally, this
leads to the question of the componentwise distance to the nearest singular matrix.
The componentwise distance may be weighted by some nonnegative matrix E. More
precisely, we define

σ(A,E) := min {α ∈ R | A+ Ẽ singular where |Ẽij | ≤ α · Eij for all i, j }.(0.2)

If no such α exists, we set σ(A,E) := ∞. For singular matrices, σ(A,E) = 0 for
every weight matrix E. Specific values of E are E = |A| for relative perturbations or
E = (1)nn for absolute perturbations. Among others, the componentwise distance to
the nearest singular matrix was discussed in [9], [12], [11], and [3]. In [9] we also find
a first approach toward an estimation of the nearness to singularity in a norm not
subordinate to a vector norm, namely, ‖A‖ := maxi,j |Aij |.

We cannot expect to find a formula or even a simple algorithm for calculating
σ(A,E). This is because Poljak and Rohn [8] proved that computation of σ(A,E) is
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NP-complete. For an outline of their proof see also [3]. Nevertheless, we may find
bounds for σ(A,E), and for classes of matrices even explicit formulas.

Another view of σ(A,E) is the maximum value such that the interval matrix
[A − αE, A + αE] is nonsingular for α < σ(A,E). The interval matrix is defined as

the set of all matrices Ã with Aij − αEij ≤ Ãij ≤ Aij + αEij for all i, j or, in short

notation, A − αE ≤ Ã ≤ A + αE. The interval matrix is called nonsingular if every
matrix Ã ∈ [A− αE, A+ αE] is nonsingular. In a very interesting paper [10], Rohn
gave 13 necessary and sufficient criteria for [A− E, A+ E] to be nonsingular.

A thorough discussion of σ(A,E) can be found in the very interesting paper
[3]. Demmel [3] proved that σ(A,E) is greater than or equal to the inverse of
min κ(AD, ED), the minimum taken over all diagonal matrices D, where κ(A,E) :=
‖ |A−1| · E‖ denotes the Bauer–Skeel condition number. For any p-norm, he proves

min
D

κ(AD, ED) = ρ( |A−1| · E),

extending a result by Bauer [1]. In other words, the minimum Bauer–Skeel condition
number achievable by column scaling is equal to the inverse of ρ( |A−1| ·E). Demmel
and Higham conjecture that 1/ρ( |A−1| · E) and σ(A,E) are not too far apart. They
conjecture for relative perturbations the existence of some constant γ ∈ R, possibly
depending on the dimension, with

σ(A, |A| ) ≤ γ

ρ( |A−1| · |A| ) .(0.3)

In this paper, our main goal is to show the existence of such constants γ(n) and to
derive lower and upper bounds for γ(n). First, we show that σ(A,E) ≥ σn(A) for
‖E‖2 = 1. A corresponding result for other norms is given in section 2. However, this
bound can be arbitrarily weak. Following, we give some new bounds for σ(A,E).

In section 4 a perturbation formula for determinants is stated, which is the key
to proving an upper bound of γ(n).

In section 5 we will prove γ ≥ n. In section 6, for arbitrary weight matrices E,
we prove

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ γ(n)

ρ( |A−1| · E)
with γ(n) = c · nα(0.4)

for c = 2.4 and α = 1.7. Moreover, for n → ∞ we show that for every ε > 0, α can
be replaced by 1 + ln 2 + ε. In view of γ ≥ n, we conjecture that γ = n.

In [3], Demmel gave reasons to be interested in the componentwise distance to
the nearest singular matrix. In section 2, we add a lower and upper componentwise
error bound for the solution of a linear system Ax = b subject to componentwise
perturbations of the matrix and the right-hand side. Such upper bounds are known in
the literature and are valid for nonsingular A and |Ã−A| ≤ E with ρ(|A−1| ·E) < 1.
We derive a componentwise bound for the minimum perturbation of the solution
subject to finite perturbations of A and b. Equation (0.4) shows that those estimates

cover perturbation matrices Ã not too far from the next singular matrix.
The paper is organized as follows. In section 1 we introduce the used notation.

In section 2 there follows a componentwise lower and upper perturbation bound for
finite componentwise perturbations of a linear system. In section 3, lower bounds on
σ(A,E) are given. For orthogonal matrices we show that γ (see (0.4)) is at least of
the order of

√
n.
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In section 4, a Sherman–Morrison–Woodbury-like perturbation theorem for de-
terminants is given. In fact, this is an equality for finite perturbations of a matrix. In
section 5 we derive upper bounds on σ(A,E). For E of rank one, such as for absolute
perturbations, we show that γ(n) ≤ n, and for relative perturbations we give a set of
matrices A ∈Mn(R) with γ(n) = n. For a class of matrices including M -matrices we
prove γ(n) = 1; i.e., σ(A,E) = ρ( |A−1| · E)−1.

In section 6 the results are extended to obtain an explicit upper bound on γ(n)
for general A and E, and in section 7 those bounds are quantified into (0.4). We close
with the conjecture that (0.4) is valid for γ(n) = n for all A,E. If this is true, the
set of matrices given in section 5 would imply that inequality (0.4) with γ(n) = n is
sharp.

1. Notation. In the following we give some notation from matrix theory; cf., for
example, [7], [5]. Vn(R) denotes the set of vectors with n real components, Mm,n(R)
the set of real m-by-n matrices, and Mn(R) = Mn,n(R). The components of a matrix
A ∈ Mn(R) are referred to by Aij or Ai,j . For short notation, components of A−1

are referred to by A−1
ij . (1) denotes a vector with all components equal to 1 and

(1)nn ∈Mn(R) the matrix with all columns equal to (1).
Qkn denotes the set of strictly increasing sequences of k integers chosen from

{1, . . . , n}. For ω ∈ Qkn, we denote ω = (ω1, . . . , ωk). For C ∈ Mn(R), ω ∈ Qkn,
C[ω] ∈ Mk(R) denotes the k-by-k submatrix of C lying in rows and columns ω. A
sequence ζ = (i1, . . . , ik), k ≥ 1 of mutually different integers iν ∈ {1, . . . , n} is
called a cycle. We identify the cycles (i1, . . . , ik) and (ip, . . . , ik, i1, . . . , ip−1), where
1 ≤ p ≤ k. It is |ζ| := k. A full cycle ζ on {1, . . . , n} is a cycle ζ with |ζ| = n.

For C ∈Mn(R) and a cycle ζ = (i1, . . . , ik) on {1, . . . , n}, we put

Πζ(C) := Ci1i2 × · · · × Cik−1ik · Ciki1 ,

the cycle product for ζ. Note the last factor in the product. Therefore, |Πζ(C)|1/|ζ|
is the geometric mean of the elements of the cycle ζ. Each diagonal element Cii is a
cycle product of the cycle (i). (Here our definition differs from Engel and Schneider
[4].)

With one exception, throughout the paper absolute value and comparison are used
componentwise. For example, for A,B ∈Mn(R),

|A| ≤ B means |Aij | ≤ Bij for 1 ≤ i, j ≤ n.

The exception is cycles ζ = (i1, . . . , ik), where |ζ| = k. The singular values of a matrix
A ∈Mn(R) are denoted in decreasing order with increasing indices; i.e., σ1(A) ≥ · · · ≥
σn(A) ≥ 0.

For A,E ∈Mn(R), E ≥ 0, σ(A,E) denotes the componentwise distance, weighted
by E, to the nearest singular matrix (cf. (0.2)).

For finite σ(A,E), the set of all matrices Ã ∈Mn(R) with |Ã−A| ≤ σ(A,E) ·E
is compact. For every nonsingular Ã there is a neighborhood of Ã consisting only of
nonsingular matrices. Therefore,

σ(A,E) <∞ ⇒ ∃ δA ∈Mn(R) : |δA| = σ(A,E) · E and A+ δA singular,

showing that we are allowed to use a minimum in the definition (0.2) of σ(A,E). ρ
denotes the spectral radius, whereas ρ0 denotes the real spectral radius:

B ∈Mn(R) : ρ0(B) := max
{ |λ| ∣∣ λ ∈ R is an eigenvalue of B

}
.



86 S. M. RUMP

If B has no real eigenvalues, we set ρ0(B) := 0. I denotes the identity matrix of proper
dimension; especially Ik ∈ Mk(R) denotes the k-by-k identity matrix. A signature
matrix S is a diagonal matrix with diagonal entries +1 or −1; i.e., |S| = I.

We frequently use standard results from matrix and Perron–Frobenius theory,
such as

A ∈Mnk(R), B ∈Mkn(R) ⇒
The set of nonzero eigenvalues of AB and BA are identical

(1.1)

(cf. Theorem 1.3.20 in [5]) and

A ∈Mn(R) and A ≥ 0, x ∈ Vn(R) with x > 0 ⇒
min
i

(Ax)i
xi

≤ ρ(A) ≤ max
i

(Ax)i
xi

.
(1.2)

The latter can be found in [2].

2. Finite perturbations for a linear system. Calculating bounds on σ(A,E)
can be motivated, for example, by looking at linear systems with finite perturbations
of the input data. For a linear system Ax = b consider the perturbed system Ãx̃ = b̃
with δA := Ã−A, δb := b̃− b, δx := x̃− x. Then for nonsingular A,

A · (I +A−1 · δA) · (x̃− x) = Ã · (x̃− x) = b̃− Ãx = δb− δA · x.(2.1)

If ρ(A−1 · δA) < 1, then I +A−1 · δA and Ã = A · (I +A−1 · δA) are nonsingular, and
(2.1) implies

δx = (I +A−1 · δA)−1 ·A−1 · (δb− δA · x).(2.2)

If ρ
(|A−1| ·∆A

)
< 1 then I − |A−1| ·∆A is an M -matrix. If the perturbations δA, δb

are componentwise bounded by |δA| ≤ ∆A, |δb| ≤ ∆b, then (2.2) implies

|δx| ≤ (I − |A−1| ·∆A)−1 · |A−1| · (∆b+ ∆A · |x| ).(2.3)

For a given weight matrix ∆A, consider the set of matrices with componentwise
distance from A weighted by ∆A not greater than σ:

Ã ∈ Uσ(A,∆A) ⇔ |Ã−A| ≤ σ ·∆A.

For σ ≤ ρ( |A−1| ·∆A), Perron–Frobenius theory yields

ρ(I −A−1 · Ã) = ρ
(
A−1 · (A− Ã)

) ≤ ρ( |A−1| ·∆A) < 1,

and therefore regularity of all Ã ∈ Uσ(A,∆A). The bound (2.3) requires |A−1| ·∆A to
be convergent, whereas (2.2) is valid for ρ(A−1 · δA) < 1. Therefore, we may ask how

far a matrix Ã with ρ( |A−1| · |Ã− A| ) ≥ 1 can be from the nearest singular matrix.
An answer to this question shows how strong the assumption ρ( |A−1| ·∆A) < 1 is.

3. Lower bounds on σ(A,E). A simple and well-known lower bound on σ(A,E)
is

1

ρ( |A−1| · E)
≤ σ(A,E) for all nonsingular A ∈Mn(R), 0 ≤ E ∈Mn(R).(3.1)
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This can be seen using Perron–Frobenius theory and

ρ( |A−1| · E) < 1⇒ ρ(A−1 · δA) < 1 for all |δA| ≤ E
⇒A+ δA = A · (I +A−1 · δA) is nonsingular.

Another lower bound is (cf. [13, Theorem 1.8, p. 75])

σn(A)

σ1(E)
≤ σ(A,E).(3.2)

This can be generalized in the following way.
Theorem 3.1. Let ‖ · ‖ be a matrix norm subordinate to an absolute vector norm

‖ · ‖. Then for nonsingular A ∈Mn(R) and 0 ≤ E ∈Mn(R),

1

‖A−1‖ · ‖E‖ ≤ σ(A,E).(3.3)

Inequality (3.3) is especially valid for all p-norms. For absolute norms such as the
1-norm and ∞-norm,

1

‖A−1‖ · ‖E‖ ≤
1

ρ( |A−1| · E)
≤ σ(A,E),(3.4)

whereas for the 2-norm

1

‖A−1‖2 · ‖E‖2 ≤
√
n

ρ( |A−1| · E)
.(3.5)

Proof. To prove (3.3), let δA ∈Mn(R) with |δA| ≤ α ·E for α < ( ‖A−1‖·‖E‖ )−1.
The vector norm is absolute, implying ‖x‖ = ‖ |x| ‖ and |x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖
for x, y ∈ Vn(R) (cf. [14, Theorem II.1.2]). Let x ∈ Vn(R) with ‖x‖ = 1 and
‖δA‖ = ‖δA · x‖. Then

‖δA‖ = ‖δA · x‖ = ‖ |δA · x| ‖ ≤ ‖α · E · |x| ‖ ≤ ‖α · E‖ · ‖ |x| ‖
= α · ‖E‖ < ‖A−1‖−1.

(3.6)

For every 0 6= y ∈ Vn(R), ‖y‖ ≤ ‖A−1‖ · ‖Ay‖ holds, and (3.6) yields

‖δA · y‖ ≤ ‖δA‖ · ‖y‖ < ‖A−1‖−1 · ‖y‖ ≤ ‖Ay‖, and therefore (A+ δA) · y 6= 0.

Hence, A + δA is nonsingular for |δA| ≤ α · E, and α < ( ‖A−1‖ · ‖E‖ )−1, proving
(3.3). For absolute matrix norms,

ρ( |A−1| · E) ≤ ‖ |A−1| · E‖ ≤ ‖A−1‖ · ‖E‖,
proving (3.4). For the 2-norm the following holds:

ρ( |A−1|·E) ≤ ‖ |A−1| ‖2·‖E‖2 ≤ ‖ |A−1| ‖F ·‖E‖2 = ‖A−1‖F ·‖E‖2 ≤
√
n·‖A−1‖2·‖E‖2,

proving (3.5) and the theorem.
Equation (3.4) shows that for absolute matrix norms such as the 1-norm or ∞-

norm, the bound (3.3) cannot be better than (3.1). The 2-norm is not absolute, and
(3.5) shows that the lower bound (3.2) for σ(A,E) may be better up to a factor

√
n
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than (3.1). In fact, we can identify a class of matrices for which this improvement is
approximately achieved.

Let Q ∈ Mn(R) be orthogonal, and consider absolute perturbations E = (1)nn.
Then (3.2) yields

σn(Q)

σ1

(
(1)nn

) =
1

n
≤ σ(Q,E).

On the other hand, E = (1)nn ∈Mn(R) and x = (1) ∈ Vn(R) imply{ |Q−1| · E}T · x = E · |Q| · x =
(∑

i,j

|Qij |
)
· x,

and (1.2) yields ρ( |Q−1| · E) =
∑

i,j |Qij |. If Q is an orthogonalized random matrix

with components uniformly distributed in [−1, 1], then |Qij | ≈ n−1/2. Thus, for the
ratio between the two lower bounds (3.2) and (3.1) we obtain{

σn(Q)/σ1(E)
}
/
{

1/ρ( |Q−1| · E)
} ≈ n−1 · n2 · n−1/2 =

√
n.

The same heuristic holds for E = |Q|; cf. [13]. For every Hadamard matrix (H ∈
Mn(R) with HTH = n · I) the ratio is equal to

√
n. This sheds light on a possible

quantity γ(n) such that (0.4) holds. In section 5 we will prove γ(n) ≥ n.
Example 3.2. The lower bound (3.2) may be arbitrarily weak. Consider

A =

(
2ε −ε
−ε 1

)
and E = |A| for some ε > 0.

A is a diagonally dominant M -matrix. As we will see in (5.5), A being an M -matrix
implies equality in (3.1); i.e., σ(A, |A| ) = ρ( |A−1| · |A| ) = 1 + 0(

√
ε). On the other

hand, σ2(A)/σ1( |A| ) = 2ε + 0(ε2) underestimates σ(A, |A| ) arbitrarily. This corre-
sponds to σ2(A) = 2ε+ 0(ε2). That means that the normwise distance in the 2-norm
or Frobenius norm to the nearest singular matrix can be arbitrarily small compared
to a componentwise distance.

4. A perturbation theorem for determinants. A lower bound on σ(A,E) is
obtained by proving the regularity of a set of matrices. This was done in section 3 by
using spectral properties. To obtain an upper bound on σ(A,E), we may construct a
specific perturbation δA with |δA| ≤ σ0 ·E, σ0 ∈ R such that A+ δA is singular. This
proves σ(A,E) ≤ σ0. Another possibility for obtaining an upper bound on σ(A,E)
is the following. If |δA| ≤ σ0 · E and det(A) · det(A + δA) ≤ 0, then a continuity
argument yields σ(A,E) ≤ σ0. Therefore, we state the following explicit formula for
the relative change of the determinant of a matrix subject to a rank-k perturbation.
It is a Sherman–Morrison–Woodbury-like perturbation formula for determinants.

Lemma 4.1. Let A ∈Mn(R) and U, V ∈Mn,k(R) be given. Then for nonsingular
A,

det(A+ UV T ) = det(A) · det(Ik + V TA−1U),(4.1)

where Ik denotes the k-by-k identity matrix.
Proof. It is

det(A+ UV T ) = det(A) · det(In +A−1UV T ).
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Denoting the eigenvalues of X ∈Mn(R) by λi(X) implies

det(In +A−1UV T ) =
n∏
i=1

λi(In +A−1UV T ) =
n∏
i=1

{
1 + λi(A

−1UV T )
}
.

The set of nonzero eigenvalues of A−1UV T and V TA−1U are identical (see (1.1)),
thus proving the lemma.

This lemma has a nice corollary, which is interesting in itself.
Corollary 4.2. Let A ∈Mn(R) and u, v ∈ Vn(R). Then for nonsingular A,

det(A+ uvT ) = det(A) · (1 + vTA−1u).(4.2)

For arbitrary A ∈Mn(R) the following holds (adj(A) denotes the adjoint of A):

det(A+ uvT ) = det(A) + vT · adj(A) · u.(4.3)

The corollary shows that the relative change of the determinant is linear for
rank-one perturbations of the matrix. The second well-known formula follows by a
continuity argument using A · adj(A) = det(A) · I.

5. Upper bounds on σ(A,E). The perturbation lemma for determinants given
in section 4 allows for other lower bounds on σ(A,E). The first result can be found
in [9, Corollary 5.1, (iii)].

Theorem 5.1. Let A ∈ Mn(R) be nonsingular and E ∈ Mn(R) with E ≥ 0.
Then

σ(A,E) ≤ 1

max
i

{ |A−1| · E }
ii

,(5.1)

where 0−1 is interpreted as ∞.
Proof. Set α := maxi

{ |A−1| · E }
ii
6= 0 and let i be an index for which this

maximum is achieved. Denote the iνth component of A−1 by A−1
iν and define u ∈

Vn(R) by uν := −α−1 · sign(A−1
iν ) · Eνi. Then

eTi ·A−1 · u = −α−1 ·
n∑

ν=1

|A−1
iν | · Eνi = −1,(5.2)

and Corollary 4.2 implies det(A+ u · eTi ) = 0. Now |ueTi | ≤ α−1 ·E yields σ(A,E) ≤
α−1.

Example 5.2. The upper bound (5.1) can be arbitrarily weak. Consider

A =


ε 0 1 1
0 ε 1 1
1 1 ε 0
1 1 0 ε

 , E = |A| with |A−1| · |A| ≈


1 1 1/ε 1/ε
1 1 1/ε 1/ε

1/ε 1/ε 1 1
1/ε 1/ε 1 1

 ,(5.3)

where the components of |A−1| · |A| are accurate up to a relative error ε. Then (5.1)
gives σ(A, |A| ) ≤ 1 + 0(ε). On the other hand,

det(A+ ε · δA) = 0 for δA =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
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showing that σ(A, |A|) ≤ ε.
In Theorem 5.1, a rank-one perturbation was used to prove (5.1). In a normwise

sense, the minimum distance to the nearest singular matrix is achieved by a rank-one
perturbation. This is no longer true for componentwise distances, as will be shown
by the following example.

Example 5.3. According to Corollary 4.2, the smallest α such that A + αẼ is
singular with |Ẽ| ≤ α · |A| and rank(Ẽ) = 1 is given by α = |ϕ̂|−1, where ϕ̂ is an
optimal value of the constraint optimization problem

ϕ(u, v) := vTA−1u = Min! subject to |uvT | ≤ |A|.
In Example 5.2, partition the vectors u, v ∈ V4(R) into two vectors Ui, Vi ∈ V2(R),
i ∈ {1, 2}, either having 2 components. That means u = (U1, U2)

T , v = (V1, V2)
T .

Let

|uvT | ≤ |A|; i.e., UiV
T
i ≤ ε · I and UiV

T
j ≤ (1)22 for 1 ≤ i, j ≤ 2, i 6= j.

The large elements of A−1 are in the upper left and lower right 2-by-2 blocks:

A−1 ≈
(

X Y
Y X

)
with X =

1

2ε
·
(

1 −1
−1 1

)
and Y =

1

4

(
1 1
1 1

)
up to a relative error of the order ε. Therefore,

|vTA−1u| ≤ |V T
1 XU1|+ |V T

2 XU2|+ |V T
1 Y U2|+ |V T

2 Y U1|
≤ 2ε ·∑ |Xij |+ 2 ·∑ |Yij | ≤ 6.

Thus, Corollary 4.2 implies that the minimum distance to the nearest singular ma-
trix subject to rank-one perturbations weighted by |A| is at least 1/6 compared to
σ(A, |A| ) ≤ ε. This observation sheds light on the difficulties in calculating σ(A,E)
or finding upper bounds for it.

One may define the rank-k componentwise distance to the nearest singular matrix
as follows:

σk(A,E) := min{α ∈ R | A+ Ẽ singular for |Ẽ| ≤ α · E and rank(Ẽ) ≤ k }.

We use rank(Ẽ) ≤ k because E may be rank deficient. We have just seen in Example
5.3 that σ2(A,E)/σ1(A,E) may be arbitrarily small.

Given the lower bound (3.1), one may ask whether there exist finite constants
γ(n) ∈ R depending only on n such that

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ γ(n)

ρ( |A−1| · E)
(5.4)

for all nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R). This question was raised in
[3] and answered for some classes of matrices. The main purpose of this paper is to
derive bounds for γ(n). This will be done by using Lemma 4.1. For this purpose we
need the following result by Rohn (for notation see section 1).

Theorem 5.4. For nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R) the following
holds:

1

max
S1,S2

ρ0(S1A−1S2E)
= σ(A,E),
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where ρ0 denotes the real spectral radius and the maximum is taken over all signature
matrices. 1/0 is interpreted as ∞.

Proof. See [10].
We start with a theorem bounding γ(n) for general weight matrices E and identify

a class of matrices with γ(n) = 1.
Theorem 5.5. For nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R), the following

is true.
(i) Assume a matrix S ∈Mn(R) of rank one exists with

Sij =


+1 if A−1

ij > 0,

−1 if A−1
ij < 0,

+1 or − 1 if A−1
ij = 0.

Then (5.4) holds with γ(n) = 1.
(ii) If 0 < η ≤ |Eij | ≤ ζ for all 1 ≤ i, j ≤ n, then (5.4) holds with γ(n) = n · ζ/η.
Proof. Let S = uvT with u, v ∈ Vn(R), |u| = |v| = (1). Defining S1 = diag(u),

S2 = diag(v), we have S1A
−1S2 = |A−1|, and Rohn’s characterization in Theorem 5.4

proves the first part. Without loss of generality (w.l.o.g.) assume σ(A,E) <∞. It is
η · ‖A−1‖∞ ≤ maxi ( |A−1| ·E)ii and ρ( |A−1| ·E) ≤ ‖A−1‖∞ · ‖E‖∞ ≤ n · ζ · ‖A−1‖∞.
Thus, Theorem 5.1 proves the second part and therefore the theorem.

For important classes of matrices such as inverse nonnegative matrices, among
them all M -matrices, we already have a precise formula for σ(A,E):

A ∈Mn(R) inverse nonnegative, 0 ≤ E ∈Mn(R) ⇒ σ(A,E) =
1

ρ( |A−1| · E)
.

(5.5)
Example 5.6. If constants γ(n) with (5.4) exist at all, we can give a lower bound

on γ(n) by means of the following. Define A ∈Mn(R) by

A :=



1 s
1 1 0

1 1
1 1

. . .
. . .

0 1
1 1


with s := (−1)n+1.(5.6)

The determinant of A calculates to

det(A) =

n∏
i=1

Aii + (−1)n+1 ·Πζ(A) = 2, where ζ = (1, . . . , n)

and
∏

ζ(A) = A12 · A23 × · · · × An−1,n · An1. If the elements of A are afflicted with
relative perturbations, i.e., E = |A|, then only the 1’s and s change. Therefore, any

Ã with |Ã− A| ≤ σ · |A| with σ < 1 is nonsingular, and therefore σ(A, |A| ) = 1. On
the other hand, |A−1| · |A| = (1)nn and ρ( |A−1| · |A| ) = n. This proves the following
lemma.

Lemma 5.7. If constants γ(n) ∈ R with (5.4) for every nonsingular A ∈ Mn(R)
and 0 ≤ E ∈Mn(R) exist at all, then γ(n) ≥ n.

Next we show that γ(n) ≤ n if E is of rank one. For the proof we use Corollary
4.2, which is a consequence of Lemma 4.1 for k = 1. In the remaining part of the
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paper, we will extend this proof to k > 1 to obtain upper bounds for γ(n) and for
general A,E.

Theorem 5.8. Let nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R) with E = uvT

for some u, v ∈ Vn(R), u, v ≥ 0 be given. Then

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ n

ρ( |A−1| · E)
.

Proof. According to Theorem 5.4 and using (1.1),

σ(A,E)−1 = max
S1,S2

ρ0(S1A
−1S2uv

T ) = max
S1,S2

vTS1A
−1S2u,(5.7)

where the maximum is taken over all signature matrices S1, S2. For any i, 1 ≤ i ≤ n,
we can choose appropriate signature matrices S1, S2 such that vTS1A

−1S2u ≥ vi ·
( |A−1| · u)i. Using (5.7) yields

σ(A,E)−1 ≥ max
i

vi · ( |A−1| · u)i.

On the other hand, using (1.1),

ρ( |A−1| · E) = ρ( |A−1| · uvT ) = vT · |A−1| · u ≤ n ·max
i

vi · ( |A−1| · u)i.

Corollary 5.9. For nonsingular A ∈Mn(R) and absolute perturbations, i.e., E =
(1)nn, estimation (5.4) holds with γ(n) = n.

For absolute perturbations E = (1)nn = eeT where e := (1) ∈ Vn(R), (5.7)
implies σ(A,E)−1 ≥ ‖A−1‖p for p ∈ {1,∞}. Because ‖A−1‖22 ≤ ‖A−1‖ · ‖A−1‖∞ this
holds also for p = 2. Using ‖E‖p = n for p ∈ {1, 2,∞} and the left inequality of
Theorem 5.8, we have the following corollary.

Corollary 5.10. For nonsingular A ∈ Mn(R), p ∈ {1, 2,∞} and E := (1)nn,
we have

1

‖A−1‖p · ‖E‖p ≤ σ(A,E) ≤ n

‖A−1‖p · ‖E‖p .

6. Estimation of γ(n). To make further progress in the estimation of γ(n) we
show that for nonsingular A, σ(A,E) depends continuously on A and E. Using this,
we can restrict the class of matrices A and E to matrices with only nonzero compo-
nents. For the proof we cannot use a simple continuity argument on ρ0(S1A

−1S2E)
in connection with Theorem 5.4. This is because the search domain is restricted by
E and the (in absolute value) largest real eigenvalue may be multiple and become
complex under arbitrarily small perturbations.

Lemma 6.1. For nonsingular A ∈ Mn(R), σ(A,E) depends continuously on A
and E.

Proof. For σ(A,E) = ∞ we show that σ(Ã, Ẽ) becomes unbounded for Ã → A,

Ẽ → E. A compactness and continuity argument shows that for every finite 0 < c ∈ R,

∀ |e| ≤ c · E : |det(A+ e)| ≥ δ > 0.

For every Ã, Ẽ close enough to A, E, this implies |det(Ã + ẽ)| ≥ δ/2 > 0 for every

|ẽ| ≤ c · Ẽ, and hence σ(Ã, Ẽ) > c.
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Assume σ := σ(A,E) < ∞. We will show that for small enough ε > 0, there
exists some δ > 0 such that both of the following statements are true:

∀ e ∈Mn(R) : |e| ≤ (σ − ε) · E ⇒ det(A) · det(A+ e) > δ,(6.1)

∃ e ∈Mn(R) : |e| ≤ (σ + ε) · E and det(A) · det(A+ e) < −δ.(6.2)

Equation (6.1) is seen as follows. For ε > 0, the set of matrices A + e with |e| ≤
(σ− ε) ·E is nonempty and compact. Hence, det(A) · det(A+ e) achieves a minimum
on this set. By the definition of σ, this minimum is positive. To see (6.2), observe
that det(A) ·det(A+e) ≥ 0 for all |e| ≤ σ ·E. For any index pair i, j, the determinant
det(A + ε · eieTj ) depends linearly on ε. Now proceed as follows. There is some e
such that A + e is singular and |e| = E. If for an index pair i, j the determinant
det(A + e) is independent on eij , then replace eij by 0. At each step of this process,
det(A + e) = 0 and |e| ≤ E. The definition of σ(A,E) < ∞ and det(A) 6= 0 imply
that during this process we must arrive at some e and an index pair k, l, such that
det(A+ e) is not constant when changing ekl. Then defining e′ ∈Mn(R) by e′ij := eij
for (i, j) 6= (k, l) and e′kl := ekl · (1 + ε′) for small ε′ > 0 proves (6.2).

Now the continuity of the determinant implies for Ã, Ẽ close enough to A,E,

∀ |ẽ| ≤ (σ − ε) · Ẽ : det(Ã) · det(Ã+ ẽ) > δ/2 and

∃ |ẽ| ≤ (σ + ε) · Ẽ : det(Ã) · det(Ã+ ẽ) < −δ/2,

and therefore σ(A,E)− ε < σ(Ã, Ẽ) < σ(A,E) + ε.
Corollary 6.2. If (5.4) holds for each E > 0, then it holds for each E ≥ 0.
Our goal in this section is to prove the following upper bound for σ(A,E). The

quantities ϕt occurring in this estimation will be quantified and estimated in section
7.

Proposition 6.3. Let A,E ∈ Mn(R) with A nonsingular and E ≥ 0 be given.
Define recursively ϕ1 := 1, ϕ2 := 1, and ϕt ∈ R, 2 < t ∈ N to be the (unique) positive
root of

Pt(x) ∈ R[x] with Pt(x) := xt−1 − xt−2 −
t−1∑
ν=1

ϕνν · xt−1−ν .(6.3)

Then

σ(A,E) ≤ n · ϕn
ρ( |A−1| · E)

.(6.4)

Therefore, the quantities γ(n) defined in (5.4) satisfy

γ(1) = 1, γ(2) = 2, and

n ≤ γ(n) ≤ n · ϕn.
(6.5)

The proof is divided into several parts and needs a preparatory lemma. First,
we will construct a specific rank-k perturbation to be able to apply Lemma 4.1 to
bound γ(n) for general A,E. We use the same principle as in the proof of Theorem
5.1 adapted to rank-k perturbations.
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Lemma 6.4. Let nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R) be given, and set
C := |A−1| · E. For 1 ≤ k ≤ n define

i′ :=

{
i+ 1 for 1 ≤ i < k,

1 for i = k,
(6.6)

and U, V ∈Mn,k(R) by

Uνi′ := sign(A−1
iν ) · Eνi′ and Vµi := δµi

for 1 ≤ µ, ν ≤ n, 1 ≤ i ≤ k, and the Kronecker symbol δ. Set C̃ := V TA−1U . Then
(i) |C̃| ≤ C[ω] for ω = (1, . . . , k),

(ii) C̃ii′ = Cii′ for 1 ≤ i ≤ k,
(iii) |UV T | ≤ E,

(iv) σ(A,E) ≤ {ρ0(C̃)}−1, where 0−1 is interpreted as ∞.
Proof. For 1 ≤ i, j ≤ k it follows that

| (V TA−1U)ij | =
∣∣∣∣∣
n∑

ν=1

n∑
µ=1

VµiA
−1
µνUνj

∣∣∣∣∣ ≤
n∑

ν=1

|A−1
iν | · Eνj = Cij ,

and therefore |C̃| ≤ C[ω] and (i). For 1 ≤ i ≤ k the following holds:

C̃ii′ = (V TA−1U)ii′ =
n∑

ν=1

n∑
µ=1

VµiA
−1
µνUνi′ =

n∑
ν=1

A−1
iν · sign(A−1

iν ) · Eνi′ = Cii′ ,

and therefore (ii). For 1 ≤ µ, ν ≤ n the following holds:

| (UV T )νµ| =
∣∣∣∣∣
k∑
i=1

UνiVµi

∣∣∣∣∣ ,
such that |(UV T )νµ| = Eνµ for 1 ≤ µ ≤ k, and |(UV T )νµ| = 0 for k + 1 ≤ µ ≤ n.

This proves (iii). For λ := ρ0(C̃) > 0, it is det(λ · I − s · C̃) = 0 for s = −1 or s = 1.
Lemma 4.1 implies

det(A− s · λ−1 · UV T ) = det(A) · det(Ik − s · λ−1 · V TA−1U) = 0.

Together with (iii) and the definition (0.2) of σ(A,E), this proves (iv) and the
theorem.

Our aim is to construct a rank-k perturbation of A with large real spectral radius.
Then Lemma 4.1 allows us to give an upper bound on σ(A,E). A first step is the
following first generalization of Theorem 5.1. It will later yield the precise value for
γ(2).

Theorem 6.5. Let A ∈Mn(R) be nonsingular and E ∈Mn(R) with E ≥ 0. For
C := |A−1| · E it holds that

σ(A,E) ≤ 1

max
i,j

√
Cij · Cji

.(6.7)

Proof. For i = j, (6.7) was proven in Theorem 5.1. Reordering of indices puts
the cycle (i, j), for which the maximum in (6.7) is achieved, into the cycle (1,2),
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and Lemma 6.4 proves for i 6= j the existence of a 2-by-2 matrix C̃ =
(
α β
γ δ

)
with

0 ≤ β = Cij , 0 ≤ γ = Cji, |α| ≤ Cii, |δ| ≤ Cjj , and σ(A,E) ≤ ρ0(C̃)−1. If |αδ| ≥ βγ,

then
√
Cii · Cjj ≥

√
Cij · Cji and Theorem 5.1 yields (6.7). Otherwise, det(C̃) < 0.

The characteristic polynomial of C̃ is λ2−trace(C̃)·λ+det(C̃), so that the eigenvalues

of C̃ are 1
2 ·{ trace(C̃)±

√
trace(C̃)2 − 4 · det(C̃)} = 1

2 ·{α+δ±√(α− δ)2 + 4βγ} and

are both real. The absolute value of one of them is not less than
√
βγ; i.e., σ(A,E) ≤

ρ0(C̃)−1 ≤ (βγ)−1/2.
The idea of the proof of Theorem 6.5 is the following: for a given cycle of C

of length 2, a suitable rank-two perturbation of A is constructed which allows us to
prove an upper bound of σ(A,E) by using Lemma 6.4. In the following we will carry
this idea to cycles of C of length k, 1 ≤ k ≤ n.

First, we will identify a class of matrices for which we can give explicit lower
bounds for their real spectral radius. The class of matrices is constructed in such a
way that the matrices given in Lemma 6.4 can be used to bound σ(A,E) from above.

Lemma 6.6. Let nonnegative C ∈ Mk(R) and some 0 < a ∈ R be given. Define
ϕ1 := 1, ϕ2 := 1, and for t > 2 define recursively ϕt ∈ R to be the positive zero of

Pt (x) ∈ R[x] with Pt (x) := xt−1 − xt−2 −
t−1∑
ν=1

ϕνν · xt−1−ν .(6.8)

Suppose

∀ 1 ≤ µ < k ∀ ω ∈ Γµk : |Πω(C)|1/µ ≤ ϕµ · a,(6.9)

and for ω = (1, . . . , k),

|Πω(C)|1/k ≥ ϕk · a.(6.10)

Then, for i′ defined as in (6.6) and every C̃ ∈Mk(R) with

|C̃| ≤ C and C̃ii′ = Cii′ for 1 ≤ i ≤ k,(6.11)

the following holds:

ρ0(C̃) ≥ a.

Proof. The proof is divided into the following parts. First, we transform C into a
standard form such that all Cii′ in the cycle (1, . . . , k) in (6.10) are equal. Second, we

bound C by a circulant and show regularity of that matrix and det(C̃ − λI) 6= 0 for

all 0 ≤ λ < a. Finally, the sign of the determinant of any C̃ with (6.11) is determined,
from which the lemma follows.

The case k = 1 is trivial; for k = 2 the proof of ρ0(C̃) ≥ a is included in the proof
of Theorem 6.5.

Assume k > 2, and set b := |Πω(C)|1/k. Direct computation shows that any simi-
larity transformation of C by a diagonal matrix D leaves all cycle products invariant.

Thus (6.9) and (6.10) remain valid when replacing C by D−1CD for any diagonal
D with positive diagonal entries. Define diagonal D ∈Mk(R) by

fi := b−1 · Cii′ and Dii :=
k∏

ν=i

fν for 1 ≤ i ≤ k.
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We show that w.l.o.g. C can be replaced by D−1CD. We have fi > 0, and (6.10)
implies D11 = 1. It is

(D−1CD)ii′ =

(
k∏

ν=i

f−1
ν

)
· Cii′ ·

(
k∏

ν=i′
fν

)
= Cii′ · f−1

i = b.(6.12)

If C̃ ∈ Mk(R) is any matrix satisfying (6.11), then |D−1C̃D| ≤ D−1CD, and (6.12)

yields (D−1C̃D)ii′ = (D−1CD)ii′ = b. Since the set of eigenvalues of C̃ and D−1C̃D
is identical, we can restrict our attention to matrices C ∈Mn(R), C ≥ 0 and

Cii′ = b for 1 ≤ i ≤ k.(6.13)

Set

C =


c1,1 b c1,k−1 . . . c1,2
c2,2 c2,1 b c2,k−1 . . . c2,3

. . . c3,1 b . . .
ck−1,k−1 ck−1,k−2 . . . b

b c0,k−1 . . . c0,1

 .(6.14)

Let µ ∈ N, 1 ≤ µ < k be given and define ω ∈ Γµk by ω = (1, . . . , µ). Then setting
q := a/b, (6.9) implies

cµµ ·
µ−1∏
i=1

b ≤ (ϕµ · a)µ and therefore cµµ ≤ b · ϕµµ · qµ.

Applying the same argument successively for ω =
(
i, (i+1) mod µ, . . . , (i+µ) mod µ

)
yields

ci,µ ≤ b · ϕµµ · qµ for all 0 ≤ i < k, 1 ≤ µ < k.(6.15)

Therefore,

C ≤ b ·


c1 1 ck−1 c2
c2 c1 1 ck−1 . . . c3

c1 1
. . . . . . . . .

ck−1 ck−2 . . . 1
1 ck−1 c1

 =: b · C(6.16)

with cµ := ϕµµ · qµ for 1 ≤ µ < n.

Let C̃ ∈ Mk(R) with (6.11) be given, and let λ ∈ R with 0 ≤ λ < a. Next we

show that all matrices C̃−λI are nonsingular. By assumption (6.11) and using (6.16),

|C̃ − λI| ≤ C + λ · I ≤ b · C + λI and (C̃ − λI)ii′ = C̃ii′ = Cii′ = b.(6.17)

By (6.16) and (6.8), using q := a/b ≤ ϕ−1
k from (6.10) and ϕ2 = 1, we have for k ≥ 3,

λ+ b ·
k−1∑
ν=1

cν < b ·
{
q +

k−1∑
ν=1

ϕνν · qν
}
≤ b ·

{
ϕ−1
k +

k−1∑
ν=1

ϕνν · ϕ−νk
}

= b · ϕ−k+1
k ·

{
ϕk−2
k +

k−1∑
ν=1

ϕνν · ϕk−ν−1
k

}
= b · ϕ−k+1

k · ϕk−1
k = b.

(6.18)



COMPONENTWISE DISTANCE TO NEAREST SINGULAR MATRIX 97

This shows that the element b = C̃ii′ = Cii′ strictly dominates the sum of the absolute
values of the other components in each row of C + λI and of C̃ − λI. That means
that multiplication by a suitable permutation matrix produces a strictly diagonally
dominant matrix and proves regularity of every C̃ − λI with C̃ satisfying (6.11) and
0 ≤ λ < a.

We proved that for every C̃ ∈ Mk(R) with (6.11) the determinant of C̃ − λI
is nonzero for 0 ≤ λ < a. Therefore, the value of the characteristic polynomial
p(λ) = det(λI − C̃) of C̃ has the same sign for 0 ≤ λ < a. Now p(λ) → +∞ for
λ → +∞. Therefore, the lemma is proven if we can show p(0) < 0, because in this
case the characteristic polynomial must intersect with the real axis for some λ∗ ≥ a,
thus proving ρ0(C̃) ≥ λ∗ ≥ a.

We already proved that every matrix C̃ satisfying (6.11) is nonsingular. Therefore
sign

(
p(0)

)
= sign

(
det(−B)

)
for every matrix B with |B| ≤ C and Bii′ = Cii′ = b.

Define

Bij :=

{
Cii′ for j = i′,
0 otherwise.

Then sign
(
det(B)

)
= (−1)k+1, and therefore sign

(
p(0)

)
= (−1)2k+1 = −1. The

theorem is proven.
Example 6.7. One can show that, at least for odd n, the bounds in Lemma 6.6

are sharp in the sense that there are examples with equality in (6.9) and (6.10) such

that C̃ with (6.11) exists with ρ0(C̃) = a. Consider

C :=

 a b c
c a b
b c a

 with b := ϕ3 · a and c := a/ϕ3 and C̃ :=

 −a b −c
−c −a b
b −c −a

 .

Then C11 = ϕ1 · a = a,
√
C12C21 = ϕ2 · a = a, and (C12C23C31)

1/3 = ϕ3 · a.
C̃ is a circulant, and its eigenvalues compute to P (εk), k = 0, 1, 2, where ε = e2πi/3

and P (x) = bx2 − cx − a (cf. [7]). It is b − c − a = b(1 − ϕ2
2q

2 − ϕ1q) = b · ϕ−1
3 = a

with q := a/b. The other two eigenvalues are complex; thus ρ0(C̃) = a. The example
extends to odd n ∈ N.

The combination of Lemma 6.4, Theorem 6.5, and Lemma 6.6 gives the key to
constructing a rank-k perturbation of A to achieve an upper bound for σ(A,E). The
following theorem is the generalization of Theorems 5.1 and 6.5 for cycles of length
k, 1 ≤ k ≤ n.

Theorem 6.8. Let A,E ∈ Mn(R) with nonsingular A and E ≥ 0 be given and
define C := |A−1| · E. For 1 ≤ k ≤ n and any ω ∈ Γkn set

0 6= τ :=
(
Πω(C)

)1/k
.(6.19)

Then for ϕk defined as in Lemma 6.6,

σ(A,E) ≤ ϕk/τ.

In other words, ϕk divided by the geometric mean of the elements of any cycle of C
bounds σ(A,E) from above.

Proof. Let some ω ∈ Γkn and τ from (6.19) be given and set a := τ/ϕk. If for
k = 1 or k = 2 there exists some ω ∈ Γkn with {Πω(C)}1/k ≥ ϕk ·a, then ϕ1 = ϕ2 = 1
and Theorems 5.1 and 6.5 imply σ(A,E) ≤ a−1 = ϕk/τ . Therefore, we may assume
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{Πω(C)}1/k < ϕk · a for all ω ∈ Γkn and k ∈ {1, 2}. Hence, there is some m ∈ N,
2 ≤ m ≤ k such that

∀ 1 ≤ µ < m ∀ ω ∈ Γµn : (Πω(C))
1/µ ≤ ϕµ · a

and

∃ ω̃ ∈ Γmn : (Πω(C))
1/m ≥ ϕm · a.

After a suitable rearrangement of indices we may assume ω̃ = (1, . . . ,m), and Lemma

6.4 yields a matrix C̃ ∈ Mm(R) with properties (i) and (ii) of Lemma 6.4 and

σ(A,E) ≤ ρ0(C̃)−1. But Lemma 6.6 shows that for all such matrices ρ0(C̃) ≥ a =
τ/ϕm. Regarding m ≤ k, the theorem is proven if we can show

t ∈ N ⇒ ϕt ≤ ϕt+1.(6.20)

We know ϕ1 = ϕ2 = 1; from definition (6.8) we see that ϕ3 = 1 +
√

2, and for t ≥ 3

Pt+1(x) = x · Pt(x)− ϕtt.

Hence Pt+1(ϕt) < 0 and ϕt+1 > ϕt. The theorem is proven.
Theorem 6.8 reduces the problem of finding upper bounds of σ(A,E) to one

of finding proper cycles of some length k of |A−1| · E with a large geometric mean
corresponding to a suitable rank-k perturbation. This is done in the following proof
of Proposition 6.3.

Proof of Proposition 6.3. Corollary 6.2 allows us to assume E > 0. Therefore,
|A−1| · E is positive, and Perron–Frobenius theory yields the existence of a positive
eigenvector x ∈ Vn(R) with |A−1| · E · x = ρ( |A−1| · E) · x, ρ( |A−1| · E) > 0. Define
the diagonal matrix Dx ∈ Mn(R) by (Dx)ii := xi. We may replace A by A · Dx

and E by E ·Dx, because for any nonsingular diagonal matrices D1, D2, σ(A,E) =
σ(D1AD2, D1ED2). This is because |δA| ≤ σ ·E iff |D1 · δA ·D2| ≤ σ · |D1ED2| and
A+ δA is singular iff D1AD2 +D1 · δA ·D2 is singular (cf. [3]). Then

C := | (A ·Dx)
−1| · E ·Dx = D−1

x · |A−1| · E ·Dx and C · (1) = ρ( |A−1| · E) · (1).

This means C is a multiple of a row stochastic matrix. Set ρ := ρ( |A−1| · E).
Denote an index of the maximal component of C in row i by mi. Then either

{mi | 1 ≤ i ≤ n } = {1, . . . , n} or there is a cycle mj ,mj+1, . . . ,mj+k−1,mj+k = mj

of length k. This means that with a suitable renumbering there is some k ∈ N,
1 ≤ k ≤ n such that for the upper left k-by-k principal submatrix of C the following
holds:

Cii′ ≥ ρ/n for 1 ≤ i ≤ k,(6.21)

where i′ is defined as in (6.6).
Then Theorem 6.8, (6.20), and (6.21) imply for ω = (1, . . . , k) that

σ(A,E) ≤ ϕk · {Πω(C)}−1/k ≤ n · ϕk/ρ ≤ n · ϕn/ρ.

In the remaining section 7, we will replace the bound (6.5) by giving explicit
bounds for γ(n) depending only on n. An asymptotic bound will be given as well.
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7. Explicit bounds for γ(n). The main result of section 6 is the upper bound
(6.5) in Proposition 6.3. This bound is given in terms of ϕk, the positive zeros of
the polynomial Pt defined in (6.3). In the remaining part of the paper we will give
bounds on γ(n) showing the dependence on n by a simple function. Moreover, the
asymptotic behavior of γ(n) for n→∞ is given.

The polynomials Pt(x) ∈ R[x] defined in (6.3) satisfy

Pt(x) = xt−1 − xt−2 −
t−1∑
ν=1

ϕνν · xt−1−ν and Pt(ϕt) = 0 for t > 2.(7.1)

Therefore, for n ≥ 3,

ϕ−1
n +

n−1∑
i=1

ϕii · ϕ−in = 1.(7.2)

By (6.20), x+
∑n−1

i=1 ϕii · xi is strictly increasing for x > 0. Hence, for x > 0,

x+

n−1∑
i=1

ϕii · xi ≤ 1 implies x ≤ ϕ−1
n ; that is, ϕn ≤ x−1.(7.3)

We are aiming for a bound of the form

ϕk ≤ c · kα(7.4)

for some constants c and α. To determine c and α, we notice that if (7.4) is satisfied
for 1 ≤ k < n, then

n−1∑
i=1

(
i

n

)αi
≤ 1− c−1 · n−α implies ϕn ≤ c · nα.(7.5)

This is because the left-hand side of (7.5) yields

1 ≥ c−1 · n−α +
n−1∑
i=1

iαi · n−αi ≥ (c · nα)−1 +
n−1∑
i=1

ϕii · (c · nα)−i

and (7.3) implies (c · nα)−1 ≤ ϕ−1
n .

Therefore, our first step is to derive upper bounds for

n−1∑
i=1

σi with σi :=

(
i

n

)iα
.(7.6)

σi depends on n and α. We use the abbreviation σi for fixed n and α and omit extra
parameters for better readability. In order to estimate the sum (7.6), we will split it
into three parts which will be bounded individually. For i ≥ 1 the following holds:

σi+1

σi
=

(
i+ 1

n

)(i+1)α

·
(n
i

)(i+1)α

·
(
i

n

)α
=

(
i

n

)α
·
(

1 +
1

i

)(i+1)α

>

(
i

n

)α
· eα,

and therefore

σi <
( n

i · e
)α

· σi+1 for i ≥ 1.(7.7)
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For all β ∈ R with 1 < β < e and k := dn·βe e it holds that k − 1 < n·β
e ≤ k. Then

(7.7) gives

n−1∑
i=k

σi < σn−1 +
n−2∑
i=k

( n

i · e
)α

· σi+1 = σn−1 +
n−1∑
i=k+1

(
n

(i− 1) · e
)α

· σi,

and therefore

σn−1 − σk >
n−1∑
i=k+1

{
1−

(
n

(i− 1) · e
)α}

· σi ≥
n−1∑
i=k+1

{
1−

( n

k · e
)α}

· σi,

and n
k·e ≤ β−1 yields

σn−1 − σk > (1− β−α) ·
n−1∑
i=k+1

σi.

Now, β > 1 and α ≥ 0 imply (1− β−α)−1 > 1. Therefore,

n−1∑
i=k

σi < (1− β−α)−1 · σn−1 = (1− β−α)−1 ·
(
n− 1

n

)(n−1)α

=: µn(7.8)

holds for every α ≥ 0, 1 < β < e, and k := dnβe e. This is the first part of sum (7.6)
for a suitable k to be determined. Define

f(x) :=
(x
n

)xα
with f ′(x) =

(x
n

)xα
·
{
α · ln x

n
+ α

}
.

For x > 0, f(x) has exactly one minimum at x = n
e . Then f(i) = σi shows that

σk ≥ σl for 1 ≤ k ≤ l ≤ n

e
and σk ≤ σl for

n

e
≤ k ≤ l ≤ n− 1.(7.9)

Set M := dn/ee. Then k = dnβe e satisfies M ≤ k ≤ n, and (7.9) implies for n ≥ 3
that

k−1∑
i=M

σi ≤ (k −M) · σk−1 <

(
nβ

e
+ 1− n

e

)
· f
(
nβ

e

)
<

nβ

e
· f
(
nβ

e

)
(7.10)

≤ n ·
(
β

e

)n βα
e +1

=: νn.

This is the second part of sum (7.6). Finally, (7.9) implies that

M−1∑
i=1

σi <

(
1

n

)α
+

(
2

n

)2α

+

(
3

n

)3α

+

(
4

n

)4α

·
(n
e

)
=: ξn,(7.11)

which is the third part of sum (7.6). Inequalities (7.8), (7.10), and (7.11) together
yield

n−α +
n−1∑
i=1

(
i

n

)iα
≤ n−α + µn + νn + ξn for n ≥ 3.(7.12)
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Next, we show that all three sequences µn, νn, ξn are decreasing for large enough n.(
1 + 1

n

)n
is monotonically increasing for n ≥ 1; therefore, for n ≥ 2,(

n+ 1

n

)nα
≥
(

n

n− 1

)(n−1)α

⇒ µn+1 ≤ µn.

Suppose

n0 ≥
{(

e

β

) βα
e

− 1

}−1

.(7.13)

Then for n ≥ n0,

1 +
1

n
≤
(
e

β

) βα
e

⇒ (n+ 1) ·
(
β

e

) βα
e

≤ n ⇒ (n+ 1) ·
(
β

e

)(n+1) βαe +1

≤ n ·
(
β

α

)n βα
e +1

,

and therefore νn+1 ≤ νn for n ≥ n0 with n0 satisfying (7.13). Finally, for n ≥ 1 and
α > 0.25, 1− 4α < 0 and therefore

(n+ 1)1−4α ≤ n1−4α ⇒
(

4

n+ 1

)4α

·
(
n+ 1

e

)
≤
(

4

n

)4α

·
(n
e

)
⇒ ξn+1 ≤ ξn.

Summarizing, this proves the following lemma.
Lemma 7.1. Define ϕ1 := 1, ϕ2 := 1, and recursively ϕn to be the positive zero

of Pn(x) given in (6.3). Let constants c, α ∈ R, α ≥ ln 2 and 3 ≤ n0 ∈ N be given
with ϕn ≤ c · nα for n < n0. If a constant β ∈ R, 1 < β < e exists such that (7.13) is
satisfied and µn, νn, ξn defined in (7.8), (7.10), (7.11) satisfy

n−α + µn + νn + ξn ≤ 1 for n = n0,(7.14)

then

ϕn ≤ c · nα for all n ∈ N.

Proof. Equation (7.4) is satisfied for 1 ≤ k < n, and (7.12) and (7.14) prove the
left-hand side of (7.5) for n = n0, and therefore (7.4) for k = n. The quantities n−α,
µn, νn, and ξn are decreasing for increasing n. Thus, (7.14) and therefore (7.4) are
valid for all n ≥ n0. By assumption, ϕn ≤ c · nα for n < n0 as well.

For example, for β := 2.697, α := 0.7, and n0 := 3000, one checks by explicit
calculation that ϕn ≤ 2.321 ·nα for 1 ≤ n ≤ n0. The lower bound (7.13) for n0 is less
than 183, µn < 0.992, νn < 0.0003, ξn < 0.0038, and n−α < 0.0038 for n = n0. This
proves the following result.

Corollary 7.2. For all n ≥ 1, ϕn ≤ 2.321 ·n0.7. The difference 2.321 ·n0.7−ϕn
is less than 2.8 for 1 ≤ n < 20 and less than 2.0 for 20 ≤ n ≤ 2000.

Summarizing, Corollary 7.2, Proposition 6.3, and Lemma 5.7 prove the following
result.

Proposition 7.3. Let A,E ∈ Mn(R) with nonsingular A and E ≥ 0 be given.
Then for all n ≥ 1,

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ γ(n)

ρ( |A−1| · E)
,
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with

n ≤ γ(n) ≤ 2.321 · n1.7.

The lower bound for γ(n) is sharp.1

Finally, we will show the asymptotic behavior of upper bounds for γ(n). Let
α := ln(2 + 2η), η > 0. For any 1 < β < e and n→∞,

n−α → 0, µn → (1− β−α)−1 · e−α, νn → 0, and ξn → 0.

For lnβ := (2 + η)/(2 + 2η), a short computation yields

(1− β−α)−1 · e−α =
2 + η

2 + 4η + 2η2
< 1.

Hence, for this β and large enough n0, (7.13) holds and

n−α + µn + νn + ξn < 1 for all n ≥ n0.

Therefore, for large enough c with ϕn ≤ c · nα for n < n0, Lemma 7.1 implies that
ϕn ≤ c · nα for all n ∈ N. Using α > ln 2 proves the following.

Proposition 7.4. Let γ(n) be defined as follows:

γ(n) := inf{σ(A,E) · ρ(|A−1| · E) | A ∈Mn(R) nonsingular and 0 ≤ E ∈Mn(R) }.
Then γ(n) is finite for all n ∈ N. Moreover, for any ε > 0 there exists some n0 ∈ N
such that for all n ≥ n0 the following holds:

n ≤ γ(n) ≤ n1+ln 2+ε.(7.15)

The lower bound in (7.15) is sharp.
In his paper [3], Demmel showed that for the Bauer–Skeel condition number

κ(A,E) := ‖ |A−1| · E‖ with any p-norm, 1 ≤ p ≤ ∞, the following holds:

1

ρ( |A−1| · E)
=

1

min
D

κ(AD, ED)
,

where the minimum is taken over all diagonal D. Thus, Propositions 7.3 and 7.4
prove that the componentwise relative distance to the nearest singular matrix for
any weight matrix E ≥ 0 is not too far from the reciprocal of the smallest condition
number achievable by column scaling. The evidence presented in this paper leads us
to the following conjecture.

Conjecture 7.5. For all nonsingular A ∈ Mn(R) and 0 ≤ E ∈ Mn(R) the
following holds:

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ n

ρ( |A−1| · E)
.(7.16)

If the conjecture is true, Lemma 5.7 shows that both bounds are sharp (see also the
note to Proposition 7.3).

1 In the meantime it has been shown by the author that n ≤ γ(n) ≤ (3+2
√

2) ·n. This is included
in Almost sharp bounds for the componentwise distance to the nearest singular matrix, to appear in
LAMA. It uses extensively the author’s results in Theorems of Perron–Frobenius type for matrices
without sign restrictions, to appear in LAA.
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Abstract. This paper provides an error analysis of the generalized Schur algorithm of Kailath
and Chun [SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128]—a class of algorithms which can
be used to factorize Toeplitz-like matrices, including block-Toeplitz matrices, and matrices of the
form TTT , where T is Toeplitz. The conclusion drawn is that if this algorithm is implemented with
hyperbolic transformations in the factored form which is well known to provide numerical stability in
the context of Cholesky downdating, then the generalized Schur algorithm will be stable. If a more
direct implementation of the hyperbolic transformations is used, then it will be unstable. In this
respect, the algorithm is analogous to Cholesky downdating; the details of implementation of the
hyperbolic transformations are essential for stability. An example which illustrates this instability is
given. This result is in contrast to the ordinary Schur algorithm for which an analysis by Bojanczyk,
Brent, De Hoog, and Sweet [SIAM J. Matrix Anal. Appl., 16 (1995), pp. 40–57] shows that the sta-
bility of the algorithm is not dependent on the implementation of the hyperbolic transformations.

Key words. Schur algorithm, structured matrices, Toeplitz matrices, stability
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1. Introduction. The Schur algorithm is a popular and fast method for the
Cholesky factorization of a square, positive-definite Toeplitz matrix T . It performs
reliably, and in [3] it was shown to be stable in the sense that if the algorithm runs
to completion and Ĉ is the computed Cholesky factor, ‖T − ĈT Ĉ‖ is guaranteed
to be small. This paper will perform a similar stability analysis which applies to
several special cases of the generalized Schur algorithm [10]. In its full generality,
the generalized Schur algorithm can be adapted to the factorization of a wide variety
of structured matrices. The analysis given here is primarily of interest for block-
Toeplitz and Toeplitz-block matrices, as well as for matrices of the form TTT , where
T is rectangular and Toeplitz. The key notion behind the general algorithm is the
concept of displacement rank [10].

One of the most significant examples is the Cholesky factorization of TTT . This
factor is also the factor R in the QR factorization of the rectangular Toeplitz matrix
T , and the obvious application of this fact to the solution of Toeplitz least squares
problems is explored in [1]. However, the analysis given there assumes the use of the
algorithm presented in [2] rather than the generalized Schur algorithm. The basic
idea is to obtain R without bothering about finding Q, thus avoiding any problems
associated with the loss of orthogonality which are common to all fast Toeplitz QR
algorithms. The method of seminormal equations, possibly with iterative refinement,
can then be used to find the least squares solution. The resulting equations are
RTRx = TT b and a weak stability result can be given concerning their solution
provided that for the computed R, ‖RTR − TTT‖ is kept small. As will be shown
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here, this can be done using the generalized Schur algorithm as well as the algorithm
in [2]. Consequently, the observations concerning Toeplitz least squares problems in
[1] can be adapted to an alternate approach—that of finding R from the generalized
Schur algorithm and then solving the seminormal equations to obtain the solution.

A comparison of the analysis in this paper can also be made with the analysis of
the Schur algorithm given in [3]. Despite some major similarities, the conclusions of
this paper will be, in one very important respect, quite different: the implementation
details of the Schur algorithm are less critical to stability than those of the generalized
Schur algorithm. Both can be implemented using hyperbolic transformations of the
form

H =
1√

1− ρ2

[
1 ρ
ρ 1

]
,

with |ρ| < 1 and where the transformations are applied with straightforward matrix
multiplication; however there are reasons to be concerned about the stability of this
approach. In many algorithms, such as Cholesky downdating [4], this is not a good
idea. A downdating algorithm based on such transformations will not be stable unless
the transformations are implemented in factored form,

H =

[
1 0

ρ
√

1− ρ2

] [ 1√
1−ρ2

0

0 1

] [
1 ρ
0 1

]
.

It is worth noting that the manner in which the elements of these factors are computed
is also important for stability. Details can be found in [4] and a correct implementation
can be found in section 3. Such a seemingly minor difference in implementation makes
the difference between stability and instability for Cholesky downdating, but the
Schur algorithm is more robust—it is stable using either approach. Unfortunately,
the generalized Schur algorithm will be shown to be analogous to the downdating
problem in this regard; the factored transformations are essential for stability. A
proof of the stability of the factored hyperbolic approach will be given in section 4
while an example which illustrates the instability of the other approach will be given
in section 5. The stability proof in [1] also requires use of the factored hyperbolic
transformations. This is not surprising since the presentation in [2] recasts the problem
in the form of a downdating problem.

Finally, in section 5, some comments will be made about the nature of the instabil-
ity. The propagation of errors is essentially stable regardless of which implementation
is used; the difference is in the size of the local errors. From the fact that the error
propagation is stable, it is possible to show that there will be many instances in which
the instability does not completely destroy the accuracy of the computed Cholesky
factors. This is true even for quite ill-conditioned problems. Numerical examples will
be given to support this claim.

2. Displacement rank and stable computation of the initial generators.
Given an n×n symmetric, positive-definite matrixA, which is not necessarily Toeplitz,
we define the displacement of A to be

DA = A− ZAAZ
T
A ,(1)

where ZA is strictly lower triangular (a matrix with zeros on the diagonal). The
restriction of symmetry on A can easily be relaxed to allow A to be Hermitian, but
for simplicity we deal only with the real symmetric case here.
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In [10], the only additional restriction on Z is that it be a fast, O(n) rather than
O(n2), process to multiply a vector by Z. Otherwise, the factorization algorithm will
have a complexity of O(n3) instead of O(n2). In addition to this, we will also make
two assumptions which will guarantee the stability of the algorithm and simplify the
analysis. For stability it will be necessary to assume that ‖Z‖2 ≤ 1. Otherwise,
repeated multiplication by Z will magnify errors. Further, to simplify the analysis,
it will be assumed that a vector can be multiplied by Z without incurring any error.
These two assumptions essentially limit Z to be a shift or a block shift. Since these
are the forms that Z takes for Toeplitz least squares problems and block-Toeplitz
Cholesky factorization, respectively, these assumptions are reasonable, even if they
do remove a good deal of generality. The second assumption is not essential if the
multiplication is done in a stable manner, but there don’t seem to be any common
examples to which the analysis could be made to apply by dropping it.

To be more specific about typical examples of Z, if A is square and Toeplitz or
has the form TTT for some rectangular Toeplitz matrix T , we choose (ZT )ij = 1 if
i = j + 1 and (ZT )ij = 0 otherwise. A block-Toeplitz matrix B would require ZB to
be a block shift, with the ones on the subdiagonal replaced with identity matrices.
The significance of the analysis here will be for algorithms based on displacements
involving ZT and ZB .

It is well known that if T is a symmetric Toeplitz matrix, normalized to have ones
on the diagonal, (T )ij = ti−j with ti = t−i and t0 = 1, then DT will be an indefinite
rank 2 matrix and

DT = T − ZTTZ
T
T = GT

TΣTGT ,

where

GT =

[
1 t1 · · · tn−1

0 t1 · · · tn−1

]
=

[
uT

vT

]
and ΣT = 1⊕−1.

The vectors u and v are referred to as generators of T . Clearly, the matrix T
is uniquely determined by these generators. Performing operations on the genera-
tors rather than on T directly is what allows efficient O(n2) algorithms for Toeplitz
systems.

Assume that for some ZA satisfying the previously specified restrictions A belongs
to a class of positive-definite matrices for which DA as defined by equation (1) has
rank α. Clearly DA will have a decomposition of the form

DA = GTΣAG,

where

G =


u11 uT12
u21 U22

v11 vT12
v21 V22


and ΣA = Ip ⊕ Iq. Here we take u11 and v11 to be scalars and u21 and v21 to be
column vectors of size p− 1 and q − 1, respectively, with p+ q = α.

In section 3, we will give a summary of the general algorithm. More details and
many special cases can be found in [10]. But first, since the numerical stability of



STABILITY OF STRUCTURED MATRIX FACTORIZATIONS 107

the overall factorization will depend on the stability of the process of finding the
generators for A, we will briefly discuss how this can be done in a stable manner.

As already seen, the generators of a Toeplitz matrix can be found trivially with
no error. For a symmetric block-Toeplitz matrix, the process is only slightly more
complicated and the errors in the initial generators will not cause a problem with
stability. The generators for a Toeplitz least squares problem can also be found in
a reliable manner with a minimal amount of computation, and again the process is
stable.

In general, the numbers p and q correspond, respectively, to the number of positive
and negative eigenvalues of D. When this decomposition cannot be obtained trivially,
as in the Toeplitz or block-Toeplitz case, it can be obtained through an eigenvalue
decomposition or through Gaussian elimination with a symmetric pivoting strategy
to obtain an LDLT factorization of the displacement [7].

Of course, computing a full eigenvalue decomposition will slow down the overall
algorithm. In the absence of any specific knowledge of the form which the genera-
tors will take, and in the case in which D can be computed with O(n2) complexity,
computing α steps of the LDLT decomposition will give a set of generators without
destroying the O(n2) complexity of the algorithm. However, it is important to note
that when truncating such a decomposition, the pivoting scheme which is chosen can
be more critical to stability than when the decomposition is carried out completely.
The fact that the Bunch–Parlett strategy is a backward stable method for computing
LDLT is well known [7]. The stability of the Bunch–Kaufman procedure has been
established more recently in [9]. However, it is simple to verify numerically that the
rank 2 matrix  ε

√
ε ε√

ε β2

4
β
2

ε β
2

β2ε−4β
√
ε+β2

β2−4

 ,
where β = (1+

√
17)/8 is a constant chosen to minimize element growth for symmetric

pivoting and ε > 0 is very small, leads to a large error if two steps of the Bunch–
Kaufman approach are used to obtain a rank 2 LDLT factorization. The Bunch–
Parlett procedure will not have this problem. The reason for the difference can be
found by looking at the sensitivity of the scalar Schur complement which is truncated
by these two algorithms. An analysis of pivoted low rank Cholesky factorization which
highlights the relevance of Schur complement sensitivity in the case of semidefinite
matrices was given in [8]; the issues are the same for indefinite matrices, and the
extension to the more complicated pivoting strategies is direct. The result can be
summarized as follows: backward stability guarantees that if the computed Schur
complement after two stages of the factorization process is small, then no large errors
will be incurred in dropping it and terminating the factorization. Rank deficiency
ensures that the exact value of the Schur complement will be zero, but if it is highly
sensitive to perturbations in the original matrix, then the backward error can cause
the computed value to become large. It is shown in [8] that the sensitivity of the
Schur complement will depend on the size of the elements in L. A careful scrutiny of
the two pivoting strategies shows that, although both are backward stable and give
bounds on the norms of the Schur complements, only Bunch–Parlett gives bounds
on the elements of L. However, this digression is included only for completeness to
show that the process of obtaining the generators can always be done in a stable
fashion. In practice, there is generally a simpler means of obtaining the generators—
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for Toeplitz matrices, they can be obtained with no computation at all. A general
factorization method would only be needed in the rare case in which D does not have
a zero structure which makes the choice of generators obvious, or at least easy to
compute. An example is the case of general non-Toeplitz matrices for which α equals
two. The class of matrices for which α = 2 is broader than the class of Toeplitz
matrices, and DA will not always have a zero structure which makes the process of
finding the generators trivial.

3. The generalized Schur algorithm. Assuming that we have managed to
find the generators for a structured matrix A, we can apply the generalized Schur
algorithm to find a factorization A = CTC. Much of the power and generality of
this approach is due to the fact that it is a straightforward and intuitively clear
generalization of the Schur algorithm; there is little essential difference between the
cases α = 2 and α > 2. Since the former case is well known, the presentation here of
the latter case can be kept brief. A more leisurely description can be found in [10].

Let Z = ZA and Zj = Zj
A. Since Z is strictly lower triangular, Zn = 0, and from

this it follows that

A =

n−1∑
j=0

Zj(A− ZAZT )ZT
j

or

A =

n−1∑
j=0

ZjG
TΣGZT

j .(2)

For any transformation J such that JTΣJ = Σ, we find that JG is also a set of
generators for A. This follows immediately, since GTJTΣJG = GTΣG = D.

From equation (2) and the positivity of A, we see that

0 < (A)1,1 =

∥∥∥∥[ u11

u12

]∥∥∥∥2

−
∥∥∥∥[ v11

v12

]∥∥∥∥2

.

This means that if a transformation J1 of the form

J1 =

[
Q1 0
0 Q2

]
,

where Q1 and Q2 are orthogonal, is applied to G to give

J1G =


û11 ûT12
0 Û22

v̂11 vT12
0 V̂22


then |û11| > |v̂11|. Therefore it is possible to take ρ = −v̂11/û11 so that

J2J1G =
1√

1− ρ2


1 0 ρ 0
0 I 0 0
ρ 0 1 0
0 0 0 I

 J1G =


ũ11 ũT12
0 Û22

0 ṽT12
0 V̂22

 .
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Note that JT1 ΣJ1 = Σ and JT2 ΣJ2 = Σ so that J2J1G is also a set of generators for
A. We have proven that we can always find a set of generators for which the first
column has only one nonzero element. Such generators are said to be proper.

This form of the generators is very useful. Equation (2) implies that the first row
of A is not different from the first row of GTΣG. When the generators are in proper
form, this means that

A(1, :) = ũ11

[
ũ11 ũT12

]
.

Clearly, the first row of the Cholesky factor of A will be

C(1, :) =
[
ũ11 ũT12

]
.

If we let

AS = A−
[
ũ11

ũ12

] [
ũ11 ũT12

]
be the Schur complement of A, we see that

AS − ZASZ
T = GTΣG−

[
ũ11

ũ12

] [
ũ11 ũT12

]
+ Z

[
ũ11

ũ12

] [
ũ11 ũT12

]
ZT .

This means that merely postmultiplying the first row of the generators

uT =
[
ũ11 ũT12

]
by ZT will give the generators of the Schur complement.

Additional unitary and hyperbolic transformations can now be used to introduce
zeros into the second elements of these vectors to obtain the first row of the Cholesky
factor of the Schur complement—the second row of the Cholesky factor of A. The
process can be continued recursively to obtain the complete Cholesky factor of A. At
each stage, the positivity of the Schur complements guarantees that an appropriate ρ
can be found.

The resulting algorithm, with the hyperbolic transformations implemented in the
stable form in Matlab code, is as follows:

function [C]=gschur(G,n,p,q)

C=zeros(n,n); C(1,1:n)=G(1,1:n);

for i=1:n,

for j=2:p

Q=givens(G(1,i),G(j,i));

G(1:j-1:j,i:n)=Q*G(1:j-1:j,i:n);

end

for j=2:q

Q=givens(G(p+1,i),G(p+j,i));

G(p+1:j-1:p+j,i:n)=Q*G(p+1:j-1:p+j,i:n);

end

s=G(p+1,i)/G(1,i);

c=sqrt(G(1,i)^2-G(p+1,i)^2)/G(1,i);

G(1,i+1:n)=([1 -s]*G(1:p:p+1,i+1:n)/c;
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G(p+1,i+1:n)=[-s c]*G(1:p:p+1,i+1:n);

G(1,i)=sqrt(G(1,i)^2-G(p+1,i)^2);

C(i,i:n)=G(1,i:n);

G(1,i+1:n)=G(1,i:n-1);

end;

It was mentioned in section 1 that the computation of the elements in the factors
is significant for stability. It is also important that the leading element of the first
generator be computed separately, as shown here. The analysis in [4] does not apply
to other implementations.

Although the algorithm given above will suffice to find the factors of a block-
Toeplitz matrix, it is significantly different from some of the approaches given in
the literature. The numerical properties are not different, but a more block-oriented
perspective on block-Toeplitz factorization can be found in [6].

In the two-generator case, the matrix J2 which zeros the first elements of all the
generators except the first is almost uniquely defined by the constraints

H

[
u11

v11

]
=

[
x
0

]
and HTΣH = Σ. The only possible variation is that each row of H can be multiplied
by −1. This is not the case when there are more generators. The obvious example
is the possibility of applying an arbitrary hyperbolic transformation acting on the
last α − 1 generators after the appropriate zeros have been introduced into their
leading elements. This paper will show that when J is formed from a block diagonal
orthogonal matrix and an appropriately implemented hyperbolic transformation, the
algorithm will be stable.

4. Stability analysis. A stability analysis of the Schur algorithm for Toeplitz
factorization is presented in [3]. The analysis can be broken into two parts: one which
shows how local errors propagate through the algorithm and one which bounds the
local errors. The propagation of errors is essentially the same for the generalized
Schur algorithm, but the problem of bounding local errors is slightly more difficult.
We will first modify results from [3] to apply to the general algorithm and then later
develop new inequalities which will complete the analysis.

At the end of the kth stage of the algorithm, let the generators stored in the
computer be

G̃k =


0Tk−1 ũ11,k ũT12,k

0p−1,k−1 0p−1 Ũ22,k

0Tk−1 0 ṽT12,k
0q−1,k−1 0q−1 Ṽ22,k

 =


ũT1,k
Ũ2,k

ṽT1,k
Ṽ2,k

 .
Using Matlab notation, let G̃k,Z be defined by

G̃k,Z(1, :) = G̃k(1, :)Z
T

and

G̃k,Z(2 : α, :) = G̃k(2 : α, :).

Also, let Gk and Gk,Z be the generators which would result from exact computations.
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The computed generators will satisfy

G̃T
k+1ΣG̃k+1 = G̃T

k,ZΣG̃k,Z + εFk +O(ε2),

where ε is the machine precision and εFk are errors incurred locally in computing the
new form of the generators at step k through the use of orthogonal and hyperbolic
transformations.

Since it is possible that G1 will already be in proper form, we will assume that it
is and treat any errors which appear in it separately from the other errors. Summing
this equation from k = 1 to k = n− 1 and grouping the terms related to the top rows
of G̃k and G̃k,Z in the left-hand side gives

n−1∑
k=1

(
ũ1,k+1ũ

T
1,k+1 − Zũ1,kũ

T
1,kZ

T
)

=

n−1∑
k=1

(
(G̃k,Z(2 : α, :))TΣ(G̃k,Z(2 : α, :))

−(G̃k+1(2 : α, :))TΣ(G̃k+1(2 : α, :)) + εFk

)
+O(ε2).

After simplifying the terms that cancel in the right-hand side, we obtain

R̃T R̃− ũ1,1ũ
T
1,1 − ZT R̃T R̃Z + Zũ1,nũ

T
1,nZ

T = (G̃1(2 : α, :))TΣ(G̃1(2 : α, :))

−(G̃n(2 : α, :))TΣ(G̃n(2 : α, :)) + ε
n−1∑
k=1

Fk +O(ε2),

where

R̃ =


ũT1,1
ũT1,2

...
ũT1,n

 .
Since Gn,Z = 0,

R̃T R̃− ZTRTRZ = ũ1,1ũ
T
1,1 + (G̃1(2 : α, :))TΣ(G̃1(2 : α, :)) + ε

n−1∑
k=1

Fk +O(ε2).

Using this to find the displacement

(A− R̃T R̃)− Z(A− R̃T R̃)ZT = GT
1 ΣG1 − G̃T

1 ΣG̃1 + ε
n−1∑
k=1

Fk +O(ε2)

and applying equation (2) gives

A− R̃T R̃ =

n−1∑
j=0

Zj [G
T
1 ΣG1 − G̃T

1 ΣG̃1]Z
T
j − ε

n−1∑
j=0

n−j−1∑
k=1

ZjFkZ
T
j +O(ε2),(3)

where the sum over k has been reduced by noting that ZT
j FkZ

T
j = 0 whenever k >

n − j − 1. This shows that if we can bound errors in the computation of the initial
generators and the local errors, then the algorithm will be stable. The errors in the
initial generators are not a problem, since from D the generators can be obtained in
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a backward stable manner using Bunch–Parlett pivoting to compute LDLT or, more
typically, in a more direct fashion. Since the methods for obtaining the generators
may vary, in the analysis and error bounds which follow we will ignore this source of
error and only concern ourselves with the effects of local errors due to the unitary
and hyperbolic transformations.

The local errors are given by the expression

εFk = G̃T
k+1ΣG̃k+1 − G̃T

k,ZΣG̃k,Z +O(ε2).

Because any bounds on the errors produced by the transformations will depend on
the norm of the generators, it is essential to bound the generators.

Theorem 4.1. When the generators are computed by applying a sequence of
plane rotations and a hyperbolic transformation, they satisfy

‖Gk‖2
F ≤ 2

√
k − 1‖A‖F + ‖G1‖2

F .

Proof. Let û1 and v̂1 be the two generators u1 and v1 after orthogonal transfor-
mations have been performed on the generators from step k − 1. Then[

uT1,k
vT1,k

]
=

1√
1− ρ2

[
1 ρ
ρ 1

] [
ûT1
v̂T1

]

=

[
1 0

ρ
√

1− ρ2

] [ 1√
1−ρ2

ρ√
1−ρ2

0 1

] [
ûT1
v̂T1

]

=

[
uT1,k
ρuT1,k

]
+

[
0 0

0
√

1− ρ2

] [
ûT1
v̂T1

]
.

Taking Frobenius norms gives∥∥∥∥[ uT1,k
vT1,k

]∥∥∥∥2

F

= (1 + ρ2)‖u1,k‖2 + (1− ρ2)‖v̂1‖2 + 2ρ
√

1− ρ2uT1,kv̂1

≤ ‖u1,k‖2 + (|ρ|‖u1,k‖+
√

1− ρ2‖v̂1‖)2
≤ 2‖u1,k‖2 + ‖v1‖2.

To see why the final inequality is true, let x = |ρ| and look for the minimum value of

f(x) = ‖u1,k‖+ (x‖u1,k‖2 +
√

1− x2‖v̂1‖)2

on 0 ≤ x ≤ 1. If

0 = f ′(x) = 2
(
x‖u1,k‖+

√
1− x2‖v̂1‖

)(
‖u1,k‖ − x√

1− x2
‖v̂1‖

)
,

then

x =
‖u1,k‖√‖u1,k‖2 + ‖v̂1‖2

and

f(x) = 2‖u1,k‖2 + ‖v̂1‖2.
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It is easy to see that f assumes lower values at x = 0 and x = 1, so this point is
the only possible maximum. Since the plane rotations do not affect the norm of the
generators and since ‖Z‖2 ≤ 1,

‖Gk‖2
F ≤ 2‖u1,k‖2 + ‖Gk−1‖2

F .

This inequality can be expanded recursively to give

‖Gk‖2
F ≤ 2

n∑
j=2

‖u1,j‖2 + ‖G1‖2
F = 2‖C(2 : k, :)‖2

F + ‖G1‖2
F .

Finally, for an arbitrary positive semidefinite rank k − 1 matrix with a factorization
A = CTC,

‖C‖2
F ≤

√
k‖A‖F .

This follows from the fact that the Frobenius norm squared equals the sum of squares
of the singular values and from a standard inequality relating the vector 2-norm and
the vector 1-norm. This completes the proof of the theorem.

To complete a stability analysis all that is needed is to show that the orthogonal
and hyperbolic transformations produce a local error, εFk, which is proportional to
the norm of the generators. Note that this does not necessarily refer to the norm
of the generators prior to the transformation. In fact, in the case of the hyperbolic
transformation, it is necessary to look at the norm of one of the generators which is
produced by the hyperbolic transformation.

An error analysis of hyperbolic transformations is given in [4]. The result is that
if the transformations are applied in factored form

1√
1− ρ2

[
1 ρ
ρ 1

]
=

[
1 0

ρ
√

1− ρ2

] [ 1√
1−ρ2

0

0 1

] [
1 ρ
0 1

]
(4)

then [
ũT1,k+1 + ∆̂u

T

ṽT1,k+1

]
= H

[
ûT1,k

v̂T1,k + ∆̂v
T

]
.(5)

The mixed error vectors ∆̂u and ∆̂v satisfy∥∥∥∥∥
[

∆̂u
T

∆̂v
T

]∥∥∥∥∥
F

≤ 6.25ε

∥∥∥∥[ ũT1,k+1

v̂T1,k

]∥∥∥∥
F

,(6)

where ε is the unit roundoff.
In addition to this, there is a result in [11] concerning the application of plane

rotations. In particular, there will exist orthogonal Q̂1 and Q̂2 such that

[
Q̂1 0

0 Q̂2

]
ũT1,kZ

T + ∆u1

Ũ2,k + ∆U2

ṽT1,k + ∆v1

Ṽ2,k + ∆V2

 =


ûT1,k
Û2,k

v̂T1,k
V̂2,k

 = Ĝk,(7)
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where for m
.
= max{p− 1, q − 1}∥∥∥∥[ ∆uT1

∆U2

]∥∥∥∥
F

≤ 6mε

∥∥∥∥[ ũT1,kZ
T

Ũ2,k

]∥∥∥∥
F

(8)

and ∥∥∥∥[ ∆vT1
∆V2

]∥∥∥∥
F

≤ 6mε

∥∥∥∥[ ṽT1,kZ
T

Ṽ2,k

]∥∥∥∥
F

.(9)

If we let

∆Gk =
[

∆u1 ∆UT
2 ∆v1 ∆V T

2

]T
then clearly

‖∆Gk‖F ≤ 6mε‖Gk,Z‖F ≤ 6mε‖Gk‖F .

Also, if we let

∆̂Gk =
[

∆̂u ∆̂v
]T

then the error bounds, (5) and (7), can be used to show that

ĜT
k ΣĜk = (G̃k,Z + ∆Gk)

TΣ(G̃k,Z + ∆Gk)

and

(G̃k+1 + e1∆̂u
T
)TΣ(G̃k+1 + e1∆̂u

T
) = (Ĝk + ep+1∆̂v

T
)TΣ(Ĝk + ep+1∆̂v

T
),

where e1 and ep+1 are standard basis vectors. This gives

εFk = G̃T
k,ZΣ∆Gk + ∆GT

k ΣG̃k,Z −
[
ũ1,k+1 v̂1,k

]
∆̂Gk − ∆̂Gk

T
[
ũT1,k+1

v̂T1,k

]
,

corresponding to a bound

‖εFk‖F ≤ 2‖G̃k,Z‖F ‖∆Gk‖F + 2(‖Ĝk‖F + ‖G̃k+1‖F )‖∆̂Gk‖F
≤ 12mε‖G̃k,Z‖2

F + 12.5ε(‖Ĝk‖F + ‖G̃k+1‖F )2

≤ 12mε‖Gk‖2
F + 12.5ε (‖Gk‖F + ‖Gk+1‖F )

2
+O(ε2).

Since Theorem 4.1 shows that

‖Gk‖2
F , ‖Gk+1‖2

F ≤ 2
√
k‖A‖F + ‖G1‖2

F ,

we get a bound on the local error of

‖εFk‖F ≤ (50 + 12m)ε(2
√
k‖A‖F + ‖G1‖2

F ).

From (3), we see that

‖A−RTR‖F ≤ (25 + 6m)(n− 1)nε
(
2
√
n‖A‖F + ‖G1‖2

F

)
.(10)
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5. An unstable implementation. In the last section the stability of the gener-
alized Schur algorithm was proven for the case in which the hyperbolic transformations
are applied in factored form. It has already been noted that the implementation is
not unique. There are many transformations which introduce the needed zeros in the
generators, and they can be applied in multiple ways: the obvious example is the
application of the hyperbolic transformation in factored form, (4), versus the direct
multiplication approach.

It turns out that the factored form of the hyperbolic transformation is crucial to
the stability of the algorithm. To see this, take α = 4 and the generators

G0 =


1√
2

− 1√
2
− 1

2
1√
2
− 3

2 1

0 1√
2

− 1√
2

+ 1
2

1√
2

+ 3
2

0 1√
2

−1√
2

0

0 0 1− η 1 + 2
√
η

 .(11)

For small η these generators correspond to an ill-conditioned A for which α = 4. If the
Schur algorithm with the hyperbolic transformations applied in factored form is used,
then a small error A−RTR will be achieved, independent of the size of η. However,
if the hyperbolic transformations are multiplied directly, then the backward error will
depend to a significant extent on η.

To see why, note that this example gives, after two steps of the generalized Schur
algorithm, the following generators:

GZ =


1 1
0 2

1− η 1 + 2
√
η

0 1

 .(12)

In fact, the example was obtained by performing a reversal of the algorithm on equa-
tion (12). The construction of the matrix in equation (11) was not really neces-
sary since the essential mechanism of instability is represented in equation (12); this
construction merely removes any objection as to whether the generators (12), corre-
sponding to a displacement rank 2 matrix, could actually occur in the factorization
of a displacement rank 4 matrix. If not, then one might argue that the instability
shown when applying the Schur algorithm to equation (12) is not really relevant to
the stability of the factorization of displacement rank 4 matrices. Since the matrix
in equation (11) corresponds to four linearly independent generators which reduce to
equation (11) in two steps of the Schur procedure, this objection can be dismissed.

Table 1 shows the dependence of the errors on η. It was necessary to go to very
ill-conditioned matrices to demonstrate a significant loss of accuracy. The increase
of the backward error by a factor 105 is more than seems reasonable in a backward
stable algorithm, yet the increase in error is quite modest for an unstable algorithm
in which the condition number is increased by a factor of 1010. It turns out that this
is primarily a result of the fact that instability is due to large local errors rather than
unstable propagation of errors.

In contrast, over this very wide range of condition numbers, the error in the
Cholesky factors computed by the stable form of the algorithm are all around 10−15.
This is consistent with the conclusion of the last section that the algorithm is stable.

It is interesting to note that the algorithm for α = 2 is stable even when the
hyperbolic transformations are applied directly. This is proven in [3]. The reason is
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Table 1

Errors for different values of η.

η K(A) ‖A− CCT ‖
10−3 9.6× 104 2.7× 10−15

10−8 1× 1010 1.3× 10−12

10−13 1× 1015 7× 10−10

that whenever a hyperbolic transformation of large norm which might magnify errors
is performed, it can be proven that the norm of the generators drops drastically.
Since the error bounds [4] for the unstabilized form of the hyperbolic transformation
are proportional to the norm of the new generators multiplied by the norm of the
transformation, the large norm of the hyperbolic transformation is canceled by a
proportional decrease in the norm of the generators.

The reason for the decrease in norm of the generators is that whenever ρ is very
close to negative one, the action of a hyperbolic transformation is close to just taking
the difference between the two generators and scaling the result by 1/

√
1− ρ2. For

the case α = 2, whenever the leading nonzero elements are O(η) apart, leading to a ρ
very close to one, it can be proven that all the other components of the generators are
within O(η) of each other. As can be seen in the example here, this is clearly not the
case for more than two generators: the leading elements from which the hyperbolic
transformation is computed are within O(η), but the other components of the two
generators are only within O(

√
η). Their difference isn’t small enough to completely

cancel out the large norm of the hyperbolic transformation.
In Table 1, the backward error seems to display a proportionality to the square

root of the condition number. This is a property which is suggested by Theorem
4.1 and the fact that the overall backward error is just a sum of local errors. These
imply that neither the generators nor the effect of previous errors will be unduly
magnified by the hyperbolic transformations. This makes it possible to concentrate
our attention on just one stage of the algorithm. We do not expect the results in the
overall factorization to be significantly worse than the worst possible loss of accuracy
in a single stage.

Note that we have already proven that when applying a hyperbolic transformation
the result is always a set of generators which satisfy the bound

‖Gk‖2
F ≤ 2

√
k − 1‖A‖F + ‖G1‖2

F

or, just looking at the two generators on which the hyperbolic transformation has
acted, ∥∥∥∥[ uT1,k

vT1,k

]∥∥∥∥2

F

≤ 2
√
k − 1‖A‖F + ‖G1‖2

F .

As a direct result of the analysis in [4], the local error introduced by the hyperbolic
transformation which produces u1,k and v1,k will be proportional to the norm of the
generators and the norm of the transformation, which can be bounded as follows:

ε‖Hk‖
∥∥∥∥[ uT1,k

vT1,k

]∥∥∥∥ ≤ 2ε√
1− ρ2

∥∥∥∥[ uT1,k
vT1,k

]∥∥∥∥ ≤ 2ε√
1− ρ2

(2
√
k − 1‖A‖F + ‖G1‖2

F ).

Although there does not appear to be a general theory relating the condition number
of an arbitrary low α-rank matrix to the values ρk, it is proven in [5] that for a
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positive-definite Toeplitz matrix

n∏
k=1

1 + ρk
1− ρ2

k

≤ ‖T−1‖1 ≤
n−1∏
k=1

(1 + |ρk|)2
1− ρ2

k

.

If similar inequalities hold for matrices of displacement rank α, then this is enough to
suggest that the errors will tend to be proportional to the square root of the condition
number.

We can get a somewhat more conclusive result. If we assume that the factorization
goes to completion, we can write of the leading elements of û11,k−1 and v̂11,k−1 from
which ρ is computed,

v̂11,k−1 = û11,k−1(1− ε1)

and 1 ≥ ε1 ≥ ε. We have assumed without loss of generality that v̂11,k−1 > 0 and
û11,k−1 > 0. If this is not the case, then either generator can be multiplied by −1
without causing any problems.

This means that

1

1− ρ2
=

û2
11,k−1

û2
11,k−1 − v̂2

11,k−1

=
1

2ε1 − ε21
<

1

ε1
≤ 1

ε
.

So the error incurred during the hyperbolic transformation will be at worst propor-
tional to

2
√
ε(2

√
k − 1‖A‖F + ‖G1‖2

F ).

This explains the results in Table 1: because of the stability of the error propa-
gation in the algorithm, as well as the bound on the generators, the errors will be at
worst a modest multiple of

√
ε. Although the backward errors are dependent on the

reflection coefficients, there is a limit to this dependence.

6. Summary. This paper has proven the stability of a method for Cholesky fac-
torization of low α-rank matrices. The stability result is dependent on the particular
implementation. Since the result depends on having a bound on the norm of the
generators, it is important to choose transformations which permit such a bound.
Working with transformations which can be factored as a product of a sequence of
plane rotations and one hyperbolic transformation gives such a bound. In the case
in which the algorithm is implemented with unfactored hyperbolic transformations,
this bound on the generators is not sufficient for stability; however, bounds were
given which support the assertion that the stability of the error propagation keeps
the instability from being as bad as might otherwise be expected.

Although not discussed here, the approach in this paper can be used in a manner
similar to that of [1] to provide a fast, weakly stable solution of Toeplitz least squares
problems. The conclusions would be essentially the same as those in [1].
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Abstract. The classical inequality between the weighted arithmetic and geometric means has
recently been extended to means of positive definite matrices. Here we give bounds for the difference
between such matrix means. Differences between other matrix means, such as the geometric and
harmonic means, are also given. Finally, conditions for the reversal of the matrix inequalities obtained
are also pointed out.
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1. Introduction. The classical inequality between the weighted arithmetic and
geometric means states that if C1, . . . , Cr and w1, . . . , wr are positive real numbers,
with w1 + · · ·wr = 1, then

(1.1) G ≡
r∏

i=1

Cwi
i ≤

r∑
i=1

wiCi ≡ A.

Equality holds in (1.1) if and only if C1 = · · · = Cr.
Alzer [1] (see also [2, p. 38]) proved the following lower bound for the difference

between A and G:

(1.2) 0 ≤ Ae−G/A −Ge−A/G ≤ 3

e
(A−G).

The number 3/e cannot be replaced by a smaller number. Equality holds in (1.2) if
and only if C1 = · · · = Cr.

In this note, we give a related result for the differences between arbitrary matrix
means.

2. Preliminaries. Let w1, . . . , wr be positive numbers such that w1 + · · ·+wr =
1 and let C1, . . . , Cr be n×n positive definite Hermitian matrices. Consider weighted
power means of the matrices, defined by

(2.1) Ms = (w1C
s
1 + · · ·+ wrC

s
r )

1/s, s 6= 0,

M0 = G = C
1/2
r (C

−1/2
r C

1/2
r−1 · · · (C−1/2

3 C
1/2
2 (C

−1/2
2 C1C

−1/2
2 )u1

·C1/2
2 C

−1/2
3 )u2 · · ·C1/2

r−1C
−1/2
r )ur−1C

1/2
r ,

where ui = 1− wi+1/
∑i+1

k=1 wk for i = 1, . . . , r−1. We shall use the notation A = M1

and H = M−1 for arithmetic and harmonic means, respectively.
The following results were proved in [3].
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Theorem 2.1.

(2.2) H ≤ G ≤ A.

In fact, (2.2) is the main result from [3] (see [4]). Various upper and lower bounds
are also given. For example, the following inequalities hold [3].

Theorem 2.2.

(2.3)

Gexp(G−1A− I) = exp(AG−1 − I)G

≥ (AG−1A+G)/2

≥ A ≥ G ≥ H

≥ 2(H−1GH−1 +G−1)−1

≥ Gexp(I −H−1G) = exp(I −GH−1)G.

Reverse inequalities for (2.2) are given in [4]. For such reverse results, it is neces-
sary to change the requirement that all the weights wi are positive.

Theorem 2.3. Let wi, i = 1, . . . , r be real numbers such that

(2.4) w1 > 0, wi < 0, i = 2, . . . , r; w1 + · · ·+ wr = 1.

Then

(2.5) A ≤ G.

If we also have w1C
−1
1 + · · ·+ wrC

−1
r > 0, then

(2.6) G ≤ H.

Equality holds in (2.5) and (2.6) if and only if C1 = · · · = Cr.
Finally we note the following result proved in [5].
Theorem 2.4. Let t, s be real numbers such that one of the following holds:
(a) t ≥ s, t /∈ (−1, 1), s /∈ (−1, 1);
(b) t ≥ 1 ≥ s ≥ 1/2; or
(c) s ≤ −1 ≤ t ≤ −1/2.

Then

Mt ≥Ms.

3. Main results. First we prove the following two lemmas.
Lemma 3.1. If x ∈ (0, 1], then

(3.1) 1− x ≤ e−x − xe−1/x ≤ 3

e
(1− x).

The values 3/e on the right and, correspondingly, 1 on the left cannot be replaced by
smaller numbers. Equalities hold in (3.1) if and only if x = 1.

Proof. We shall modify the proof from [1]. For the proof of the second inequality,
we shall, as in [1], consider the function

f(x) =
3

e
(1− x)− e−x + xe−1/x.

Since f ′′(x) = −e−x+ 1
x3 e

−1/x, we have (see [1]) that there exists a number x0 ∈ (0, 1)
such that f ′′(x) < 0 for x ∈ (0, x0) and f ′′(x) > 0 for x ∈ (x0, 1). Namely, because
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of limx→0 f(x) = 3/e− 1 > 0 and f(1) = f ′(1) = 0, we get f(x) ≥ 0 for all x ∈ (0, 1)
with equality holding if and only if x = 1.

Here is a proof of the existence of such an x0. Note that the function h(x) =
x − 1/x − 3 log x has the same sign as f ′′(x). We have x3h′′(x) = 3x − 2 which
implies that h is strictly concave on (0, 2/3) and strictly convex on (2/3, 1]. Since
h(1) = 0, h′(1) = −1 and limx→0 h(x) = −∞, there exists a number x0 ∈ (0, 2/3)
such that h(x) < 0 for x ∈ (0, x0) and h(x) > 0 for x ∈ (x0, 1). Therefore, f is strictly
concave on (0, x0) and strictly convex on (x0, 1), which completes the proof of the
inequality f(x) ≥ 0.

For the first part of the inequality, consider the function

k(x) = e−x − xe−1/x − 1 + x (0 ≤ x ≤ 1).

We have to prove that k(x) ≥ 0 (0 ≤ x ≤ 1). First, note that k(1) = 0 and k(0) = 0
while

k′(x) = −e−x − e−1/x − 1

x
e−1/x + 1

so that k′(1) = −3e−1 + 1 < 0 and k′(0) = 0. It is sufficient to show that there is an
x0, 0 < x0 < 1, such that

k′(x) > 0(0 < x < x0) and k′(x) < 0 (x0 < x < 1).

To this end, consider

k′′(x) = e−x − 1

x3
e−1/x.

The function g(x) ≡ 3 log x−x+1/x has the same sign as k′′(x). Since −g(x) = h(x),
the existence of x0 satisfying k′(x) > 0 (0 < x < x0) and k′(x) < 0 (x0 < x < 1) is
assured. This completes the proof.

That the constants 3/e on the right and 1 on the left cannot be replaced by
smaller numbers can be seen from the fact that

lim
x→1

xe−1/x − e−x

x− 1
=

3

e
and lim

x→0

xe−1/x − e−x

x− 1
= 1.

Lemma 3.2. Let C and D be two n×n Hermitian matrices such that D is positive
definite. Then

(3.2) Dexp(D−1C) = D1/2exp(D−1/2CD−1/2)D1/2 = exp(CD−1)D.

Proof. We have

D

( ∞∑
i=0

(D−1C)i/i!

)
= D1/2

( ∞∑
i=0

(D1/2(D−1C)D−1/2)i/i!

)
D1/2

= D1/2

( ∞∑
i=0

(D−1/2CD−1/2)i/i!

)
D1/2

= D1/2

( ∞∑
i=0

(D−1/2(CD−1)D1/2)i/i!

)
D1/2

=

( ∞∑
i=0

(CD−1)i/i!

)
D.
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Theorem 3.1. Let C and D be two positive definite Hermitian matrices such
that C ≥ D. Then

(3.3) C −D ≤ Cexp(−C−1D)−Dexp(−D−1C) ≤ 3

e
(C −D).

The constants are the best possible and equality holds if and only if C = D.
Proof. Let M be a positive definite Hermitian matrix. If M ≤ I, we have by

Lemma 3.1,

(3.4) I −M ≤ exp(−M)−Mexp(−M−1) ≤ 3

e
(I −M).

Since C−1/2DC−1/2 ≤ I, setting in (3.4), M = C−1/2DC−1/2, we have

I − C−1/2DC−1/2 ≤ exp(−C−1/2DC−1/2)− C−1/2DC−1/2exp(−C1/2D−1C1/2)

≤ 3

e
(I − C−1/2DC−1/2).

Premultiplication and postmultiplication by C1/2 gives

C −D ≤ C1/2exp(−C−1/2DC−1/2)C1/2

−DC−1/2exp(−C1/2D−1C1/2)C−1/2C ≤ 3
e (C −D).

Note that the first identity in (3.2), with C instead of D and −D instead of C, is

C1/2exp(−C−1/2DC−1/2)C1/2 = Cexp(−C−1D),

while the second identity in (3.2), with C−1 instead of D and −D−1 instead of C, is

C−1/2exp(−C1/2D−1C1/2)C−1/2 = exp(−D−1C)C−1.

Thus, the last inequality gives

C −D ≤ Cexp(−C−1D)−Dexp(−D−1C) ≤ 3

e
(C −D),

which is (3.3).
Making use of the notation from section 2, we now give the following matrix

version of (1.2) in Theorem 3.2.
Theorem 3.2. Let A and G be the arithmetic and geometric means of positive

definite matrices C1, . . . , Cr. Then

(3.5) A−G ≤ Aexp(−A−1G)−Gexp(−G−1A) ≤ 3

e
(A−G).

The constants 3/e and 1 are best possible, and equality holds if and only if C1 = · · · =
Cr.

Proof. This is a simple consequence of Theorems 3.1 and 2.1.
Another consequence of Theorems 3.1 and 2.1 is the following theorem.
Theorem 3.3. Let G and H be the geometric and harmonic means of r positive

definite matrices Ci. Then

(3.6) G−H ≤ Gexp(−G−1H)−Hexp(−H−1G) ≤ 3

e
(G−H).
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The constants 3/e and 1 are the best possible, and equality holds if and only if C1 =
· · · = Cr.

A similar consequence of Theorems 3.1 and 2.4 is the following theorem.
Theorem 3.4. Let t, s be real numbers such that one of conditions (a), (b), or

(c) from Theorem 2.4 is satisfied. Then

(3.7) Mt −Ms ≤Mtexp(−M−1
t Ms)−Msexp(−M−1

s Mt) ≤ 3

e
(Mt −Ms).

The constants 3/e and 1 are best possible, and equality holds if and only if C1 = · · · =
Cr.

For reversals of inequalities (3.5) and (3.6), we change the requirement that all
the weights wi must be positive. Then using Theorems 3.1 and 2.3 we obtain Theorem
3.5.

Theorem 3.5. Let wi, i = 1, . . . , r be real numbers such that w1 > 0, wi < 0, i =
2, . . . , r; w1 + · · ·+ wr = 1. If

(3.8) w1C1 + · · ·+ wrCr > 0,

then

(3.9) G−A ≤ Gexp(−G−1A)−Aexp(−A−1G) ≤ 3

e
(G−A).

If

(3.10) w1C
−1
1 + · · ·+ wrC

−1
r > 0,

then

(3.11) H −G ≤ Hexp(−H−1G)−Gexp(−G−1H) ≤ 3

e
(H −G).

Moreover, if (3.8) and (3.10) both hold, then

(3.12) H −A ≤ Hexp(−H−1A)−Aexp(−A−1H) ≤ 3

e
(H −A).

The constants 3/e on the right and 1 on the left in (3.9), (3.11), and (3.12) are best
possible, and equalities hold if and only if C1 = · · · = Cr.

Acknowledgment. The authors wish to thank the referee for valuable sugges-
tions that improved some of the inequalities in this paper.
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Abstract. The following constrained matrix problem is studied. Find the matrix X that
minimizes the Frobenius norm of AX −B, with A and B as given matrices and where X belongs to
a closed convex cone. In particular we consider the cone of symmetric positive semidefinite (SPSD)
matrices and the cone of (symmetric) elementwise nonnegative matrices. The optimal matrix is
characterized, and the results are specialized to the two cases above. Further, we report from a
numerical study of some projection-type algorithms.

Key words. constrained matrices, convex cones, positive semidefinite, Procrustes
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1. Introduction. Let H be the linear space of real matrices with a fixed dimen-
sion. On H we introduce the inner product 〈·, ·〉,

〈X,Y 〉 = trace (XY T ), X, Y ∈ H.(1.1)

Let f(X) be a convex function on H and let C be a closed convex and nonempty cone
in H. The function f is called coercive on C if

lim
||X||→∞,X∈C

f(X) = ∞.

We shall study the problem

min
X∈C

f(X).(1.2)

We first have the well-known result.
Lemma 1.1. Assume that f is convex and coercive. Then problem (1.2) has a

solution. If in addition f is strictly convex, the solution is unique.
In the next section we will give a short derivation of the optimality conditions for

problem (1.2). In section 3 we consider the quadratic functional

f(X) = ‖AX −B‖2F ,(1.3)

which yields the constrained Procrustes problem (using the notation by Higham [18])

CPP: min
X∈C

‖AX −B‖2F .(1.4)

Here A is an m× n matrix, with m ≥ n, X an n× q matrix, and B an m× q matrix.
The index F denotes the Frobenius norm of a matrix, i.e.,

‖Z‖2F =
∑
i,j

z2
ij = trace (ZZT ) = trace (ZTZ).(1.5)
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If rank(A) = n then, by Lemma 1.1, CPP has a unique solution.
A special case is the matrix nearness problem

min
X∈C

‖X −B‖2F .(1.6)

We denote the solution of the matrix nearness problem (1.6) as

PC(B) = arg min
X∈C

‖X −B‖2F .(1.7)

Here we study two types of constraints: elementwise nonnegativity and definite-
ness. First let

C = C1 = {X ∈ H : X ≥ 0},(1.8)

where X ≥ 0 means xij ≥ 0 ∀ i, j. Of course one may also consider nonnegativity for
a subset of the elements of X. We also study nonnegativity in the symmetric case
(q = n),

C = C2 = {X ∈ Rn×n : X = XT , X ≥ 0}.(1.9)

Next we consider the symmetric positive semidefinite (SPSD) case

C = C3 = {X ∈ Rn×n : X = XT , zTXz ≥ 0 ∀ z ∈ Rn}.(1.10)

As the final example consider

C = C4 = {X ∈ Rm×n : sparsity(X) = sparsity(Y )},(1.11)

where Y is a given matrix and sparsity(Y ) denotes its sparsity pattern; i.e., sparsity(Y )
is an m × n matrix with elements equal to zero if the corresponding elements in Y
are zero and otherwise equal to one.

Obviously PC4
(B) = B�sparsity(Y ), where � denotes elementwise multiplica-

tion. For the matrix nearness problem (1.7) it is an easy exercise to verify that

PC1(B) = max(0, B)(1.12)

and

PC2(B) = max(0, (B +BT )/2).(1.13)

Here max(0, B) means elementwise maximization.
In [19] Higham studied the matrix nearness problem for the SPSD case. In order

to state one of his results we will introduce the spectral decomposition of a symmetric
matrix Z,

Z = UTDU,(1.14)

with

D = diag(λ1, λ2, . . . , λn), UUT = UTU = I.(1.15)

Define

D+ = diag(λ+
1 , λ

+
2 , . . . , λ

+
n ),(1.16)
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where

λ+
i = max(0, λi)(1.17)

and

Z+ = UTD+U.(1.18)

A special case of Theorem 2.4 in [19] shows that

PC3(B) = (B +BT )+/2.(1.19)

For the case A 6= I there does not exist any explicit expression for the solution
(for C = C1, C2, and C3). However, for the SPSD case, one can always reduce the
general case to the case when A is a diagonal matrix—Theorem 3.3. Also for the case
when ATA commutes with the matrix G = ATB +BTA, an expression analogous to
(1.19) can be found in Theorem 3.4.

We also provide a simple example showing that, for the SPSD case, when rank(A) <
n, CPP may have no solution.

In section 4 we present some numerical results. Here we test three different
projection-type methods: the gradient projection algorithm and a method due to
Han and Lou [17]. We also propose a variant of the method of parallel tangents
(PARTAN) [22, Chapter 8.7] and consider its convergence properties. We observe
that the methods are sensitive to the conditioning of the matrix A. Also in some cases
it is hard to find a good value of the steplength parameter.

We end this section by giving a few more references. In [9], [15] some early in-
vestigations are made. Halmos [15] reformulates the matrix nearness problem (1.6)
(using the Euclidean norm) with C = C3 as a minimization problem in only one (non-
negative) variable. Brock [7] considers CPP with C = C3. However, as pointed out
in [18], his method of solution does not take definiteness into account. The symmet-
ric Procrustes problem arises, for example, in the investigation of elastic structures;
see [27, Chapter 3.5]. In a recent contribution Suffridge and Hayden [28] solved the
matrix nearness problem for a Hermitian positive definite Toeplitz matrix.

Allwright in [1] considers problem (1.4) for C = C3. He also provides an algorithm
based on a special characterization of C3. In [29] Woodgate treats the same problem.
He also provides an algorithmic scheme but provides no numerical results. We also
mention [8] where among other things the problem of finding a least squares approxi-
mation, in the Frobenius norm, to a given symmetric matrix with a prescribed set of
eigenvalues is treated. In [2] the same problem is considered but with the additional
constraint that the sparsity pattern of the solution is fixed. We note that the two
last examples do not give rise to convex constraints. (The set of eigenvalues is not
preserved under addition!)

Ruhe [25] considers the matrix nearness problem when X is normal, i.e., XXT =
XTX. In Golub and Van Loan [13] the orthogonal Procrustes problem q = n, XTX =
I is described. Again the last two problems do not fit into the framework considered
here since the set of normal matrices and the set of orthogonal matrices are not
convex. As a general reference to the area of nonnegative matrices we refer to the
book by Berman and Plemmons [3] and for least squares problems to the monograph
by Björck [6] and the book by Golub and Van Loan [13].
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2. Characterization of an optimal matrix. Here and in what follows (unless
otherwise stated) we will assume that f is convex and that f ∈ C1. Also we assume
that problem (1.2) has a solution. This is fulfilled, for example, if f is coercive. Let
∇f be the gradient of f and ε a real number. Then

f(X + εE) = f(X) + ε〈∇f(X), E〉+ o(ε),(2.1)

where, from convexity, o(ε) ≥ 0.

We first give the well-known characterization of the optimal solution of problem
(1.2); see, e.g., [4, Proposition 3.1, p. 201] or [24, Theorem 27.4].

Lemma 2.1. Let C be a closed convex set in H. A necessary and sufficient
condition for a matrix X ∈ C to be a solution of (1.2) is that

X + E ∈ C =⇒ trace (∇f(X)ET ) ≥ 0.(2.2)

Proof. First suppose that X solves (1.2) and that X + E ∈ C. Then λX + (1−
λ)(X + E) = X + (1− λ)E ∈ C for all λ ∈ [0, 1]. By (2.1), with ε = 1− λ, it follows
that ε〈∇f(X), E〉 ≥ 0 for ε small enough. Consequently trace (∇f(X)ET ) ≥ 0.

Next, assume that the implication (2.2) is valid. Then it follows from (2.1) with
ε = 1 that

X + E ∈ C =⇒ f(X + E) ≥ f(X),

i.e., that X minimizes f .

Let C∗ be the dual cone of C,

C∗ = {Y ∈ H : X ∈ C ⇒ 〈X,Y 〉 ≥ 0}.

Note that this concept is well defined for C being any set in H (cf. [26, section 2.7]),
and in any case C∗ is a convex cone. However, to derive the results below we must
specialize to the case when C is a closed convex cone (as in problem (1.2)).

Lemma 2.2. Let C be a closed convex cone in H. If X solves (1.2) then ∇f(X) ∈
C∗.

Proof. Pick any E ∈ C. Then (X + E)/2 ∈ C, i.e., X + E ∈ C. By Lemma 2.1,

trace (∇f(X)ET ) = 〈∇f(X), E〉 ≥ 0;

i.e., ∇f(X) ∈ C∗.
Lemma 2.3. Let C be a closed convex cone in H. If X is a solution of (1.2) then

trace (∇f(X)XT ) = 0.

Proof. Pick E = εX, ε ∈ R. Then X + E = (1 + ε)X ∈ C for ε > −1. By
Lemma 2.1 it follows that

trace (∇f(X)ET ) = ε trace (∇f(X)XT ) ≥ 0.

Hence trace (∇f(X)XT ) = 0.

Theorem 2.4. Let C be a closed convex nonempty cone in H. Then X is a
solution of (1.2) if and only if

X ∈ C, ∇f(X) ∈ C∗, and trace (∇f(X)XT ) = 0.
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Proof. First assume thatX solves (1.2). Then∇f(X) ∈ C∗ and trace (∇f(X)XT ) =
0 by Lemmas 2.2 and 2.3, respectively. Conversely, assume that X ∈ C, ∇f(X) ∈ C∗,
and trace (∇f(X)XT ) = 0. Let E be such that X + E ∈ C. Then

trace (∇f(X)ET ) = trace (∇f(X)(X + E)T )− trace (∇f(X)XT )

= trace (∇f(X)(X + E)T ).

But ∇f(X) ∈ C∗ and X+E ∈ C implies that 〈∇f(X), X+E〉 ≥ 0. Hence the result
follows from Lemma 2.1.

Remark 2.1. This characterization may also be derived from the Fenchel duality
theory ; see section 31 in Rockafellar [24].

Remark 2.2. Let X0 be a fixed matrix. The slightly generalized problem

min
X−X0∈C

f(X)

can be handled by simply putting

Y = X −X0 and g(Y ) = f(Y +X0).

The optimality conditions then become

X −X0 ∈ C, ∇f(X) ∈ C∗, trace (∇f(X)(X −X0)
T ) = 0.

Remark 2.3. Assume that C = ∩p1Bi, with Bi closed and convex cones, such
that ∩p1ri(Bi) 6= ∅, where ri(Bi) denotes the relative interior of Bi; see [24, p. 44].
Then see, e.g., [24, Corollary 16.4.2]:

C∗ =

p∑
1

B∗i .

3. The Procrustes problem. One may verify that

f(X) = ‖AX −B‖2F
= trace (XTATAX)− 2 trace (BTAX) + trace (BTB),(3.1)

and hence

f(X + εE)

= f(X) + 2ε trace {ET (ATAX −ATB)}+ ε2 trace (ETATAE).(3.2)

It follows that

1

2
∇f(X) = AT (AX −B)(3.3)

and that the quadratic form 1
2∇2f(X)(E,E) is represented by

1

2
∇2f(X)(E,E) = trace(ETATAE) = 〈E,ATAE〉.(3.4)

Here ∇2f is the Hessian of f.
In Hall [14, pp. 353–354] it is shown that C∗1 ⊂ C1 and it is an easy exercise to

verify that also C1 ⊂ C∗1 . Hence for the case of elementwise nonnegativity (without
symmetry), we get by Theorem 2.4 the following theorem.
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Theorem 3.1. Let C = C1. Then X is a solution of CPP if and only if

X ≥ 0, AT (AX −B) ≥ 0, and

trace (AT (AX −B)XT ) = 0.(3.5)

These formulas correspond to the Karush–Kuhn–Tucker conditions, with the La-
grange parameter being eliminated; see, e.g., [10, p. 200]. Note also that for q = 1,
i.e., for the case when X and B are columns, we recover the nonnegatively constrained
least squares problem; see, e.g., [6]. Then the preceding conditions become

x ≥ 0, AT (Ax− b) ≥ 0, xi(A
T (Ax− b))i = 0, i = 1, 2, . . . , n.

We now consider the symmetric case. Let E = ET be an n× n matrix. Then

trace (ETATB) = trace (BTAE) = trace (ETBTA).

Similarly

trace (ETATAX) = trace (XTATAE) = trace (ETXATA)

and it follows, using (3.2) and (3.3), that

〈∇f(X), E〉 = trace (ET (ATAX +XATA−ATB −BTA));

i.e.,

〈∇f(X), E〉 = 〈ATAX +XATA−ATB −BTA,E〉.

We conclude that

S(X) := ∇f(X) = XATA+ATAX −G,(3.6)

G = ATB +BTA.(3.7)

We sometimes write S instead of S(X). For the case C = C2 the conditions corre-
sponding to (3.5) become (using that S given by (3.6) is symmetric)

X = XT ≥ 0, S ≥ 0, and trace(SX) = 0.

We next look at the definite case and first remark that any solution of the normal
equations (a special case of the Sylvester equations)

S(X) = 0(3.8)

yields a solution of the symmetric Procrustes problem (i.e., only requiring symmetry
of X); see Higham [18]. Higham also notes that for G positive semidefinite the solution
of (3.8) is also definite. This observation is generalized by Woodgate for A 6= I; see
Theorem 2.4 in [29]. In the general case we have the following characterization.

Theorem 3.2. Let C = C3. X is then a solution of CPP if and only if

X is SPSD, S(X) is SPSD, and S(X)X = 0.(3.9)
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Proof. We will derive the result from Theorem 2.4 and first verify that

trace (SX) = 0 ⇐⇒ SX = 0.

Let S = LTL, X = RTR. Then

trace (SX) = trace (LTLRTR) = trace (LRTRLT ) = ‖LRT ‖2F = 0

implies that

LRT = 0 and SX = LTLRTR = 0.

We next show, under the assumption that H is the space of symmetric matrices, that
C3 = C∗3 . (In [14, pp. 353–354] it is shown that C∗3 ⊂ C3.) Note first by (3.6) that S
is symmetric. Let Y ∈ C∗3 be symmetric. Pick X = xxT ∈ C3. Then

〈X,Y 〉 = trace (XY ) = trace (xxTY ) = trace (xTY x) ≥ 0,

which shows that Y ∈ C3 (here we use that S = ST ).
On the other hand let Y ∈ C3. Pick X ∈ C3. We may write Y = LTL, X = RTR.

It follows, as above, that

〈X,Y 〉 = trace (XY ) = ‖LRT ‖2F ≥ 0;

i.e., Y ∈ C∗3 .
Remark 3.1. Woodgate, Theorem 2.3 in [29], has obtained essentially the same

result. One difference is that he gives the condition trace(SX) = 0 rather than SX =
0. Woodgate does not consider general cone constraints but only C = C3.

Remark 3.2. It is an easy exercise to verify that conditions (3.9) hold for the
solution (1.19) of the matrix nearness problem associated with C = C3.

Remark 3.3. If X solves CPP, with C = C3, then in some suitable orthonormal
basis, X and S have the following block structure:

X =

(
X11 0
0 0

)
and S =

(
0 0
0 S22

)
,

where X11 and S22 are square matrices of dimension n − k and k, 0 ≤ k ≤ n,
respectively.

Let

A = P

[
Σ
0

]
QT(3.10)

with P , m×m, Σ, n× n diagonal, and Q, n× n be the singular value decomposition
(SVD) of A (i.e., P , Q are orthogonal matrices). The Frobenius norm is invariant
under orthogonal transformations. Hence for the case q = n, as in [18],

‖AX −B‖2F = ‖ΣY −B1‖2F + ‖B2‖2F .(3.11)

Here

Y = QTXQ, PTBQ =

[
B1

B2

]
.(3.12)
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Since the cone of SPSD matrices is invariant under a congruence transformation, the
following result is valid.

Theorem 3.3. Let C = C3. Then X is a solution of CPP if and only if X =
QY QT and Y is the solution of

min
Y ∈C3

‖ΣY −B1‖2F .

As stated previously, we always assume that the CPP has a solution. This is
fulfilled, e.g., when f is coercive. Now coercivity is equivalent, as is easily seen,
with the condition rankA = n. This condition is too restrictive, however, and in
fact Woodgate gives necessary and sufficient conditions for the existence of a solution
(C = C3) when rank(A) < n; see Theorem 2.2 in [29]. We also remark that Gowda
[12] gives a sufficient condition (weaker than coercivity) to ensure the existence of a
solution to CPP (i.e., not only for C = C3).

We provide the following simple example showing that when rank (A) < n, C =
C3 there may be no solution. Note that the normal equations (3.8) have a solution
also when rank (A) < n; see, e.g., [18].

Example 3.1. Let m = n = 2 and

A =

[
1 0
0 0

]
, B =

[
0 1
0 0

]
, and X =

[
x11 x12

x12 x22

]
.

Then

f(X) = ‖AX −B‖2F = x2
11 + (x12 − 1)2

is to be minimized under the condition that X is positive semidefinite, i.e., that

x11 ≥ 0 and x11x22 − x2
12 ≥ 0.

Note that for the unconstrained problem, x11 = 0, x12 = 1 yields the symmetric (but
indefinite) solution. By selecting a sequence

Xk =

[
1/k 1
1 k

]
,

it is seen that Xk ∈ C3 and that

f(Xk) = 1/k2 → 0 as k →∞.

The value 0, however, is not taken for any matrix X ∈ C3. Hence CPP has no
solution in this case.

We finally comment on a special case of the symmetric positive definite case.
Theorem 3.4. Let C = C3. Suppose that ATAG = GATA and that A has full

rank. Then for every solution XU of the unconstrained problem S(X) = 0, the matrix
X = X+

U solves the constrained problem.
Proof. By a well-known result ATA and G have a common set of eigenvectors,

i.e. (using the notation in (3.10)),

ATA = QΣ2QT , G = QΣGQ
T , ΣG = diag (σ̄i).

Now, again using the SVD of A,

G = ATB +BTA = Q
[

Σ 0
]
PTB +BTP

[
Σ
0

]
QT .
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It follows, using (3.12),

ΣG = QTGQ =
[

Σ 0
]
PTBQ+QTBTP

[
Σ
0

]
= ΣB1 +BT

1 Σ.

By the argument preceding Theorem 3.3, XU = QY TQT solves the unconstrained
problem if and only if

S(Y ) = Y Σ2 + Σ2Y − ΣB1 −BT
1 Σ = Y Σ2 + Σ2Y − ΣG = 0,

i.e., if and only if

yij(σ
2
i + σ2

j ) = 0, i 6= j.

Here yij denote the elements of the matrix Y and Σ = diag(σi). Since A has full
rank we have σi > 0 for all i and we conclude that Y is diagonal and moreover that
Y = Σ−2ΣG/2. Now take X = QTY +Q, with Y + = Σ−2(ΣG)+/2. It remains to
verify that

(1) S(Y +) is positive semidefinite.
(2) S(Y +)Y + = 0.

We show (2) and leave (1) as an easy exercise:

S(Y +)Y + = Y +Σ2Y + + Σ2Y +2 − ΣGY
+

=
1

4
Σ+2
G Σ−2 +

1

4
Σ+2
G Σ−2 − 1

2
ΣGΣ+

GΣ−2 = 0.

Remark 3.4. The condition ATAG = GATA is satisfied if A = I. Then XU =
G/2 = (B +BT )/2 and Higham’s solution X = (B +BT )+/2 is recovered.

4. Numerical results. We may recognize at least three different ways to con-
struct a numerical algorithm for CPP. One approach is to transform the problem. For
example, for the case C = C3 we may substitute X = LLT . A drawback with this
approach is that the transformed problem then no longer is quadratic. Another way
is to try to satisfy the optimality conditions in Theorem 2.4 by applying some type of
projection procedure. The third way is to work directly with CPP formulation. Here
we will only consider the last approach and further restrict our numerical study to
certain projection-type algorithms. Of course other classes of algorithms may well be
worth pursuing, e.g., active set methods; see, e.g., [10, Chapter 10]. We mention in
particular two methods which both seem well suited for solving CPP for C = C1. The
algorithm by Björck [5] is of active set type and is specially designed for least squares
with bound constraints. The recent algorithm by Friedlander and Martinez [11] is for
bound constraint semidefinite quadratic problems. This method is a combination of
the gradient projection and the conjugate gradient method.

The first method we consider here is the (by now classical) gradient projection
algorithm, originally devised by Goldstein, Levitin, and Polyak. The method is

Xk+1 = PC(Xk − γ∇f(Xk)).(4.1)

We refer to the book by Bertsekas and Tsitsiklis [4] for a nice presentation of the
method. In particular Proposition 3.4, p. 214 in [4] shows that (4.1) is convergent
for 0 < γ < 1/λmax (ATA) when applied to CPP. Formulas (1.12), (1.13), and (1.19),
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respectively, are used to compute the projection operator in (4.1). The steplength γ
was taken as

γ = 1/(λmax (ATA) + λmin (ATA))(4.2)

following the theory for unconstrained optimization; see, e.g., [20, Theorem 1, p. 84].
Here λmax(S) and λmin(S) denote the largest and smallest eigenvalues of a symmetric
matrix S, respectively.

The second method we tested was proposed by Han and Lou [17] for minimizing a
convex function over the intersection of convex sets (here there is only one convex set).
For simplicity we now only formulate their method for the symmetric case (C = C2,
C3) and also assuming that rank(A) = n. Then it is easy to verify that S−1 exists.
Let Sk = ∇f(Xk). It can be shown that the method becomes

Xk+1 = S−1{(1/α)PC(Xk − αSk)− (1/α)(Xk − αSk)}.(4.3)

Convergence is assured for α > 1/λmin(ATA); see [17].
There are also two related schemes, one by Han [16] and the other by Iusem and

De Pierro [21]. However these two schemes utilize weighted projections for which
there are no explicit solutions of the projection problem (1.6). The same remark also
holds for the scaled gradient projection method [4].

The third and last method we tested is based on the so-called method of par-
allel tangents; see [22, Chapter 8.7]. This method was devised for unconstrained
optimization. Given X0, X1, a typical step consists of

Zk+1 = Xk − γ∇f(Xk),(4.4)

Xk+1 = Xk−1 + αk(Z
k+1 −Xk−1).

For our problem we propose the following modification (with given X0, X1 ∈ C,
and f(X1) < f(X0)):

Zk+1 = PC(Xk − γ∇f(Xk)),(4.5)

Xk+1 = Xk−1 + αk(Z
k+1 −Xk−1).(4.6)

Here

0 < γ < 2/L,(4.7)

with L the Lipschitz constant of f. For f given by (1.3), L = 2λmax(A
TA). The

steplength αk should be taken such that

f(Xk+1) ≤ f(Zk+1), Xk+1 ∈ C.(4.8)

Note that with αk = 1 we retrieve the gradient projection method. Note also, assum-
ing Xk−1 ∈ C, that Xk+1 ∈ C for αk ∈ [0, 1].

In the practical application of the method the following procedure for picking αk
was used. First,

αk := 1 for k = j(n+ 1), j = 1, 2, . . . ;(4.9)

i.e., the method was restarted every (n + 1)th step. For other values of k we first
compute the number ᾱk by an unconstrained linesearch in f and get the formula

ᾱk = −〈AX
k−1 −B,A(Zk+1 −Xk−1)〉
||A(Zk+1 −Xk−1)||2F

.
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Then the following rule for picking αk was used:

αk =

{
ᾱk if 0 ≤ ᾱk ≤ αmax,
1 else.

Here αmax is estimated heuristically such that conditions (4.8) are fulfilled. Other
possibilities for picking αk, which we have not investigated here, include exact or
approximate constrained linesearch, possibly using merit functions other than f. For
a discussion of barrier and penalty methods, see, e.g., Chapter 12 in [10].

We realize that method (4.5)–(4.6) can be seen as a gradient projection method
extended with a so-called spacer step; see, e.g., Luenberger [22, Chapter 7.10]. In
the spacer step theorem, given in Luenberger [22], a point-to-set-type of algorithm is
considered. Below we give another proof but only for an algorithm of point-to-point-
type. On the other hand we explicitly take into account constraints. Conditions are
also given such that the whole sequence, rather than a subsequence, converges.

Lemma 4.1. Let Γ = {x : f(x) = miny∈C f(y)} 6= ∅, with f , be lower semicon-
tinuous and let B be a continuous function B : C → C. Further let K be an infinite
index set and N the set of natural numbers. Assume the following:

(i) y = B(x), x /∈ Γ ⇒ f(y) < f(x),
(ii) xk+1 = B(xk) ∀k ∈ K,
(iii) f(xk+1) ≤ f(xk) ∀k ∈ N,
(iv) {x : f(x) ≤ f(x0)} is compact.

Then {xk}k∈K contains at least one convergent subsequence and for any such conver-
gent subsequence {xkν}∞ν=1 it holds xkν → x∗ ∈ Γ. If in addition f ∈ C1 is strictly
convex and xk ∈ C ∀k ∈ N , then the whole sequence converges toward the unique
x∗ ∈ Γ.

Proof. By (iii) and (iv) there is a subsequence {xkν}, kν ∈ K such that xkν → x∗

and f(xkν ) → f(x∗). Now kν+1 ≥ kν + 1 implies by (iii) that f(xkν+1) ≤ f(xkν+1) ≤
f(xkν ); hence f(xkν+1) → f(x∗). But xkν+1 = B(xkν ) → B(x∗), so f(xkν+1) →
f(B(x∗)). Thus f(x∗) = f(B(x∗)) and it follows using (i) that x∗ ∈ Γ.

By (iii) and (iv), f(xk) → f(x∗). Now if xk ∈ C then f(x∗ + ε(xk − x∗)) ≥
f(x∗), 0 < ε < 1. Hence d

dεf(·)|ε=0 = 〈∇f(x∗), xk − x∗)〉 ≥ 0. By Taylor’s formula
we get

f(xk)− f(x∗) = 〈∇f(x∗), xk − x∗〉+ ϕ(xk − x∗),

where by assumption the function ϕ is strictly convex and nonnegative. Letting
k →∞ we have ϕ(xk−x∗) → 0, and from the assumed strict convexity of f it follows
that xk → x∗.

Corollary 4.2. Let f ∈ C1 be nonnegative, coercive, strictly convex, and such
that the set (iv) {X : f(X) ≤ f(X0)} is compact. Then the sequence {Zk, Xk}
generated by algorithm (4.5)–(4.6) converges toward X∗ ∈ Γ.

Proof. It is known (see again Proposition 3.4, p. 214 in [4]) that with B = PC(·),
assumption (i) in Lemma 4.1 is fulfilled. Note in particular that for the descent
property f(Zk+1) < f(Xk) to hold, it is needed that Xk ∈ C. Also conditions (4.8)
can always be satisfied, e.g., by taking αk = 1. Hence assumption (iii) holds and the
result follows by applying Lemma 4.1.

Remark 4.1. If rank(A) = n in CPP then the assumptions in Lemma 4.1 are
fulfilled. Note also that the restart procedure (4.9) does not destroy the convergence.
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In fact our experience shows that (4.9) gives a more robust version, i.e., less sensitive
to the choice of αmax. The same observation is also made by Luenberger for the
unconstrained case [22, Chapter 8.7].

The following example, with m = 5, n = q = 4, was used in all but one of our
experiments:

A =


d 10 71 58
40 d 2 24
66 56 d 94
97 92 14 d
4 14 5 73

 , B =


42 62 23 71
26 55 82 24
24 36 23 69
34 49 86 11
12 4 6 26

 .
Here d is a parameter that was varied to obtain different conditioning of the problem.
The condition number κ(ATA) is 2, 83, 652, and 36,724 for d= 1000, 10, 30, and
40, respectively. The “solutions” for d = 30, X1, X2, X3 of CPP with C = C1,
C2, C3, respectively, and the unconstrained, symmetric solution Xuc (of equations
(3.8)) are listed in Table 4.1. These solutions were obtained by first iterating until
machine precision and then rounding the results to four decimals, respectively. This
corresponds roughly to stopping the gradient projection method at iteration 70; see
Table 4.2. The matrix X3 contains two eigenvalues equal to zero (within rounding
errors). For the solution displayed in Table 4.1 the corresponding value for, e.g., err2
(see below) is O(10−4). The Sylvester equations (3.8) were solved, in a standard way,
by making a coordinate transformation into the eigenspace of ATA.

All tests were performed in double precision arithmetic using Matlab on a Sun
Workstation. As starting matrix X0 we always picked the projection of the solution
of the unconstrained problem and for method (4.5)–(4.6) X1 was obtained by one
step of (4.1). We have experimented with the following three error measures:

err1 = trace(Sk · (Xk)T )/(||A||F · ||B||F ),

err2 = λmin(Sk)/(λmax(S
k)− λmin(Sk)),

err3 =

{ ||Xk −Xk+1|| for methods (4.1) and (4.3),
||Xk − Zk+1|| for method (4.5)–(4.6).

Both err1 and err2 are invariant under scaling with a constant. Note that err3 =
||Xk −PC(Xk − γ∇f(Xk))|| both for method (4.5)–(4.6) and the gradient projection
method. This measure was suggested in [23], using γ = 1. It was shown that for C
a polyhedral set, Xk ∈ C and Xk sufficiently close to the solution, the distance from
Xk to the solution is of the order err3.

In Table 4.3 we display the behavior of the error measures using the gradient
projection method and C = C3. Note that the starting matrix has the property that
trace(S0X0) is almost zero, but S0 is far from being positive definite. Hence it is
important to use err1 and err2 simultaneously. In our experience err3 was the most
robust measure. Of course the set C3 is not polyhedral so for this case the theory in
[23] does not apply.

In Table 4.2 we list the behavior of the gradient projection method when applied
to C = C1, C2, C3, respectively. In Table 4.4 we compare the gradient projection
method with the Han–Lou scheme and in Figure 4.1 we compare method (4.5)–(4.6)
with the gradient projection method for C = C3.
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Table 4.1

The solutions for d = 30 and C = C1, C2, C3, respectively.

X1 =


0.2794 0.4903 0.8509 0

0 0 0 0
0.3910 0.5786 0 0.6560
0.0416 0 0 0.4372

 ,

X2 =


0 0.3542 0.4064 0.0240

0.3542 0.1429 0.5253 0
0.4064 0.5253 0 0.0033
0.0240 0 0.0033 0.6888

 ,

X3 =


0.1463 0.2378 0.2469 0.0654
0.2378 0.4315 0.4356 −0.0693
0.2469 0.4356 0.4429 −0.0234
0.0654 −0.0693 −0.0234 0.7113

 ,

Xuc =


−1.0161 1.4177 0.7538 −0.0430
1.4177 −0.9716 0.1694 0.0523
0.7538 0.1694 −0.2879 0.0841
−0.0430 0.0523 0.0841 0.6700

 .

Table 4.2

Convergence behavior of the gradient projection method.

err3

d k C = C1 C = C2 C = C3

1000 0 1 · 10−16 1 · 10−16 5 · 10−4

1000 5 1 · 10−16 1 · 10−16 1 · 10−7

1000 10 1 · 10−16 1 · 10−16 4 · 10−11

1000 20 1 · 10−16 1 · 10−16 2 · 10−16

10 0 0.74 0.11 0.10
10 50 2 · 10−4 2 · 10−4 5 · 10−4

10 100 2 · 10−6 9 · 10−6 5 · 10−6

10 200 2 · 10−10 4 · 10−8 6 · 10−10

30 0 1.2 0.37 0.17
30 100 9 · 10−5 2 · 10−4 4 · 10−4

30 200 3 · 10−7 8 · 10−7 5 · 10−6

30 400 2 · 10−12 3 · 10−11 9 · 10−10

Table 4.3

Comparison of three error measures using the gradient projection method with C = C3 and d = 30.

k err1 err2 err3

0 2 · 10−15 –0.32 0.17
50 3 · 10−3 −7 · 10−4 4 · 10−3

100 3 · 10−4 −5 · 10−6 4 · 10−4

200 4 · 10−6 8 · 10−10 5 · 10−6

400 6 · 10−10 2 · 10−13 9 · 10−10

600 9 · 10−14 3 · 10−16 2 · 10−13

800 2 · 10−15 −2 · 10−14 2 · 10−15
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Table 4.4

Comparison of the Han–Lou method and the gradient projection method with C = C3, α =
r/λmin (ATA).

err3
d k r H/L GP

1000 5 0.5 4 · 10−7 1 · 10−7

1000 10 0.5 6 · 10−12 4 · 10−11

1000 20 0.5 8 · 10−17 2 · 10−16

10 200 0.25 9 · 10−3 6 · 10−10

10 200 0.26 2 · 10−9

10 200 0.27 3 · 10−10

10 200 0.28 5 · 10−10

10 200 0.5 7 · 10−7

30 200 0.23 2 · 10−4 5 · 10−6

30 400 0.23 4 · 10−6 9 · 10−10

30 800 0.23 1 · 10−9 2 · 10−15

As a general observation we find that the methods are quite sensitive to the
conditioning of matrix A. For ill conditioned or even moderately ill conditioned
matrices the rate of convergence of the three methods becomes slow. From Table
4.2 we see that there is little difference in the rate of convergence for different sets
Ci. Also from Table 4.4 we find that for well-conditioned problems the Han–Lou and
the gradient projection method behave quite similarly. The Han–Lou method was,
however, more sensitive to the conditioning of the problem. The parameter α was
taken α = r/λmin(ATA), where r was chosen experimentally. We found the Han–Lou
scheme quite sensitive to the proper choice of steplength; cf. the case d = 10 in Table
4.4. A possible remedy would be to apply the version where α is adjusted iteratively;
see section 6 in [17]. The fastest convergence with the gradient projection method
was obtained with the steplength choice (4.2).

The behavior of method (4.5)–(4.6) versus the gradient projection method is
illustrated in Figure 4.1. Here formula (4.2) was used for γ. Further, αmax = 10 for
d = 1000, 10 and αmax = 100, 1000 for d = 30, 40, respectively. These values were
obtained from numerical experiments. We remark, however, that the performance
of method (4.5)–(4.6) was quite robust with respect to the chosen value of αmax. If,
however, the restart rule (4.9) was left out, the method became more sensitive to this
choice. We find that method (4.5)–(4.6) converges initially faster than the gradient
projection method (which is especially noticeable for more ill conditioned problems).
However, unlike the behavior for the gradient projection method the error does not
decrease monotonically. For large iteration numbers (i.e., close to the solution) |ᾱk|
becomes large, since it corresponds to an unconstrained linesearch. Hence by the
steplength rule αk = 1, and thus method (4.5)–(4.6) gets the same rate of convergence
(although starting from a lower error level) as the gradient projection method; cf. the
cases d = 10, 30, 40 in Figure 4.1.

Allwright [1] developed an algorithm for C = C3 using a canonical hull charac-
terization of C3. He applied the method on a 3 × 3 example. In Table 4.5 we have
compared the behavior of the gradient projection method and method (4.5)–(4.6)
(using αmax = 10) for Allwright’s example. In [1] it is reported that an accuracy of
order 10−9 is obtained after about 20 iterations. It is hard to compare these results
with those in Table 4.5 since the measure of accuracy is different from ours and the
complexity of each iteration is also different.
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Fig. 4.1. Error (log(err3)) versus iteration number for the gradient projection method and
method (4.5)–(4.6) (broken curve).

Table 4.5

Comparison of method (4.5)–(4.6) and the gradient projection method using Allwright’s example.

err3
k (4.5) − (4.6) GP
0 0.17 0.17
25 4 · 10−6 3 · 10−3

50 2 · 10−8 2 · 10−4

75 9 · 10−11 1 · 10−5

100 5 · 10−12 6 · 10−7

125 3 · 10−13 3 · 10−8

150 2 · 10−14 2 · 10−9

200 3 · 10−16 6 · 10−12

Obviously there is a need to further study the algorithmic side of CPP in order
to find a reasonable robust and fast algorithm. We leave this for future research.
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Abstract. Sparse matrix factorization algorithms for general problems are typically
characterized by irregular memory access patterns that limit their performance on parallel-vector
supercomputers. For symmetric problems, methods such as the multifrontal method avoid indirect
addressing in the innermost loops by using dense matrix kernels. However, no efficient LU
factorization algorithm based primarily on dense matrix kernels exists for matrices whose pattern is
very unsymmetric. We address this deficiency and present a new unsymmetric-pattern multifrontal
method based on dense matrix kernels. As in the classical multifrontal method, advantage is taken
of repetitive structure in the matrix by factorizing more than one pivot in each frontal matrix, thus
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Notation.
A original matrix

Ak undeleted rows and columns of the original matrix at step k

A Struct(A)

A′ active submatrix

F current frontal matrix

C contribution block of F

L′, L′′ the |L′| columns of L computed in F

L̂ the portion of L′′ whose updates have yet to be applied to C

U′, U′′ the |U ′| rows of U computed in F

Û the portion of U′′ whose updates have yet to be applied to C

L sequence of row indices of F (union of pattern of pivotal columns in F)

L′ pivotal row indices in L
L′′ nonpivotal row indices in L (L = L′ ∪ L′′)
U sequence of column indices of F (union of pattern of pivotal rows in F)

U ′ pivotal column indices in U
U ′′ nonpivotal column indices in U (U = U ′ ∪ U ′′)
V a list of the first pivotal indices of the factorized frontal matrices

e an element e ∈ V
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Ce remaining portions of a previous contribution block (e < k)

Le row indices of Ce

Ue column indices of Ce

Cj element list of column j of A′

Ri element list of row i of A′

dr(i) the true degree of row i

dr(i) upper bound of the degree of row i

dc(j) the true degree of column j

dc(j) upper bound of the degree of column j

w() a work array for computing external column degrees

| . . . | number of entries in a matrix or set, or absolute value of a scalar,

depending on the context

Struct(. . .) row indices of entries in a column, or column indices of entries in a row

1. Introduction. Conventional sparse matrix factorization algorithms for
general problems rely heavily on indirect addressing. This gives them an irregular
memory access pattern that limits their performance on typical parallel-vector
supercomputers and on cache-based RISC architectures. In contrast, the multifrontal
method of Duff [8], Duff, Erisman, and Reid [9], and Duff and Reid [13, 14] is designed
with regular memory access in the innermost loops and has been modified by Amestoy
and Duff to use standard kernels [2]. This multifrontal method assumes structural
symmetry and bases the factorization on an assembly tree generated from the original
matrix and an ordering such as minimum degree. The computational kernel, executed
at each node of the tree, is one or more steps of LU factorization within a square,
dense frontal matrix defined by the nonzero pattern of a pivot row and column. These
steps of LU factorization compute a contribution block (a Schur complement) that is
later assembled (added) into the frontal matrix of its parent in the assembly tree.
Henceforth we will call this approach the classical multifrontal method.

Although structural asymmetry can be accommodated in the classical multifrontal
method by holding the pattern of A+AT and storing explicit zeros, this can have poor
performance on matrices whose patterns are very unsymmetric. If we assume from the
outset that the matrix may be structurally asymmetric, the situation becomes more
complicated. For example, the frontal matrices are rectangular instead of square, and
some contribution blocks must be assembled into more than one subsequent frontal
matrix. As a consequence, it is no longer possible to represent the factorization by
an assembly tree and the more general structure of an assembly dag (directed acyclic
graph) [5] similar to that of Gilbert and Liu [20] and Eisenstat and Liu [16, 17, 18] is
required. In the current work we do not explicitly use this structure. Since we consider
an algorithm that combines the symbolic analysis and numerical factorization, our
algorithm for a subsequent numerical factorization (which uses a dag) is beyond the
scope of this paper.

We have developed a new unsymmetric-pattern multifrontal approach [4, 5]. As
in the symmetric multifrontal case, advantage is taken of repetitive structure in the
matrix by factorizing more than one pivot in each frontal matrix. Thus the algorithm
can use higher level dense matrix kernels in its innermost loops (Level 3 BLAS [6]).
We refer to the unsymmetric-pattern multifrontal method described in this paper as
UMFPACK Version 1.0 [4]. A parallel factorize-only version of UMFPACK, based on
the assembly dag, is discussed in Hadfield’s dissertation [23] and related work [24, 25].
The multifrontal method for symmetric positive definite matrices is reviewed in [27].

Section 2 presents an overview of the basic approach and a brief outline of
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the algorithm. We introduce our data structures in the context of a small sparse
matrix in section 3, where we describe the factorization of the first frontal matrix.
In section 4 we develop the algorithm further by discussing how subsequent frontal
matrices are factorized. We have split the discussion of the algorithm into these two
sections so that we can define important terms in the earlier section while considering
a less complicated situation. Section 5 presents a full outline of the algorithm,
using the notation introduced in previous sections. In section 6, we compare the
performance of our algorithm with an algorithm based on the classical multifrontal
method (MUPS, [2]), and an algorithm based on conventional (compressed sparse
vector) data structures (MA48, [15]).

2. The basic approach. Our goal with the UMFPACK algorithm is to achieve
high performance in a general unsymmetric sparse factorization code by using the
Level 3 BLAS. We accomplish this by developing a multifrontal technique that uses
rectangular frontal matrices and chooses several pivots within each frontal matrix.
High performance is also achieved through an approximate degree update algorithm
that is much faster (asymptotically and in practice) than computing the true degrees.
A general sparse code must select pivots based on both numerical and symbolic
(fill-reducing) criteria. We therefore combine the analysis phase (pivot selection
and symbolic factorization) with the numerical factorization. We construct our
rectangular frontal matrices dynamically, since we do not know their structure prior
to factorization. An assembly dag is constructed during this analyze–factorize phase.
We use the assembly dag in the factorize-only phase, and Hadfield [23] and Hadfield
and Davis [24, 25] develop it further and use it in a parallel factorize-only algorithm.

The active matrix is the Schur complement of A that remains to be factorized.
At a particular stage, the frontal matrix is initialized through choosing a pivot from
anywhere in the active matrix (called a global pivot search) using a Zlatev-style pivot
search [29], except that we keep track of upper bounds on the degrees of rows and
columns in the active matrix, rather than the true degrees. (The degree of a row or
column is simply the number of entries in the row or column.) We call this first pivot
the seed pivot. Storage for the frontal matrix is allocated to contain the entries in the
pivot row and column plus some room for further expansion determined by an input
parameter. We denote the current frontal matrix by F and the submatrix comprising
the rows and columns not already pivotal by C, calling C the contribution block.

Subsequent pivots within this frontal matrix are found within the contribution
block C, as shown in Figure 2.1. The frontal matrix grows as more pivots are chosen,
as denoted by the arrows in the figure. We assemble contribution blocks from earlier
frontal matrices into this frontal matrix as needed. The selection of pivots within this
frontal matrix stops when our next choice for pivot would cause the frontal matrix to
become larger than the allocated working array. We then complete the factorization of
the frontal matrix using Level 3 BLAS, store the LU factors, and place the contribution
block C in a heap. The contribution block is deallocated when it is assembled into
a subsequent frontal matrix. We then continue the factorization by choosing another
seed pivot and generating and factorizing a new frontal matrix.

It is too expensive to compute the actual degrees of the rows and columns of
the active matrix. To do so would require at least as much work as the numerical
factorization itself. This would defeat the performance gained from using the dense
matrix kernels. Instead, we compute upper bounds for these degrees at a much lower
complexity than the true degrees, since they are obtained from the frontal matrix
data structures instead of conventional sparse vectors. We avoid forming the union of



UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 143

empty

U’’

CL’’

L’

U’

Fig. 2.1. A rectangular frontal matrix within a larger working array.

sparse rows or columns which would have been needed were we to compute the filled
patterns of rows and columns in the active matrix. We have incorporated a symmetric
analogue of our approximate degree update algorithm into the approximate minimum
degree (AMD) ordering algorithm [1]. The algorithm produces the same quality of
ordering as prior minimum degree ordering algorithms and is typically faster.

The performance we achieve in the UMFPACK algorithm thus depends equally
on two crucial factors: this approximate degree update algorithm and the numerical
factorization within dense, rectangular frontal matrices. An outline of the UMFPACK
algorithm is shown in Algorithm 1. If A is permuted to block upper triangular form
[11], the algorithm is applied to each block on the diagonal. Algorithm 1 consists of
initializations followed by three steps, as follows:

Algorithm 1 (outline of the unsymmetric-pattern multifrontal algorithm).

0: initializations
while (factorizing A) do

1: global pivot search for seed pivot
form frontal matrix F
while (pivots found within frontal matrix) do

2: assemble prior contribution blocks and original rows into F
compute the degrees of rows and columns in C (the contribution
block of F)
numerically update part of C (Level 2 and Level 3 BLAS)
local pivot search within C

endwhile
3: complete the factorization of F using Level 3 BLAS

place C in heap
endwhile

The initialization phase of the algorithm (step 0) converts the original matrix
into two compressed sparse vector forms (row oriented and column oriented [9]) with
numerical values A and symbolic pattern A. Rows and columns are used and deleted
from A and A during factorization when they are assembled into frontal matrices.
At any given step, k say, we use Ak and Ak to refer to entries in the original matrix
that are not yet deleted. An entry is defined by a value in the matrix that is actually
stored. Thus all nonzeros are entries but some entries may have the value zero. We
use | . . . | both to denote the absolute value of a scalar and to signify the number of
entries in a set, sequence, or matrix. The meaning should always be quite clear from
the context.

The true degrees dr(i) and dc(j) are the number of entries in row i and column
j of the active matrix A′, respectively, but we do not store these. Because the cost
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of updating these would be prohibitive, we instead use upper bounds dr(i) (where
dr(i) ≤ dr(i)) and dc(j) (where dc(j) ≤ dc(j)). However, when a true degree is
computed, as in the initialization phase or during the search for a seed pivot, its
corresponding upper bound is set equal to the true degree.

3. The first frontal matrix. We will label the frontal matrix generated at
stage e by the index e. We now describe the factorization of the first frontal matrix
(e = 1). This discussion is, however, also applicable for subsequent frontal matrices
(e > 1) which are discussed in full in section 4 where differences from the case e = 1
are detailed.

3.1. Step 1: Perform global pivot search and form frontal matrix. The
algorithm performs pivoting both to maintain numerical stability and to reduce fill
in. The first pivot in each frontal matrix is chosen using a global Zlatev-style search
[29]. A few candidate columns with the lowest upper bound degrees are searched.
The number searched is controlled by an input parameter (which we denote by nsrch
and whose default value is four). Among those nsrch columns, we select as pivot the
entry a′rc with the smallest approximate Markowitz cost [28], (dr(r) − 1)(dc(c) − 1),
such that a′rc also satisfies a threshold partial pivoting condition [9]

|a′rc| ≥ u ·max
i

|a′ic|, 0 < u ≤ 1.(3.1)

Note that we have the true column degree. The column entries are just the entries in
A since this is the first frontal matrix. When the pivot is chosen its row and column
structure define the frontal matrix. If Struct(. . .) denotes the row indices of entries in
a column or column indices of entries in a row, we define L and U by L = Struct(A′

∗c)
and U = Struct(A′

r∗), the row and column indices, respectively, of the current |L|-
by-|U| frontal matrix F. We partition the sets L and U into pivotal row and column
indices (L′ and U ′) and nonpivotal row and column indices (L′′ and U ′′).

We then assemble the pivot row (Ak
r∗) and column (Ak

∗c) from the original matrix
into F and delete them from Ak (which also deletes them from Ak, since Ak is defined
as Struct(Ak)).

We then try to find further pivot rows and columns with identical pattern in the
same frontal matrix. This process is called amalgamation. Relaxed amalgamation
does the same with pivots of similar but nonidentical pattern. To permit relaxed
amalgamation, F is placed in the upper left corner of a larger, newly allocated, s-
by-t work array. Relaxed amalgamation is controlled by choosing values for s and t
through the input parameter g, where s = bg|L|c, t = bg|U|c, and g ≥ 1. The default
value of this parameter in UMFPACK is g = 2.

A =



a11 0 0 a14 a15 0 0
a21 a22 a23 0 a25 0 0
a31 a32 a33 0 0 0 a37

a41 0 0 a44 a45 a46 0
0 a52 a53 0 a55 a56 0
0 0 0 0 0 a66 a67

a71 a72 0 0 a75 0 a77


.(3.2)

We use example (3.2) to illustrate our discussion in this section and in section 4.
Permutations would needlessly obscure the example, so we assume the pivots in the
example matrix are on the diagonal, in order. (Note that this assumption would not
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Table 3.1

True degrees and degree bounds in example matrix.

i dr(i) dr(i) j dc(j) dc(j)
2 4 5 2 4 4
3 5 5 3 3 3
4 3 3 4 4 4
5 4 4 5 5 6
6 2 2 6 3 3
7 4 5 7 3 3

be true if we performed a global pivot search as in Step 1 since in our example the
pivots do not have the lowest possible Markowitz cost.) The first pivot is a′11. We
have L = L′ ∪ L′′ = {1, 2, 3, 4, 7} = {1} ∪ {2, 3, 4, 7} and U = U ′ ∪ U ′′ = {1, 4, 5} =
{1}∪{4, 5}. Let g be 1.25; then the 5-by-3 frontal matrix would be stored in a 6-by-3
array.

3.2. Step 2: Choose further pivots, perform assemblies, and partial
factorization. We continue our pivot search within the contribution block C of the
current frontal matrix F and repeat this for as long as there is sufficient space in the
working array.

We use the term assembly for the addition of contribution terms or original
entries via the extend-add (“ l↔”) operator [27]. This operator aligns the row and
column index sets of its two matrix or vector operands and then adds together values
referenced by the same indices. An implicit assembly is one that is mathematically
represented by the data structures but computationally postponed. An explicit
assembly is one that is actually computed. An entry in the active matrix A′ is
explicitly assembled if all its contribution terms have been added to it, but this is
usually not done and such entries are normally only held implicitly. Pivotal rows and
columns are always explicitly assembled.

We now describe the test to determine whether a column can be assembled into
F. We scan Ak

∗j for each column j in U ′′. The scan of Ak
∗j is stopped as soon as a

row i /∈ L is found. If the scan completes without such a row being found, then all
row indices in Ak

∗j are also in L, and we delete Ak
∗j from A and assemble it into F.

If this assembly is done, the true degree of column j is dc(j) = dc(j) = |L′′|. If the
scan stops early, we compute the upper bound degree of column j as

dc(j) = min

{
n− k (the size of A′)
|L′′|+ (|Ak

∗j | − αj) (the worst case fill-in)

}
,

where k is the current step of Gaussian elimination and αj is the number of entries
scanned in Ak

∗j before stopping. For each row i in L′′, we scan Ak
i∗ and compute dr(i)

in an analogous manner, where we define βi as the number of entries scanned in Ak
i∗

before stopping.

In the example, Ak
∗4 is assembled into C and entry a44 is deleted from A. The

uncomputed true degrees and the degree bounds are shown in Table 3.1. The values
of αj used in constructing the upper bounds were obtained on the assumption that
the rows and columns of Ak are stored in ascending order of row and column indices.
We make this assumption only to simplify the example. We have
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F =


U ′ U ′′

L′
L′′

[
a′rc A′

r∗
A′
∗c C

]  =



1 4 5

1
2
3
4
7


a′11 a′14 a′15
a′21 0 0
a′31 0 0
a′41 a44 0
a′71 0 0




.

We divide the pivot column A′
∗c by the pivot a′rc to obtain the kth column of L,

the n-by-n lower triangular factor. The pivot row is the kth row of U, the n-by-n
upper triangular factor. Step k of Gaussian elimination is complete, except for the
updates from the kth pivot. The counter k is now incremented for the next step
of Gaussian elimination. The frontal matrix F is partitioned into four submatrices,
according to the partition of L and U . We have

F =


U ′ U ′′

L′
L′′

[
L′U′ U′′

L′′ C

]  =



1 4 5

1
2
3
4
7


u11 u14 u15

l21 0 0
l31 0 0
l41 a44 0
l71 0 0




.

The updates to C from the |U ′| pivots in F are not applied one at a time. Instead,
they are delayed until there are updates pending from b pivots to allow the efficient
use of Level 3 BLAS [6]. On a CRAY C-98, a good value for the parameter b is 16.

Let L̂ and Û denote the portions of L′′ and U′′, respectively, whose updates have
yet to be fully applied to C. If |U ′| mod b = 0 then the pending updates are applied

(C = C − L̂Û). If b were 16, no updates would be applied in our example since
|U ′| = 1.

We now search for the next pivot within the current frontal matrix. We search
the columns in U ′′ to find a candidate pivot column c that has minimum dc(c) among
the columns of U ′′. We then apply any pending updates to this candidate column
(C∗c = C∗c−L̂Û∗c) and compute the candidate column A′

∗c, its pattern Struct(A′
∗c),

and its true degree dc(c). (If the updated candidate column is not selected as a pivot, it
is not necessary to update it in Step 3 of the algorithm, discussed below in section 3.3.)
We select the candidate pivot row r in L′′ with the lowest dr(r) such that a′rc also
satisfies the threshold pivoting criterion (equation (3.1)). We compute the pattern
Struct(A′

r∗) of the candidate pivot row and its true degree dr(r).

If dc(c) > s − |U ′| or dr(r) > t − |U ′| the current work array is too small to
accommodate the candidate pivot and we stop the pivot search. Also, if the candidate
column has entries outside the current frontal matrix, the threshold pivoting criterion
might prevent us from finding an acceptable candidate pivot in L′′. In this case also
we stop the factorization of the current frontal matrix F. If the candidate pivot
a′rc is acceptable, then we let L = L ∪ Struct(A′

∗c) and U = U ∪ Struct(A′
r∗). We

repartition L and U into pivotal row and column indices (L′ and U ′) and nonpivotal
row and column indices (L′′ and U ′′) and apply any pending updates to the pivot row

(Cr∗ = Cr∗ − L̂r∗Û).

In the example, the candidate column (column 4) can fit in the 6-by-3 work array
(that is, dc(4) = 4 ≤ s− |U ′| = 6− 1 = 5). Suppose a′44 does not meet the threshold
criterion, and row 7 is selected as the candidate row. The candidate row is, however,



UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 147

rejected when its true degree is computed (the work array is too small to accommodate
row 7, since dr(7) = 4 > t− |U ′| = 3− 1 = 2).

3.3. Step 3: Complete the factorization of F. After the last pivot has been
selected within the current frontal matrix F, we apply any pending updates to the
contribution block. (C = C− L̂Û, but we do not need to update the failed candidate
pivot column, if any.) The pivot rows and columns in F are then placed in storage
allocated for the LU factors.

The contribution block C and its pattern L′′ and U ′′ form what we call an element.
In particular, let Ce denote the contribution block of element e, and let the pattern
of Ce be Le and Ue (note that Le = L′′ and Ue = U ′′). The contribution block Ce is
placed in a heap for assembly into subsequent frontal matrices.

Initially, all row and column indices in Le and Ue are unmarked. When a row
(or column) of Ce is assembled into a subsequent frontal matrix, the corresponding
index is marked in Le (or Ue). Element e (which consists of the terms Ce, Le, and
Ue) will refer to unmarked portions only. Element e is deleted when all of its entries
are assembled into subsequent frontal matrices. For our example, element e is

4 5

2
3
4
7


c24 c25
c34 c35
c44 c45
c74 c75


 .

We associate with each row (column) in the active matrix an element list, which
is a list of the elements that hold pending updates to the row (column). We denote
the list of elements containing row i as Ri and the list of elements containing column
j as Cj . The element lists contain a local index which identifies which row or column
in the element matrix is equivalent to the row or column of the active matrix. This
facilitates the numerical assembly of individual rows and columns. For each row i in
Le, we place an element/local-index pair (e,m) in the element list Ri, where row i
is the mth entry of Le. Similarly, for each column j in Ue, we place (e,m) in the
element list Cj , where column j is the mth entry of Ue.

Let
∑ l↔

denote a summation using the l↔ operator. The active matrix A′ is
represented by an implicit assembly of Ak and the elements in the set V ,

A′ =

 l↔∑
e∈V

Ce

 l↔ Ak,(3.3)

where V ⊆ {1 . . . k−1} is the set of elements that remain after step k−1 of Gaussian
elimination. All l↔ operations in equation (3.3) are not explicitly performed and are
postponed, unless stated otherwise. As defined earlier, the notation Ak refers to
original entries in nonpivotal rows and columns of the original matrix that have not
yet been assembled into any frontal matrices.

The element lists allow equation (3.3) to be evaluated one row or column at a
time, as needed. Column j of A′ is

A′
∗j =

 l↔∑
(e,m)∈Cj

[Ce]∗m

 l↔ Ak
∗j(3.4)
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Table 3.2

Element lists for example matrix after first frontal matrix.

i Ri j Cj
2 (1,1) 2 -
3 (1,2) 3 -
4 (1,3) 4 (1,1)
5 - 5 (1,2)
6 - 6 -
7 (1,4) 7 -

with pattern

Struct(A′
∗j) =

 ⋃
e∈Cj

Le

 ∪ Ak
∗j .(3.5)

Similarly, row i of A′ is

A′
i∗ =

 l↔∑
(e,m)∈Ri

[Ce]m∗

 l↔ Ak
i∗(3.6)

with pattern

Struct(A′
i∗) =

( ⋃
e∈Ri

Ue
)
∪ Ak

i∗.(3.7)

There is an interesting correspondence between our data structures and George
and Liu’s quotient graph representation of the factorization of a symmetric positive
definite matrix [19]. Suppose we factorize a symmetric positive definite matrix using
our algorithm and restrict the pivots to the diagonal. Then Ak

i∗ = Ak
∗i, Ri = Ci,

Le = Ue, and AdjGk(xi) = Ri ∪Ak
i∗, where xi is an uneliminated node in the quotient

graph Gk. The uneliminated node xi corresponds to a row i and column i in A′.
That is, the sets Ri and Ak

i∗ are the eliminated supernodes and uneliminated nodes,
respectively, that are adjacent to the uneliminated node xi. In our terminology,
the eliminated supernode xe corresponds to element e ∈ V . The set Le contains
the uneliminated nodes that are adjacent to the eliminated supernode xe. That is,
AdjGk(xe) = Le.

After the first frontal matrix on example (3.2), V = {1} and

A′ = C1 l↔ Ak =


4 5

2
3
4
7


c24 c25
c34 c35
c44 c45
c74 c75


 l↔



2 3 5 6 7

2
3
4
5
6
7


a22 a23 a25 0 0
a32 a33 0 0 a37

0 0 a45 a46 0
a52 a53 a55 a56 0
0 0 0 a66 a67

a72 0 a75 0 a77




.

Note that column four was deleted from Ak (refer to section 3.2). It also no
longer appears in Ak. The element lists are given in Table 3.2. Applying
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equations (3.6) and (3.7) to obtain row two, for example, we obtain

A′
2∗ = [C1]1∗ l↔ Ak

2∗ =

{
4 5

2
[
c24 c25

] } l↔
{

2 3 5

2
[
a22 a23 a25

] }

=

{
4 5 2 3

2
[
c24 (c25 + a25) a22 a23

] } ,

Struct(A′
2∗) = U1 ∪ Ak

2∗ = {4, 5} ∪ {2, 3, 5} = {4, 5, 2, 3}.
4. Subsequent frontal matrices. We now describe how later steps differ when

the element lists are not empty by continuing the example with the second frontal
matrix.

4.1. Step 1: Perform global pivot search and form frontal matrix. We
compute the nsrch candidate pivot columns using equations (3.4) and (3.5). The
assembled forms of the unused nsrch− 1 candidate columns are discarded. Note that
this differs from how we treat an unused candidate column during the local pivot
search. Updates to a single unused local candidate column are kept, as discussed in
section 3.3. In the example, the next pivot is a′22, with L = L′ ∪ L′′ = {2, 3, 5, 7} =
{2} ∪ {3, 5, 7} and U = U ′ ∪ U ′′ = {2, 3, 4, 5} = {2} ∪ {3, 4, 5}. The 4-by-4 frontal
matrix is stored in a 5-by-5 array (g = 1.25).

4.2. Step 2: Choose further pivots, perform assemblies, and partial
factorization. In the example, a second pivot (a′33) is found in the second frontal
matrix and so we will repeat this step twice.

As we discussed earlier, computing the true degree, dc(j) = |Struct(A′
∗j)|, with

equation (3.5) would be very time consuming. A loose upper bound on dc(j) can be
derived if we assume no overlap between L and each Le, viz.,

dc(j) ≤ min


n− k,

|L′′|+ dc(j),

|L′′|+ (|Ak
∗j | − αj) +

(∑
e∈Cj |Le|

)
.

This bound is similar to the bound used in the minimum degree ordering algorithm
in Matlab [21], except that it is used in a symmetric context and thus the diagonal
entry is excluded from the summation. To compute this bound for all rows and
columns in C would take time

Θ

∑
i∈L′′

βi +
∑
j∈U ′′

αj


to scan Ak and time

Θ

∑
i∈L′′

|Ri|+
∑
j∈U ′′

|Cj |


to scan Ri and Cj . For a single column j, the total time is Θ(αj + |Cj |), or O(|Ak
∗j |+

|Cj |), since αj ≤ |Ak
∗j |. Similarly, the time to compute this loose degree bound for a

row i is Θ(βi + |Ri|), or O(|Ak
i∗|+ |Ri|).



150 TIMOTHY A. DAVIS AND IAIN S. DUFF

However, a much tighter bound can be obtained in the same asymptotic time.
The set Le can be split into two disjoint subsets: the external subset Le \ L and the
internal subset Le ∩ L, where Le = (Le \ L) ∪ (Le ∩ L), and “\” is the standard set
difference operator. Define |Le \ L| as the external column degree of element e with
respect to F. Similarly, define |Ue \ U| as the external row degree of element e with
respect to F. We use the bound

dc(j) ≤ dc(j) = min


n− k,

|L′′|+ dc(j),

|L′′|+ (|Ak
∗j | − αj) +

(∑
e∈Cj |Le \ L|

)
,

(4.1)

which is tighter than before since |Le \ L| = |Le| − |Le ∩ L| ≤ |Le|. The equation for
dr(i) is analogous.

An efficient way of computing the external row and column degrees is given in
Algorithm 2. (The algorithm for external row degrees is analogous.) The array w is a
work array of size n that is used to compute the external column degrees |Le \L|. We
actually use a slight variation of Algorithm 2 that does not require the assumption
that w(e) = −1.

Algorithm 2 (computation of external column degrees).

assume w(e) = −1, for all e ∈ V
for each new row i ∈ L do

for each element e in the element list Ri of row i do
if (w(e) < 0) then w(e) = |Le|
w(e) = w(e)− 1

end for
end for

The cost of Algorithm 2 can be amortized over all subsequent degree updates
on the current front. We use the term “amortized time” to define how much of this
total work is ascribed to the computation of a single degree bound, dc(j) or dr(i).
Note that in computing these amortized time estimates we actually include the cost of
computing the external row degrees within the estimate for the column degree bounds
although it is actually the external column degrees that are used in computing this
bound. We can amortize the time in this way because we compute the external row
and column degrees, and the row and column degree bounds, for all rows and columns
in the current frontal matrix.

Relating our approximate degree algorithm to George and Liu’s quotient graph,
our algorithm takes an amortized time of O(|Ak

∗j |+ |Cj |) = O(|AdjGk(xj)|) to compute

dc(j). This correspondence holds only if A is symmetric and pivots are selected from
the diagonal. This is much less than the Ω(|AdjGk

(xj)|) time taken to compute the
true degree. The true degree dc(j) = |Struct(A′

∗j)| = |AdjGk
(xj)| is the degree of

node xj in the implicitly represented elimination graph, Gk [19]. If indistinguishable
uneliminated nodes are present in the quotient graph (as used in [26], for example),
both of these time complexity bounds are reduced, but computing the true degree
still takes much more time than computing our approximate degree.

We now describe how we compute our degree bound dc(j) in an amortized time
of O(|Ak

∗j |+ |Cj |). We compute the external column degrees by scanning each e in Ri

for each “new” row i in L, as shown in Algorithm 2. A row or column is new if it did
not appear in L or U prior to the current pivot. Since e ∈ Ri implies i ∈ Le, row i
must be internal (that is, i ∈ Le ∩ L). If Algorithm 2 scans element e, the term w(e)
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is initialized to |Le| and then decremented once for each internal row i ∈ Le ∩ L. In
this case, at the end of Algorithm 2 three equivalent conditions hold:

1. e appears in the list Ri for some row i in L,
2. the internal subset Le ∩ L is not empty,
3. w(e) = |Le| − |Le ∩ L| = |Le \ L|.

If Algorithm 2 did not scan element e in any Ri, then the three following equivalent
conditions hold:

1. e does not appear in the list Ri for any row i in L,
2. the internal subset Le ∩ L is empty,
3. w(e) < 0.

Combining these two cases, we obtain

|Le \ L| =
{

w(e) if w(e) ≥ 0
|Le| otherwise

}
for all e ∈ V .(4.2)

To compute the external row degrees of all elements, we scan the element list Cj
for each new column j in U in an analogous manner (with a separate work array).
The total time to compute both the external column degrees (Algorithm 2) and the
external row degrees is Θ(

∑
i∈L′′ |Ri|+

∑
j∈U ′′ |Cj |).

We now describe our combined degree update and numerical assembly phase. This
phase uses the external row and column degrees for both the degree update and the
numerical assembly. We compute dc(j) and assemble elements by scanning the element
list Cj for each column j ∈ U ′′, evaluating dc(j) using equations (4.1) and (4.2). If
the external row and column degrees of element e are both zero, then we delete (e,m)
from Cj and assemble Ce into F. Element e no longer exists. This is identical to the
assembly from a child (element e) into a parent (the current frontal matrix F) in the
assembly tree of the classical multifrontal method. It is also referred to as element
absorption [13]. It is too costly at this point to delete all references to the deleted
element. If a reference to a deleted element is found later on, it is then discarded. If
the external column degree of element e is zero but its external row degree is not zero,
then (e,m) is deleted from Cj , column j is assembled from Ce into F, and column
j is deleted from element e. Finally, we scan the original entries (Ak

∗j) in column j
as discussed in section 3.2. If all remaining entries can be assembled into the current
frontal matrix, then we perform the assembly and delete column j of Ak. Thus, the
amortized time to compute dc(j) is O(|Ak

∗j | + |Cj |). This time complexity does not
include the time to perform the numerical assembly.

The scan of rows i ∈ L′′ is analogous. The amortized time to compute dr(i) is
O(|Ak

i∗|+ |Ri|).
We use the sets Le and Ue for all e ∈ V to represent the nonzero pattern of

the active matrix using equations (3.5) and (3.7). Our combined degree update and
numerical assembly phase reduces the storage required for this representation. These
reductions are summarized below:

1. If |Le\L| = 0 and |Ue\U| = 0 then all of Ce is assembled into F. Element e and
all entries in Le and Ue are deleted. This is the same as the complete element
absorption that occurs in the classical multifrontal method. Symbolically, this
is also the same as element absorption in a quotient graph-based minimum
degree ordering algorithm.

2. If |Le \ L| = 0 and |Ue \ U| 6= 0 then columns Ue ∩ U are assembled from Ce

into F. The entries Ue ∩ U are deleted from Ue.
3. If |Le \ L| 6= 0 and |Ue \ U| = 0 then rows Le ∩L are assembled from Ce into
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F. The entries Le ∩ L are deleted from Le. An example of this assembly is
discussed below.

For pivot a′22 in the example, we only have one previous element, element 1. The
element lists are shown in Table 3.2. The external column degree of element 1 is one,
since |L1| = 4, and e = 1 appears in the element lists of three rows in L. The external
row degree of element 1 is zero, since |U1| = 2, and e = 1 appears in the element
lists of two columns in U . We have L1 = (L1 \ L) ∪ (L1 ∩ L) = {4} ∪ {2, 3, 7} and
U1 = (U1 \ U) ∪ (U1 ∩ U) = ∅ ∪ {4, 5}. Rows 2, 3, and 7 (but not 4) are assembled
from C1 into F and deleted. This reduction and assembly corresponds to case 3,
above. Row 2 and columns 2 and 3 of Ak are also assembled into F. No columns are
assembled from C1 into F during the column scan, since the external column degree
of element 1 is not zero.

We have

C1 =


4 5

4


− −
− −
c44 c45
− −


 , Ak =



5 6 7

3
4
5
6
7


0 0 a37

a45 a46 0
a55 a56 0
0 a66 a67

a75 0 a77




,

and

F =


U ′ U ′′

L′
L′′

[
a′rc A′

r∗
A′
∗c C

]  =


2 3 4 5

2
3
5
7


a′22 a′23 a′24 a′25
a′32 a33 c34 c35
a′52 a53 0 0
a′72 0 c74 c75


 ,

where we have marked already assembled parts of element 1 by −. The set L1 is now
only {4}, the other entries (2, 3, and 7) having been deleted. It would be possible
to recover this space during the computation but we have chosen not to do so in the
interest of avoiding the expense of updating the associated element lists. Note then
that these lists refer to positions within the original element.

The assembly and deletion of a row in an element does not affect the external
column degree of the element, which is why only new rows are scanned in Algorithm 2.
Similarly, the assembly and deletion of a column in an element does not affect the
external row degree of the element.

The local pivot search within F evaluates the candidate column c and row r using
equations (3.4), (3.5), and (3.7). In the example, the second pivot a′33 is found in the
local pivot search. The set L remains unchanged, but the set U is augmented with
the new column 7. Rows 3 and 7 are assembled from Ak into F in the subsequent
execution of step 2 for this pivot. No further assembly from C1 is made.

Step 2 is substantially reduced if there are no new rows or columns in F. No
assemblies from Ak or Ce can be done since all possible assemblies would have been
done for a previous pivot. It is only necessary to decrement dc(j) for all j ∈ L′′ and
dr(i) for all i ∈ U ′′.
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4.3. Step 3: Complete the factorization of F. In the example, the final
factorized frontal matrix is

F =


U ′ U ′′

L′
L′′

[
L′U′ U′′

L′′ C

]  =


2 3 4 5 7

2
3
5
7


u22 u23 u24 u25 0
l32 u33 u34 u35 u37

l52 l53 c54 c55 c57
l72 l73 c74 c75 c77


 .

Note that u27 = 0, due to the relaxed amalgamation of two pivot rows with non-
identical patterns. Relaxed amalgamation can result in higher performance since
more of the Level 3 BLAS can be used. In the small example, the active matrix is
represented by the implicit assembly

A′ = C1 l↔ C2 l↔ Ak

=


4 5

4


− −
− −
c44 c45
− −


 l↔


4 5 7

5
7

[
c54 c55 c57
c74 c75 c77

] 

l↔


5 6 7

4
5
6

 a45 a46 0
a55 a56 0
0 a66 a67




=


4 5 6 7

4
5
6
7


a′44 a′45 a′46 0
a′54 a′55 a′56 a′57
0 0 a′66 a′67
a′74 a′75 0 a′77


 .

The element lists are shown in Table 4.1.

Table 4.1

Element lists for example matrix after second frontal matrix.

i Ri j Cj
4 (1,3) 4 (1,1) (2,1)
5 (2,1) 5 (1,2) (2,2)
6 - 6 -
7 (2,2) 7 (2,3)

5. Algorithm. Algorithm 3 is a full outline of the UMFPACK (Version 1.0)
algorithm.

Algorithm 3 (unsymmetric-pattern multifrontal algorithm).
0: initializations

k = 1
V = empty
while (k ≤ n) do

1: e = k
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global search for kth pivot: a′rc
L = Struct(A′

∗c)
U = Struct(A′

r∗)
s = g|L|
t = g|U|
form rectangular frontal matrix F in an s-by-t work array
do until an exit condition (marked with **) is satisfied

2: assembly and degree update:
assemble kth pivot row and column into F
scan element lists and compute external degrees

assemble rows and columns from Ak into F
assemble contribution blocks into F
compute degree bounds
numerical update:
compute entries of L (F∗c = F∗c/a′rc)
k = k + 1

if (|U ′| mod b = 0) C = C− L̂Û
local pivot search and numerical update of candidates:

** if (|U ′′| = 0) exit this loop
find candidate pivot column c ∈ U ′′
C∗c = C∗c − L̂Û∗c
if (dc(c) 6= |L′′|) assemble column c and compute dc(c)

** if (dc(c) > s− |U ′|) exit this loop
find candidate pivot row r ∈ L′′

** if (r not found) exit this loop

if (dr(r) 6= |U ′′|) assemble row r and compute dr(r)
** if (dr(r) > t− |U ′|) exit this loop

L = L ∪ Struct(A′
∗c)

U = U ∪ Struct(A′
r∗)

Cr∗ = Cr∗ − L̂r∗Û
enddo

3: final numerical update and saving of contribution block, C:
save L′, L′′, L, U′, U′′, and U
C = C− L̂Û
Ce = C
place Ce in heap
Le = L′′
Ue = U ′′
delete F
V = V ∪ {e}
add e to element lists

endwhile

6. Performance results. In this section, we compare the performance of
UMFPACK Version 1.0 with MUPS [2] and MA48 [15] on a single processor of a
CRAY C-98 (although MUPS is a parallel code). Each method has a set of input
parameters that controls its behavior. We used the recommended defaults for most
of these, with a few exceptions that we indicate below. All methods can factorize
general unsymmetric matrices, and all use dense matrix kernels to some extent [6].
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Table 6.1

Test matrices.

name n |A| sym. discipline comments
gre 1107 1107 5664 0.000 discrete simul. computer system
gemat11 4929 33185 0.001 electric power linear programming basis
orani678 2529 90158 0.071 economics Australia
psmigr 1 3140 543162 0.479 demography US county-to-county migration
lns 3937 3937 25407 0.850 fluid flow linearized Navier–Stokes
hydr1 5308 23752 0.004 chemical eng. dynamic simulation
rdist1 4134 94408 0.059 chemical eng. reactive distillation
lhr04 4101 82682 0.015 chemical eng. light hydrocarbon recovery
lhr71 70304 1528092 0.002 chemical eng. light hydrocarbon recovery

MA48 [15] supersedes the MA28 code [12]. It first performs an ordering phase
that also computes most of the factors but discards them. It then performs the
numerical factorization to compute the entire LU factors. When the matrix becomes
dense enough near the end of factorization (default of 50% dense), MA48 switches to
a dense factorization code.

MUPS performs a minimum degree ordering and symbolic factorization on the
nonzero pattern of A + AT and constructs an assembly tree for the numerical
factorization phase [2, 8, 9, 14]. During numerical factorization, candidate pivot
entries must pass a threshold partial pivoting test similar to equation (3.1), except
that the test is by rows instead of by columns. Since the other methods we are
comparing perform this test by columns, we factorize AT with MUPS and then use
the factors of AT to solve the original system (Ax = b). MUPS optionally preorders
a matrix so that the diagonal is zero free using a maximum transversal algorithm
[7]. MUPS always attempts to preserve symmetry. It does not permute the matrix
to block upper triangular form. Note that we do not include symmetric-patterned
matrices in our test set, for which MUPS is nearly always faster than UMFPACK.

By default, both UMFPACK and MA48 preorder a matrix to block upper
triangular form (always preceded by finding a maximum transversal [7]) and then
factorize each block on the diagonal [11]. Off-diagonal blocks do not suffer fill in. This
can reduce the work for unsymmetric matrices. We did not perform this preordering,
since MUPS does not provide the option. UMFPACK has similar input parameters
to MA48, although it does not explicitly include a switch to dense factorization code
(each frontal matrix is dense, however). We selected the threshold partial pivoting
factor (u) to be 0.1 for all four methods.

The methods were tested on a single processor of a CRAY C-98, with 512
Megawords of memory (8-byte words). Version 6.0.4.1 of the Fortran compiler
(CFT77) was used. Each method was given 95Mw of memory to factorize the test
matrices, listed in Table 6.1. The table lists the name, order, number of entries (|A|),
symmetry, the discipline from which the matrix came, and additional comments. The
symmetry is the number of matched off-diagonal entries over the total number of off-
diagonal entries. An entry, aij (j 6= i), is matched if aji is also an entry. All matrices
are available via anonymous ftp. They include matrices from the Harwell–Boeing
Collection [10]. One matrix (lhr71) was so ill conditioned that it required scaling
prior to its factorization. The scale factors were computed by the Harwell Subroutine
Library routine MC19A [3]. Each row was then subsequently divided by the maximum
absolute value in the row (or column, depending on how the method implements
threshold partial pivoting). No scaling was performed on the other matrices.

The results are shown in Table 6.2. For each matrix, Table 6.2 lists the numerical
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Table 6.2

Results.

Matrix method factor total |L + U| memory op count
(sec) (sec) (106) (106) (106)

gre 1107 UMF. .07 0.30 .09 .3 9.7
MA48 .11 0.38 .07 .3 8.1
MUPS .13 0.38 .19 .4 26.6

gemat11 UMF. .18 .45 .08 .4 1.0
MA48 .18 .54 .05 .4 .7
MUPS .27 .57 .14 .4 2.8

orani678 UMF. .53 2.07 .12 1.1 7.4
MA48 .32 1.01 .15 .8 14.2
MUPS .61 218.69 .39 13.3 87.6

psmigr 1 UMF. 15.62 33.99 6.36 26.4 10194.8
MA48 14.92 28.86 6.40 20.9 10465.3
MUPS 14.04 323.15 6.21 26.9 9002.4

lns 3937 UMF. .45 1.89 .50 1.4 84.8
MA48 1.00 3.37 .69 2.2 280.4
MUPS .71 1.73 .92 1.2 185.8

hydr1 UMF. .24 1.05 .15 .6 4.5
MA48 .28 .81 .08 .4 .9
MUPS .57 1.21 .24 .5 10.7

rdist1 UMF. .47 1.53 .49 1.4 37.1
MA48 1.37 4.78 .41 1.6 27.2
MUPS .33 2.01 .28 .7 10.3

lhr04 UMF. .56 2.51 .39 1.5 30.6
MA48 1.27 4.25 .34 1.3 25.8
MUPS 1.03 9.89 1.10 2.3 300.3

lhr71 UMF. 12.26 53.80 10.49 30.2 1294.5
MA48 51.60 171.66 10.08 36.1 1338.4
MUPS - - - > 95.0 -

factorization time, total factorization time, number of nonzeros in L+U (in millions),
amount of memory used (in millions of words), and floating-point operation count (in
millions of operations) for each method. The total time includes preordering, symbolic
analysis and factorization, and numerical factorization. The time to compute the scale
factors for the lhr71 matrix is not included, since we used the same scaling algorithm
for all methods. For each matrix, the lowest time, memory usage, or operation count
is underlined. We compared the solution vectors, x, for each method. We found that
all four methods compute the solutions with comparable accuracy, in terms of the
norm of the residual. We do not give the residual in Table 6.2.

MUPS failed on the lhr71 matrix because of insufficient memory. This is a
very ill-conditioned problem that causes MUPS to be unable, on numerical grounds,
to choose pivots selected by the analysis. This leads to an increase in fill in and
subsequent failure.

We also compared UMFPACK with Gilbert and Peierls’ partial pivoting code,
GPLU [22], and with SSGETRF, a classical multifrontal method in the CRAY
Research Library. The peak performance of GPLU was low primarily because
its innermost loops do not readily vectorize (even with the appropriate compiler
directives). Since this is a limitation of the code and not a fundamental limitation of
the algorithm, we do not report the GPLU results. The results for SSGETRF were
roughly comparable with MUPS, except that SSGETRF tended to use slightly less
memory than MUPS (sometimes as little as 65% of that of MUPS) and was typically
slightly slower than MUPS (sometimes twice as slow as MUPS). We thus do not report
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the SSGETRF results since they do not change our overall comparison between the
classical multifrontal method (MUPS or SSGETRF) and our unsymmetric-pattern
multifrontal method (UMFPACK).

Overall, these results show that the unsymmetric-pattern multifrontal method
is a competitive algorithm when compared with the classical multifrontal approach
(MUPS) and an algorithm based on more conventional sparse matrix data structures
(MA48).
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Abstract. We describe an algorithm to compute an approximate rank revealing sparse QR
factorization. We use a two phase algorithm to provide especially high accuracy in the labeling of
some columns as “redundant,” which ensures robustness in the use of our factorization in computing
explicit bases of the nullspace.

Our first phase is similar in outline to other proposed sparse RRQR factorizations, in that we
couple a standard sparse QR factorization scheme with a condition estimator to develop a factoriza-
tion with a well-conditioned leading block. There are important details in our implementation of the
condition estimator and pivoting that enhance efficiency and reliability. However, the exceptional
characteristic of our algorithm is its second phase, which ensures that columns labeled as redundant
lead to highly accurate nullvectors. The second phase requires that we compute all columns of R
explicitly in the first phase; we cannot discard “redundant” columns as is often done elsewhere. This
condition, in the presence of pivoting to reveal the rank, requires dynamic data structures and nec-
essarily degrades sparsity. But the additional work fits naturally into the multifrontal factorization’s
use of efficient dense vector kernels, minimizing overall cost.

We present a theoretical analysis that shows that our use of approximate singular vectors does
not degrade the quality of our rank-revealing factorization; we achieve an exponential bound like
methods that use exact singular vectors. We provide results of numerical experiments and close with
a discussion of limitations of this approach.

Key words. multifrontal, rank revealing, sparse matrix, least squares, rank deficient
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1. Introduction. This paper describes an algorithm to compute a rank reveal-
ing QR (an RRQR) factorization of a sparse overdetermined matrix. Such a factor-
ization is useful for removing redundant constraints in optimization or for handling
very ill-conditioned linear systems. Rank-deficient geometric design problems are
common in aerospace applications [14]; the RRQR factorization provides a means to
perform additional optimization of the aircraft part beyond merely satisfying geomet-
ric criteria. Chan and Hansen [10] survey a wide variety of applications. Some of
our applications require explicit knowledge of the derived nullspace basis, which can
easily be computed from our factorization.

An RRQR factorization of the m × n matrix A, where m ≥ n, is an orthogonal
factorization of the form

QTAP =

[
R S
0 T

]
,(1)

where Q is orthogonal, P is a permutation matrix, the condition number of R is
not large, and ‖T‖2 is small. Hong and Pan [24] show that such a factorization
always exists, but their scheme for computing the permutation is not computable in
a reasonable number of operations.

Practical RRQR algorithms use heuristics to choose permutations that give ap-
proximate solutions that usually do not guarantee that both of the RRQR conditions
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hold equally. Chandrasekaran and Ipsen [9] categorize such RRQR algorithms by
whether they make R well conditioned (Type I) or they make the norm of T small
(Type II). More precisely these conditions on R and T define two separate problems:

Problem I: max
P

σmin(R),

Problem II: min
P

σmax(T ).

That is, Problem I corresponds to selecting the most linearly independent columns
of A to compute R, while Problem II corresponds to selecting the most linearly de-
pendent columns in A as the second block column. It is not known [9] whether there
must exist a common solution to both problems, which is a stronger condition than
an RRQR factorization.

In practice, it is necessary to prioritize between the conditioning of R and the
size of ‖T‖2, and to balance both against the factorization cost. Pan and Tang [32]
present a different set of techniques which produce RRQR factorizations that try to
satisfy

σmin(R) ≈ σk(A) and σmax(T ) ≈ σk+1(A).

The techniques in both [9] and [32] require iterative interchanging of columns between
R and the column set that defines the T matrix. (The latter set are the so-called
“redundant” columns.)

Maintaining sparsity in the factorization adds another dimension of complexity.
Any extensive use of interchanges between R and the redundant columns usually
causes a rapid degradation of sparsity. Consequently previous sparse algorithms [1,
19, 23] have effectively permanently discarded any columns that are ever labeled as
redundant. Such algorithms can be implemented with static data structures because
the storage for the columns chosen in R is known to be a subset of the storage needed
for a standard unpivoted QR factorization.

In our applications it is particularly important that the derived nullspace bases be
accurate nullvectors. Thus, it is essential that we approximate solutions to Problem
II well. Yet, sparsity constrains us to very limited interchanges between R and the
redundant columns. We choose an algorithm with two phases. Phase I computes
an initial factorization of the form (1) so that the condition of R is less than a user
specified tolerance, 1/τ . Phase II reinstates columns of the matrix[

S
T

]
into the factor R to ensure that ‖T‖2 is small enough. The first pass of our algorithm
is a Type I method. However, our method allows columns that were placed into the
R factor to be removed later, similar to Foster’s Algorithm 2 [15]. The second phase
of the algorithm, which ensures that ‖T‖2 is small, is a Type II algorithm. We do not
iterate this process because of the potential dramatic effects on the sparsity of the
matrix and increases in overall computational requirements. In practice we determine
a reasonably conditioned R and a T with small norm, without iterating.

Our algorithm differs from other sparse RRQR algorithms, most fundamentally
in using dynamic data structures. This permits our second phase, which is not possi-
ble in the context of static data structures. In having a second phase that reinstates
columns, our algorithm is unique among sparse codes. Our first phase is similar to
the Type I algorithms in [1, 19, 23] but differs in the choice of heuristic to estimate
the condition of the partial factorization R. We use the sparse variant of incremen-
tal condition estimation [4], which provides an estimate in the Euclidean norm; the
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other algorithms use different norms with less direct connection to the singular value
property needed here. In addition, our condition estimate considers all of the partial
factorization at each step. We are free at any step to choose any column in the partial
factorization as redundant. Condition estimators are usually vulnerable to very spe-
cial counterexamples, but in practice each of these estimators works well in practice.
Our scheme has additional advantages in reducing cost by permitting all Type I pivots
to occur as soon as possible.

Our algorithm uses the multifrontal QR algorithm as the basis of the factoriza-
tion. We assume the reader has some familiarity with this sparse QR algorithm, first
introduced by Liu [28]; other references include [18], [26], [31]. The multifrontal al-
gorithm was chosen for efficiency. It has a low operation count, compared with the
classical work of George and Heath [16], and it organizes the computations to take ad-
vantage of dense matrix computational kernels [11], [26], [28]. We are able to exploit
the multifrontal paradigm even as we allow dynamic changes in the factor R.

The columns of A are initially reordered to preserve sparsity, using the structure
of ATA, as first proposed in [16]. The QR factorization is computed one row at a
time. At the same time we estimate the condition of the triangular portion of the
matrix computed thus far. A rank deficiency is signaled by the condition estimate
exceeding a tolerance, in which case we remove the column in the computed factor
that we estimate is the most linearly dependent and update the triangular factor.

We estimate the condition number of a sparse submatrix with SPICE [4] (SParse
Incremental Condition Estimation), a generalization of the incremental condition es-
timation scheme ICE [2]. SPICE fits quite naturally into the multifrontal scheme,
which allows us to save storage and localize computations. Localization is important
for sparse problems because accessing global information in a sparse matrix can be
very expensive, especially if the matrix is stored out of core.

We estimate the most linearly dependent column by performing a back solve with
the partially computed triangular factor. This operation can often be confined to
a subset of the computed columns of the factor through the sparsity of R. We use
dense Givens rotations to update the factorization when a column is removed from
R, where again sparsity can be used to reduce the work and data access. The rest of
the factorization is accomplished with dense Householder transformations, as in the
standard multifrontal QR factorization.

If the right-hand side is known, we can apply the orthogonal transformations to it
during the factorization. A back solve will complete the least squares solution. We do
not save the orthogonal transformations, so we solve the seminormal equations when
the solutions for additional right-hand sides are required. The details of corrected
seminormal equations for rank deficient least squares problems are given by Pierce
[35].

In section 2 we provide a basic explanation of the multifrontal algorithm for
computing the QR factorization of a sparse matrix. Section 3 describes SPICE, the
cornerstone to Phase I of the sparse RRQR method. Section 4 describes Phase I and
the pivoting scheme for removing columns from the computed factor. This produces
a well-conditioned factor R. In section 5 we prove that the norm of the submatrix T
is bounded above by a number that depends exponentially on the order of T . When
the order of T is large, we need a second phase for the algorithm, to guarantee that
‖T‖2 is small. The second phase is discussed in section 6. Section 7 describes some
preliminary test results with the algorithm. In the final section we describe additional
techniques that could make the method even more robust.
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2. The sparse multifrontal QR factorization. The sparse multifrontal QR
factorization has two major advantages over more traditional sparse QR factoriza-
tions. Its operation count is usually lower than other schemes, and these fewer op-
erations are grouped in ways that allow use of faster dense matrix/vector operations
such as in [6]. The reduced operation count stems from row merging or submatrix
rotations, notions introduced by Liu [28]. Reorganizing the data and computations
to use dense vector operations uses the same paradigms as the algorithms developed
by Duff and Reid for computing sparse Cholesky, symmetric indefinite LDLT , and
LU [12, 13] factorizations. Liu introduced the multifrontal QR factorization in [28],
described there as the row merge tree QR factorization.

The row merge idea, which permeates the sparse factorization, is simple to ex-
plain through a dense example. Suppose that we have computed the QR factorization
of a large, dense, overdetermined matrix. We would like to update this factorization
to account for 20 new, sparse, data rows, each of which has nonzeros only in a com-
mon set of 5 columns. We could update the factorization by treating each new data
row separately, using Givens rotations and requiring O(n2) operations for each row.
Overall this would require O(20n2) operations.

The row merge alternative begins by computing the QR factorization of the 20
new rows. The resulting 5 × 5 triangular factor, the orthogonal reduction of the
original 20 rows, can then be merged row by row into the large triangular factor.
Givens rotations for this merger would require only O(5n2) operations in total. The
key is that the orthogonal reduction of a set of rows is equivalent to the original rows
in terms of the overall orthogonal factorization.

Row merging is not limited to updating the factorization; it can be used through-
out the factorization process. Generically each step in a row merge factorization takes
as input a set of rows, some of which may be original data rows of A and others may
be the results of earlier merge steps. The output from a row merge step is a small
orthogonal factorization that gives the orthogonal reduction of the input rows.

Row merging introduces a new problem: choosing how to group the data rows
to obtain the optimal reduction in work. This is apparently a very difficult prob-
lem; current algorithms use heuristics that are generally effective but not necessarily
optimal.

A very simple heuristic is a columnwise algorithm, in which the factorization is
completed in n row merge steps. At the ith step, collect all rows of the transformed
matrix Â (initially A) that have zeros in their first i − 1 columns and a nonzero
in their ith column. Compute the orthogonal reduction of these rows (Â ← QT Â).
Then the first row of the orthogonal reduction of this set of rows is the ith row of the
final factor R. The other rows of the orthogonal reduction must be processed further
at later steps. That the first row is the ith row of R follows from the fact that all
remaining unprocessed rows are entirely zero in their first i columns. For consistency
with the original multifrontal algorithms, we describe the other rows of the orthogonal
reduction as “generated data rows.” Each row merge step for this algorithm has as
input original and generated data rows (i.e., rows of Â that have not been transformed
by any orthogonal reductions, and those that have been); its output is the ith row of
R and a new set of generated data rows.

The multifrontal QR factorization is a more sophisticated version of this simple
heuristic, which uses a tree structure in the sparse factor R to better organize the
data and operations and to use row merging more completely. In the remainder of
this section we provide a brief outline of the multifrontal QR factorization. For more
details the reader is referred to [26]. We assume the reader is familiar with basic graph
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theoretic terms associated with sparse matrix computations, such as graphs of matri-
ces, adjacency structures, and trees. (George and Liu [17] give a good introduction
to these ideas.)

2.1. The basic multifrontal QR algorithm. The key to the organization of
the sparse multifrontal QR algorithm is the elimination tree of the triangular factor
R, which is defined by the sparsity pattern of R.

Definition 2.1 (elimination tree of R). Given an m × n matrix A (m ≥ n)
such that ATA is irreducible, let R denote the upper triangular factor of the QR
factorization of A. The elimination tree of ATA and of R is a tree of n nodes, labeled
{1, 2, 3, . . . , n}, where the tree structure is defined by the condition that j is the parent
of node i in the elimination tree if and only if i < j and rij is the first off-diagonal
nonzero in the ith row of R. (This condition defines an elimination forest when ATA
is irreducible.)

For further discussion and insights regarding the elimination tree see [30]. Con-
sider the matrix A in Figure 1, whose factor R is given in Figure 2 and whose corre-
sponding elimination tree is given in Figure 3. The sparsity structure of the matrix
A arises from a nested dissection ordering of the 3× 3 model problem in [28].



a1,1 a1,3 a1,7 a1,9

a2,1 a2,3 a2,7 a2,9

a3,1 a3,3 a3,7 a3,9

a4,1 a4,3 a4,7 a4,9

a5,2 a5,3 a5,8 a5,9

a6,2 a6,3 a6,8 a6,9

a7,2 a7,3 a7,8 a7,9

a8,2 a8,3 a8,8 a8,9

a9,4 a9,6 a9,7 a9,9

a10,4 a10,6 a10,7 a10,9

a11,4 a11,6 a11,7 a11,9

a12,4 a12,6 a12,7 a12,9

a13,5 a13,6 a13,8 a13,9

a14,5 a14,6 a14,8 a14,9

a15,5 a15,6 a15,8 a15,9

a16,5 a16,6 a16,8 a16,9


Fig. 1. A sample matrix A.

The elimination tree has n nodes, one for each column of A. Its structure depends
on the column ordering of A and contains no information on the number of rows in
A. Lacking detailed information on the rows in A, the elimination tree nonetheless
provides the following constraint on the precedence of operations in a QR factoriza-
tion: a row in the factor R cannot be completed until all the rows corresponding to its
descendants in the elimination tree have been computed. Recursively, a row cannot
be computed before any of its children.

The multifrontal algorithm turns this necessary condition into a sufficient con-
dition for a well-organized data management scheme. A simple (nodal) multifrontal
QR algorithm is given in Figure 4.

This multifrontal algorithm is superior to a simple columnwise algorithm because
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r11 r13 r17 r19
r22 r23 r28 r29

r33 r37 r38 r39
r44 r46 r47 r49

r55 r56 r58 r59
r66 r67 r68 r69

r77 r78 r79
r88 r89

r99


Fig. 2. A’s upper triangular factor R.
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Fig. 3. Elimination tree for R in Figure 2.

FOR i = 1 TO n DO

Assemble the frontal matrix for node i, consisting of all rows of A
with first nonzero in column i and all generated data rows com-
puted by the children of node i.

Compute the QR factorization of the frontal matrix.

Save the first row of the factor as the ith row of R.

Save the remaining generated data rows for node i’s parent.
END

Fig. 4. Nodal multifrontal QR factorization.

its row merge step includes a larger set of rows. By including more generated data
rows we achieve better reduction of the operation count and we are better able to use
dense vector operations. However, the major change comes in data structures. By
collecting all generated data rows from all children at each step, all generated data
rows are merged by the parent of the node at which they were computed. It follows
directly that any depth-first traversal of the elimination tree can be implemented using
a stack to represent all unprocessed generated data rows. Further, good algorithms
are available to choose a traversal that minimizes the storage needed for the stack
[29].

Some additional notation will be useful later. Denote by Ai the matrix whose
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rows correspond to those rows of A that have their first nonzero in column i. We
will denote the frontal matrix for the ith step by Fi. (When the ith step corresponds
to a leaf node of the elimination tree, Fi = Ai.) At each step we compute the QR
factorization of the frontal matrix as

Fi = Qi

[
rii si
0 Ti

]
.

The factor’s nonzero structure is completely determined by the rows that are used to
form it and is independent of the manner of computing the QR factorization. The
first row of the triangular factor of Fi is the ith row of R, with diagonal entry rii and
off-diagonal entries denoted by the vector si.

The generated data rows from Fi are denoted by Ti. Although row merging
usually produces triangular matrices Ti, it is not necessary that Ti be triangular. The
matrix of generated data rows, Ti, can be trapezoidal.

If we examine the trapezoidal matrix

Ti =


ti11 ti12 ti13 . . .
0 ti22 ti23 . . .
0 0 ti33 . . .
...

...
...

. . .


more closely, we discover that all column indices correspond to ancestors of node i in
the elimination tree. Although only the first row of Ti contains a nonzero entry in
the column corresponding to the parent of node i, all of these rows will be merged by
the parent.

In the general case, the frontal matrix Fi is the result of assembling original and
generated data rows. Notationally,

Fi =


Ai

Ti1
...
Tik

 ,
where nodes i1, . . . , ik are the children of node i. This represents the input to the ith
factorization step. The component triangular pieces provide a structure to Fi that we
exploit in the next section.

2.2. Use of dense matrix storage and kernels. The trapezoidal matrix Ti
will only have nonzeros in those columns in which row i of R has off-diagonal nonzeros.
Liu [28] showed that it is usually the case that any entry within these columns that
can be nonzero, that lies within the trapezoidal structure, is nonzero. Therefore, we
can effectively represent Ti by a dense (trapezoidal) matrix with the same number of
rows as Ti and one fewer column than row i of R has nonzeros.

The frontal matrix Fi can similarly be represented by a dense rectangular matrix
with as many columns as row i of R has nonzeros and as many rows as Fi. The
QR factorization that comprises the row merge step can take place within this dense
representation, using standard dense matrix operations. We use the structure of any
generated data rows in Fi to further reduce the operation count. We rearrange the
rows of Fi to form a staircase matrix, that is, we place all rows with first nonzero in
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the first column first, those rows with first nonzero in the second column next and so
on. Using the sample matrix problem, the reordered rows of the frontal matrix F3 are

F3 =


t211 0 t212 t213
t111 t112 0 t113
0 t122 0 t123
0 0 t222 t223
0 0 0 t233
0 0 0 t133

 .

We exploit this structure in applying Householder transformations to compute the
QR factorization of Fi.

Using condensed forms of the trapezoidal and frontal matrices enables us to per-
form all numerical operations as dense vector operations. Indexed or indirectly ad-
dressed operations are needed only in moving data from the data rows into the dense
representation of Fi. Even this sparse overhead can be reduced further through use
of the natural block structure of the factor R, the topic of the next section.

2.3. Using supernodes for higher performance. Supernodes allow us to
combine separate row merge steps into a single step. This will give increased speed,
slightly reduce the number of operations, and reduce data movement. We define this
structure by first defining a fundamental supernode.

Definition 2.2 (fundamental supernode). A fundamental supernode is a maxi-
mal set {i1, i2, . . . , is} of nodes in the elimination tree of ATA, such that ik−1 is the
only child of node ik and such that the row structure of row i1 of the factor R contains
the row structure of row ik, for k = 2, . . . , s.

The s factorization steps for these nodes in the nodal multifrontal factorization
consists of successive QR factorizations of the frontal matrices

Fi1 =


Ai1

Tj1
...
Tjk

 , Fi2 =

[
Ai2

Ti1

]
, Fi3 =

[
Ai3

Ti2

]
, . . . , Fik =

[
Aik

Tik−1

]
,

where nodes j1, . . . , jk are the children of node i1. An equivalent and more efficient
way to compute the same rows of R and the same generated data rows Tik is to
compute the QR factorization of

FI =



Ai1

Ai2

. . .
Aik

Tj1
...
Tjk


.

By combining the s nodal merges into a single step, we reduce data movement and we
slightly reduce the operation count. We increase the efficiency of our kernels because
the lengths of the vectors increase. We do fewer, longer vector operations, still on
dense vectors, without increasing fill in R.

Fundamental supernodes provide a unique partitioning of the nodes in the elimi-
nation tree. Larger supernodes can be found by dropping the constraint that all but
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the first node in a supernode have only a single child. There may be many parti-
tionings into supernodes that use only the condition of common sparsity structure.
Coarser partitionings enhance the benefits obtained from fundamental supernodes. A
simple algorithm that finds supernodes by combining fundamental supernodes is to
perform a depth-first traversal of the elimination tree. When visiting the first node
of a fundamental supernode, combine this supernode with its largest numbered child
supernode when the row structure of the parent supernode is a subset of the row
structure of the child supernode. The frontal matrix now must incorporate the gener-
ated data rows from all children of fundamental supernodes that comprise the larger
supernode.

In Figure 5 we display the steps in the supernodal multifrontal method for the
model problem. In this small example there is only one nontrivial fundamental su-
pernode, consisting of nodes 7, 8, and 9. A larger supernode is created by the inclusion
of node 6.

We will use uppercase subscripts to denote the matrices involved in the supernodal
factorization; that is, we will use AI , FI , TI , or RI , SI where I now indicates the
supernodal subscript set {i1, i2, . . . , is}. The orthogonal reduction step computes

FI = QI

[
RI SI
0 TI

]
.

In general RI will be an upper triangular matrix and SI will be rectangular. The first
s columns of FI , corresponding to the indices of the supernode (and RI), are called
the fully assembled or internal columns of the frontal matrix. The other columns in
FI , which will make up SI and TI , are called external or generated data columns.

One subtle aspect of the general supernodal factorization of relevance to the
condition estimation algorithm is that it is no longer necessary that all trapezoidal
matrices of generated data contributing to the frontal matrix have their first nonzero
in the first column of the frontal matrix. In our small example, the first row of
the trapezoid from supernode 3 occurs in column 7. As a result, T3 is not used
in computing the first row of R6 and T3 makes no contribution to the sixth row of
R. This possibility requires a certain amount of care in the implementation of the
condition estimation scheme.

In summary, our basic QR factorization is computed by the supernodal sparse
multifrontal algorithm. Our implementation initially applies the multiple minimum
degree ordering [27] to the columns of A. The nodes of the elimination tree are then
numbered in a postorder traversal to minimize the stack storage [29]. We currently
minimize the stack storage based on the symbolic factorization of the Cholesky factor
of the normal equations. This may not be optimal because it assumes that possibly
trapezoidal matrices are triangular. We use dense matrix kernels for the computa-
tions. Overall this provides a very efficient and fast method for computing the QR
factorization of large sparse problems [26].

In developing a sparse RRQR factorization we tried to preserve the benefits of
the multifrontal algorithm, yet allow pivoting. To do this it is necessary to answer
two questions: how to determine if a column should be pivoted and how to pivot a
column. We sought answers that fit into the multifrontal scheme, which we discuss in
the next two sections. We begin by answering the question of how to detect when a
column needs to be pivoted by using a condition number estimate that fits naturally
into a multifrontal implementation.
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Fig. 5. Supernodal multifrontal QR for the model problem.
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3. Condition estimation. Bischof [2] developed a method, ICE, that incremen-
tally estimates the condition number of a triangular matrix; that is, it estimates the
condition of a triangular matrix and also of all leading principal minors. This method
was generalized to sparse matrices by Bischof and the present authors in [4]. The
essential characteristic of this algorithm, known as SPICE, is that it uses the elimi-
nation tree structure from R in exactly the same way as the QR factorization itself.
That is, the estimate of the least singular value and vector for the partial factorization
up to and including a given node or supernode requires knowledge only of the partial
factorization and the least singular value and vector estimates for each of the chil-
dren of that node or supernode. Recursively the method computes singular value and
vector estimates for submatrices corresponding to subtrees of the elimination tree.

To illustrate SPICE, assume that the current supernode has two children supern-
odes. For convenience we number the current supernode as 3 and its children as 1
and 2. The orthogonal reduction step for each child resulted in factorizations[

R1 S1

0 T1

]
and

[
R2 S2

0 T2

]
.

Here RI is triangular, (RI , SI) are the rows of the factor R with row indices in
supernode I), and TI is the trapezoidal (or triangular) matrix of generated data rows.
In detail consider the columns of SI , denoted by

SI = (sI1, s
I
2, . . . , s

I
pI ).(2)

We also assume that we have estimates for the least singular value and vector for each
of the children; that is, a vector pair (xI , bI) has been formed for each of the upper
triangular matrices RI such that RT

I xI = bI , ‖bI‖2 = 1 and 1/‖xI‖2 ≈ σmin(RI).
The assembled frontal matrix for the current supernode, F3 is given by

F3 =

 A3

T2

T1

 .
The first reduction step, applying the first Householder transformation H1, results in
the matrix

HT
1 F3 =

[
δ s

0 T̃

]
.

Hence the current partial factor is

R̃ =

 R1 0 s11
R2 s21

δ

 .
We assume, for the moment, that s11 and s21 are both not equal to zero. Then SPICE
finds a new estimate for the least singular value and vector by solving the optimization
problem

max
‖̃b‖2=1

‖x̃‖2,

where

R̃T x̃ = b̃ with x̃ =

 α1x1

α2x2

β

 and b̃ =

 α1b1
α2b2
γ
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for scalars α1, α2, and β. This only requires the inner products c11 = xT1 s
1
1, c21 =

xT2 s
2
1, η1 = xT1 x1, η2 = xT2 x2, and the computation of the largest eigenvalue λmax and

the corresponding eigenvector of the 3× 3 symmetric matrix

G =

 η1 + c211/δ
2 c11c21/δ

2 −c11/δ2

c21c11/δ
2 η2 + c221/δ

2 −c21/δ2

−c11/δ2 −c21/δ2 1/δ2

(3)

=

 xT1 x1 0 0
0 xT2 x2 0
0 0 0

+
1

δ2

 c11
c21
−1

 [ c11 c21 −1
]
.(4)

An obvious generalization to a (k + 1) × (k + 1) eigenproblem allows SPICE
to treat cases with k > 2 children. The obvious simplification for a single child is
identical to ICE. We fully exploit the fact that the matrices involved in the eigenvalue
problems are rank one modifications of diagonal matrices. Further details are given
in [4], [5], [7], [36]. Because of its recursive nature the approximate singular vector
(the SPICE vector) is never required explicitly. Moreover, the SPICE algorithm in [4]
never requires explicit access to the columns of the global matrix [4]. This multifrontal
SPICE algorithm for fundamental supernodes is given in Figure 6. The algorithm for
general supernode partitionings differs only in that the number of children at steps
two to d may be greater than one, and hence the eigenproblem may be larger than
2× 2.

The rank-revealing QR factorization requires the SPICE vector x in order to
determine which column should be removed from R at a given step. This requires
an additional n vector of storage beyond the basic SPICE algorithm’s requirements.
For convenience we save x in a partitioned form, with the entries corresponding to a
given supernode stored contiguously with the factor data for that supernode. Also for
convenience, we store the scaling factor used for each child rather than applying the
scale factors directly to x. This requires one extra datum for each supernode, again
stored with the corresponding factor data. This datum enables us to reconstruct the
x vector whenever it is required. For further details see [33].

With this condition estimation tool in hand, we now describe how to select a
column to pivot and how to carry out the pivoting operation. This will correspond to
Phase I of the method.

4. Phase I: Initial QR factorization with column removal. In the mul-
tifrontal QR algorithm without pivoting there are two types of columns in a frontal
matrix. The leading s columns for a supernode of s nodes correspond to the rows of
R that will be computed at this factorization step. These are the fully assembled or
interior columns of the supernode. The remaining columns correspond to a subset of
the ancestors of the current node. These exterior columns also correspond in index
to the generated data rows produced at this step.

Pivoting to reveal the rank introduces a third category, the “redundant” columns,
fully assembled columns that are identified by the condition estimator as being nearly
linear combinations of other columns in the partial factorization. The triangular
structure of the RRQR factorization (1) is achieved by reordering the columns into
the new order (1, 2, . . . , k−1, k+1, . . . , n, k) when column k is identified as redundant.
In the first phase redundant columns never reenter the set of columns definingR. Thus
this column, and all other redundant columns, will be fully processed only when the
root supernode is factored. The effect on the sparse factorization is twofold. In the
supernode I in which column k is an interior column, column k becomes the last
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FOR I = 1 TO number of fundamental supernodes DO

Assume supernode I has t children, m columns and d nodes;
Initialize a t×m matrix C and a 1×m vector ĉ to zero.

FOR i = 1 TO t DO
Let Ki denote the ith child’s index.

Pop xTKi
sKi
j values from stack and scatter into ith row of C.

Pop xTKi
xKi from stack and place in ηi

END

Perform SPICE on first column of supernode I

Build the (k + 1)× (k + 1) SPICE matrix and solve the maximum

eigenvalue problem for the eigenvector [α1, α2, . . . , αk, β]
T
.

Update and save the inner product values

ĉj =
∑k

i=1 αicij , j = 2, . . . ,m

x̂ = β, η̂ = λmax (=
∑k

i=1 η
2
i α

2
i + β2)

Perform SPICE on remaining columns of supernode I

FOR p = 2 TO d DO
Assume new column of frontal factor is (ŝ, δ)T .
Compute the global inner product ζ = ĉp + x̂T ŝ
Solve the 2× 2 SPICE eigenproblem for α and β.
Update the SPICE data:

ĉj ← αĉj , j = p+ 1, . . . ,m

x̂←
[
αx̂
β

]
, η̂ ← λmax (= α2η̂ + β2)

END

ĉj ← ĉj + xT sIj (j = d+ 1, . . . ,m), where sIj is as in (2).
Place ĉj , (j = d+ 1, . . . ,m) and η̂ onto the stack.

END

Fig. 6. Fundamental supernodal SParse Incremental Condition Estimation.

numbered exterior column. The amount of storage needed for R decreases, but the
storage for the generated data rows increases. As a redundant column, column k
also becomes effectively a new exterior column for each ancestor of supernode I. The
storage for each ancestor supernode must therefore be increased. Were we computing
strictly a Type I algorithm, the redundant columns could be discarded and dynamic
storage would not be a major issue. However, the redundant columns are required for
Phase II and must be saved.

In the remainder of this section we describe how we determine redundant columns
and how we restructure the factorization.

As we compute the factorization, we use SPICE to incrementally approximate
the smallest singular value and corresponding left singular vector. We use the largest
Euclidean norm of a column of A as an approximation to the largest singular value
of A. The ratio of these two values provides an estimate of the condition number of
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the partial factor. (SPICE could be used to approximate the largest singular value,
but we currently believe that the additional accuracy is unnecessary.) The condition
estimate exceeding a tolerance indicates that the submatrix for the subtree rooted at
the current supernode is rank deficient.

We remove a column from this submatrix as soon as the rank deficiency is de-
tected. We construct an approximate left singular vector x for the smallest singular
value of the triangular matrix rooted at the current node, using the additional data
of local x̂ vectors and SPICE scaling factors. We then perform a backsolve on this
vector with the upper triangular submatrix to form an approximate right singular
vector for the smallest singular value.

The index of the component of largest absolute value in the approximate right
singular vector designates the column k to be removed from the matrix. This is
identical to the method proposed in Golub, Klema and Stewart [21], except that we
use an approximate singular vector as in Foster [15]. The redundant column k occurs
in supernode I, either the current supernode or one of its descendants. We apply the
permutation (1, 2, . . . , k− 1, k+1, . . . , r, k) symmetrically to the rows and columns of
the r × r partial factor for supernode I, yielding the matrix[

R u
t1 ω

]
,

where R is the factor with the kth column u and the kth row t = (t1, ω) removed.
We can apply Givens rotations to this matrix to restore the triangular structure.

We exploit the sparsity of the factor by applying rotations only to the supernodes
on the path from supernode I to the current supernode. We must actually permute
rows and columns in the supernode I in which column k was an internal column.
For the other supernodes on the path from supernode I to the root of the tree, the
permutation of columns means that the existing factor data are augmented by a new
row and new external column. In each case the factor data are restored to triangular
form for each supernode. When the current supernode’s structure has been updated,
the factorization can continue. However, the redundant column will now be effectively
a new exterior column for each ancestor of the current supernode. Note that in
applying the rotations to t we simultaneously update the condition estimator.

There are two motivations for removing the column as soon as possible rather
than after the factorization has been completed. First, the backsolve to compute the
approximate right singular vector is performed only on the subtree, which reduces
operations and access to the elements of the factor matrix. Otherwise the backsolve
would take place on the entire matrix. Second, Givens rotations are used only to re-
store the partial factorization to triangular form. The remaining work associated with
redundant columns at ancestor supernodes takes place as part of the standard merge
process, which uses Householder transformations. Thus, fewer and faster operations
are required.

Figure 7 shows the effect of restructuring the factor R if column 2 were labeled
redundant during the reduction of the root supernode of our model problem. Note
that row S3 and all rows of F6, S6 gain a new column and a new row T6 is added to
the root of the factor. This example also shows that it is possible for supernodes to
disappear entirely from the factor tree, in this case because the redundant column
was the only interior column in the second supernode.

5. A bound on ‖T‖2. Our goal is a factorization of the form in (1), where R
is reasonably conditioned and T is small in norm. Phase I of our algorithm produces
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Fig. 7. Modified factor after pivoting column 2.

an acceptably well-conditioned R. In this section we show that ‖T‖2 has a bound
that depends exponentially on the number of columns in T . Our analysis of ‖T‖2 is
divided into two cases, distinguished by the presence or absence of a zero diagonal
element in the factor R. It is necessary to divide the analysis because the condition
estimator SPICE will fail in the presence of a zero diagonal element. We first consider
the full structural rank case where R has no zero diagonal elements. In this case our
analysis is almost identical to Chan [8], except that we require only approximations to
the singular vectors. We only establish enough in the second case, with zero diagonal
entries, to reduce it to the first case. In both cases the result of the analysis is a
bound on ‖T‖2 similar to that in [8], where exact singular vectors were required.

We assume that we have computed a triangular factor R for the first r columns
of A. We denote this submatrix as A1:r, so that we have

A1:r = QR.

Further assume that the condition estimate has exceeded a tolerance of 1/τ , signaling
an unacceptable linear dependence. However, the last computed diagonal element of
R is not zero; the matrix R appears to be of full rank. The singular value estimate
from SPICE is a vector pair (x, b) such that

RTx = b,

where

1

‖x‖2 = σe ≥ σmin(R) and ‖b‖2 = 1.
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The approximation σe is a fairly good estimate for σmin in the sense that σe <
τσmax � σmax. We compute an approximate right singular vector y by solving

Ry = σex

and determine the entry of largest magnitude yi using the largest index in case of ties.
Let P be a permutation matrix that permutes columns (1, 2, . . . , r) into the new

order (1, 2, . . . , i− 1, i+ 1, . . . , r, i). Let ỹ = Py. Then

‖y‖∞ = ‖Py‖∞ = |ỹr| > 0.

Applying the permutation P to R produces

RPT =

 R11 c S
0 δ wT

0 0 R22

PT =

 R11 S c
0 wT δ
0 R22 0

 ,
where δ is the ith diagonal element and R11 and R22 are upper triangular matrices.
We now seek to bound the resulting (r, r) element of the matrix RPT after computing
the orthogonal factorization of the permuted matrix,

R̃ = Q̃RPT =

 R11 R12 s1
0 R̃22 s2
0 0 δ̃

 .
Now note that

σe = ‖σex‖2 = ‖Ry‖2 = ‖QRPTPy‖2 = ‖R̃ỹ‖2 ≥ |δ̃ỹr|.
Thus,

|δ̃| ≤ σe
|ỹr| .

We now show that we can always find a satisfactory ỹr by demonstrating, with
minimal assumptions on the accuracy of σe, that ‖y‖2 will be at least 1/2. As a result
the largest entry yi satisfies |yi| ≥ 1

2
√
r
. Let

R = V ΣUT

be the singular value decomposition of R, with the singular values ordered σ1 ≥ σ2 ≥
· · · ≥ σr. If

x =
r∑

i=1

ρivi,

then

1 = ‖x‖22 =
r∑

i=1

ρ2
i

and

‖b‖22 = ‖RTx‖22 = ‖UΣV Tx‖22 =
r∑

i=1

ρ2
iσ

2
i = σ2

e .
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We expect the coefficients ρi to be larger for larger i. By assumption, σmax � σe, so
a β > 0 and an integer k exist such that σk ≥ (1 + β)σe ≥ σk+1. Then

σ2
e ≥

k∑
i=1

ρ2
iσ

2
i ≥

k∑
i=1

ρ2
iσ

2
k ≥ (1 + β)2σ2

e

k∑
i=1

ρ2
i .

Therefore, by dividing both sides of the inequality above by σ2
e we have

1 ≥ (1 + β)2
k∑

i=1

ρ2
i ⇒

r∑
i=k+1

ρ2
i > 1− 1

(1 + β)2
=

β(β + 2)

(1 + β)2
,

and for all j > k,

σj ≤ (1 + β)σe ⇒ 1

1 + β
≤ σe

σj
.

It follows that

‖y‖22 =
r∑

i=1

(
σe
σi
ρi

)2

≥
r∑

i=k+1

(
σe
σi
ρi

)2

≥
(

1

1 + β

)2 r∑
i=k+1

ρ2
i

≥
(

1

1 + β

)2
β(β + 2)

(1 + β)2

=
β(β + 2)

(1 + β)4
.

We summarize these results in the theorem below.
Theorem 5.1. If the pivoting criterion of Golub, Klema, and Stewart [21] is used

with an approximate least singular value, σe, and approximate right singular vector
y and if there is a gap in the singular values such that there exists a β > 0 and an
integer k with σk ≥ (1 + β)σe ≥ σk+1, then

‖y‖2 > β(β + 2)

(1 + β)4
.

The value for β that gives the largest lower bound for ‖y‖2 is found by optimizing
the function

f(x) =
x2 + 2x

(1 + x)4
.

The maximum on the interval [0,∞) is achieved when x =
√

2− 1, with f(x) = 1/4.
It follows that ‖y‖2 ≥ 1/2 whenever an integer k can be found such that σk ≥

√
2σe ≥

σk+1. Such a k would not exist only if σmax < σe, which is unreasonable. Therefore,
‖y‖2 > 1/2 and so the largest entry, yi, which indicates the redundant column, satisfies
|yi| > 1

2
√
r
. Thus we have chosen to remove a column so that

|δ̃| ≤ 2
√
rσe.
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Now consider the case of a structural rank deficiency in R. In this case R has a
zero diagonal entry, say the kth, and the SPICE algorithm would break down with a
division by zero. If we label the kth column as redundant, we may later get appreciable
growth in the matrix T . This occurs because we have no lower bound on the size of
the kth element of the right singular vector. In fact, in practice it is often very small.
If we later label as redundant a column i, where i < k, the resulting matrix T can
have very large off-diagonal components.

There is a simple solution to the problem—the exact nullspace vector can be
computed directly. If the r by r factor is of the form

R̃ =

[
R u
0 0

]
,

with u a column vector, the right singular vector corresponding to the singular value
0 is the vector y given by

z =

[
R−1u
−1

]
,

y =
z

‖z‖2 .

The cost of computing this vector is actually slightly less than the SPICE vector x,
because we must reconstruct the scalings of the latter. Since R̃y = 0 and ‖y‖2 = 1,
there exists a component yi of y such that |yi| > 1√

2r
and thus we will satisfy the

conclusion of Theorem 5.1 for the structurally rank-deficient case as well.
Once a column has been pivoted out of the factor, it is no longer used in condition

estimation. This means that if we were to augment the computed y vectors with zeros
so that they would all be of length n, then the ỹ vectors would be zero past their largest
component. This fact, coupled with the bound in Theorem 5.1, enables us to mimic
the proofs in Chan [8]. We substitute 1

2
√
j

for the lower bound of the singular vector

and use τ , the pivot threshold, for the upper bound of the computed σe’s to show
that even for our left to right factorization the following theorem holds.

Theorem 5.2. With the hypothesis of Theorem 5.1, the triangular matrix T
constructed obeys the bounds

|tij | ≤ 2j−i+1τ
√
n.

As a result the bound on ‖T‖2 is of O(2k+1), where k is the order of T .

6. Phase II: Keeping ‖T‖2 small. In the previous section we established a
bound on ‖T‖2, which depends exponentially on the order of T . This bound could
become unacceptably large when a large number of columns are redundant or if the
heuristic condition estimator has performed poorly. Some of our applications require
computing nullvectors for the operator, where it is imperative that any approximate
nullvectors be good approximations. This motivates our second phase, which guaran-
tees that T has a small norm.

After we have computed the factorization[
R S
0 T

]
,

we use the bounds in Hong and Pan [24] to determine if there is a need to reinstate
redundant columns into R. The second phase removes columns from [ ST TT ]T
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and places the columns back into the factor R whenever

‖T‖F >
√

(n− k)(k + 1)τ.

When needed, we perform a dense RRQR factorization of T , using Golub’s column
interchange criterion [20], which orders the columns of the reduced matrix by norm.

This yields a new triangular factor T̂ . The column interchanges are also applied to
the columns of S, producing Ŝ. The orthogonal factor of A is then partitioned as R Ŝ1 Ŝ2

0 T̂11 T̂12

0 0 T̂22

 ,
where T̂22 is the largest trailing principal submatrix of T̂ with Frobenius norm less

than ((n− k)(k + 1))
1/2

τ . In the case where ATA is reducible, this process would be
done for each tree in the resulting elimination forest.

Phase II is consistent with the multifrontal approach in that all of the numeric
operations take place in the final dense block. It has the effect of introducing much
less sparse columns in the final triangular factor, since the reinstated columns contain
fill from all supernodes on the path from their original interior position to the root.
However, no additional storage is needed for the data in R and S.

This would not be the case if we allowed more general interchanges between R
and the set of redundant columns. Were we at this stage to attempt to remove any
column from R, correcting the triangular structure would produce fill in the newly
redundant column corresponding to all entries in the columns of [ Ŝ1 T̂11 ]T . One
effect of Phase II is then that the condition number of the final triangular factor

R̂ =

[
R S1

0 T̂11

]
can be larger than that of R. We do not attempt to correct this because of the cost
involved.

7. Test results. In this section we present some preliminary results on the nu-
merical performance of the method. The test matrices are matrices that arise in the
triangulation of data by cubic b-splines; see [22] for a detailed explanation and ex-
ample. In Table 1 we present the matrices, dimensions, numerical rank, and the gap
that defines the numerical rank. All of these test problems are well-posed in the sense
of having a well-defined gap.

Table 1

Test matrices and their gap.

matrix rows columns % nonzeros rank σrank σrank+1

triang01 130 49 32 48 8.4E−8 2.2E−18
scatdt06 72 50 4.7 46 3.4E−1 7.8E−16
scatdt12 101 92 17 46 7.5E−3 1.3E−14
triang02 130 100 16 79 2.3E−9 3.7E−16
triang04 9100 1156 1.4 1022 2.1E−8 7.4E−16

In all cases our method was able to detect the numerical rank and produce a
well-conditioned matrix R and a matrix T of small norm. We present these results
in Table 2, listing the actual and estimated smallest singular value of R as well as
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‖T‖F and k = n − r, the order of T . The matrix triang02 has many structural rank
deficiencies. If columns with zero diagonal entries are always removed rather than
those labeled by constructing the singular vector, it becomes necessary to reinstate
a column of T into the factor R in the second phase of the algorithm. This is due
to additional columns being removed. If these additional columns had been pivoted
before the zero diagonal columns, the diagonal element would not have been zero at
all! For example, consider the matrix

A =

 ε 1 1
0 0 1
0 0 1

 .
If column 2 is pivoted to the end of the matrix and then column 1, we have a trailing
matrix T of norm ≈ 1. On the other hand if column 1 had been pivoted first, there
is no longer a zero pivot.

Table 2

Numerical accuracy (τ = 3.3E− 9).

matrix σmin(R) σ̃min(R) ‖T‖F k
triang01 8.4E−8 2.8E−7 8.6E−22 1
scatdt06 3.3E−1 4.8E−1 5.1E−16 4
scatdt12 5.5E−3 6.2E−3 4.8E−14 46
triang02 2.3E−9 4.1E−9 1.1E−18 21
triang04 1.9E−8 2.5E−8 2.8E−16 134

Table 3 lists the costs of different parts of the algorithm as percentages of total
operations. Costs are given for computing and applying the orthogonal transforma-
tions (% factor), solving the seminormal equations (% solve), estimating the condition
number (% condition), determining which column to pivot, and annihilating the re-
moved row through to the current supernode (% pivot). All floating point operations
and square roots are counted.

Table 3

Numerical cost as a percentage of total factorization cost.

matrix % factor % solve % condition % pivot
triang01 93. 3.2 3.3 0.14
scatdt06 60. 7.4 31. 5.1
scatdt12 96. .90 2.2 1.1
triang02 83. 4.6 9.4 2.9
triang04 98. .67 .65 1.0

The cost of determining the rank with our method is relatively inexpensive, even
for problem scatdt12 where the nullity is half of the matrix.

8. Future work. In this section we summarize features we would like to see
incorporated into later versions of the algorithm and additional topics to be explored.

The method of column reinstatement should incorporate the condition estimation
information. As noted, this requires saving the inner product values for postponed
columns, but it will result in an more robust scheme by enabling us to estimate the
condition of the final matrix R.

Bischof and Hansen [3] have an alternative selection criterion that predicts the
bound on ‖T‖2 rather than just a bound on the new diagonal element of T . This
requires saving the computed approximate right singular vectors. It requires O(kn)
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additional work, where k is the nullity, and only an additional n vector of storage.
Alternative selection criteria should also be explored to identify the most offending
column in terms of satisfying both Problem I and Problem II simultaneously.

It would be valuable to know when a problem is not well posed in the sense
that there is no significant gap in the singular values. Numerical rank is ill defined
in such a case. One could estimate the two smallest singular values of R to see if
the numerical rank of the partial factor is well defined. Alternatively the current
algorithm could save the largest of the singular value estimates that occur at steps
that require a pivot. Since we also have the condition of the matrix R on completion,
these two values would approximate the gap of the singular values. (Estimating the
two smallest singular values has the added advantage of increasing the accuracy of
the SPICE estimate for the smallest singular value.)

Dense rows which are to be held out of the matrix and then later incorporated
implicitly by means of the Sherman, Morrison, and Woodbury formula were addressed
in a quite straightforward manner in [25]. This requires the use of an adaptive con-
dition estimation method such as ACE [34] to estimate the condition number of the
final matrix.

The effectiveness of the incorporation of iterative refinement for rank-deficient
least squares problems must be determined. The method of iterative refinement for
rank-deficient least squares problems was investigated in [35], but only in describing
how the method can be applied.

Finally, parallel algorithms or parallel variants of this algorithm should be devel-
oped, as the effectiveness of current algorithms leads to applications with much larger
problem sizes and computational demands. These demands are already very near.
We will need alternative parallel methods that can match or exceed the numerical
reliability of our current formulation.
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this paper and his many helpful suggestions, as well as for Figure 5 in the text.
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1. Introduction. Given a square matrix M of order n and a q ∈ Rn the linear
complementarity problem is to find w ∈ Rn and z ∈ Rn such that

w − Mz = q, w ≥ 0, z ≥ 0,(1.1)

wt z = 0.(1.2)

The linear complementarity problem is well studied in the literature. For the
latest books see Cottle, Pang, and Stone [2] and Murty [18]. In [14], Lemke proposes an
algorithm which either computes a solution to the linear complementarity problem or
shows that there is no solution to (1.1) and (1.2). We call a square matrixM = ((mij))
of order n a Z-matrix or say that M ∈ Z if mij ≤ 0, i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. The
linear complementarity problem with a Z-matrix has a number of applications. See [2]
and [26]. Z-matrices have a least element property related to their complementarity
property which has been observed by Cottle and Veinott [3].

The generalized linear complementarity problem with a vertical block matrix of
order m × k was introduced by Cottle and Dantzig [1]. Their statement of this
problem is as follows: Given an m × k (m ≥ k) vertical block matrix M of type

(m1,m2, . . . ,mk ) and q ∈ Rm where m =
∑k

j=1mj , find w ∈ Rm and z ∈ Rk

such that

w − Mz = q, w ≥ 0, z ≥ 0,(1.3)

zj

mj∏
i=1

wj
i = 0, j = 1, 2, . . . , k.(1.4)

This problem is denoted as VLCP(q ,M).
Cottle and Dantzig [1] extended Lemke’s algorithm to solve the above problem.

They have also extended some of the properties of the square P -matrix to the vertical
block P -matrix.
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VLCP, or the vertical linear complementarity problem, has not been studied ex-
tensively until recently, although Lemke [15] as early as 1970 anticipated valuable
applications of this problem. Recently, a number of applications of this problem have
been noted in the literature. In [6], Ebiefung and Kostreva introduce a generalized
Leontief input-output linear model and formulate it as a VLCP. This model can be
effectively used for the problem of choosing a new technology and also for solving
problems related to energy commodity demands, international trade, multinational
army personnel assignment, and pollution control. In [12], Gowda and Sznajder in-
troduce a generalized bimatrix game and formulate a special case of this as a VLCP.
A slightly more general form of the VLCP also occurs in control theory [21], [22].

There have also been other generalizations of the linear complementarity prob-
lem motivated by certain other applications. The horizontal linear complementarity
problem arises in nonlinear networks. See [8], [9], and [27]. Oh [19] has formulated a
mixed lubrication problem as a generalized nonlinear complementarity problem.

The VLCP has been studied by Szanc [23]. A more general version in the setting of
a finite dimensional lattice gives the generalized order linear complementarity problem
studied by Gowda and Sznajder [11]. However, when specialized toRn, the generalized
order linear complementarity problem is seen to be equivalent to the VLCP. See
Gowda and Sznajder [11]. Generalizations of P0- and Z-matrices have been studied
by Ebiefung and Kostreva [5] and Sznajder and Gowda [25]. See also [7] and [24].
The extended generalized order linear complementarity problem was considered by
Goeleven [10], Gowda and Sznajder [11], and Isac and Goeleven [13].

Mangasarian [16] while studying the classes of linear complementarity problems
solvable by a single linear program introduced a class of matrices which later came to
be named as the class of hidden Z-matrices in [20].

A square matrix M of order n is called a hidden Z-matrix if there exist square
matrices of order n, X and Y, X ∈ Z, Y ∈ Z such that (i) MX = Y and (ii) there
exist nonnegative vectors r, s ∈ Rn such that rtX + st Y > 0.

The class of hidden Z-matrices also possesses a least element property which is
related to complementarity. For a study of this property see [2]. The least element
theory for hidden Z-matrices was motivated by the observation of Mangasarian [16]
that the linear complementarity problem with a hidden Z-matrix can be solved as a
single linear programming problem. For related results see also [17].

Recently, Ebiefung and Kostreva [4] have studied the generalized linear com-
plementarity problem with a vertical block Z-matrix. Complementarity and least
element properties and a computational scheme using principal pivoting were studied
in this paper.

The present work is motivated partly by a question which naturally arises from
the work of Ebiefung and Kostreva [4] and Mangasarian [16, 17]: what is the largest
class of vertical block matrices for which the associated VLCP has the least element
property and hence can be solved as a single linear programming problem? This also
has an implication for the class of VLCPs which has polynomial time complexity.
Surprisingly, unlike in the generalization of other properties of square matrices, the
required generalization of the hidden Z-property does not depend upon the represen-
tative submatrices. We introduce the class of vertical block hidden Z-matrices and
study the associated minimality and complementarity properties.

In section 2, we present the required notations and definitions. In section 3, we
study the least element and complementarity property possessed by vertical block hid-
den Z-matrices. In section 4, we present some characterization theorems for vertical
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block hidden K-matrices.

2. Definitions and notation. By writing A ∈ Rm×n, we denote that A is a
matrix of real entries with m rows and n columns. For any matrix A ∈ Rm×n, aij
denotes the ith row jth column entry and Pos(A) denotes the nonnegative cone gener-
ated by columns of A. If A ∈ Rm×n and J ⊆ {1, 2, . . . ,m}, AJ denotes the submatrix
of A consisting of the rows of A whose indices are in J . A·i denotes the ith column and
Ai·, the ith row of A. If A ∈ Rm×n, J1 ⊆ {1, 2, . . . ,m} and J2 ⊆ {1, 2, . . . , n}, then
AJ1J2 denotes the submatrix of A consisting of only the rows and columns of A whose
indices are in J1 and J2, respectively. Any vector x ∈ Rn is a column vector unless
otherwise specified. xt denotes the transpose of x. For any two vectors x, y ∈ Rn, we
define min(x, y) as the vector whose ith coordinate is min(xi, yi). Let M be a vertical
block matrix of order m × k and type (m1, . . . ,mk) and q ∈ Rm be given. The set
FEA(q,M) = {(w, z) |w ∈ Rm, z ∈ Rk, (w, z) satisfies (1.3)} is called the feasible
region of VLCP(q,M) and any vector in FEA(q,M) is called a feasible vector.

Let C be a convex cone. We say that C is a pointed convex cone if C does not
contain any linear subspace except {0}. If C is a pointed convex cone in Rn, C induces
a partial ordering of vectors in Rn defined as follows : x � (C) y if y − x ∈ C. We
call this partial ordering the cone ordering induced by C. In particular, in this paper
we consider the cone ordering induced by C where C = Pos(X) for some nonsingular
X.

A matrix M ∈ Rn×n is said to be a P0-matrix (P -matrix) if all its principal
minors are nonnegative (positive). Such a matrix is called a K-matrix if it is both a
Z- and a P -matrix.

Definition 2.1. Consider a rectangular matrix M ∈ Rm×k with m ≥ k. Suppose
M is partitioned row-wise into k blocks in the form

M =


M1

M2

...
Mk

 ,

where each M j = ((mj
rs)) ∈ Rmj×k with

∑k
j=1mj = m. Then M is called a vertical

block matrix of type (m1,m2, . . . ,mk).

Definition 2.2. A submatrix of size k of M is called a representative submatrix
if its jth row is drawn from the jth block M j of M .

Remark 2.1. If mj = 1, j = 1, . . . , k, then M is a square matrix. Thus, a
vertical block matrix is a natural generalization of a square matrix. Clearly, a vertical
block matrix of type (m1,m2, . . . ,mk) has at most

∏k
j=1mj distinct representative

submatrices.

Let J1 = {1, 2, . . . ,m1} and let Ji = {∑i−1
j=1mj +1,

∑i−1
j=1mj +2, . . . ,

∑i
j=1mj},

2 ≤ i ≤ k.

The vectors q, w ∈ Rm in (1.3) are decomposed to conform to the partition of M
into blocks of M j , 1 ≤ j ≤ k, i.e.,

q =


q1

q2

...
qk

 and w =


w1

w2

...
wk

 ,
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where qj = (qji ) and wj = (wj
i ) are mj × 1 column vectors.

Definition 2.3. A vertical block matrix M of type (m1,m2, . . . ,mk) is called a
vertical block Z-matrix if all its representative submatrices are Z-matrices. Vertical
block P0 (P )-matrices are also defined in a similar manner.

Definition 2.4. Let M ∈ Rm×k be a vertical block matrix of type (m1,m2, . . . ,mk).
M is called a vertical block hidden Z-matrix if there exists a Z-matrix X = ((xij)) ∈
Rk×k and a vertical block Z-matrix Y = ((yij)) ∈ Rm×k of the same type as M and
nonnegative vectors r ∈ Rk, s ∈ Rm such that

(i) M X = Y,
(ii) rtX + stY > 0.
Lemma 2.1. Let M be a vertical block hidden Z-matrix. Let X ∈ Rk×k be any

Z-matrix and Y ∈ Rm×k be a vertical block Z-matrix of the same type as M satisfying
the conditions of Definition 2.4. Then X is nonsingular and there exists an index set
α ⊆ {1, 2, . . . , k} such that the matrix

W =

[
Xαα Xα ᾱ

Vᾱ α Vᾱ ᾱ

]
is in K, where V is a representative submatrix of Y corresponding to a representative
submatrix G of M .

Proof. Let r, s be as in Definition 2.4. Let p = Xtr + Y ts > 0. Hence, Ax = p
where A = [Xt, Y t ] ∈ Rk×(m+ k), x ≥ 0 has a solution x = [ rs ].

We now proceed as in the proof of Theorem 3.11.17 of Cottle, Pang, and Stone
[2, p. 207] to conclude the proof of the lemma.

We also observe the following result.
Proposition 2.1. Let M be a vertical block hidden Z-matrix with X and Y as

any matrices satisfying the conditions of Definition 2.4. Then there is at least one rep-
resentative submatrix of M which is hidden Z with respect to X and the corresponding
representative submatrix of Y.

Proof. This result follows from Lemma 2.1. By Lemma 2.1, we have an index set
α ⊆ {1, 2, . . . , k} and a representative submatrix V of Y such that

W =

[
Xαα Xα ᾱ

Vᾱ α Vᾱ ᾱ

]
is a K-matrix. Let G be the corresponding representative submatrix of M . Since
W ∈ K, it follows that W t ∈ K and there is a v ∈ Rk, v ≥ 0 such that vtW > 0.
Let v = (vα, vᾱ). Take r(G)t = (vtα, 0) and s(G)t = (0, vtᾱ). It is easy to verify
that GX = V and r(G)tX + s(G)t V = vtW > 0. This shows that G is a hidden
Z-matrix, and this completes the proof of the proposition.

Remark 2.2. The above proposition implies in particular that if M is a vertical
block hidden Z-matrix with X and Y as any matrices satisfying the conditions of
Definition 2.4 then there exists a nonnegative matrix U ∈ Rk×m of the form

U =

 u1 . . . 0
... . . .

...
0 . . . uk

 ,
where ur = (ur1, . . . , u

r
mr

) is a nonnegative row vector of order mr such that UM is
a square hidden Z-matrix.
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Remark 2.3. It is easy to see that if X is a K-matrix then UM is a hidden
Z-matrix for any nonnegative U of the above form. For similar results on vertical
block P -matrices, see [1]; for vertical block P0- and Z-matrices, see [5].

3. Least element property. In this section, we consider the least element prop-
erty of vertical block hidden Z-matrices.

Definition 3.1. Let S ⊆ Rn be a polyhedral set. We say that x ∈ S is the
least element of S with respect to the cone ordering induced by a convex cone C if
y − x ∈ C for any y ∈ S.

Definition 3.2. S ⊂ Rn is called a meet semisublattice (under the component-
wise ordering of Rn) if for any two vectors x, y ∈ S their meet z = min(x, y) ∈ S.

In what follows, let M be a vertical block hidden Z-matrix with X and Y as any
matrices satisfying the conditions of Definition 2.4. Note that by Lemma 2.1, X is
nonsingular. Let S = { v ∈ Rn : Xv ≥ 0, q + Y v ≥ 0 }.

Lemma 3.1. A vector z ∈ FEA( q,M ) iff v = X−1 z ∈ S. Also S is a meet
semisublattice.

Proof. To show this, note that MX = Y and w = q+Mz ≥ 0 as z ∈ FEA(q,M).
Let v = X−1z. So, z = Xv ≥ 0. Note that q +Mz = q +MXv = q + Y v ≥ 0. Hence
v ∈ S.

Now given v ∈ S, take z = Xv. Note that z ≥ 0. We have q + Y v = q +MXv =
q +Mz ≥ 0. Hence z = Xv ∈ FEA(q,M).

Now, we have to show that S is a meet semisublattice. Let v∗, v̄ ∈ S and let v̂
be a vector whose ith coordinate is defined by v̂i = min(v∗i , v̄i).

Suppose s ∈ Ji, the set of indices of rows of M in the ith block. Note that

qs + (Y v̂)s = qs +
k∑

j=1

ysj v̂j

= qs + ysi v̂i +
∑
j 6=i

ysj v̂j

= qs + ysi v
∗
i +

∑
j 6=i

ysj v̂j , assuming (without loss of generality) v̂i = v∗i ,

≥ qs + ysi v
∗
i +

∑
j 6=i

ysj v
∗
j , since ysj ≤ 0 for j 6= i,

= qs +
∑

ysj v
∗
j ≥ 0, since v∗ ∈ S.

Similarly, we can show that z = Xv̂ ≥ 0. Thus S is a meet semisublattice. This
completes the proof of Lemma 3.1.

Lemma 3.2. S contains a least element.
Proof. It is sufficient to verify that S is bounded below as S is a meet semisub-

lattice.
Let v ∈ S and q̃ = [ 0

qᾱ
], where ᾱ is as in Lemma 2.1. Let W be as in Lemma 2.1.

Note that W−1 ≥ 0 and by the definition of S, we have Xv ≥ 0 and q + Y v ≥ 0.
Hence q̃ + W v ≥ 0. Let u = q̃ + W v. Then W−1 u = W−1q̃ + v ≥ 0 as u ≥ 0
and W−1 ≥ 0. Hence v ≥ −W−1 q̃. This concludes the proof.

Theorem 3.1. Suppose that M ∈ Rm×k is a vertical block hidden Z-matrix of
type (m1,m2, . . . ,mk). Then there exists a simplicial cone C in Rn such that ∀ q ∈
Pos(I,−M), FEA(q,M) contains a least element z̄ with respect to the cone ordering
induced by C and z̄ satisfies z̄i

∏mi

s=1(q
i
s + (M i z̄)s) = 0 ∀ i = 1, 2, . . . , k.
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Proof. By Lemma 3.2, S has a least element v̄ with respect to Pos(I). Let
z̄ = X v̄. Note that by Lemma 3.1, z̄ ∈ FEA(q,M), and it follows that it is a least
element of FEA(q,M) with respect to the cone ordering induced by Pos(X). Now it
remains to verify that z̄i

∏mi

s=1(q
i
s + (M i z̄)s) = 0. To see this, we first show that if

(X v̄)i > 0 then ∃ an s ∈ Ji such that

qs + (Y v̄)s = 0.

Suppose ∀ s ∈ Ji,

qs + (Y v̄)s > 0.

Now consider a v∗(ε) whose coordinates are defined as follows:

v∗j (ε) = v̄j , j 6= i,

v∗i (ε) = v̄i − ε.

Note that as X is a Z-matrix, for ε sufficiently small, X v∗(ε) ≥ 0. Also, it is easy to
verify using the fact that Y is a vertical block Z-matrix that

qs + (Y v∗(ε))s ≥ 0, ∀ s.

This, however, contradicts the minimality of v̄ and completes the proof.
We shall now prove the converse of Theorem 3.1.
Theorem 3.2. Suppose X is a k×k nonsingular matrix. Let C = Pos(X). Sup-

pose M is a given vertical block matrix. If FEA(q,M) 6= φ implies that FEA(q,M)
has a least element with respect to the ordering induced by C, which is also a solution
to the VLCP(q,M), then M is a vertical block hidden Z-matrix.

Proof. Let ẽj be an m × 1 vector whose ith coordinate (ẽj)i = 1 ∀ i ∈ Jj and
0 otherwise. Also, let e∗j be the unit vector in Rk with (e∗j )j = 1 and (e∗j )i = 0 for

i 6= j. Now let qj = ẽj−M e∗j . Clearly, e∗j ∈ FEA(qj ,M) and hence FEA(qj ,M) 6= φ.

Therefore, by our hypothesis it has a least element z̄j which satisfies VLCP condi-
tion (1.4). Clearly, e∗j does not satisfy this condition. Hence z̄j 6= e∗j and, by the

minimality of z̄j , we have X−1(z̄j) ≤ X−1 (e∗j ).
Let vj = X−1(e∗j − z̄j). Note that 0 6= vj ≥ 0. Now for i ∈ {1, 2, . . . , k} \ {j},

we have Xi· vj = (e∗j − z̄j )i ≤ 0. Let Y = M X. Note that Y is a vertical block

matrix. Now consider Ys· vj :

Ys· vj = (Y vj)s

= (M X vj)s

= [M (e∗j − z̄j )]s

= (ẽj − qj − Mz̄j)s

= −(qj + Mz̄j)s for s 6∈ Jj .

Therefore, noting that (qj + Mz̄j) ≥ 0, we have Ys· vj ≤ 0 for s 6∈ Jj .

Let W = (v1, v2, . . . , vk). Then it follows that X̃ = XW is a Z-matrix and
Ỹ = Y W is a vertical block Z-matrix.
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We now have to show the existence of nonnegative vectors r and s satisfying
condition (ii) of Definition 2.4. To do this consider the linear programming problem

Minimize et u

subject to

X u ≥ 0,

Y u ≥ 0,

where e is a k-vector of 1.
Note that u is feasible to the above problem if and only if X u ∈ FEA(0,M). As

0 ∈FEA(0,M) it follows that FEA(0,M) 6= φ, and hence it has a least element under
the cone ordering induced by Pos(X), which is also a solution to the VLCP(0,M).
Therefore, the above problem has an optimal solution. By the duality theorem, there
exist nonnegative vectors r and s such that Xtr + Y ts = e.

As W ≥ 0 and no column of W is 0, we have

X̃t r + Ỹ t s = W t (Xt r + Y t s) = W t e > 0.

This completes the proof.
Remark 3.1. In view of Theorem 3.1, the VLCP(q,M) with a vertical block hid-

den Z-matrix with respect to X and Y can be formulated as the linear programming
problem

Minimize

k∑
i=1

pi zi,

w − Mz = q,

w ≥ 0, z ≥ 0,

where p = (p1, p2, . . . , pk) is any vector such that ptX > 0.
Remark 3.2. Thus the remarks of Cottle, Pang, and Stone [2, p. 212] in the

context of hidden Z-matrices also apply to the vertical block hidden Z-matrices.
Thus, given an arbitrary vertical block matrix M it is not in general easy to test
whether or not it is vertical block hidden Z.

4. Vertical block hidden K-matrices.
Definition 4.1. Let M be a vertical block hidden Z-matrix. We say that M is a

vertical block hidden K-matrix if every representative submatrix of M is a P -matrix.
In the example below we exhibit the blocks by separating them from one another

using blank space.
Example 4.1. Let M be the following vertical block matrix:

1.76 0.36 0.16
1 0 0

0.80 −0.20 −0.20

0.32 1.52 0.12
0.44 1.84 0.04

−1.56 −1.16 0.04
−0.60 −0.60 0.40


,
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where m1 = 3, m2 = 2, and m3 = 2.
It is easy to verify that M is a vertical block hidden K-matrix with respect to

X,Y ,

where X =

 2 −1 −1
−1 3 −1
−1 −2 7

 and Y =



3 −1 −1
2 −1 −1
2 −1 −2

−1 4 −1
−1 5 −2

−2 −2 3
−1 −2 4


.

We take rt =
[

3 2 1
]

and st =
[

1 1 1 1 1 1 1
]
.

The following theorem characterizes a vertical block hiddenK-matrixM assuming
that it is a vertical block hidden Z-matrix.

Theorem 4.1. Let M be a vertical block hidden Z-matrix of type (m1,m2, . . . ,mk ).
Let X and Y be as in Definition 2.4. The following are equivalent:

(a) M is a vertical block hidden K-matrix.
(b) There exists an x ∈ Rk, x > 0 such that M x > 0.
(c) There exists a vector v ∈ Rk, v > 0 such that for any given index set α ⊆

{1, 2, . . . , k}, Wv > 0, where

W =

[
Xαα Xα ᾱ

Vᾱ α Vᾱ ᾱ

]
and V is the representative submatrix of Y corresponding to any given representative
submatrix G of M . Furthermore, W ∈ K.

(d) Every representative submatrix G of M is completely hidden K; i.e., for every
index set β ⊆ {1, 2, . . . , k}, Gββ is hidden K.

Proof. (a) ⇒ (b). Suppose M is a vertical block hidden K-matrix. In particular,
by definition M is a vertical block P -matrix. Now from Theorem 6 of Cottle and
Dantzig [1, p. 89] it follows that there is an x ∈ Rk, x > 0 such that M x > 0.

(b) ⇒ (c). Let x > 0, x ∈ Rk be such that Mx > 0. Let v = X−1x. We have
X v > 0, Y v = M X v = M x > 0. By Lemma 2.1, there exists a representative
submatrix V and an index set α0 ⊆ {1, 2, . . . , k} such that

W0 =

[
Xα0 α0 Xα0 ᾱ0

Vᾱ0, α0
Vᾱ0 ᾱ0

]
is a K-matrix. As Xv > 0 and Y v > 0, it follows that W0 v > 0. This implies that
v > 0.

Now let G be any representative submatrix of M and let H be the corresponding
representative submatrix of Y . Let α ⊆ {1, 2, . . . , k} be any index set. Consider the
matrix

W =

[
Xαα Xα ᾱ

Hᾱ α Hᾱ ᾱ

]
.

As X v > 0, Y v > 0, it follows that W v > 0.
Since W ∈ Z and v > 0, it follows that W ∈ K.
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(c)⇒ (d). LetG be any given representative submatrix ofM. Let β ⊆ {1, 2, . . . , k}
be given. By (c) the matrix

W =

[
Xβ β Xβ β̄

Vβ̄ β Vβ̄ β̄

]
is a K-matrix, where V is the representative submatrix of Y corresponding to G. We
now proceed as in Theorem 3.11.19 of Cottle, Pang, and Stone [2, pp. 211–212] to
conclude that every representative submatrix is completely hidden K.

(d) ⇒ (a). Note that we have MX = Y with X ∈ Z, Y ∈ vertical block Z
and rtX + st Y > 0. Since every representative submatrix is a hidden K-matrix,
it follows that every representative submatrix is a P -matrix. Hence by definition,
statement (a) follows.

Remark 4.1. In relation to Remark 3.2 if we know that M is a vertical block P -
matrix and wish to test its membership in vertical block hidden K then it is possible
to do so by solving two linear programs: one to determine if there exists a y > 0
such that My > 0 and another to determine if the required X exists. Also the
corresponding VLCP is solvable in polynomial time once we have determined the
required X in polynomial time.
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Abstract. Some implementations of interior-point algorithms obtain their search directions by
solving symmetric indefinite systems of linear equations. The conditioning of the coefficient matrices
in these so-called augmented systems deteriorates on later iterations, as some of the diagonal elements
grow without bound. Despite this apparent difficulty, the steps produced by standard factorization
procedures are often accurate enough to allow the interior-point method to converge to high accuracy.
When the underlying linear program is nondegenerate, we show that convergence to arbitrarily high
accuracy occurs, at a rate that closely approximates the theory. We also explain and demonstrate
what happens when the linear program is degenerate, where convergence to acceptable accuracy (but
not arbitrarily high accuracy) is usually obtained.
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1. Introduction. We focus on the core linear algebra operation in primal-dual
interior-point methods for linear programming: the solution of a system of linear
equations whose coefficient matrix is large, sparse, and symmetric. In existing codes,
the linear system is formulated in two different ways. One formulation, usually called
the augmented system formulation, has a symmetric indefinite coefficient matrix. The
other involves a more compact (but generally denser) symmetric positive-definite ma-
trix. A diagonal matrix D is involved in both formulations, where D has the discon-
certing property that some of its elements grow to ∞ as the iterates approach the
solution set. This blowup in D can produce ill conditioning in the coefficient matrix
of the linear system. In this paper, we examine the augmented system and look at
how various factorization algorithms for this system behave as this ill conditioning
develops.

We restrict our study to three standard factorization algorithms — the Bunch–
Parlett, Bunch–Kaufman, and sparse Bunch–Parlett algorithms. The last of these
has been used in at least one practical interior-point code for linear programming
(see Fourer and Mehrotra [5]). We assume that no attempt is made to improve the
conditioning of the underlying linear systems by guessing whether each component
of the solution is at a bound. Preprocessing of this kind detracts from the intuitive
appeal of interior-point algorithms, namely, that they avoid explicit guessing about
the contents of the basis.

In numerical experiments with feasible linear programs, we find that two distinct
scenarios arise.
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1. Even when the iterates are very close to the solution set, the computed search
directions are good enough to produce rapid convergence of the algorithm at
nearly the rates predicted by the theory. This performance is a little sur-
prising. Since the matrix is poorly conditioned, we might have expected the
computed directions to be too inaccurate to allow the algorithm to make much
progress. This scenario usually occurs when the underlying linear program
has a unique primal-dual solution.

2. Near the solution, calculation of the search direction fails because of break-
down of the matrix factorization, or else the computed search direction is so
inaccurate that the interior-point method can move only a tiny distance along
it before violating a bound. This scenario usually occurs when the underlying
linear program is degenerate.

Our analysis in this paper explains these observations through a close examination
of the behavior of factorization algorithms on the highly structured matrices that arise
in our application. The effects of roundoff error are tracked by using fairly standard
techniques from backward error analysis.

The most successful interior-point methods for practical linear programming prob-
lems are primal-dual methods. The best-known potential-reduction algorithm in this
class was devised by Kojima, Mizuno, and Yoshise [9]; the review paper of Todd [17]
contains a wealth of historical information on potential-reduction methods. Early
developments in path-following methods are surveyed by Gonzaga [7], while Mizuno,
Todd, and Ye [15] describe an important variant of these methods that does not re-
quire the iterates to stay within a cramped neighborhood of the central path. Zhang
[25] extended the path-following approach further, allowing the iterates to be infea-
sible while retaining global convergence and polynomial complexity; see also Wright
[21]. Some of these developments took place in the context of linear complementarity,
a class of problems that includes linear programming as a special case.

On the computational side, the OB1 code described by Lustig, Marsten, and
Shanno [10] generated search directions of the type described in this paper. They
compute the maximum step α∗ that could be taken along this direction without vio-
lating the positivity bounds, then set the actual step length to .995 α∗. Mehrotra’s [14]
predictor-corrector search direction differs from the one analyzed in this paper, but
under our assumptions below, the difference vanishes as the solution is approached.
Newer codes, such as those described by Mehrotra [14], Fourer and Mehrotra [5],
Lustig, Marsten, and Shanno [12], Vanderbei [18], and Xu, Hung, and Ye [23], all im-
plement Mehrotra’s predictor-corrector strategy. These newer codes continue to use
step lengths based on α∗; hence, we pay particular attention to the effect of roundoff
error on this quantity.

Previous analysis of the ill-conditioned linear systems that arise in interior-point
and barrier methods has been carried out by Ponceleón [16] and Wright [22]. Pon-
celeón [16] showed that these systems are not too sensitive to structured perturbations
from a certain class provided that the underlying optimization problem is well con-
ditioned. Wright [22] analyzed Gaussian elimination in the context of interior-point
algorithms for linear complementarity problems.

Simultaneously with the original version of this paper, and independently, Fors-
gren, Gill, and Shinnerl [4] performed an analysis of the augmented system in barrier
algorithms. Their analysis tends to be more detailed than ours, and a few of the
results overlap. However, they assume that the factorization algorithms select the
large diagonal elements as pivots before any others, a pattern that does not generally
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occur in practice.
Vavasis [19] gives an illuminating discussion of the augmented system in contexts

other than optimization. He presents a solution method that is provably stable in
a certain sense, but which is not guaranteed to produce “useful” steps in the sense
of this paper. Duff [3] also discusses augmented systems in a general context and
describes a sparse factorization procedure.

2. Interior-point methods. We consider the linear program in standard form:

min cTx, Ax = b, x ≥ 0,(1)

where x ∈ IRn and b ∈ IRm. The dual of (1) is

max bTλ, ATλ+ s = c, s ≥ 0,(2)

where s ∈ IRn and λ ∈ IRm. A vector triple (λ∗, x∗, s∗) is a primal-dual solution if x∗

is feasible for (1), (λ∗, s∗) is feasible for (2), and s∗ and x∗ are complementary; that
is,

x∗T s∗ = cTx∗ − bTλ∗ = 0.(3)

We denote the set of primal-dual solutions by S.
Each iterate (λ, x, s) of a primal-dual interior-point method satisfies the strict

inequality (x, s) > 0. Search directions are found by applying a modification of
Newton’s method to the following system of nonlinear equations:

Ax− b = 0, ATλ+ s− c = 0, XSe = 0,(4)

where X = diag(x1, x2, . . . , xn) and S = diag(s1, s2, . . . , sn). Specifically, the search
direction (∆λ,∆x,∆s) satisfies the linear equations 0 AT I

A 0 0
S 0 X

 ∆x
∆λ
∆s

 =

 −ATλ− s+ c
b−Ax

−XSe+ σµe

 ,(5)

where σ ∈ [0, 1] is known as the centering parameter and the duality measure µ is
defined by

µ = xT s/n.

The step length α along the search direction is determined by various factors; mini-
mally, the updated x and s components are required to stay strictly positive:

(x, s) + α(∆x,∆s) > 0.(6)

At least half the components of (x, s) — the critical components — become very close
to their lower bound of zero during the later stages of the algorithm. Despite this
property, the step length α can be quite close to one without violating the property (6)
when the search direction (∆λ,∆x,∆s) is an exact solution of (5). If perturbations
caused by roundoff are present in the critical components of (∆λ,∆x,∆s), the re-
quirement (6) can severely curtail the allowable step length and slow the convergence.
Hence, it is important that the critical components of (∆λ,∆x,∆s) be computed to
high relative accuracy. This point provides the focus for much of our error analysis.
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Throughout the paper we use u to denote unit roundoff, which we define implicitly
by the statement that when x and y are any two floating-point numbers, op denotes
+,−,×, /, and fl(z) denotes the floating-point approximation of any real number z,
we have

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u.(7)

Since our concern is with the internal workings of a single interior-point iterate, we
omit iteration counters from all quantities. For this reason, we use the order notation
O(·) in a slightly unconventional way. When ξ and η are two nonnegative numbers,
we write ξ = O(η) if there is a positive constant C (not too large) such that ξ ≤ Cη.
We say that a matrix or vector is O(η) if its norm is O(η). We say that ξ = Ω(η) if
ξ = O(η) and η = O(ξ).

For the purposes of this paper, we are mainly interested in how the factorizations
behave relative to µ and u. The dimensions m and n are ignored in our use of the
notation O(·).

If G is a matrix, G·j denotes its jth column, while Gi· denotes the ith row. The
matrix whose elements are |Gij | is denoted by |G|.

We use ‖ · ‖ to denote any one of the equivalent matrix norms ‖ · ‖1, ‖ · ‖2, or
‖ · ‖∞. When G is rectangular, the 2-norm condition number is defined as follows.

Definition 2.1. Let G be a rectangular matrix with full rank, and suppose that
svmax (G) and svmin (G) denote the largest and smallest singular values of G,
respectively. The 2-norm condition number of G is

κ(G) =
svmax (G)

svmin (G)
.

If G is square and nonsingular, this definition coincides with the usual definition

κ(G) = ‖G‖2‖G−1‖2.
3. Definitions and assumptions. We assume throughout that the problems

(1), (2) are feasible; that is, there exists at least one triple (λ, x, s) satisfying the
constraints Ax = b, ATλ+ s = c, (x, s) ≥ 0. Feasibility implies existence of solutions
to (1), (2). The following theorem gives another consequence of feasibility.

Theorem 3.1. Suppose that (1) and (2) are feasible and that (λ, x, s) is any point
with (x, s) > 0. Then there exists a solution (∆λ,∆x,∆s) to (5).

Proof. The proof follows from section 6 of Wright [21]. See, in particular, Lemma
6.2, Theorem 6.3, and the remarks in the last two paragraphs of [21].

Note that A need not have full rank for Theorem 3.1 to hold.
The set of basic indices B ⊂ {1, 2, . . . , n} can be defined as

B = {i | s∗i = 0 for all (λ∗, x∗, s∗) ∈ S},(8)

while the nonbasic set N is

N = {i |x∗i = 0 for all (λ∗, x∗, s∗) ∈ S}.(9)

It is well known that B and N form a partition of {1, 2, . . . , n} and that there is
at least one solution (λ∗, x∗, s∗) that is strictly complementary, that is, x∗ + s∗ > 0
(Goldman and Tucker [6]). The cardinality of B is denoted by |B|. By partitioning
the columns of A according to B and N , we define

B = [A·j ]j∈B, N = [A·j ]j∈N ,(10)
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so that B is m×|B| and N is m×|N |. We say that the linear program is nondegenerate
if |B| = m and the primal-dual solution is unique. We assume also thatB is reasonably
well conditioned in nondegenerate problems.

We do not confine our analysis to one specific primal-dual algorithm. Rather, we
rely on a set of assumptions that is satisfied by a variety of algorithms. The first of
these assumptions concerns the iterates, the search directions, and the relationship
between µ and the current infeasibility.

Assumption 1. The sequence of iterates (λ, x, s) generated by the interior-point
algorithm satisfies the following properties when µ becomes sufficiently small:

xi = Ω(1) (i ∈ B), si = Ω(1) (i ∈ N ),(11a)

xi = Ω(µ) (i ∈ N ), si = Ω(µ) (i ∈ B).(11b)

In addition, the infeasibility is O(µ); that is,

b−Ax = O(µ), c−ATλ− s = O(µ).(12)

Assumption 1 is not very strong. Güler and Ye [8] study algorithms in which all
iterates are strictly feasible; that is,

Ax = b, ATλ+ s = c, (x, s) > 0.(13)

In fact, they require x and s to be slightly separated from the boundary of the positive
orthant in the sense that

xisi ≥ γµ, i = 1, 2, . . . , n(14)

for some constant γ ∈ (0, 1). They show that all limit points of such algorithms
are strictly complementary solutions of (1), (2) and that most path-following and
potential-reduction algorithms do in fact satisfy (14). It is easy to infer from their
results that (11) holds for all subsequences that approach these limit points. Moreover,
(12) is trivially satisfied for all feasible algorithms.

The infeasible-interior-point algorithm described by Wright [20] satisfies Assump-
tion 1. So does the algorithm in [21], provided that the sequence of iterates (x, s) is
bounded. Implemented algorithms such as those of Vanderbei [18], Lustig, Marsten,
and Shanno [10, 11], and Xu, Hung, and Ye [23] usually step a fixed multiple of the
distance to the boundary rather than enforce a potential reduction condition or a con-
dition like (14). Nevertheless, the iteration sequence usually satisfies the properties
of Assumption 1 for most practical problems.

Finally, we state without proof a technical lemma for use in later sections.
Lemma 3.2. Let H be a square matrix partitioned as

H =

[
H11 H12

H21 H22

]
,

where H11 and H22 are also square. Suppose that H11 and H22 − H21H
−1
11 H12 are

nonsingular. Then H is nonsingular and

H−1 =

[
H−1

11 +H−1
11 H12(H22 −H21H

−1
11 H12)−1H21H

−1
11 −H−1

11 H12(H22 −H21H
−1
11 H12)−1

−(H22 −H21H
−1
11 H12)−1H21H

−1
11 (H22 −H21H

−1
11 H12)−1

]
.
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4. Exact and approximate search directions. By defining rb = Ax− b and
rc = ATλ+ s− c in (5), we obtain 0 A 0

AT 0 I
0 S X

 ∆λ
∆x
∆s

 =

 −rb
−rc

−XSe+ σµe

 .(15)

By eliminating ∆s from this system, we obtain the augmented system formulation:[
0 A
AT −X−1S

] [
∆λ
∆x

]
=

[ −rb
−rc + s− σµX−1e

]
,(16a)

∆s = −s+ σµX−1e−X−1S∆x.(16b)

In Wright [22], we performed an error analysis on a system like (16a), but in the
context of a specific path-following algorithm for the monotone linear complementarity
problem. Some of our results from [22] are relevant to the present case of (16), as we
discuss later.

Potential difficulties with the formulation (16) arise from two sources — the pos-
sible rank deficiency in certain submatrices of A and the fact that some diagonal
elements of X−1S and S−1X approach zero while others approach +∞. Despite the
effects of ill conditioning and finite precision, we find that the approximate search
directions obtained from (16) by using standard factorization procedures are often
remarkably good. They allow the interior-point algorithm to take near-unit steps and
to make substantial improvements in the duality measure µ. In the following theorem,
we specify a set of conditions for which this happy situation holds. In later sections,
we identify situations under which these conditions hold.

In the remainder of the paper, we use α∗ to denote the largest number in [0, 1]
such that

(x+ α∆x, s+ α∆s) ≥ 0 for all α ∈ [0, α∗],(17a)

(x+ α∆x)T (s+ α∆s) is decreasing for α ∈ [0, α∗].(17b)

Theorem 4.1. Suppose that Assumption 1 holds. Let (∆λ,∆x,∆s) be the exact

solution of (5) (equivalently, (16)), and let (∆̂λ, ∆̂x, ∆̂s) be an approximation to this
step. Suppose that the centering parameter σ in (5) lies in the range [0, 1/2] and that
the following conditions hold:

(∆x,∆s) = O(µ),(18a)

(∆sN ,∆xB)− (∆̂sN , ∆̂xB) = O(u),(18b)

(∆sB ,∆xN )− (∆̂sB , ∆̂xN ) = O(µu).(18c)

Define α∗ as in (17), and suppose α̂∗ is obtained by replacing (∆x,∆s) with (∆̂x, ∆̂s)
in (17). Then for all µ sufficiently small, we have

1− α∗ = O(µ),(19)

α̂∗ = α∗ +O(u) = 1 +O(µ) +O(u),(20)

and

(x+ α̂∗∆̂x)T (s+ α̂∗∆̂s)/n = σO(µ) +O(µ(µ+ u)).(21)
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Proof. From (11a) and (18a), we have

sN + α∆sN > 0, xB + α∆xB > 0 for all α ∈ [0, 1],

so these components do not restrict the value of α∗. Since u is much smaller than
one, we use (18b) as well to deduce that

sN + α∆̂sN ≥ sN + α∆sN + α(∆̂sN −∆sN ) > 0 for all α ∈ [0, 1].

Similarly, we can show that xB + α∆̂xB > 0 for all α ∈ [0, 1].
For the decrease condition (17b) we show that the duality gap actually decreases

over the entire interval [0, 1] for both exact and approximate search directions, so that
this condition does not play a role in determining α∗ or α̂∗. For the exact direction,
we have from (5), (18a), and σ ∈ [0, 1/2] that

d

dα
(x+ α∆x)T (s+ α∆s) = xT∆s+ sT∆x+ 2α∆xT∆s

≤ −(1− σ)nµ+ 2‖∆x‖‖∆s‖
≤ −nµ/2 +O(µ2)

for all α ∈ [0, 1]. Hence, for µ sufficiently small, the duality gap is decreasing over

[0, 1]. For the approximate direction (∆̂x, ∆̂s), this bound can be modified slightly
to account for the inexactness. We omit the details, which are straightforward but
messy, and state the conclusion as

d

dα
(x+ α∆̂x)T (s+ α∆̂s) ≤ −nµ/2 +O(µu + µ2).

Again, we find that the duality gap is decreasing over the whole interval α ∈ [0, 1].
Hence, the only condition that can bound α∗ and α̂∗ away from one is (17a), and

then only for the N -components of x and the B-components of s. In fact, α∗ satisfies

1

α∗
= max

(
1,max

i∈B
−∆si

si
,max
i∈N

−∆xi
xi

)
.(22)

From (5), we have xi∆si + si∆xi = −xisi + σµ. Hence, since xisi = Ω(µ) from (11),
we have

−∆si
si

= 1 +
∆xi
xi

− σ
µ

xisi
< 1 +

∆xi
xi

.

For i ∈ B we have from (11a) and (18a) that |∆xi/xi| = O(µ) and therefore

max
i∈B

−∆si
si

≤ 1 +O(µ).

An identical argument can be used for the other term in (22), so we have

1

α∗
≤ max(1, 1 +O(µ)) ⇒ 1− α∗ = O(µ),

proving (19).
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For the maximum step length α̂∗ along the approximate direction (∆̂x, ∆̂s), we
have from (18c) and (11b) that

∆̂si
si

− ∆si
si

=
O(µu)

Ω(µ)
= O(u) (i ∈ B),

∆̂xi
xi

− ∆xi
xi

= O(u) (i ∈ N ).

Hence, from (22), we have

1

α̂∗
= max

(
1,max

i∈B
−∆̂si

si
,max
i∈N

−∆̂xi
xi

)
=

1

α∗
+O(u).(23)

For all sufficiently small µ, the estimates (20) follow immediately from this last ex-
pression.

Finally, for the estimate of potential decrease (21), we have from (5) that

(x+ α∆̂x)T (s+ α∆̂s)

=
[
x+ α∆x+ α(∆̂x−∆x)

]T [
s+ α∆s+ α(∆̂s−∆s)

]
≤ nµ(1− α(1− σ)) +O(µu) +O(µu2),(24)

where we have used Assumption 1 and (18) to estimate the remainder terms. Finally,
we obtain (21) by substituting α = α̂∗ = 1 +O(µ+ u) into (24).

5. The augmented system. In the remainder of the paper, we focus on the
procedure based on (16) for finding the search directions. In this section, we define a
generalized form of the matrix in (16a) which we call a canonical matrix. We show that
if the backward error analysis of the solution procedure satisfies a certain condition

— Condition 1 below — then the approximate step (∆̂λ, ∆̂x, ∆̂s) obtained from (16)
in a finite-precision environment is “useful” in the sense of Theorem 4.1.

In later sections, we define conditions under which these standard algorithms
for solving symmetric indefinite systems satisfy Condition 1 and hence yield useful
search directions. Our sharpened, specialized error analysis yields much stronger
results than a naive application of the standard results. We also gain insight into how
the algorithms work even when the nondegeneracy assumptions of sections 6, 7, and
8 fail to hold, and why they continue to generate useful search directions even for
degenerate problems until µ is quite small.

Given a symmetric matrix T of order n̄, the factorization procedures yield

LDLT = PTPT ,(25)

where P is a permutation matrix, L is unit lower triangular, and D is a block-diagonal
matrix with 1 × 1 and 2 × 2 diagonal blocks. We denote the counterparts of these
matrices that are actually computed in the finite-precision environment by L̂ and D̂,
respectively.

Given the system Tz = d and the data P , L̂, and D̂ from the factorization,
we find the computed solution ẑ by performing two vector permutations with P ,
triangular substitutions with L̂ and L̂T , and a blockwise inversion of D̂. Each of
these operations (except the permutations) may introduce additional roundoff error,
which must be accounted for in the error analysis.

For each of the methods, we focus on a single step of the factorization procedure
applied to a matrix T with properties like those of our given system (16a), which we
now define.
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Definition 5.1. A matrix T is a canonical matrix if it is a symmetric permuta-
tion of  0 B N

BT 0 0
NT 0 Λ

+O(µ+ u),(26)

where
- µ > 0 and u ≥ 0 are small,
- Λ is diagonal with all diagonal elements of magnitude Ω(µ−1),
- B = Ω(1) and κ(B) = O(1), and
- N = O(1).

We call T a degenerate canonical matrix if it has the form[
0 0
0 Λ

]
+O(µ+ u),(27)

where the zero blocks are nonvacuous.
In keeping with our particular application (16a), we use m and n to denote the

number of rows and columns in the composite matrix [B |N ], respectively, and n̄ =
m+ n to denote the total dimension of T .

Corresponding to our canonical matrix, we define a canonical error matrix. We
prove that for each of the factorizations, this error matrix has the form specified in
the following definition.

Definition 5.2. Let T be a canonical matrix. The corresponding canonical error
matrix ∆ is a matrix of the same dimension as T such that

|∆| ≤ ∆u + |T |δu,(28)

where δu and the elements of ∆u are O(u).
An important role in the pivot selection process is played by the quantities χi,

which denote the magnitude of the largest off-diagonal element in column i, that is,

χi = max{|Tij | | j = 1, 2, . . . , n̄, j 6= i}.(29)

A sufficient condition for useful steps. The following condition states the
common goal of our backward error analysis of the three factorization procedures.
When this condition is satisfied along with nondegeneracy of the linear program, the
result of Theorem 4.1 holds.

Condition 1. Given the system Tz = d, where T is a canonical matrix, the sym-
metric factorization and solution process yields a computed solution ẑ that satisfies

(T + ∆)ẑ = d̂,(30)

where ∆ is a canonical error matrix associated with T and d̂− d = O(u).

We allow for a perturbed right-hand side d̂ because of the nature of our particular
system (16a). The residuals rb and rc are computed as the difference of O(1) quanti-
ties, so O(u) perturbations will appear when they are evaluated in the obvious way.
Addition of the terms sN and µX−1

N e may give rise to errors of similar magnitude.
Theorem 5.3. Suppose that Assumption 1 holds and that the problem is nonde-

generate, that is, |B| = m, with κ(B) moderate. Suppose that the procedure for solving
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(16) satisfies Condition 1, and denote the approximate solution to (16a) by (∆̂λ, ∆̂x).
Then for all sufficiently small µ, we have

(∆λ,∆x,∆s) = O(µ)(31)

and

(∆λ− ∆̂λ,∆xB − ∆̂xB) = O(u), ∆xN − ∆̂xN = O(µu).(32)

Proof. We prove (31) by appealing to (5). By partitioning A into B and N
according to (10), and partitioning the diagonal matrices S and X accordingly, we
see that the matrix in (5) is a permutation of

0 B N 0 0
BT 0 0 I 0
NT 0 0 0 I
0 SB 0 XB 0
0 0 SN 0 XN

 .(33)

Because of (11), the diagonal elements in XB and SN are Ω(1), while the matrices SB
and XN are O(µ). In addition, B is square and well conditioned, so the matrix (33)
is an O(µ) perturbation of a uniformly nonsingular matrix. From (5), we then have

(∆λ,∆x,∆s) = O(‖rb‖+ ‖rc‖+ ‖XSe− σµe‖),
so the result (31) follows from (11) and (12).

To derive the relative error estimate (32), consider the system (16a). By permut-
ing the matrix in accord with the B ∪ N partition, we can rewrite (16a) as follows: 0 B N

BT −X−1
B SB 0

NT 0 −X−1
N SN

 ∆λ
∆xB
∆xN

 =

 −rb
−(rc)B + sB − σµX−1

B e
−(rc)N + sN − σµX−1

N e

 .(34)

From (11), we have for sufficiently small µ that the diagonals in X−1
B SB are Ω(µ)

while the diagonals of X−1
N SN are Ω(µ−1), so this coefficient matrix is canonical.

By defining

MB =

[
0 B
BT −X−1

B SB

]
, MN =

[
N
0

]
,

Λ = −X−1
N SN , zN = ∆xN , zB =

[
∆λ

∆xB

]
,

dB =

[ −rb
−(rc)B + sB − σµX−1

B e

]
, dN = −(rc)N + sN − σµX−1

N e,

we can restate the system as[
MB MN

MT
N Λ

] [
zB
zN

]
=

[
dB
dN

]
.(35)

From our assumption on B, we have MB = O(1) and M−1
B = O(1).

Because of Condition 1, the computed solution ẑ of (35) satisfies([
MB MN

MT
N Λ

]
+ ∆

)[
ẑB
ẑN

]
=

[
d̂B
d̂N

]
,(36)
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where d̂− d = O(u) and the canonical error matrix ∆ satisfies

|∆| ≤ O(u) +

[ |MB | |MN |
|MN |T |Λ|

]
O(u) = O(u) +

[
0 0
0 |Λ|

]
O(u).

By combining this estimate with (35) and (36), we obtain([
MB MN

MT
N Λ

]
+ ∆

)[
ẑB − zB
ẑN − zN

]
= −∆

[
zB
zN

]
+

[
d̂B − dB
d̂N − dN

]
.(37)

Since z = O(µ) from (31), we have∣∣∣∣∆ [ zB
zN

]∣∣∣∣ ≤ (O(u) +

[
0 0
0 |Λ|

]
O(u)

)[
O(µ)
O(µ)

]
≤
[
O(µu)
O(u)

]
,(38)

so when we add the effect of d̂ − d, we find that the right-hand side of (37) is O(u).
For the coefficient matrix in (37) we use Lemma 3.2 with

H11 = MB +O(u),

H12 = MN +O(u) = O(1),

H21 = MT
N +O(u) = O(1),

H22 = O(u) + Λ(I +O(u)) = Λ(I +O(u)).

Lemma 3.2 yields the following estimates:

(H−1)22 =
(
H22 −H21H

−1
11 H12

)−1
= Λ−1(I +O(u + µ)) = O(µ),

(H−1)12 = O(µ), (H−1)21 = O(µ),

(H−1)11 = M−1
B +O(µ+ u).

By combining these observations with (38), we obtain[
ẑB − zB
ẑN − zN

]
=

[
(H−1)11 (H−1)12
(H−1)21 (H−1)22

]
O(u) =

[
O(u)
O(µu)

]
,

giving (32).

Next, we examine the accuracy of ∆̂s, which is calculated by substituting ∆̂λ and
∆̂x into (16b).

Theorem 5.4. Suppose that the assumptions of Theorem 5.3 are satisfied and
that ∆̂s is evaluated in floating-point arithmetic from the formula (16b), with ∆̂x
replacing ∆x. We then have

∆sB − ∆̂sB = O(µu),(39a)

∆sN − ∆̂sN = O(u).(39b)

Proof. Standard roundoff error analysis applied to (16b) shows that

∆̂s = −s+ σµX−1e−X−1S∆̂x+
[
|s|+ σµ|X−1|e+ |X−1S||∆̂x|

]
O(u).(40)

By differencing (16b) and (40), we obtain

|∆s− ∆̂s| ≤ |X−1S||∆x− ∆̂x|+
[
|s|+ σµ|X−1|e+ |X−1S||∆̂x|

]
O(u).(41)
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If i ∈ B, we have from (11) that

|X−1
B SB | = O(µ), |sB | = O(µ), σµ|X−1

B |e = O(µ).

By combining these estimates with (32) and (41), we obtain the desired result (39a).
For i ∈ N , we have from (11) again that

|X−1
N SN | = O(µ−1), |sN | = O(1), σµ|X−1

N |e = O(1),

while from (31) and (32) we have

∆xN − ∆̂xN = O(µu), ∆̂xN = O(µ).

By substituting in (41), we obtain (39b).
The last two results show that the requirements of Theorem 4.1 are satisfied, so

that the algorithm can make significant progress along these search directions. We
summarize the combination of Theorems 4.1, 5.3, and 5.4 as a corollary.

Corollary 5.5. Suppose that Assumption 1 holds and that the problem is nonde-
generate; that is, |B| = m with κ(B) moderate. Suppose that the procedure for solving
(16) satisfies Condition 1. If the approximate step is computed with σ ∈ [0, 1/2], then
for all sufficiently small µ, the formulae (19), (20), and (21) are satisfied.

6. The Bunch–Kaufman factorization. We show in this section that a proce-
dure for solving (16a) based on the Bunch–Kaufman factorization satisfies Condition
1, so that the conclusion of Corollary 5.5 applies. Since much of the analysis of this
section can be reused in the analysis of the Bunch–Parlett and sparse Bunch–Parlett
algorithms, we give the details here and refer to them in later sections.

It is sufficient to describe just the first stage of the procedure. Later stages apply
the same technique recursively to the remaining submatrix.

The pivot selection procedure for Bunch–Kaufman [2] is as follows.
Choose δ ∈ (0, 1); find r such that χ1 = |Tr1|;
if χ1 > 0

if |T11| ≥ δχ1

1× 1 pivot, P1 = I
else

find χr;
if χr|T11| ≥ δχ2

1

1× 1 pivot, P1 = I
elseif |Trr| ≥ δχr

1× 1 pivot; choose P1 so that (P1TP
T
1 )11 = Trr

else
2× 2 pivot; choose P1 so that (P1TP

T
1 )21 = Tr1

end
end

end.
If we denote the 1× 1 or 2× 2 pivot block by E and write

P1TP
T
1 =

[
E CT

C T̂

]
,(42)

the first step of the factorization yields

P1TP
T
1 =

[
I

CE−1 I

] [
E

T̄

] [
I E−1CT

I

]
,(43)
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where T̄ = T̂ − CE−1C. The algorithm continues by applying this procedure to
T̄ . Note that the χi are generally changed by each stage of the factorization. The
submatrix CE−1 contains the subdiagonals in the first one or two columns of the L
factor.

Bunch and Kaufman [2] show that for the particular choice δ = (1 +
√

17)/8, we
have

max
i,j

|T̄ij | ≤ (2.57) max
i,j

|Tij |,(44)

so there is a modest bound on element growth during each stage of the factorization.
When applied to canonical matrices, the Bunch–Kaufman procedure selects pivots

of specific types and produces a reduced submatrix that is also canonical. We state
these results in the following two theorems, whose proofs are tedious and are relegated
to Appendices A.1 and A.2, respectively.

Theorem 6.1. Let one step of the Bunch–Kaufman factorization be applied to a
canonical matrix that is not degenerate. Then

(a) The pivot block E will be either
(i) a 1× 1 block, chosen from among the diagonal elements of Λ, or
(ii) a 2×2 block, in which the off-diagonal element E12 is one of the elements

of B;
(b) The matrix remaining after the elimination is canonical and the absolute

change in the elements of Λ is at most O(1);
(c) Using the notation from (42), we have that |C| = O(1), while

(i) |E| = O(µ−1) and |E−1| = O(µ) if E is a 1× 1 pivot and
(ii) |E| = O(1) and |E−1| = O(1) if E is a 2× 2 pivot.

Theorem 6.2. Let one step of the Bunch–Kaufman factorization be applied to a
degenerate canonical matrix. Then

(a) The pivot block E will be either
(i) a 1× 1 block, chosen from any of the diagonals (large or small), or
(ii) a 2× 2 block, in which all the elements are O(µ+ u);

(b) The matrix remaining after the elimination is canonical (not necessarily de-
generate) and the absolute change to the remaining matrix is O(µ+ u).

Because of Assumption 1, our initial matrix in (16a) is canonical. Barring patho-
logical growth in the remaining submatrices, one of Theorems 6.1 and 6.2 applies at
every stage of the Bunch–Kaufman factorization.

If B is square in the original matrix (corresponding to a nondegenerate linear
program), then the remaining matrices encountered at every stage of the factorization
are not degenerate. After a 1 × 1 pivot, the dimensions of B are unchanged, while a
2× 2 pivot shrinks B by exactly one row and column, so it remains square. When a
pivot causes B to disappear altogether, the reduced matrix has the form Λ +O(µ +
u). It follows that in the case of square B, Theorem 6.1 is sufficient to analyze the
entire factorization. The following result gives the backward error analysis for the
factorization in this case.

Corollary 6.3. Let the Bunch–Kaufman factorization be applied to a canonical
matrix T in which B is square. Then, for all sufficiently small µ, we obtain computed
factors L̂ and D̂ such that

L̂D̂L̂T = PTPT + P ∆̄PT ,(45)

where ∆̄ is a canonical error matrix associated with T .



204 STEPHEN WRIGHT

Proof. We prove the result by an induction argument on the dimension n̄ = m+n
of the matrix T . The induction is made slightly more complex than usual by the form
of the canonical matrix, notably, the presence of the square matrix B of dimension
m ≤ n.

For n̄ = 1, we must have m = 0 and so trivially P = 1, L̂ = 1, D̂ = T11.
Therefore, (45) holds with ∆̄ = 0.

For n̄ = 2, we have two cases m = 0 and m = 1. For m = 0, there are two
elements of magnitude Ω(µ−1) on the diagonal, while the off-diagonals are O(µ+ u).
Hence, a 1 × 1 pivot is chosen. If there is no pivoting, the first step of elimination
yields

L̂21 = T21/T11 + |T21/T11|O(u),

D̂11 = T11,

D̂22 = T22 − T 2
21/T11 + (|T22|+ |T 2

21/T11|)O(u).

Since L̂ has unit diagonals, we obtain the following by expanding the factors:

L̂D̂L̂T = T +

[
0 |T21|O(u)

|T21|O(u) |T 2
21/T11|O(u) + |T22|O(u)

]
= T + ∆̄,

where

|∆̄| ≤ |T |O(u) +O(u),

so ∆̄ is a canonical error matrix associated with T . The same logic applies if pivoting
occurs.

In the remaining case m = 1, the pivot is 2 × 2, we have L̂ = I, P = I, and
D̂ = T , and (45) holds trivially with ∆̄ = 0.

We now examine a canonical matrix of dimension n̄ > 2 in which B is square
and study the first stage of the factorization. Because the matrix is canonical and
nondegenerate, Theorem 6.1 applies. For some permutation matrix P1, we have from
(42) and (43) that the first stage yields partial factors L̂1 and D̂1, where

L̂1 =

[
I 0

CE−1 + ∆L I

]
, D̂1 =

[
E 0
0 T̄ + ∆D

]
,(46)

and

|∆L| ≤ |C||E−1|O(u), |∆D| ≤ |T̂ |O(u) + |C||E−1||C|TO(u) = |T̂ |O(u) +O(u).

Note that ∆D is a canonical error matrix corresponding to T̂ . By the proof of Theorem
6.1, the (2, 2) submatrix of D̂1 is canonical, so we use the inductive hypothesis to
deduce that the L̂, D̂ factors of this submatrix satisfy

L̂2D̂2L̂
T
2 = P2(T̄ + ∆D)PT

2 + P2∆̄2P
T
2(47)

for some permutation matrix P2 and some canonical error matrix ∆̄2 corresponding
to (T̄ + ∆D). We compose the overall factors of T as follows:

L̂ =

[
I 0

P2(CE
−1 + ∆L) L̂2

]
, D̂ =

[
E 0

0 D̂2

]
, P =

[
I 0
0 P2

]
P1.
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Now,

L̂D̂L̂T =

[
E (C + ∆2)

TPT
2

P2(C + ∆2) L̂2D̂2L̂
T
2 + P2CE

−1CTPT
2 + P2∆1P

T
2

]
,(48)

where

∆1 = ∆LC
T + C∆T

L + ∆LE∆T
L, ∆2 = ∆LE,

and so

|∆1| ≤ |C||E−1||C|TO(u) = O(u), |∆2| ≤ |C||E−1||E|O(u) = O(u).

By substituting (47) and (46) into (48), we obtain

L̂D̂L̂T =

[
E (C + ∆2)

TPT
2

P2(C + ∆2) P2

[
T̄ + ∆D + CE−1CT + ∆1 + ∆̄2

]
PT

2

]
=

[
E (C + ∆2)

TPT
2

P2(C + ∆2) P2

[
T̂ + ∆D + ∆1 + ∆̄2

]
PT

2

]
= PTPT + P ∆̄PT ,

where

∆̄ = PT
1

[
0 ∆T

2

∆2 ∆D + ∆1 + ∆̄2

]
P1.

Since |∆1| = O(u), |∆2| = O(u), and ∆D and ∆̄2 are canonical error matrices
corresponding to T̂ , we have

|∆̄| ≤ PT
1

[
0 |∆2|T
|∆2| |∆D|+ |∆1|+ |∆̄2|

]
P1

≤ O(u) + PT
1

[
0 0

0 |T̂ |
]
P1O(u)

≤ O(u) + |T |O(u).

Hence, ∆̄ is a canonical error matrix corresponding to T .
We complete the proof by noting that Theorem 6.1 can be applied to the remaining

matrix because it is also canonical and nondegenerate.
Given the system Tz = d and the data P , L̂, and D̂ from the factorization,

the computed solution ẑ is found by performing two vector permutations with P ,
triangular substitutions with L̂ and L̂T , and a blockwise inversion of D̂. The 2 × 2
diagonal blocks in D̂ can be handled by the Gaussian elimination procedure outlined
in the following technical lemma, which is proved in Appendix A.3. It is easy to show
that the elements of the pivot block E satisfy the condition (49).

Lemma 6.4. Consider the 2 × 2 linear system Ey = g in which E is symmetric
with

|E11| ≤ δ|E12|, |E11||E22| ≤ δ2|E12|2(49)

for some δ ∈ (0, 1). Then if we compute the solution by applying Gaussian elimination
to the permuted system [

E12 E22

E11 E12

] [
y1

y2

]
=

[
g2
g1

]
,(50)
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the computed solution ŷ satisfies

(E + ∆E)ŷ = g,

where

|∆E | ≤ |E|O(u).(51)

The additional error that is introduced during recovery of the solution with the
computed factors L̂, D̂, and L̂T is quantified in the next result.

Lemma 6.5. Suppose the assumptions and notation of Corollary 6.3 hold. Then
the computed solution ẑ to the system L̂D̂L̂T z = Pd satisfies

(L̂D̂L̂T + P ∆̂PT )ẑ = Pd,(52)

where ∆̂ is a canonical error matrix associated with T .
Proof. From standard results for triangular substitution, the computed solution

of L̂za = Pd satisfies

(L̂+ ∆̂L1)ẑa = Pd, |∆̂L1| ≤ |L̂|O(u).

A similar result holds for triangular substitution with the transpose L̂T .
For the solution of D̂zb = ẑa, we note that D̂ is block-diagonal with 1 × 1 and

2× 2 blocks. For the 2× 2 pivot blocks that arise in the Bunch–Kaufman procedure,
the assumptions of Lemma 6.4 hold, so the computed solution ŷ of a 2× 2 subsystem
Ey = g satisfies

(E + ∆E)ŷ = g, |∆E | = |E|O(u).(53)

When E is a 1 × 1 block, the estimate (53) holds trivially. Hence, the computed
solution ẑb of D̂zb = ẑa satisfies

(D̂ + ∆̂D)ẑb = ẑa, |∆̂D| ≤ |D̂|O(u).

By combining the error expressions for the three component systems, we find that
our computed solution ẑ satisfies

(L̂+ ∆̂L1)(D̂ + ∆̂D)(L̂+ ∆̂L2)
T ẑ = Pd.

Multiplying the matrix products, we find that (52) is satisfied with

P |∆̂|PT ≤ |L̂||D̂||L̂|TO(u) +O(µu + u2).

From our earlier discussions on the composition of L̂ and D̂, it is easy to see that the
absolute matrix product |L̂||D̂||L̂|T contains all O(1) elements, except for the large
diagonals, which occur in the same positions as in PTPT . Hence P ∆̂PT is a canonical
error matrix corresponding to PTPT , and our proof is complete.

We can now summarize the effects of roundoff error on the entire solution process
for (16) in the following theorem.

Theorem 6.6. Suppose T is a canonical matrix in which B is square. Then,
for all sufficiently small µ, the Bunch–Kaufman factorization followed by the solution
process outlined above satisfies Condition 1.
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Proof. As we noted immediately following Condition 1, the actual right-hand side
may differ by terms of O(u) from its “theoretical” value d. From (52), the computed
solution ẑ to Tz = d satisfies

(L̂D̂L̂T + P ∆̂PT )ẑ = d̂.

Substituting from (45), we obtain

(PTPT + P ∆̄PT + P ∆̂PT )ẑ = P d̂,

so Condition 1 follows when we set ∆ = ∆̄ + ∆̂.
We have shown that in the case of a nondegenerate linear program, the procedure

based on applying Bunch–Kaufman to (16a) leads to approximate steps (∆̂λ, ∆̂x, ∆̂s)
that satisfy the conditions of Theorem 4.1. The estimate (20) implies that during
the final iterations of a primal-dual algorithm, near-unit steps can be taken along
these directions without leaving the nonnegative orthant. Moreover, if the centering
parameter σ is small or zero, a large reduction in the duality gap µ can be expected.
In the extreme case σ = 0 (the “affine-scaling” choice), linear convergence with a rate
constant of O(u) can be attained if the actual step length is close to α̂∗. Most practical
algorithms choose the step length to be a fixed multiple — typically .95 or .9995 —
of α̂∗, and indeed these methods often converge rapidly during their final stages. For
algorithms that use a more theoretically justifiable definition of step length the story
is not, unfortunately, this simple. In [22, section 4], for instance, extra restrictions are
applied to α to ensure that (12) and (14) continue to hold at the next iterate. These
restrictions may result in α being much smaller than one. This case is analyzed in
[22, section 4], so we do not repeat it here.

Finally, we note that the lower triangle L produced by the Bunch–Kaufman fac-
torization may contain elements that are much larger than those of the original matrix
T . This phenomenon has been scrutinized in a recent report by Ashcraft, Grimes,
and Lewis [1], who observe that it leads to convergence difficulties in a nonlinear pro-
gramming code. In the context of our canonical matrix of Theorem 6.1, this blowup
problem does not occur. As we show in part (c) of the theorem, the contribution
CE−1 made by one step of Bunch–Kaufman is either O(µ) or O(1). The blowup
problem may occur, however, when we have a degenerate canonical matrix as in The-
orem 6.2. We only have to deal with matrices like this when the linear program itself
is degenerate, and in this case there are other, more serious difficulties to face, as we
discuss in section 9.

7. The Bunch–Parlett factorization. The Bunch–Parlett searches the entire
remaining matrix for each pivot, not just one or two columns. The pivot selection
procedure is as follows.

Choose δ ∈ (0, 1), χoff = |Trs| = maxi6=j |Tij |, χdiag = |Tpp| = maxi |Tii|;
if χdiag ≥ δχoff

s = 1 and choose P1 so that (P1TP
T
1 )11 = Tpp

else
s = 2 and choose P1 so that (P1TP

T
1 )21 = Trs

end.
The elimination step is identical to Bunch–Kaufman, and the process of using the
LDLT factorization to solve the system Tz = d is the same as in the preceding
section. As in Bunch–Kaufman, the value δ = (1+

√
17)/8 leads to the modest bound

of 2.57 on element growth at each stage.
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When applied to canonical matrices, the Bunch–Parlett factorization proceeds in
three stages.

1. All the diagonal elements of Λ are selected as 1× 1 pivots.
2. 2× 2 pivots of the type described in Theorem 6.1(a) are chosen.
3. When no more 2 × 2 pivots like this are available and the remaining matrix

contains only elements of size O(µ + u), a combination of small 1 × 1 and
2× 2 pivots is used to complete the factorization process.

We prove this assertion in the following lemma.

Theorem 7.1. Suppose that the Bunch–Parlett procedure is applied to a canonical
matrix. Then the factorization proceeds according to the three-stage outline above. If
the canonical matrix has B square and is nonvacuous, the factorization is completed
by stages 1 and 2; stage 3 is vacuous.

Proof. Assuming that Λ is not vacuous, we have at the pivot selection step that
χoff = O(1) and χdiag = Ω(µ−1). The pivot element will therefore be one of the
large diagonals corresponding to Λ. The remaining matrix is updated by subtracting
CE−1C, where clearly C = O(1) and E−1 = O(µ). Hence, the remaining matrix
retains canonical form.

We can apply this argument inductively until all the diagonals in Λ are exhausted.
At the end of stage 1, the remaining matrix has the form[

0 B
BT 0

]
+O(µ+ u).(54)

Stage 2 now begins. If B is not vacuous, we have χoff = O(1) and χdiag = O(µ+ u).
In fact, by the assumption B = Ω(1), we have χoff = Ω(1), and the element Trs that
achieves the maximum comes from B. The 2× 2 block with off-diagonal element Trs
is selected as the pivot. After the elimination step, the size of B is reduced by one
row and column. The proof of Theorem 6.1(b) can be applied again here to show that
the remaining matrix is also canonical, so 2× 2 pivots of this type will continue to be
selected until B vanishes.

The number of steps in stage 2 is min(rows(B), columns(B)). At the end of this
stage, the remaining matrix is square with dimension |rows(B) − columns(B)| and
all its elements have size O(µ + u). In stage 3, both 1 × 1 and 2 × 2 pivots may
be used to factor this matrix. If B is square, the factorization is complete after
stage 2.

The other major results of section 6 continue to hold when the Bunch–Parlett
algorithm is used instead of Bunch–Kaufman; only trivial adjustments to the analysis
in section 6 and Appendix A.1 are necessary. We summarize the conclusions in the
following theorem.

Theorem 7.2. Suppose T is a canonical matrix in which B is square. Then,
for all sufficiently small µ, the Bunch–Parlett factorization followed by the solution
process outlined in section 6 satisfies Condition 1.

8. The sparse Bunch–Parlett factorization. Several authors (notably Fourer
and Mehrotra [5]) have proposed a sparse variant of the Bunch–Parlett factorization
that compromises between maintaining sparsity and limiting element growth in the
remaining matrix. We outline the pivot selection procedure as described by [5], with
a slight modification noted, below.

For each index i = 1, 2, . . . , n̄ we define the degree ni to be the number of off-
diagonal nonzeros in row i. We also define an estimate of the joint nonzero content
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of rows i and j by

n̂ij = min(ni + nj − 4, n̄− 2).

A 2× 2 pivot block

E =

[
Tii Tij
Tij Tjj

]
(55)

is termed oxo if both of Tii and Tjj are zero, tile if one of Tii and Tjj is zero, and full
if both of Tii and Tjj are nonzero. We define a cost associated with using (55) as the
pivot block in each of these three cases by

oxo: (ni − 1)(nj − 1),
tile: (ni − 1)(n̂ij + 1) if Tii = 0, (nj − 1)(n̂ij + 1) if Tjj = 0,
full: n̂2

ij .

The cost is an estimate of the fill-in associated with using (55) as the pivot block.
For prospective pivots, we define stability criteria in terms of the usual constant

δ ∈ (0, 1) and the off-diagonal norms χi defined in (29). Any 1× 1 pivot must satisfy

|T−1
ii |χi ≤ 2/δ,(56)

while a 2× 2 pivot (55) must have∣∣∣∣∣
[
Tii Tij
Tij Tjj

]−1
∣∣∣∣∣
[
χi
χj

]
≤
[

1/δ
1/δ

]
.(57)

The pivot selection procedure is as follows.
for r = 1, 2, . . .

for i with ni = r
consider Tii with degree r;
if any of these elements satisfy (56)

accept as a 1× 1 pivot and exit;
else label it as unstable;

end

for unstable pivots Tii from the previous loop
consider 2× 2 pivots involving Tii, with costs at most

(r − 1)2, (r − 1)(2r − 3), and (2r − 4)2

for oxo, tile, and full pivots, respectively;
if any of these blocks satisfy (57)

accept as a 2× 2 pivot and exit;
end

end.
The pivot selection pattern for the sparse Bunch–Parlett algorithm is essentially

the same as for the Bunch–Kaufman algorithm, as described in Theorems 6.1 and
6.2. We prove this result in Appendix A.4 since the analysis differs a little from the
Bunch–Kaufman case.

Theorem 8.1. The results of Theorems 6.1 and 6.2 hold when the sparse Bunch–
Parlett factorization is used in place of the Bunch–Kaufman procedure.

To obtain this result, we modified the acceptance condition (56) for 1× 1 pivots.
In the description of [5], the right-hand side is 1/δ rather than 2/δ. With the original



210 STEPHEN WRIGHT

choice, the sparse Bunch–Parlett algorithm applied to a degenerate canonical matrix
could allow another type of pivot: a 2 × 2 pivot in which one diagonal is from Λ
and the other has size O(µ + u). A pivot of this type is poorly conditioned and will
generally lead to instability during the blockwise inversion of D̂.

The other major results of section 6 also continue to hold when the sparse Bunch–
Parlett algorithm is used in place of Bunch–Kaufman. We summarize the conclusions
in the following theorem.

Theorem 8.2. Suppose T is a canonical matrix in which B is square. Then, for
all sufficiently small µ, the sparse Bunch–Parlett factorization followed by the solution
process outlined in section 6 satisfies Condition 1.

9. The degenerate case. When the linear program (1), (2) is degenerate —
|B| 6= m — the three factorization procedures can no longer run to completion with
just the two kinds of pivots described in Theorem 6.1. The nonsquare shape of B in
the matrix (34) means that pivots of size O(µ + u) — either 1 × 1 or 2 × 2 — are
used at some point in the factorization process. The factorizations fail only if these
pivots are exactly zero, which happens often on small problems but not otherwise.
The more common outcome is that the interior-point algorithm makes only slow or
erratic progress after µ has achieved a certain (small) value. In this section we sketch
the reasons for this outcome.

In all the factorizations above, the large diagonal elements in X−1
N SN are used

as 1× 1 pivots. Even though these pivots are not necessarily used before any others
(except in the Bunch–Parlett algorithm), the factorizations behave as if they were
solving the system (16) in the equivalent, partitioned form[

NXNS
−1
N NT B

BT −X−1
B SB

] [
∆λ

∆xB

]
(58)

=

[ −rb +NS−1
N XN [−(rc)N + sN − σµX−1

N e]
−(rc)B + sB − σµX−1

B e

]
,

∆xN = X−1
N SN

[
(rc)N − sN + σµX−1

N e+NT∆λ
]
.(59)

The coefficient matrix in (58) is an O(µ) perturbation of the matrix[
0 B
BT 0

]
.(60)

Since B is well conditioned by Definition 5.1, the matrix in (60) has 2 min(|B|,m)
nonzero singular values of magnitude Ω(1). In the nondegenerate case, (60) is well
conditioned. Otherwise, it has |m− |B|| zero singular values. When |B| < m, the null
space of (60) is spanned by [

Z̄
0

]
,(61)

where Z̄ is an m× (m− |B|) matrix of full rank such that BT Z̄ = 0. When |B| > m,
the null space of (60) is spanned by the matrix[

0

Ẑ

]
,(62)
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where Ẑ spans the null space of B. For small µ, these null spaces are not altered much
by the perturbation of size O(µ) that is present in the matrix (58) because the nonzero
singular values of (60) are well separated from zero. Perturbations in the solution of
(58) due to roundoff will occur mainly in the space of small singular values. Hence,
when |B| < m, the perturbations occur mostly in the range space of the matrix (61),
that is, in the components of ∆λ. Similarly, when |B| > m, the perturbations occur
in the range space of the matrix (61), that is, in the components of ∆xB .

The main source of difficulty is inaccuracy in the computed residual vectors rb
and rc which, as mentioned above, contain errors of O(u). In the case |B| > m,
these perturbations are magnified by the inverses of the small singular values, usually
leading to errors of size about O(u/µ) in the components of ∆xB . The large relative
errors in ∆xB induce large relative errors in ∆sB through the formula (16b). The
step length to the boundary α∗ may therefore be sharply curtailed because of the
nonnegativity requirements (17a). In the case |B| < m, the large relative errors in
∆λ induce errors in ∆xN through the formula (59), while these errors in turn induce
large relative errors in ∆sN through (16b). The step length may again be curtailed
as a result.

Errors from sources other than the vector r are less significant.

If we have a strictly feasible starting point (see (13)), then we can simply set r = 0
throughout the algorithm. In this case, we can fix r at zero in the computations and
avoid the problem above. It is usually not easy to find such a starting point, however,
so some thought should be given to other ways of dealing with the problem.

One option is to simply terminate the algorithm when it stalls, declaring success if
both µ and r are small. This option works well for most purposes since stalling usually
occurs only after µ is reduced to O(u), by which time the problem has usually con-
verged to acceptable accuracy. Fourer and Mehrotra [5] report that the convergence
criteria are usually satisfied before the ill effects of roundoff are seen. Our testing in
section 10 allows a similar conclusion.

A second option is to switch to a termination procedure when the interior-point
algorithm stalls. A finite termination procedure (see, for example, Ye [24]) or crossover
to the simplex method (Megiddo [13]) could be activated.

A third option is simply to fix r at zero in the computations once it has reached
the O(u) level, because at this stage our current point is feasible to within the limits of
floating-point arithmetic. By doing so, we are effectively introducing a perturbation
into the problem to freeze the infeasibility at its current level. This perturbation has
an interesting effect: it moves the solution to a particular vertex of the previously
optimal face, changing the B ∪ N partition appropriately. If we continue to run the
interior-point algorithm to higher accuracy, it eventually converges to this vertex,
but only after going through many more iterates (and taking some sharp turns in
the process). The result of this process is similar to what we would achieve with a
crossover to simplex, but the computational cost would generally be much higher.

10. Computational experiments. We report here on some computational ex-
periments that demonstrate the effects described above. Our testbed algorithm is the
infeasible-interior-point path-following algorithm described in Wright [21]. In exact
arithmetic, this algorithm achieves superlinear convergence because it eventually al-
ways takes affine-scaling steps (σ = 0 in (5)) with step length α approaching one.
This algorithm performs well on practical problems, but is not as fast as codes that
use the Mehrotra predictor-corrector heuristic, for which no solid convergence theory
exists, except in the nondegenerate case. The asymptotic behavior in finite precision
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is quite similar for the two algorithms.
To show that the finite-precision effects are not confined to “nice” problems, we

generate problems with fairly wide variations in the components of A, x∗B , and s∗N .
The matrix A is dense and random, with elements defined by

A1j = τ106τ−3, j = 1, . . . , n,

Aij = (τ − .5)106τ−3, i = 2, . . . ,m, j = 1, . . . , n,

where every instance of τ is selected from a uniform distribution on the interval [0, 1].
(We choose all the elements in the first row of A to be positive to ensure that the
feasible region is bounded.) We control the size of the index sets B and N (to control
the amount of degeneracy) and set

N = {1, 2, . . . , |N |}, B = {1, 2, . . . , n}\N .

We choose a particular solution (λ∗, x∗, s∗) by setting

λ∗ = e, s∗B = 0, x∗N = 0,

s∗i = 104τ−2, i ∈ N , x∗i = 103τ−1, i ∈ B,

where each τ is as before. The vectors b and c are determined by the choices of A
and (λ∗, x∗, s∗).

The LAPACK Bunch–Kaufman factorization routines dsytrf and dsytrs are used
to solve (16a). These routines (and the rest of our code) use double-precision arith-
metic, giving u ≈ 10−14 on the SPARC-5 on which these results were obtained.

We report on problems with m = 6, n = 12. (In problems smaller than this, ex-
actly zero pivots often occur in degenerate cases, leading to breakdown.) Termination
occurs when µ ≤ 10−30 — an artificially stringent criterion, chosen to give us a clear
look at asymptotic effects.

The first result is for a nondegenerate problem, for which |B| = m = 6. Table
1 shows the sizes of µ and ‖r‖ on each iterate. For the reasons that we outlined
immediately following Condition 1, ‖r‖ stabilizes at a magnitude of O(u). The duality
gap µ does not converge subquadratically (as it would in exact arithmetic) but rather
exhibits extremely fast linear convergence, with a rate constant of about 10−10. This
is exactly the effect predicted by formula (21) for the affine-scaling steps that are
taken on the last four iterations.

To see that the pivots have the properties predicted by Theorem 6.1, we examine
the matrix D from the Bunch–Kaufman factorization. Table 2 shows D at iteration
17, when µ ≈ 10−7. As expected, there are six 1× 1 pivots of magnitude Ω(µ−1) and
six 2 × 2 pivots in which the diagonals are tiny and the off-diagonals are Ω(1). The
same structure is present in D at every iteration after iteration 15.

Our second example is for a dual degenerate problem with |B| = 8 > m. As
can be seen from Table 3, the algorithm achieves fairly high accuracy after about 20
iterations, but no further improvement can be made after that point. The behavior
is consistent with the discussion of section 9. It suggests that the results of section 6
are “tight,” in that we cannot prove that “useful” search directions are obtained for
arbitrarily small µ.

Examination of the D factor for the second example (Table 4) shows that the
pivot pattern is in line with the predictions of Theorems 6.1 and 6.2. Together, these
results imply that there are exactly min(m, |B|) of the stable 2 × 2 pivots with an
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Table 1

Nondegenerate problem: m = 6, n = 12.

k log10 µk log10 ‖rk‖1 Affine step?
1 5.4 3.1
2 4.7 2.3
3 4.3 1.6
4 3.8 0.8
5 3.1 −12.0
...

...
...

15 −3.2 −14.0
16 −4.6 −13.7 ∗
17 −7.2 −14.4 ∗
18 −12.3 −14.1 ∗
19 −22.1 −13.8 ∗
20 −33.3 −14.2 termination

Table 2

The D factor at iteration 17 of the nondegenerate test problem (∗ = magnitude less than 10−6).

Row/Column Pivot block
1,2 ∗ .94(1)

.94(1) ∗
3,4 ∗ −.91(2)

−.91(2) ∗
5 .26(7)
6 .30(11)
7 .33(10)
8 .47(7)

9,10 −.30(−5) .71(2)
.71(2) ∗

11,12 −.27(−3) −.15(2)
−.15(2) ∗

13,14 ∗ −.31(0)
−.31(0) −.49(−5)

15,16 ∗ .16(0)
.16(0) ∗

17 .27(4)
18 .32(6)

Table 3

Dual degenerate problem: m = 6, n = 12, |B| = 8.

k log10 µk log10 ‖rk‖1 Affine step?
1 5.4 3.1
...

...
...

19 −6.0 −13.8
20 −9.8 −14.1 ∗
21 −13.6 −14.2 ∗
22 −14.8 −13.8 ∗
23 −15.4 −13.2 ∗

...
...

...
99 −17.5 −13.5

100 −17.5 −13.4
...

...
...
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Table 4

The D factor at iteration 17 of the degenerate test problem with m = 6, n = 12, |B| = 8 (∗ =
magnitude less than 10−6).

Row/Column Pivot block
1,2 ∗ .95(1)

.95(1) ∗
3,4 ∗ −.92(2)

−.92(2) ∗
5,6 ∗ .26(2)

.26(2) ∗
7 .86(23)
8 .85(18)
9 .55(20)
10 .29(17)

11,12 ∗ .71(2)
.71(2) ∗

13,14 ∗ −.30(0)
−.30(0) ∗

15,16 ∗ .15(0)
.15(0) ∗

17 .20(−13)
18 −.60(−19)

off-diagonal from B and |N | = n−|B| of the large 1×1 pivots. Together, these stable
pivots account for

2 min(m, |B|) + |N | = n+m− |m− |B||(63)

stages of the factorization, so unstable pivots are used on the remaining submatrix
whose dimension is |m− |B||. In Table 4, we see that the last two 1 × 1 pivots are
unstable, as expected. As we described in the first part of section 9, the errors in
∆̂xB and ∆̂sB are preventing further progress. On iteration 100, the computed affine
step has ‖∆̂xB‖∞ = .17(6), while its exact counterpart would have ‖∆xB‖∞ = O(µ).

By comparing components of ∆̂sB with sB , we find that the step to the boundary
is sharply curtailed by the restriction sB + α∆̂sB ≥ 0 (cf. (23)). The remaining
components of the step do not contain deleterious errors; we have

‖∆̂xN‖∞ = .59(−18), ‖∆̂λ‖∞ = .66(−14), ‖∆̂sN‖∞ = .11(−12).

Finally, we consider a primal degenerate problem with |B| = 4 < m. The iteration
schedule in Table 5 shows similar behavior to the dual degenerate problem. The D
factor from iteration 100 is shown in Table 6. All pivots are stable except for the last
two 1× 1 blocks, which again matches the prediction (63). As discussed in section 9,

the deleterious errors occur in the subvector ∆̂λ, so errors are induced in ∆̂sN and

∆̂xN through formulas (59) and (16b). On iteration 100, we have ‖∆̂λ‖∞ = .32(5)

and ‖∆̂sN‖∞ = .30(7) for the affine-scaling step. The components ∆̂xB and ∆̂sB are
not affected; their ∞-norms are .17(−18) and .51(−12), respectively.

Appendix A. Proofs of theorems from sections 6 and 8.

A.1. Proof of Theorem 6.1. We prove (a) of Theorem 6.1 by systematically
excluding the other possible choices for pivots.

(iii) The pivot is 1 × 1 and is a diagonal element from either the (1, 1) or (2, 2)
blocks of the canonical matrix. Inspection of the Bunch–Kaufman algorithm
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Table 5

Primal degenerate problem: m = 6, n = 12, |B| = 4.

k log10 µk log10 ‖rk‖1 Affine step?
1 5.4 3.1
...

...
...

15 −5.3 −13.9
16 −8.8 −13.7 ∗
17 −13.7 −14.2 ∗
18 −14.0 −11.6 ∗

...
...

...
99 −17.6 −13.9

100 −17.6 −14.0
...

...
...

Table 6

The D factor at iteration 17 of the degenerate test problem with m = 6, n = 12, |B| = 4
(∗ =magnitude less than 10−6).

Row/Column Pivot block
1,2 ∗ .95(1)

.95(1) ∗
3 .49(23)
4 .53(19)
5 .58(19)
6 .27(20)
7 .53(9)
8 .12(21)

9,10 ∗ .71(2)
.71(2) ∗

11,12 ∗ −.15(2)
−.15(2) ∗

13 .25(18)
14 .76(17)

15,16 ∗ −.16(1)
−.16(1) ∗

17 −.15(−8)
18 −.52(−18)

shows that T11 is chosen as pivot if either

χ1 ≤ |T11|
δ

or χ1 ≤
√
χr|T11|

δ
.(A.64)

Now, since χr is the maximum off-diagonal in some column of (26), we have
χr = O(1), while since T11 comes from either the (1, 1) or (2, 2) block of (26),
we have |T11| = O(µ+ u). Since δ ∈ (0, 1) is fixed, we have from (A.64) that

χ1 = O(µ1/2 + u1/2).(A.65)

Since χ1 is the magnitude of the largest off-diagonal in some row/column of
(26), we have that χ1 is the ∞-norm of some row or column of B. But (A.65)
is incompatible with B = O(1) and κ(B) = O(1). Hence |T11| from the (1, 1)
or (2, 2) blocks cannot be used as a pivot.
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A similar argument holds when Trr is chosen as a pivot, where Trr is one of
the small diagonals.

(iv) The pivot is 2 × 2 and involves at least one element from Λ. Since all the
off-diagonals in (26) are O(1), the quantities χi, i = 1, 2, . . . , n̄ are all O(1).
A 2× 2 pivot with diagonal elements T11 and Trr must have

|T11| ≤ δχ1, |Trr| ≤ δχr,

which implies that T11 and Trr are both O(1). Since all the diagonals of Λ
are Ω(µ−1), they cannot be candidates for T11 and Trr.

(v) The pivot is 2× 2 and the pivot block is drawn either entirely from the (1, 1)
block of (26) or entirely from the (2, 2) block. In this case, T1r — the element
for which |T1r| = χ1 — is O(µ + u). Since T1r has the largest magnitude in
its column of (26) and since its column includes either a row or column of B,
we have that one of the rows or columns of B is O(µ + u). As in (iii), we
have a contradiction, since this estimate is incompatible with B = Ω(1) and
κ(B) = O(1).

This completes the proof of part (a).
We turn to (b), examining the effects of one step of elimination performed with

pivot selection corresponding to the two cases (i) and (ii) of Theorem 6.1(a). For (i),
suppose the (i, i) element of Λ is chosen as the pivot. After symmetric permutation
of the canonical matrix to place the pivot in the (1, 1) position, we obtain

[
1

P̃

]
(Λ +O(µ+ u))ii NT

·i 0 0

N·i 0 B Ñ

0 BT 0 0

0 ÑT 0 Λ̃


[

1

P̃T

]
+O(µ+ u),

where P̃ is some permutation matrix, N·i denotes the ith column of N , Ñ is obtained
fromN by removingN·i, and Λ̃ is obtained from Λ by removing its ith row and column.
Since |(Λ +O(µ+ u))−1

ii | = O(µ), the submatrix that remains after elimination is

P̃

 0 B Ñ

BT 0 0

ÑT 0 Λ̃

 P̃T − P̃

 N·i
0

0

Λ−1
ii

[
NT
·i 0 0

]
P̃T +O(µ+ u)

= P̃

 0 B Ñ

BT 0 0

ÑT 0 Λ̃

 P̃T +O(µ+ u).(A.66)

It is easy to see that (A.66) is canonical, so our result is proved for case (i).
For case (ii), the proof is a little messier. Suppose the diagonals of the 2 × 2

pivot are the (i, i) element of E1 and the (j, j) element of E2. After symmetric
rearrangement to put this pivot in the upper left corner, (26) becomes

[
I

P̂

]


0 Bij 0 Bi·;j Ni·
Bij 0 BT

·j;i 0 0

0 B·j;i 0 B̂ N̂

BT
i·;j 0 B̂T 0 0

NT
i· 0 N̂T 0 Λ


[
I

P̂T

]
+O(µ+ u),
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where
- P̂ is some permutation matrix,
- Ni· is the ith row of N ,
- N̂ is N with Ni· removed,
- Bi·;j is the ith row of B with its jth element removed,
- B·j;i is the jth column of B with its ith element removed,

- B̂ is B with its ith and jth column removed.
By the choice of Bij , it is either the largest element in its row or the largest

element in its column of B. From our assumptions on B, we deduce that |Bij | = Ω(1).
Denoting the pivot block by E, we have

E = Bij

[
0 1

1 0

]
+O(µ+ u), E−1 =

1

Bij

[
0 1

1 0

]
+O(µ+ u).(A.67)

Therefore, the elimination step yields the remaining matrix

P̂

 0 B̂ N̂

B̂T 0 0

N̂T 0 Λ

 P̂T − 1

Bij
P̂

 0 B·j;i
BT
i·;j 0

NT
i· 0

[ 0 1

1 0

][
0 Bi·;j Ni·

BT
·j;i 0 0

]
P̂T

+O(µ+ u)

= P̂

 0 B̂ N̂

B̂T 0 0

N̂T 0 Λ

 P̂T +O(µ+ u),(A.68)

where

B̄ = B̂ − 1

Bij
B·j;iBi·;j , N̄ = N̂ − 1

Bij
B·j;iNi·.

It is obvious that (A.68) satisfies Definition 5.1, except possibly for the conditioning
of the remaining matrix B̄. This matrix is obtained by pivoting the (i, j) element of
B to the (1, 1) position and then doing one step of Gaussian elimination. In fact, we
are doing partial pivoting since, as noted above, Bij is the largest element in either
its row or its column. Hence, the conditioning of the reduced submatrix B̄ is unlikely
to differ much from κ(B), so it is reasonable to assert that κ(B̄) = O(1).

We have shown that our stated result holds for both cases (i) and (ii), so our
proof of part (b) is complete.

For part (c), note that C = O(1) whether the pivot block is 1× 1 or 2 × 2. For
1× 1 pivots, we have |E| = Ω(µ−1) and |E−1| = Ω(µ). For 2× 2 pivots, we have from
(A.67) and |Bij | = Ω(1) that |E| = O(1) and |E−1| = O(1).

A.2. Proof of Theorem 6.2. We prove (a) of Theorem 6.2 by again excluding
the other possible choice for a pivot.

(iii) The pivot is 2× 2 and contains at least one element from Λ. In a degenerate
canonical matrix, we have χi = O(µ+ u), i = 1, 2, . . . , n̄. A 2× 2 pivot with
diagonal elements T11 and Trr must have

|T11| ≤ δχ1, |Trr| ≤ δχr,

which implies that both diagonals are O(µ+u), so neither element can come
from Λ.
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In the case of either a 1×1 or 2×2 pivot made up of elements of size O(µ+u), we
can use the standard argument about element growth in Bunch–Kaufman (that is, the
argument that leads to (44)) to deduce the result (b). In the remaining case, where
the pivot is a single diagonal element from Λ, we have in the notation of (42) that
|C| = O(µ+ u) and |E| = Ω(µ−1). Hence, the update to the remaining submatrix is
bounded by

|C||E−1||C|T = O(µ(µ+ u)2),

which certainly has size O(µ+ u).

A.3. Proof of Lemma 6.4.
Proof. In floating-point arithmetic, the LU factorization of (50) yields the follow-

ing approximate LU factors:[
1 0

E11/E12 + δ1 1

]
,

[
E12 E22

0 E12 − E11E22/E12 + δ2

]
,(A.69)

where

δ1 =

∣∣∣∣E11

E12

∣∣∣∣O(u), δ2 = |E12|O(u) + |E11E22/E12|O(u).

It is well known that for triangular substitution applied to any triangular system
Uz = h, the computed solution ẑ satisfies (U +∆U )ẑ = h, where |EU | = |U |O(u). By
applying this observation to each of the matrices in (A.69), we find that the computed
solution ŷ of (50) satisfies

(A.70)[
1 0

E11/E12 + δ3 1

][
E12 + δ4 E22 + δ5

0 E12 − E11E22/E12 + δ6

][
ŷ1

ŷ2

]
=

[
g2

g1

]
,

where

δ3 = δ1 + |E11/E12|O(u) = |E11/E12|O(u),

δ4 = |E12|O(u),

δ5 = |E22|O(u),

δ6 = δ2 + (|E12|+ |E11E22/E12|)O(u) = |E12|O(u) + |E11E22/E12|O(u).

By multiplying out the coefficient matrix in (A.70), we obtain[
E12 + δ4 E22 + δ5

E11 + δ7 E12 + δ8

]
,(A.71)

where

δ7 = |E12|δ3 + |E11/E12| δ4 = |E11|O(u),

δ8 = |E11/E12| δ5 + |E22|δ3 + δ+ (|E12|+ |E11E22/E12|)O(u)

= |E11|O(u) + |E11E22/E12|O(u) + |E12|O(u)

= |E12|O(u).
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(The last equality follows from (49).) Hence, (A.71) can be written as[
0 1

1 0

]
(E + ∆E),

where ∆E satisfies the bound (51).

A.4. Proof of Theorem 8.1.
Proof. We start by proving the analog of Theorem 6.1(a). As in the earlier proof,

we systematically exclude the three other possible choices of pivots.
(iii) The pivot is 1 × 1 and is a diagonal element from either the (1, 1) or (2, 2)

blocks of (26). Then this pivot (Tii, say) will be O(µ+ u). According to the
stability criterion (56) we then have χi = O(µ+u), which implies that one of
the rows or columns of B is O(µ+u). However, this estimate is incompatible
with B = Ω(1) and κ(B) = O(1), so this kind of pivot cannot occur.

(iv) The pivot is 2× 2 and involves at least one diagonal element from Λ. First,
we show that we cannot have both diagonals from Λ. If this were the case,
then at least one of these diagonals (Tii, say) would have been considered as
a 1× 1 pivot at an earlier point in the algorithm. But if it was considered, it
would have been accepted since

|T−1
ii |χi = O(µ)O(1) = O(µ) ≤ 2/δ

for sufficiently small µ. Hence, at most one of the diagonals is from Λ.
Without loss of generality, suppose in (57) that Tii is from Λ while the re-
maining diagonal Tjj is O(µ+ u). In fact, we have

Tii = Ω(µ−1), Tjj = O(µ+ u), Tij = O(1),

and so ∣∣∣∣∣∣
[
Tii Tij

Tij Tjj

]−1
∣∣∣∣∣∣ = 1

|TiiTjj − T 2
ij |

∣∣∣∣∣
[

Tjj −Tij
−Tij Tii

]∣∣∣∣∣ .
Hence, from (57), we have∣∣∣∣∣

[
Tjj −Tij
−Tij Tii

]∣∣∣∣∣
[
χi

χj

]
≤ |TiiTjj − T 2

ij |
[

1/δ

1/δ

]
=

[
O(1)

O(1)

]
.

From the second row of this inequality, we have

χj ≤ 1

|Tii|O(1) = O(µ).

But χj is the ∞-norm of one of the rows or columns of B, so this estimate
contradicts our assumptions on B. Hence, this type of pivot cannot occur.

(v) The pivot is 2 × 2 and the pivot block E is drawn either entirely from the
(1, 1) block of (26) or entirely from the (2, 2) block. In this case, all elements
of E are O(µ+ u). From (57), we have as above that∣∣∣∣∣

[
Tjj −Tij
−Tij Tii

]∣∣∣∣∣
[
χi

χj

]
≤ |TiiTjj − T 2

ij |O(1).
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Taking the second row of this relation, we obtain

|Tij |χi + |Tii|χj ≤ |TiiTjj − T 2
ij |O(1) ≤ (|TiiTjj |+ |Tij |2

)
O(1),(A.72)

where, by definition, χi and χj are both nonnegative. Consider two cases.
When |Tij |2 ≥ |TiiTjj | we have from (A.72) that

|Tij |χi ≤ |Tij |2O(1) =⇒ χi = O(|Tij |) = O(µ+ u).

For the reasons outlined earlier, the assumptions on B are inconsistent with
this bound on χi, so this case cannot hold. For the other case |Tij |2 < |TiiTjj |,
we have

|Tii|χj ≤ |TiiTjj |O(1) =⇒ χj = O(|Tjj |) = O(µ+ u),

which is also disallowed by our assumptions. Hence, pivots of this type cannot
occur.

The proof of the remaining parts (b) and (c) of Theorem 6.1 is identical in this
case.

Turning now to the case of a degenerate canonical matrix and the analog of
Theorem 6.2, we start by showing that no 2×2 pivots may contain diagonal elements
from Λ.

Note that for a degenerate matrix, the off-diagonals, and hence the quantities χi,
all have size O(µ+ u). If the pivot is a 2× 2 block in which both diagonals are from
Λ, then one of them (Tii, say) must have been considered previously as a 1× 1 pivot.
But if it was considered, it would have been accepted since

|T−1
ii |χi = O(µ)O(µ+ u) ≤ 2/δ.

Hence, this type of pivot cannot occur.
If just one of the diagonals is from Λ, this diagonal element (Tjj , say) must not

have been considered earlier as a 1× 1 pivot, since then it would have been accepted
for the reason described above. Hence, the other pivot Tii, which has size O(µ+ u),
must have been considered as a 1 × 1 pivot and rejected. Because of (56), Tii must
satisfy

|Tii| < δ

2
χi.(A.73)

On the other hand, since the 2× 2 pivot is accepted, we must have∣∣∣∣∣
[

Tjj −Tij
−Tij Tii

]∣∣∣∣∣
[
χi

χj

]
≤ |TiiTjj − T 2

ij |
[

1/δ

1/δ

]
.(A.74)

Consider first the case of T 2
ij ≥ |TiiTjj |. Then from the first block row in (A.74), this

inequality implies that

|Tjj |χi ≤ |TiiTjj − T 2
ij |

1

δ
≤ 2T 2

ij

1

δ
.

Since |Tij | ≤ χi, we have

|Tjj | ≤ 2|Tij |1
δ

= O(µ+ u),
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which contradicts our assumption that Tjj has size Ω(µ−1). The remaining case has
T 2
ij < |TiiTjj |. From (A.74) and (A.73), we have

|Tjj |χi ≤ 2|TiiTjj |1
δ
< 2|Tjj |1

δ

δ

2
χi = |Tjj |χi,

which is a contradiction. Hence this kind of pivot — in which exactly one of the
diagonals comes from Λ — cannot occur either, and we are done.

For the analog of part (b) of Theorem 6.2, we have from (56) and (57) and the
definition of C and E in (42) that

|E−1CT | ≤ |E−1||CT | = O(1/δ) = O(1).

Hence, the update matrix CE−1CT is bounded as follows:

|CE−1CT | = ‖C‖O(1) = O(µ+ u),

giving the result.
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Abstract. For a queueing system with a low traffic intensity, the expected number of customers
in the queue is small. However, with a bursty input process, long queues may build up in a short
time. In this paper, we study light traffic queueing systems with bursty input processes. We study
the distributions of queue lengths, waiting times, busy and active periods, and their corresponding
expansions when the traffic intensity is small. Special attention goes to some conditional distribu-
tions of queue lengths, waiting times, and system-active periods. The expansions given in this paper
provide a potential asymptotic approach to the computation of various descriptors of queueing sys-
tems. The coefficients of those expansions reflect some important features of episodic queues. We
also report numerical results which give a graphic view of our approximations and of the effect of
the burstiness of the input and service processes on the queues.

Key words. queueing theory, Markov arrival processes, burstiness, quasi-birth-and-death pro-
cesses, algorithmic probability
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1. Introduction. In an episodic queue, (brief) periods of activity alternate with
(longer) periods during which there is no arrival. Episodic behavior may occur even
in queues with a very low traffic intensity. During the periods of activity, substantial
queue lengths may build up. Behavior of that type, which is common in queues with
“bursty” arrival processes, is inadequately measured by the traditional descriptors
such as the lower-order moments of the steady-state queue length and waiting time
distributions. For example, in an episodic queue, the queue length in the periods of
activity might be dramatically different from the queue length in the periods during
which there is no arrival. Hence the expected queue length may not reflect the average
queue lengths in either type of period.

Episodic queues can be seen in the banking industry. Consider a special type of
transaction for which a high volume of data arrives during certain periods of each day
(or month) while there is little work to be done for the rest of the day (or month). In
such systems, it is more useful to know what is happening during the peak periods of
transaction than the overall averages.

In this paper, we shall study a MAP/MAP/1 queue under particular episodic
conditions. Various conditional distributions and their asymptotic expansions will
be discussed and, through numerical examples and graphs, we shall show how they
describe useful features of the queue. We focus on the MAP/MAP/1 queue because
of its tractability by matrix-analytic methods. Also, the MAP is a convenient and
versatile tool for representing point processes with varying arrival rates. For a brief in-
troduction to the MAP (Markovian arrival process), see Appendix A. For discussions
of the properties of the Markovian arrival process and its use in queueing models, we
refer, e.g., to Lucantoni [4] or Neuts [5, 9].
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The approach in this paper is somewhat related to light traffic approximations, as
treated in Reiman and Simon [11, 12]. More recently, Blaszczyszyn, Frey, and Schmidt
[1] considered a light traffic approximation for Markov-modulated multiserver queues.
In this paper, factorial moment expansions are applied to derive approximation for-
mulas for various performance measures. Another paper by Van Den Hout and Blanc
[13] applied the power series algorithm to study queueing systems with a MAP. In
our research, the idea of series expansion is used as a mathematical tool in the anal-
ysis. The objective of this study is to show how an episodic queue performs. For this
purpose, various conditional performance measures are defined and analyzed.

The organization of the paper is as follows. After this introduction, we describe
a class of MAP s in which bursts of arrivals are separated by long intervals during
which no arrivals occur (section 2.) In section 3, the steady-state distribution of the
queue length is derived along with asymptotic expansions. These are used in sections
4 and 5 to obtain expressions and asymptotic expansions for various conditional queue
lengths and waiting time distributions. Section 6 is devoted to the study of the busy
and active periods of the queue. These reflect the interesting behavior of episodic
queues. In the final section, we present numerical examples and graphs to illustrate
the use of our descriptors of the queue and to show the quality of the approximations
inherent in the asymptotic expansions.

2. Modeling. We consider a single server queueing system whose input and
service processes are independentMAP s with coefficient matrices (D0(r), D1) of order
m1 and (C0, C1) of order m2, respectively. In order to specify the behavior at the
boundary, we assume that, at the beginning of each busy period, the service process
is restarted by selecting the service phase according to independent multinomial trials
with the probability vector θ.

We consider parameter matrices for the input process of the following form:

D0(r) =

 D01 D02

rD03 rD04 +D05

 and D1 =

 D11 D12

0 0

 ,(1)

where D01 and D11 are m11×m11 matrices and D04 and D05 are m12×m12 matrices.
D(r) = D0(r) + D1 is an irreducible infinitesimal generator. D05 is either a zero
matrix or an irreducible infinitesimal generator. r is a nonnegative parameter.

Our queueing system is denoted by MAP (r)/MAP/1 to emphasize its depen-
dence on the parameter r. In what follows, we shall consider small values of r.

We see that there are no arrivals during the m12 phases corresponding to the
second row of the matrix D(r). For these, there are possibly long intervals without
arrivals. By specifying the various submatrices of the parameter matrices D0(r) and
D1, we can model a variety of patterns of burstiness in the periods with arrivals and
of durations of the periods without.

The following terminology is useful in the discussion of the episodic queue. Since
arrivals occur only in the first m11 phases of D(r), we call the input process input-
active when it is in one of these phases and input-inactive otherwise. We call the
queueing system system-active if the input process is active or if the server is busy
and system-inactive otherwise.

We denote by θ1(r) the stationary probability vector of D(r). The vector θ1(r)
is partitioned into [θ11(r), θ12(r)], where θ11(r) has dimension m11. θ11(r) and θ12(r)
satisfy
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0 = θ11(r)(D01 +D11) + rθ12(r)D03,

(2)

0 = θ11(r)(D02 +D12) + θ12(r)(rD04 +D05).

The arrival rate of the input MAP is λ∗(r) = θ1(r)D1e, where e is the column
vector with all components 1. When the input process is stationary, an arbitrary
input-inactive period has a phase type (PH)-distribution (see Neuts [6]) whose repre-
sentation consists of the probability vector [θ11(r)(D02 +D12)e]−1θ11(r)(D02 +D12)
and of the matrix rD04 +D05.

ω(r), the mean of an arbitrary input-inactive period, is given by

ω(r) =
θ12(r)e

r · θ12(r)D03e
.

Next we study relations between λ∗(r), ω(r), and r.
Lemma 2.1. θ1(r) is an analytic vector function of r and

lim
r→0

θ1(r) =


(0, θ3) if D05 = 0,

(0, θ4) if D05 6= 0 and irreducible,

(3)

where θ3 is the stationary probability vector of the infinitesimal generator Q22 =
D04 − D03(D01 + D11)

−1(D02 + D12) and θ4 is the stationary probability vector of
D05. λ

∗(r) and ω(r) are analytic functions of r. The first two terms in the expansion

λ∗(r) = rλ∗1 + r2λ∗2 + o(r2),(4)

the coefficients λ∗1 and λ∗2, as well as the quantity ω(r), are given by,
if D05 = 0,

λ∗1 = −θ3D03(D01 +D11)
−1(D11e +D12e),

λ∗2 = λ∗1θ3D03(D01 +D11)
−1e,

ω(r) =
1

r
· 1

θ3D03e
;

if D05 6= 0,

λ∗1 = −θ4D03(D01 +D11)
−1(D11e +D12e),

λ∗2 = −θ′12D03(D01 +D11)
−1(D11e +D12e),

ω(r) =
1

r

{
1

θ4D03e
+ r

[
θ′12e

θ4D03e
− θ′12D03e

(θ4D03e)2

]
+ o(r)

}
,

where θ′12 = θ4Q22(eθ4 −D05)
−1 + θ4D03(D01 +D11)

−1eθ4.
Proof. See Appendix B.
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Let C = C0 + C1 be irreducible. The service rate is µ∗ = θ2C1e, where θ2 is the
stationary probability vector of C. The traffic intensity of the queue is therefore given
by

ρ(r) =
λ∗(r)
µ∗

,

and the queue is stable iff ρ(r) < 1. From Lemma 2.1, the following result is obvious.

Corollary 2.2.

ρ(r) → 0 ⇔ λ∗(r) → 0 ⇔ r → 0 ⇔ ω(r) →∞.

When r → 0, the durations of the input-inactive periods increase. Any two
successive system-active periods are therefore separated by a long system-inactive
period. Furthermore, with a small value of r, the traffic intensity is small. That
parameter sheds no light on the substantial excursions during the active periods.

Example 1. If the arrivals to a single server queue with MAP service consist of
all the customers blocked from an M/M/n/n queue, the input process is a MAP with
coefficient matrices

D0 =



−λ λ

µ −µ− λ λ

. . .
. . .

. . .

nµ− µ −nµ− µ− λ λ

nµ −nµ− λ


,

D1 =


0

. . .

0

λ

 ,

where λ and µ are, respectively, the arrival and service rate for the M/M/n/n queue.
When the number of customers in the M/M/n/n queue is fewer than n, there are no
arrivals to the system.

Example 2. Consider the MMPP (r)/MAP/1 queue (see Lucantoni [4]), where
the input process is a Markov-modulated Poisson process. We assume that the
MMPP (r) is given by (1) with

D11 =


λ1

. . .

λm11

 and D12 = 0.

The input process is active in the first m11 states and there are no arrivals on the
remaining m12 states.
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3. The queue length at an arbitrary time. Before discussing the conditional
queues in section 4, we give a detailed analysis of the queue length at an arbitrary
time.

We denote by q(t) the queue length, by J1(t) the phase of the input MAP , and by
J2(t) the phase of the service process at time t. J2(t), the phase of the service MAP ,
is defined only when the server is busy. (We recall the assumption that the service
phase at the beginning of each busy period is selected according to the probability
vector θ.) Then (q(t), J1(t), J2(t)) is an irreducible continuous-time Markov chain
with infinitesimal generator

Q(r) =


D0(r) D1 ⊗ θ

I ⊗ C1e D0(r)⊕ C0 D1 ⊗ I

I ⊗ C1 D0(r)⊕ C0 D1 ⊗ I

. . .
. . .

. . .

 ,

where ⊗ and ⊕ denote, respectively, the Kronecker product and the Kronecker sum
of matrices. We denote by X(r) = (x0(r),x1(r), . . .) the stationary probability vector
of the Markov process (q(t), J1(t), J2(t)). By the classical matrix-geometric theorem
in Neuts [6],

xn(r) = x0(r)(I ⊗ θ)[R(r)]n, n ≥ 1,(5)

and x0(r) satisfies equations

0 = x0(r)[D0(r) + (I ⊗ θ)R(r)(I ⊗ (C1e))],
(6)

1 = x0(r)(I ⊗ θ)(I −R(r))−1e.

Equation (6) is discussed in detail in Appendix C. The rate matrix R(r) is the minimal
nonnegative solution to the equation

0 = R2(r)(I ⊗ C1) +R(r)[D0(r)⊕ C0] +D1 ⊗ I.(7)

Since D1 is of the form (1), R(r) has the special structure

R(r) =

 R1(r) R2(r)

0 0

 ,

where R1(r) and R2(r) are (m11m2)× (m11m2) and (m11m2)× (m12m2) nonnegative
matrices, respectively.

In what follows, we shall expand X(r) in powers of r. By (5) and (6), the ex-
pansion of X(r) is determined by the expansions of R(r) and x0(r). So, we first
establish the necessary differentiability properties of R(n)(r) and x0(r) and calculate
the expansion of R(r).

Lemma 3.1. The derivative R(n)(r) is differentiable in r for all n ≥ 0. limr→0 R(r)
= R exists and is finite. R is the minimal nonnegative solution to (7) with r = 0.
sp(R), the largest eigenvalue of R, is less then 1.

Proof. That R(r) is differentiable in r is obtained from Theorem 2.2 in He [2].
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By the diagonal method, it is easy to see that the limit of R(r) as r → 0 exists
and is the minimal nonnegative solution to (7) with r = 0. R1 = limr→0 R1(r) is the
minimal nonnegative solution to the following equation:

0 = R2
1(I ⊗ C1) +R1(D01 ⊕ C0) +D11 ⊗ I.(8)

Clearly, sp(R1) < 1 implies that sp(R) < 1.
The set of states {(i, j, k), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2} is called level i for i ≥ 1.

Likewise, the set {(0, j), 1 ≤ j ≤ m1} is called level 0. We divide level 0 into two
sublevels 01, consisting of the first m11 states of level 0, and 02, consisting of the
remaining states. We accordingly partition x0(r) into (x01(r),x02(r)).

Lemma 3.2. The derivative x
(n)
0 (r) is differentiable in r for all n ≥ 0 and x0(r)

satisfies

(x0(r)⊗ θ)(I −R(r))−1(I ⊗ e) = θ1(r).(9)

limr→0 x0(r) = limr→0 θ1(r).

Proof. From equation (6) and Lemma 3.1, it follows that x
(n)
0 (r) is differentiable

in r for n ≥ 0. Postmultiplying by I ⊗ e on both sides of equation (7), we have

R(r)(I ⊗ (C1e)) = (I −R(r))−1[R(r)(D0(r)⊗ e) +D1 ⊗ e].

Substitution into equation (6) yields

(x0(r)⊗ θ)(I −R(r))−1(I ⊗ e)D(r) = 0.

Equation (9) is obtained by (6). From equation (6), we have

x01(r) = rx02(r)D03U
−1
11 (r),

where U11(r) = −[D01+(I⊗θ)R1(r)(I⊗(C1e))]. Equation (7) implies that−U11(r)e <
0. By the irreducibility of D(r) and the Markov process Q(r), U11(r) is invertible (in-
cluding at r = 0). So, as r → 0, the limit of x01(r) is 0. We rewrite (9) as

x0(r) + (x01(r)⊗ θ, 0)R(r)(I −R(r))−1(I ⊗ e) = θ1(r).

The limit of x0(r) is therefore the same as θ1(r).
We now assume that R(r) has the expansion

R(r) = R + rR′ + r2R′′ + o(r2).

Then (7) yields

0 = (RR′ +R′R)(I ⊗ C1) +R′(D0 ⊕ C0) +R(D̄0 ⊗ I),(10)

0 = (RR′′ + (R′)2 +R′′R)(I ⊗ C1) +R′′(D0 ⊕ C0) +R′(D̄0 ⊗ I),(11)

where D̄0 = ( 0
D03

0
D04

). To solve R′ and R′′ from (10) and (11), we introduce the
following transform.

For an m × n matrix A, φ(A) is the direct sum of the rows of A (see Neuts [6,
section 3.9]). We shall, for brevity, call this construction the φ-transform. For given
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m, n and a vector u of order mn, the inverse transform of φ at u is the m×n matrix
A, for which φ(A) = u.

Theorem 3.3. The φ-transforms of R′ and R′′ are given explicitly by

φ(R′) = φ(R(D̄0 ⊗ I))[I ⊗ Z(0)−RT ⊗ (I ⊗ C1)]
−1,

φ(R′′) = φ([R′(D̄0 ⊗ I) + (R′)2(I ⊗ C1)])[I ⊗ Z(0)−RT ⊗ (I ⊗ C1)]
−1,

where Z(r) = −[D0(r)⊕C0+R(r)(I⊗C1)] and the superscript T denotes the transpose.
The inverse transform of φ gives R′ and R′′.

Proof. From (10),

R′Z(0)−RR′(I ⊗ C1) = R(D̄0 ⊗ I).(12)

Taking φ-transforms on both sides of this equation gives the formula for R′. The
invertibility of the matrix I ⊗ Z(0) − RT ⊗ (I ⊗ C1) follows from the fact that the
largest eigenvalue of R is less than 1.

A similar argument leads to the result for R′′.
Note 1. We assume that R1(r) and R2(r) have the expansions Ri(r) = Ri+rR′i+

r2R′′i + o(r2), i = 1, 2. The matrices R1, R2, R
′
1, R

′
2, R

′′
1 , and R′′2 can be obtained

either from R, R′, and R′′, or by solving recursive equations. For example, R1 is the
minimal nonnegative solution to (8). R2 satisfies the equation

0 = R1R2(I ⊗ C1) +R1(D02 ⊗ I) +R2(D05 ⊕ C0) +D12 ⊗ I.

When R1 is obtained, R2, R
′
1, R

′
2, R

′′
1 , and R′′2 can be obtained explicitly by applying

the φ-transform. So, the computation of R1 is essential to all.

Theorem 3.4. The vector X(n)(r) is differentiable in r for n ≥ 0 and X(r)’s
expansion at r = 0 is given by

x01(r) = rx′01 + r2x′′01 + o(r2),

x02(r) = x02 + rx′02 + r2x′′02 + o(r2),

xn(r) = r(x′01 ⊗ θ, 0)Rn + r2
[
(x′′01 ⊗ θ, 0)Rn(13)

+(x′01 ⊗ θ, 0)
n−1∑
i=0

RiR′Rn−i−1

]
+ o(r2), n ≥ 1,

where x02 = θ3 when D05 = 0 and x02 = θ4 when D05 6= 0 and D05 is irre-
ducible. −x′02e > x′01e ≥ 0. {x′01, x′02, x′′01, x′′02} are given explicitly in terms of
{x02, R, R

′, R′′}. The expectation of the queue length at an arbitrary time has the
expansion

EX(r) = rq1 + r2q2 + o(r2),(14)
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where

q1 = (x′01 ⊗ θ, 0)R(I −R)−2,

q2 = (x′′01 ⊗ θ, 0)R(I −R)−2 + (x′01 ⊗ θ, 0)[R(I −R)−2R′

+(I −R)−1R′(I −R)−1](I −R)−1.

Proof. From (6) and Lemmas 3.1 and 3.2, limr→0 X(r) exists and X(n)(r) is
differentiable in r for all n ≥ 0. For other details, see Appendix C.

Lemma 3.1 and Theorems 3.3 and 3.4 imply that the basic quantities for the
expansions of the stationary probability vector X(r) of the Markov process Q(r) are
x02 and R. Other probabilities or descriptors can be expressed in terms of those
two. But some resulting expressions turn out to be quite involved. Fortunately, by
Theorems 3.3 and 3.4 those quantities can be expressed explicitly in those two terms.
Therefore, we shall use not only {R, x02} but also {R′, R′′,x′01, x′′01, x′02, x′′02} in the
next two sections.

4. Conditional queues. Theorem 3.4 shows that, when r → 0, the mean queue
length at an arbitrary time tends to 0. However, the queues observed at some spe-
cial epochs are different. For example, the queue length at an arbitrary arrival or
departure does not always tend to 0 when r → 0. The conditional queue, such as
the queue during a system-active period or during a busy period, may not be short
when r → 0. Furthermore, the queue observed by the last arrival of an input-active
period is different from others. It is clear that the classical descriptors do not suf-
fice to characterize these queues because some important information is carried by
the conditional distributions of these queues. Therefore, more detailed discussion on
those conditional queues is useful. We shall study the queue during a system-active
period in detail. Others can be discussed similarly.

4.1. The queue during a system-active period. We denote by Ya(r) =
(ya,0(r),ya,1(r), . . .) the probability vector of the distribution of the queue length in
steady state, given that the system is active. Then we have

ya,0(r) =
x01(r)

1− x02(r)e
and ya,n(r) =

xn(r)

1− x02(r)e
, n ≥ 1.

Since 1−x02(r)e = −rx′02e−r2x′′02e+o(r2), where x′02 and x′′02 are given in Appendix
C, we have by Theorem 3.4 that

ya,0(r) =
x′01

(−x′02e)
+ r

[
x′′01

(−x′02e)
+

(x′′02e)x′01
(x′02e)2

]
+ o(r),

ya,n(r) =
(x′01 ⊗ θ, 0)Rn

(−x′02e)
+ r

[
(x′′01 ⊗ θ, 0)Rn

(−x′02e)
(15)

+
(x′01 ⊗ θ, 0)(

∑n−1
i=0 RiR′Rn−i−1)

(−x′02e)

+
(x′′02e)(x′01 ⊗ θ, 0)Rn

(x′02e)2

]
+o(r), n ≥ 1.
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We have two methods to obtain the limit distribution of Ya(r) when r → 0. The
first one is to set r = 0 in (15). The second one is more fundamental and gives a
probabilistic interpretation to Ya(0); i.e., Ya(0) is the stationary probability vector
of a Markov process (see Theorem 4.2). To introduce the second method, we need
the following lemma.

Lemma 4.1.

(16)

lim
r→0

r(rD04 +D05)
−1D03 =


D−1

04 D03 if D05 = 0,

−(θ4D03e)−1eθ4D03 if D05 6= 0 and irreducible.

Proof. See Appendix D.
Theorem 4.2. The conditional probability distribution {Ya(r)} converges, when

r → 0, to a positive probability vector Ya(0) = (ya,0, . . .), which is the stationary
probability vector of the infinitesimal generator

Qa =



D01 +D02M (D11, D12)⊗ θ I

M

⊗ (C1e) D0 ⊕ C0 D1 ⊗ I

I ⊗ C1 D0 ⊕ C0 D1 ⊗ I

. . .
. . .

. . .


,

where −M is the limit matrix in (16). ya,n = ya,0(I ⊗ θ, 0)Rn, n ≥ 1, ya,0 (=
x′01/(−x′02e)) satisfies

ya,0[D01 +D02M + (I ⊗ θ)(R1 +R2M)⊗ (C1e)] = 0,(17)

and ya,0(I ⊗ θ, 0)(I −R)−1e = 1.
Proof. From (6), we express x02(r) in terms of x01(r). Lemma 4.1 now leads to

the result.
Theorem 4.3. The expansion of the mean queue length given that the system is

active is given by

EYa(r) = qa,0 + rqa,1 + o(r),(18)

where

qa,0 =
q1

(−x′02e)
,

qa,1 =
q2

(−x′02e)
+

(x′′02e)q1

(x′02e)2
.

Proof. The mean queue length at an arbitrary time is

EX(r) = x0(r)(I ⊗ θ)R(r)(I −R(r))−2e.

The relation between the mean queue length at an arbitrary time and the mean queue
length given that the system is active is given by

EX(r) = EYa(r)(1− x02(r)).(19)
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We obtain (18) by Theorem 3.4 and simple calculations.
qa,0e in Theorem 4.3 gives the expected number of customers in the system at an

arbitrary time, given that the system is active, when r is very small. For bursty input,
qa,0e can be very large (see Example 3 in section 7). Therefore, qa,0 provides more
accurate information about the queue when the system is active than the average
queue length at an arbitrary time, which tends to 0 when r → 0.

4.2. Other conditional queue lengths. We denote by λ∗e the arrival rate of
the last arrivals of input-active periods. Then λ∗e(r) = θ11(r)D12e. We denote by
Xe(r) = (xe,0(r),xe,1(r), . . .) the conditional probability vector of the queue length
at the arrival epoch of the last arrival of an arbitrary input-active period. Then we
have

xe,0(r) =
1

λ∗e(r)
x01(r)(0, D12),

xe,n(r) =
1

λ∗e(r)
xn(r)(D̄12 ⊗ I), n ≥ 1,

where D̄12 = ( 0
0

D12

0 ). Similar to λ∗(r), λ∗e(r) has the expansion

λ∗e(r) = −rθ12D03(D01 +D11)
−1D12e− r2θ′12D03(D01 +D11)

−1D12e + o(r2),

where θ12 and θ′12 are given in Appendix B. By routine calculations, we obtain the
following expansion:

EXe(r) = qe,0 + rqe,1 + o(r),(20)

where

qe,0 =
−1

(θ12D03(D01 +D11)−1D12e)
q1(D̄12 ⊗ I),

qe,1 =
−1

(θ12D03(D01 +D11)−1D12e)

[
q2 − θ′12D03(D01 +D11)

−1D12e

(θ12D03(D01 +D11)−1D12e)
q1

]
(D̄12 ⊗ I).

For other conditional queues, we only give their relations with X(r). The corre-
sponding expansions can be obtained similarly to Theorem 4.3 or (20). We omit the
details, but state the following results.

Let Yb(r) = (yb,1(r),yb,2(r), . . .) be the conditional probability vector of the
queue length, given that the server is busy. Then we have

yb,n(r) =
xn(r)

1− x0(r)e
, n ≥ 1.(21)

Let Xa(r) = (xa,0(r),xa,1(r), . . .) be the conditional probability vector of the
queue length at an arbitrary arrival. Then

xa,0(r) =
1

λ∗(r)
x01(r)(D11, D12),

(22)

xa,n(r) =
1

λ∗(r)
xn(r)(D1 ⊗ I), n ≥ 1.

Let Xd(r) = (xd,0(r),xd,1(r), . . .) be the conditional probability vector of the
queue length immediately after a departure. Then

xd,n(r) =
1

λ∗(r)
xn+1(r)(I ⊗ C1), n ≥ 0.(23)
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5. Waiting times. As the queue length at an arbitrary arrival, the virtual wait-
ing time w(r) is not adequate to characterize the waiting process in an episodic queue.
We are interested in conditional waiting times such as the waiting time during a
system-active period wa(r), the waiting time during a busy period, the waiting time
of the last arrival of an input-active period, etc. For brevity, we give details only for
the virtual waiting time and the virtual waiting time during a system-active period.
Other conditional waiting times can be similarly obtained.

From (13) and (15), we obtain that

Ee−sw(r) = 1 + rx′0(I ⊗ θ)f∗(s)e + r2[x′′0(I ⊗ θ)f∗(s)e(24)

+x′0(I ⊗ θ)f∗1 (s)]e + o(r2),

Ee−swa(r) =
x′0(I ⊗ θ)f∗(s)e− x′02e

(−x02e)
+ r

[(
(x′′02e)x′0
(x′02e)2

+
x′′0

(−x′02e)

)
(25)

·(I ⊗ θ)f∗(s) +
x′0(I ⊗ θ)f∗1 (s)

(−x′02e)

]
e + o(r),

where

f∗(s) =
∞∑
n=0

Rn[h∗(s)]n,

f∗1 (s) =
∞∑
n=1

(
n−1∑
i=0

RiR′Rn−1−i
)

[h∗(s)]n,

and h∗(s) = (sI −D ⊕ C0)
−1(I ⊗ C1).

Lemma 5.1. The matrices f∗(0) and f∗1 (0) are obtained by solving the equation

X = X0 +RX(−D ⊕ C0)
−1(I ⊗ C1)(26)

with X0 = I and X0 = R′f∗(0)(−D⊕C0)
−1(I ⊗C1), respectively. A general solution

for (26) is given by

φ(X) = φ(X0)(I −RT ⊗ [(−D ⊕ C0)
−1(I ⊗ C1)])

−1.(27)

In addition, we have that

f∗′(0)e = (I −R)−1Rf∗(0)(D ⊕ C0)
−1e,

f∗1
′(0)e = (I −R)−1[Rf∗1 (0) +R′(I −R)−1f∗(0)](D ⊕ C0)

−1e.

Proof. By the definitions of f∗(s) and f∗1 (s), we have that

f∗(s) = I +Rf∗(s)h∗(s),
f∗1 (s) = R′f∗(s)h∗(s) +Rf∗1 (s)h∗(s),

and simple calculations lead to the stated results.



234 QI-MING HE AND MARCEL F. NEUTS

Theorem 5.2.

Ew(r) = rw1 + r2w2 + o(r2),(28)

Ewa(r) = wa,0 + rwa,1 + o(r),(29)

where

w1 = (x′01 ⊗ θ, 0)R(I −R)−1f∗(0)(−D ⊕ C0)
−1e,

w2 = (x′′01 ⊗ θ, 0)R(I −R)−1f∗(0)(−D ⊕ C0)
−1e + (x′01 ⊗ θ, 0)

·(I −R)−1[Rf∗1 (0) +R′(I −R)−1f∗(0)](−D ⊕ C0)
−1e,

wa,0 =
w1

(−x′02e)
, wa,1 =

w2

(−x′02e)
+

(x′′02e)w1

(x′02e)2
.

w1 and wa,0 are nonnegative.
Proof. Differentiating both sides of (24) and (25) with respect to s, by Lemma

5.1, we obtain (28) and (29). Since x′01 ≥ 0 and −x′02e > 0, w1 and wa,0 are non-
negative.

6. The busy period and active periods. The busy period is an important
descriptor for queueing systems. We refer to Hsu and He [3], Neuts [6, 8], and Ra-
maswami [10] for studies on the busy period of queues related to quasi-birth-and-death
processes. For episodic queues, we are also interested in the system-active period and
the input-active period. The relations among the busy period, the system-active pe-
riod, and the input-active period contain much information about the episodic queue.

6.1. The busy period. Let Nb(r) be the number of customers served in a busy
period and τb(r) be the length of the busy period. We define

g(i0,j0)(i,j)(k, x, r) = P{Nb(r) = k, τb(r) ≤ x, J1(τb(r)) = i,

J2(τb(r)) = j|J1(0) = i0, J2(0) = j0}
for k ≥ 0, x > 0. Let G∗(z, s, r) be the joint transform of the matrix with elements
g(i0,j0)(i,j)(k, x, r). By Theorem 3.3.1 in Neuts [6], G∗(z, s, r) is the unique solution
to the equation

G∗(z, s, r) = [sI −D0(r)⊕ C0]
−1{z(I ⊗ C1) + (D1 ⊗ I)[G∗(z, s, r)]2}(30)

for 0 ≤ z < 1, s ≥ 0. Let G(r) = limz→1,s→0 G
∗(z, s, r). G(r) is the minimal

nonnegative solution to (30) with s = 0 and z = 1. Since ρ(r) < 1, G(r)e = e.
Furthermore, it is clear that G = limr→0 G(r) exists. G is the minimal nonnegative
solution to equation (30) with s = 0, z = 1, and r = 0 and has the structure

G =

 G1 G2

0 G3


with G1, G2, and G3 satisfying

0 = I ⊗ C1 + (D01 ⊕ C0)G1 + (D11 ⊗ I)G2
1,(31)

0 = (D02 ⊗ I)G3 + [D01 ⊕ C0 + (D11 ⊗ I)G1]G2(32)

+(D11 ⊗ I)G2G3 + (D12 ⊗ I)G2
3,

0 = I ⊗ C1 + (D05 ⊕ C0)G3.(33)
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G1 is the minimal nonnegative solution to (31) and G3 = −(D05⊕C0)
−1(I⊗C1). Let

V11 = −[D01⊕C0+(D11⊗I)G1]. Since −V11e < 0 and D(r) and Q(r) are irreducible,
V11 is invertible. Let γ1 be the eigenvector corresponding to the eigenvalue with the
largest real part of D01 +D11 and let γ = γ1 ⊗ θ2. Then we have that

0 < γ[(D01 ⊕ C0)(G1 − I) + (D11 ⊗ I)(G2
1 − I)]

or, equivalently, since I −G1 is invertible,

0 > γ[D01 ⊕ C0 + (D11 ⊗ I)(G1 + I)].

So, γ > γ(D11 ⊗ I)V −1
11 , which implies sp((D11 ⊗ I)V −1

11 ) < 1. Since G3e = e, we can
apply the φ-transform to equation (32) to derive G2.

Lemma 6.1. The derivative G(n)(r) is differentiable in r for n ≥ 0. G(r) has the
following expansion at r = 0:

G(r) = G+ rG′ + r2G′′ + o(r2),(34)

where G′ and G′′ satisfy the equations

0 = (D̄0 ⊗ I)G− V G′ + (D1 ⊗ I)G′G,
(35)

0 = (D̄0 ⊗ I)G′ + (D1 ⊗ I)(G′)2 − V G′′ + (D1 ⊗ I)G′′G

with V = −(D0 ⊕ C0 + (D1 ⊗ I)G). G′ and G′′ can be solved explicitly by applying
the φ-transform to (35).

Proof. The differentiability of G(n)(r) follows by Theorem 3.2 in He [2]. Equations
(35) follow from (30). Since −V e = (I ⊗C0)e < 0 and D(r) and C are irreducible, V
is invertible. By routine calculations, we have

−V +D1 ⊗ I = [D ⊕ C + (D1 ⊗ I − I ⊗ C1)eg](I −G+ eg)−1,

where g is the left invariant vector of the matrix G. So,

(θ1(0)⊗ θ2)(−V +D1 ⊗ I) = (λ∗ − µ∗)g < 0.

Then θ1(0)⊗ θ2 > (θ1(0)⊗ θ2)(D1 ⊗ I)V −1 implies that the Perron–Frobenius eigen-
value of (D1 ⊗ I)V −1 is less then 1. Hence, the φ-transform method can be applied
to solve equations in (35) for G′ and G′′.

Let u(r) and v(r) denote, respectively, the mean number of customers served
during a busy period and the mean length of the busy period. Then

u(r) =
∂G∗(z, s, r)e

∂z
|z=1,s=0 and v(r) = −∂G

∗(z, s, r)e
∂s

|z=1,s=0.

From Neuts [6], u(r) and v(r) are explicitly given by

u(r) = −[D(r)⊕ C0 + (D1 ⊗ I)G(r)]−1(I ⊗ C1)e,

v(r) = −[D(r)⊕ C0 + (D1 ⊗ I)G(r)]−1e.
(36)
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Theorem 6.2. The vector u(r) has the expansion

u(r) = u(0) + ru′(0) + r2u′′(0) + o(r2),(37)

where u(0) is obtained from (36) by setting r = 0 and

u′(0) = −[D ⊕ C0 + (D1 ⊗ I)G]−1[D̄0 ⊗ I + (D1 ⊗ I)G′]u(0),

u′′(0) = −[D ⊕ C0 + (D1 ⊗ I)G]−1[(D1 ⊗ I)G′′u(0)

+[D̄0 ⊗ I + (D1 ⊗ I)G′]u′(0)].

v(r) has the expansion v(r) = v(0)+ rv′(0)+ r2v′′(0)+ o(r2), where v(0) is obtained
from (36) by setting r = 0, v′(0) and v′′(0) are obtained from the above formulas by
replacing u(0) by v(0), u′(0) by v′(0), and u′′(0) by v′′(0), accordingly.

Proof. Replacing G(r) by its expansion, we have

[D(r)⊕ C0 + (D1 ⊗ I)G(r)]−1

= {D ⊕ C0 + (D1 ⊗ I)G+ r[D̄0 ⊗ I + (D1 ⊗ I)G′]
+r2(D1 ⊗ I)G′′ + o(r2)}−1.

The stated formula follows by direct calculations.

6.2. The number of input-active periods during a busy period. To study
the relation among the busy and input-active periods, it is natural to ask how many
input-active periods there are in a busy period (strictly within a busy period). We
denote this random variable by ηb,a(r). We define

g(i0,j0)(i,j)(k1, k2, x, r) = P{τb(r) ≤ x,Nb(r) = k1, ηb,a(r) = k2, J1(τb(r)) = i,

J2(τb(r)) = j|J1(0) = i0, J2(0) = j0}

for k1, k2 ≥ 0, x ≥ 0, and r ≥ 0.
Theorem 6.3. Let G∗(z1, z2, s, r) be the joint transform of the matrix with el-

ements g(i0,j0)(i,j)(k1, k2, x, r). G∗(z1, z2, s, r) is the unique solution to the following
equation:

G∗(z1, z2, s, r) = [sI − (D̃0 + rD̄0 + z2D̄02)⊕ C0]
−1{z1(I ⊗ C1)(38)

+((D̄11 + z2D̄12)⊗ I)[G∗(z1, z2, s, r)]2},

where

D̃0 =

 D01 0

0 D05

 , D̄02 =

 0 D02

0 0

 , D̄11 =

 D11 0

0 0

 .

Proof. The basic idea of the proof is similar to that of Lemmas 3.3.1 and 3.3.2
and Theorem 3.3.1 in Neuts [6]. Here we give a brief probabilistic discussion only.

Notice that a transition with matrix I ⊗ C1 ends a service, a transition with
matrix D̄02 ⊗ I terminates an input-active period, a transition with matrix D̄11 ⊗ I
brings a new customer, while a transition with matrix D̄12⊗ I brings a new customer
and ends an input-active period. Let G(z1, z2, x, r) be the matrix whose elements
are the joint generating functions of g(i0,j0)(i,j)(k1, k2, x, r) with respect to k1 and
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k2. By conditioning on the first transition, which either ends a service or an input-
active period, or brings a new customer, or brings a new customer and terminates an
input-active period, we have that

G(z1, z2, x, r) =

∫ x

0

exp{t(D̃0 + rD̄0)⊕ C0}z1(I ⊗ C1)dt

+

∫ x

0

exp{t(D̃0 + rD̄0)⊕ C0}z2(D̄02 ⊗ I)G(z1, z2, x− t, r)dt

+

∫ x

0

exp{t(D̃0 + rD̄0)⊕ C0}((D̄11 + z2D̄12)⊗ I)

·
∫ x−t

0

G(z1, z2, du, r)G(z1, z2, x− t− u, r)dt.

Taking the Laplace–Stieltjes (L.S.) transform with respect to x of that equation we
obtain (38).

Set G∗a(z, r) = G∗(1, z, 0, r). G∗a(z, r) is the generating function of the number of
input-active periods in a busy period and satisfies (38) with z1 = 1 and s = 0. Let

ub,a(r) =

[
∂G∗a(z, r)

∂z
|z=1

]
e.

For r = 0, it is easy to show that

G∗a(z, 0) =

 G1 zG2

0 G3

 and ub,a(0) =

 G2e

0

 .(39)

Therefore, when r → 0, the expected number of input-active periods in a busy period
tends to 1.

Theorem 6.4. The mean number of input-active periods in a busy period is given
by

ub,a(r) = −[D(r)⊕ C0 + (D1 ⊗ I)G(r)]−1((D̄02 + D̄12)⊗ I)e,(40)

and ub,a(r) has the expansion

ub,a(r) = ub,a(0) + ru′b,a(0) + r2u′′b,a(0) + o(r2),(41)

where

u′b,a(0) =−[D ⊕ C0 + (D1 ⊗ I)G]−1[(D1 ⊗ I)G′ + D̄0 ⊗ I]ub,a(0),

u′′b,a(0) =−[D ⊕ C0 + (D1 ⊗ I)G]−1[(D1 ⊗ I)G′′ub,a(0)

+[(D1 ⊗ I)G′ + D̄0 ⊗ I]u′b,a(0)].

(42)

Proof. It is similar to Theorem 6.2.
Note 2. By the same method, we can derive similar formulas for the total number

of input-active periods in, or overlapping with, a busy period.
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6.3. The number of busy periods in an input-active period. The number
of busy periods during an input-active period shows how often the server gets idle
when the arrival process is active. To study that random variable, we consider the
absorbing Markov process

Q̄ =



0 0 0

(D02 +D12)e D01 D11 ⊗ θ

(D02 +D12)e⊗ e I ⊗ C1e D01 ⊕ C0 D11 ⊗ I

(D02 +D12)e⊗ e I ⊗ C1 D01 ⊕ C0 D11 ⊗ I
...

. . .
. . .

. . .


,

whose first state (or level) is absorbing. The time until absorption into the first state
of the Markov process Q̄ is the duration of an input-active period of the queue. The
number of transitions from level 2 to level 1 prior to absorption in the Markov process
Q̄ is the number of busy periods during an input-active period of the queue.

Let G̃∗1(z, s) be the joint transform of the first passage time starting from level i
(i > 2) to level i− 1 and the number of customers served during that time. Similarly,
let G̃∗2(z, s) be the joint transform of the first passage time starting from level i (> 1)
to level 0 without entering level i−1 and the number of customers served during that
time. We have equations:

G̃∗1(z, s) = (sI −D01 ⊕ C0)
−1{z(I ⊗ C1) + (D11 ⊗ I)[G̃∗1(z, s)]

2},(43)

G̃∗2(z, s) = (sI −D01 ⊕ C0)
−1{z((D02 +D12)e)⊗ e + (D11 ⊗ I)(44)

·[I + G̃∗1(z, s)]G̃
∗
2(z, s)}.

We denote by G̃i = limz→1,s→0 G̃
∗
i (z, s), i = 1, 2; then G̃1 = G1 and

G̃2 = −[(D01 +D11)⊕ C0 + (D11 ⊗ I)G1]
−1[((D02 +D12)e)⊗ e].

Lemma 6.5. The Perron–Frobenius eigenvalue of the matrix −[D01⊕C0 +(D11⊗
I)G̃1]

−1(D11 ⊗ I) is less than 1 and G̃2 +G1e = e.
Proof. The first result is obvious. Postmultiplying by e on both sides of equation

(43) and adding them to equation (44) yields

G̃1e + G̃2 − e = −[D01 ⊕ C0 + (D11 ⊗ I)G̃1]
−1(D11 ⊗ I)(G̃1e + G̃2 − e).

By the first result, G̃1e + G̃2 − e = 0.
We denote by τa the length of an input-active period, by Nτa the number of cus-

tomers served during the input-active period, and by ηa,b the number of busy periods
during the input-active period. We assume that there is no customer in the system at
the beginning of the input-active period. Let f∗i (z, s, n) = E{e−sτazNτa I{ηa,b=n}|J1(0)

= i}, n ≥ 0, and f∗(z, s, n) = (f∗1 (z, s, n), . . . , f∗m1
(z, s, n))T , where IA is the indicator

of the event A. We have that

f∗(z, s, n) = [(sI −D01)
−1(D11 ⊗ θ)G̃∗1(z, s)(I ⊗ e)]n(sI −D01)

−1(45)

·[(D02 +D12)e + (D11 ⊗ θ)G̃∗2(z, s)], n ≥ 0.
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Theorem 6.6. We assume that there is no customer in the queueing system at
the beginning of an input-active period. The joint density of the arrival phase and the
number of busy periods within the input-active period is given by

pn = −[−D−1
01 (D11 ⊗ θ)G1(I ⊗ e)]nD−1

01(46)

·[(D02 +D12)e +D11e− (D11 ⊗ θ)G1e], n ≥ 0.

The vector ua,b =
∑∞

n=1 npn is given by

ua,b = −D−1
01 (D11 ⊗ θ)G1(I ⊗ e)[I +D−1

01 (D11 ⊗ θ)G1(I ⊗ e)]−2(47)

·D−1
01 [(D02 +D12)e +D11e− (D11 ⊗ θ)G1e].

Proof. These results are obtained by routine calculations. The matrix I+G1(I⊗
e)D−1

01 (D11⊗θ) is invertible since −[G1(I⊗e)D−1
01 (D11⊗θ)]e < G1e < e. By Lemma

6.5, it is easily verified that {αpn, n ≥ 0} is a proper probability density for any
probability vector α.

Note 3. From Theorem 6.6, it is not difficult to derive the distribution of the
number of busy periods in an input-active period for the case when there are customers
in the system at the beginning of the input-active period. For example, the mean
number of busy periods during an input-active period, given that there are k (> 0)
customers in the system initially, is given by

ua,b = −Gk−1
1 [I +G1(I ⊗ e)D−1

01 (D11 ⊗ θ)]−2G1(I ⊗ e)D−1
01(48)

·[(D02 +D11 +D12)e− (D11 ⊗ θ)G1].

6.4. The system-active period. We now give a brief discussion of the system-
active period.

Let Ḡ∗1(z1, z2, z3, s, r) be the joint transform of the number of customers served,
the number of input-active periods, the number of busy periods during a first passage
to sublevel 02, and the length of that first passage, given that the process starts
from sublevel 01. Similarly, we define Ḡ∗2(z1, z2, z3, s, r) for transitions from level 1
to sublevel 02. Then we have the following basic equations (for brevity, we omit
(z1, z2, z3, s, r)):

Ḡ∗1 = (sI −D01)
−1[z2D02 + ((D11, z2D12)⊗ θ)Ḡ∗2],(49)

Ḡ∗2 = [sI − (D̃0 + rD̄0 + z2D̄02)⊕ C0]
−1

{
z1z3

 0

I ⊗ (C1e)

(50)

+z1z3

 I ⊗ (C1e)

0

 Ḡ∗1 + ((D̄11 + z2D̄12)⊗ I)G∗Ḡ∗2

}
,

where G∗ is the abbreviation for the matrix G∗(z1, z2, s, r).
Analogous to sections 6.1 and 6.2, some explicit formulas can be derived for

the mean number of customers served, mean number of input-active periods, and
mean number of busy periods in a system-active period as well as their corresponding
expansions. For brevity, we omit the details.

7. Numerical results. In this section, we discuss numerical results for two ex-
amples. We pay special attention to the relation between the burstiness of the arrivals
and services and the derivatives of the vector x0(r) at r = 0 and the coefficients of the
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various expansions. We are also concerned about the efficiency and accuracy of the
approximation. To measure the accuracy of the approximation, we use the following
formula:

E =
|Real −Approx|

Real
.(51)

Figures presented in this section show the graphs of E as a function of r for various
descriptors.

Example 3. In this example, the input process has coefficient matrices

D01 =

 −50. 1.

1. −100.

 ,

D03 =

 0.2 0.05

0.5 0.5

 ,

D11 =

 48. 0.

0. 98.

 ,

D02 =

 1. 0.

0. 1.

 ,

D04 =

 −0.5 0.25

0.0 −1.

 , D05 =

 −5. 5.

2. −2.

 ,

D12 =

 0. 0.

0. 0.

 .

This is a bursty stochastic process. The service process has five choices: a bursty
MAP with coefficient matrices

C0 =

 −20. 1.

0.5 −1.

 , C1 =

 18. 1.

0.25 0.25

 ;

an MMPP with coefficient matrices

C0 =

 −10. 3.

1. −3.

 , C1 =

 7. 0.

0. 2.

 ;

a PH-renewal process with coefficient matrices

C0 =

 −5. 3.

1. −2.

 , C1 =

 0.6 1.4

0.3 0.7

 ;

a Poisson process with µ∗ = 1; and an Erlang process with k = 5 and µ∗ = 0.2.
According to the simulation of the five service processes, their subjective order of
burstiness is MAP, MMPP, PH, Poisson, and Erlang, respectively.

Table 1 lists the numerical values of some coefficients in the expansions of the
expected queue lengths and waiting times, at an arbitrary time and during a system-
active period, respectively. Most of these coefficients are large in absolute value, which
is obviously a result of the burstiness of the input process. So, the variation of the
queueing system caused by a small change in r is large. For example, a large value
of q1e means that the expected number of customers in the queue has a high growth
rate as a function of r (when r is small). While the expected queue length at an
arbitrary time is nearly 0 for small r, qa0e ≈ 76 approximately gives the expected
number of customers in the queue when the system is active. This difference shows
the importance of the system-active period for an episodic queue.
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Table 1

Expansion coefficients of Example 3.

Erlang Poisson PH MMPP MAP

x′
01e 0.0124 0.0124 0.0124 0.0124 0.0123

x′′
01e −0.70 −0.70 −0.71 −0.71 −0.75

x′
02e −57.01 −57.01 −57.01 −57.15 −61.28

x′′
02e 47.55 47.55 47.55 55.16 308.10

q1e 4316.63 4316.63 4316.63 4326.73 4630.95

q2e 239174.07 239174.07 239215.09 240344.69 253223.97

qa0e 75.71 75.71 75.71 75.71 75.57

qa1e 4258.27 4258.27 4258.99 4278.62 4512.45

w1 4316.63 4316.63 4317.34 4347.16 4904.44

w2 239174.04 239174.04 239214.45 240336.00 251434.47

wa0 75.71 75.71 75.72 76.07 80.04

wa1 4258.27 4258.27 4258.99 4278.81 4505.69

Fig. 1. Example 3. Difference curves for the MAP service.

Figures 1 and 2 show the relative differences between the approximate and the
exact values of some quantities discussed in sections 2, 3, 4, and 5. They show that
the approximation is quite good for traffic intensities ρ(r) up to 0.1.

Discussions of the approximations of the busy and active periods-related quan-
tities are similar to those of queue lengths and waiting times. Our numerical ex-
periments show that the number of customers served in a busy period is very large
since the input process is bursty. The number of the input-active periods in a busy
period is close to 1 as is the number of busy periods during a system-active period.
In fact, this last number is close to 1 for traffic intensity up to 1. An interesting
observation is that the mean length of the input-active period is much smaller than
the mean duration of the busy period. The input-active period typically ends with a
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Fig. 2. Example 3. Difference curves for Poisson service.

large queue which needs to be cleared. We further noticed that the mean length of
the busy period depends on the initial phase of the busy period.

Example 4. This example has a MAP input process with coefficient matrices

D01 =

 −2. 0.

1. −3.

 ,

D03 =

 1. 0.

1. 4.

 ,

D11 =

 0.1 0.

0. 0.

 ,

D02 =

 1. 0.

0. 1.

 ,

D04 =

 −2. 1.

0. −5.

 , D05 =

 0. 0.

0. 0.

 ,

D12 =

 0.9 0.

0.5 0.5

 .

In contrast to Example 3, this input process is less bursty. The service processes are
the same as in Example 3. See Table 2.

The difference in the magnitudes of these coefficients is striking. Only for the
queue with a bursty MAP service process are x′′02e and w2 rather big in absolute
values. The difference is caused clearly by the burstiness of the service processes.
Examples 3 and 4 illustrate the influence of the burstiness of point processes on
queues. In this case, Figures 3 and 4 show that the approximations are quite good
for traffic intensity up to 0.15. The second-order approximation is accurate only over
a slightly longer range of the traffic intensity than for the burstier input process in
Example 3.

Why is this? In our experience, the accuracy of the approximation depends
strongly on the Perron–Frobenius eigenvalue of the rate matrix R, which has much
to do with the burstiness of the input and the service processes (see Neuts [7]).

As is to be expected, the mean number of customers served during a busy period
is much smaller than for Example 3 when both cases have the same traffic intensity.
However, the number of the input-active periods in a busy period grows rapidly. This
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Table 2

Expansion coefficients of Example 4.

Erlang M PH MMPP MAP

x′
01e 1.01 1.01 1.01 1.01 1.00

x′′
01e −1.54 −1.61 −1.61 −1.69 −5.13

x′
02e −2.04 −2.04 −2.04 −2.13 −6.39

x′′
02e 2.61 2.68 2.68 2.83 24.31

q1e 1.06 1.06 1.06 1.15 5.56

q2e −0.82 −0.51 −0.49 −0.35 4.35

qa0e −0.51 0.52 0.52 0.54 0.87

qa1e 0.26 0.43 0.44 0.55 3.99

w1 0.64 1.06 1.07 1.38 30.88

w2 −0.40 −0.51 −0.51 −0.47 −66.30

wa0 0.31 0.52 0.52 0.65 4.83

wa1 0.21 0.43 0.44 0.64 8.01

Fig. 3. Example 4. Difference curves for the MAP service.

implies that during a busy period, the input process goes to inactive states often. The
number of busy periods in a system-active period is close to 2.

Appendix A. The Markovian arrival process (MAP ). The MAP was first
introduced in Neuts [5] as a generalization of a Poisson process. A MAP is defined on
a finite Markov process (called the underlying Markov process) which has m states
and an irreducible infinitesimal generator D. In the MAP, the sojourn time in state i
is exponentially distributed with parameter λi(− ≥ Dii). At the end of the sojourn
time in state i, a transition occurs to state j, 1 ≤ j ≤ m, where the transition may or
may not represent an arrival. With probability pij(0), i 6= j, there will be a transition
to state j without an arrival. With probability pij(1), there will be a transition to
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Fig. 4. Example 4. Difference curves for Poisson service.

state j with an arrival. We have

m∑
j 6=i

pij(0) +
m∑
j=1

pij(1) = 1.

In matrix form, we denote by (D0)ii = −λi, (D0)ij = λipij(0), j 6= i and (D1)ij =
λipij(1). Then the MAP is represented by (D0, D1). D0 is the (matrix) rate of
transitions without an arrival and D1 is the rate of transitions with an arrival. D0

and D1 are m × m matrices. D0 has negative diagonal elements and nonnegative
off-diagonal elements. D1 has nonnegative elements. D = D0 +D1.

For more details about the MAP, see Neuts [5] and Lucantoni [4].

Appendix B. The proof of Lemma 2.1. Since θ1(r) is a rational function of
r (> 0), it is an analytic function of r. And so are λ∗(r) and ω(r).

By (2), θ11(r) = −rθ12(r)D03(D01 +D11)
−1. Then limr→0 θ11(r) = 0.

If D05 = 0, θ12(r)Q22 = 0. Then θ12(r) = a(r)θ3. By the normalization of the
vector θ1(r), we have a(r)− a(r)rθ3D03(D01 +D11)

−1e = 1. So,

a(r) =
1

1− rθ3D03(D01 +D11)−1e
.

So, limr→0 θ12(r) = limr→0 a(r)θ3 = θ3.
If D05 6= 0, it is an irreducible infinitesimal generator. We assume that θ12(r) has

expansion at r = 0 as θ12(r) = θ12 + rθ′12 +o(r). Substituting this into θ12(r)(rQ22 +
D05) = 0 and comparing the coefficients of r on both sides, we have θ12D05 = 0 and
θ′12D05 + θ12Q22 = 0. Then θ12 = θ4 and

θ′12 = θ4Q22(eθ4 −D05)
−1 + (θ′12e)θ4,

where θ′12e = θ4D03(D01+D11)
−1e, which is obtained by expanding the normalization

equation θ1(r)e = 1. Obviously, limr→0 θ12(r) = θ4.
The results on λ∗(r) and ω(r) are obtained by simple calculations.
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Appendix C. The proof of Theorem 3.4. Since D(r) and C are irreducible
and −Z(r)e < 0, any irreducible subset of Z(r) is nonconservative. Then Z(r) is
invertible (for r ≥ 0). By (6), R(r) = (D1⊗I)[Z(r)]−1. By X(r)Q(r) = 0, x0(r)(D1⊗
θ)− x1(r)Z(r) = 0 and x1(r) = x0(r)(I ⊗ θ)R(r). This gives (5). It is easy to derive
the result about x02. By (5), Lemma 3.2, and Theorem 3.3, we can readily write the
expansions of xn(r) (n ≥ 1) in terms of x′0, x′′0 , R, R′, and R′′. So, we only need to
expand x0(r).

By Lemma 3.2, we have that x01(0) = 0. Substituting the expansion of x0(r) into
(5), we have

B1: 0 = x′0[D0 + (I ⊗ θ)R(I ⊗ (C1e))] + x0D̄0,

B2: 0 = x′′0 [D0 + (I ⊗ θ)R(I ⊗ C1e)] + x′0[D̄0 + (I ⊗ θ)R′(I ⊗ C1e)].

More precisely, we write B1 and B2 in terms of x0i, x′0i, and x′′0i, i = 1, 2,

B3: 0 = −x′01U11 + x02D03,

B4: 0 = x′01U12 + x′02D05 + x02D04,

B5: 0 = −x′′01U11 + x′01(I ⊗ θ)R′1(I ⊗ (C1e)) + x′02D03,

B6: 0 = x′′01U12 + x′′02D05 + x′01(I ⊗ θ)R′2(I ⊗ (C1e)) + x′02D04,

where

U11 = −[D01 + (I ⊗ θ)R1(I ⊗ (C1e))],

U12 = D02 + (I ⊗ θ)R2(I ⊗ (C1e)).

Let

U22 = D04 +D03U
−1
11 U12.

U11 is invertible since D(r) is irreducible and −U11e < 0. U22 is an irreducible
infinitesimal generator since U−1

11 U12e = e.

From B3, we have

x′01 = x02D03U
−1
11 .(52)

It is obvious that x′01 ≥ 0. By (10), x0(r)(I ⊗ θ)(I − R(r))−1e = 1. So, x02(r)e =
1− (x01(r)⊗ θ, 0)(I −R(r))−1e. Then we have

x′02e = −(x′01 ⊗ θ, 0)(I −R)−1e,(53)

x′′02e = −(x′′01 ⊗ θ, 0)(I −R)−1e(54)

−(x′01 ⊗ θ, 0)(I −R)−1R′(I −R)−1e.

If D05 6= 0, from B4, it is easy to obtain

x′02 = x02U22(ex02 −D05)
−1 + (x′02e)x02.(55)

From B5, we have

x′′01 = [x′01(I ⊗ θ)R′1(I ⊗ (C1e)) + x′02D03]U
−1
11 .(56)
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From B6, we have

x′′02 = [x′′01U12 + x′01(I ⊗ θ)R′2(I ⊗ (C1e)) + x′02D04](57)

·(ex02 −D05)
−1 + (x′′02e)x02.

If D05 = 0, by B4, x02U22 = 0. So, ex02 − U22 is invertible. By B5 and B6, we have

x′02 = (x′01 ⊗ θ)[R′1(I ⊗ (C1e))U−1
11 U12 +R′2(I ⊗ (C1e))](58)

·(ex02 − U22)
−1 + (x′02e)x02.

Then x′′01 is obtained from B5. To discover x′′02, we need to expand x0(r) to the third
derivative and we obtain

B7: 0 = −x′′′01U11 + x′′01(I ⊗ θ)R′1(I ⊗ (C1e)) + x′′02D03

+x′01(I ⊗ θ)R′′1 (I ⊗ (C1e)),

B8: 0 = −x′′′01U12 + x′′01(I ⊗ θ)R′2(I ⊗ (C1e)) + x′′02D04

+x′01(I ⊗ θ)R′′2 (I ⊗ (C1e)).

Similar to (55), we have

x′′′01 = [x′′02D03 + x′′01(I ⊗ θ)R′1(I ⊗ (C1e)) + x′01(I ⊗ θ)R′′1 (I ⊗ (C1)e)]U−1
11 .

So,

x′′02 = {x′′01(I ⊗ θ)[R′1(I ⊗ (C1e))U−1
11 U12 +R′2(I ⊗ (C1e))](59)

+x′01(I ⊗ θ)[R′′1 (I ⊗ (C1e))U−1
11 U12 +R′′2 (I ⊗ (C1e))]}

·(ex02 − U22)
−1 + (x′′02e)x02.

This completes the proof. Since the proof is rather complicated, the following diagram
may be helpful to follow the evaluation and computation.

x02, R ⇒ x′01.

For D05 6= 0,

x02, x′01 ⇒ x′02 (with R′) ⇒ x′′01 ⇒ x′′02.

For D05 = 0,

x′01, R′ ⇒ x′02 ⇒ x′′01 (with R′′) ⇒ x′′02.

Appendix D. The proof of Lemma 4.1. If D05 = 0, the result is obvious
since D04 is invertible. If D05 6= 0 and is irreducible,

r(rD04 +D05)
−1D03 =

(
I +

D−1
04 D05

r

)−1

D−1
04 D03.

We first prove that the limit exists. Since the algebraic multiplicity of the eigenvalue
0 of D05 is 1, the algebraic multiplicity of the eigenvalue 0 of D−1

04 D05 is also 1. The
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geometric multiplicity of eigenvalue 0 of D05 is also 1 with unique positive eigenvector
θ4. Suppose that the geometric multiplicity of the eigenvalue 0 of D−1

04 D05 is k, there
is a vector u 6= 0, u(D−1

04 D05)
k = 0, and u(D−1

04 D05)
j 6= 0, 0 ≤ j < k. Then we

have u(D−1
04 D05)

k−1D−1
04 = cθ4, where c is a nonzero constant. If k ≥ 2, we have

u(D−1
04 D05)

k−2D05 = cθ4D04. Postmultiplying e on both sides, θ4D04e = −θ4D03e =
0. This is a contradiction. Hence, k = 1. So, matrix D−1

04 D05 has Jordan canonical
form

D−1
04 D05 = P


0

J1

. . .

Jl

P−1,

where P is a nonsingular matrix and l is a positive integer. All the Jordan blocks
{Ji, 1 ≤ i ≤ l} have nonzero diagonal elements. Then

lim
r→0

[
I +

D−1
04 D05

r

]−1

= lim
r→0

P


1

r(rI + J1)
−1

. . .

r(rI + Jl)
−1

P−1

= P

 1 0

0 0

P−1.

So, the limit exists. Since the first column of the matrix P and the first row of the
matrix P−1 are e and θ4D04, respectively, up to a constant scaler, we know that the
limit in the above formula is ceθ4D04, where c is a constant. Postmultiplying e on
both sides of (

I +
D−1

04 D05

r

)−1(
I +

D−1
04 D05

r

)
= I

and letting r → 0, we obtain ceθ4D04e = e. Hence

c−1 = θ4D04e = −θ4D03e

since (D03 +D04)e = 0.
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Abstract. A known result about the spectral radius of an irreducible nonnegative matrix is
extended to all nonnegative matrices. By means of this result, it is shown that the structured singular
value and the volumetric singular value of a class of nonnegative matrices can be approximated with
arbitrary accuracy by the matrix norm induced by a weighted `2 vector norm and in the simplest
case by a weighted `p vector norm for any p.

Key words. structured singular values, volumetric singular values, nonnegative matrices,
weighted lp norms

AMS subject classifications. 15A48, 15A60, 65F35
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1. Introduction. We begin with a survey of some results relating the spectral
radius of a matrix to the norms of matrices similar to the given matrix.

Let A be a complex n × n matrix. If || || is any norm on the complex n-space,
the corresponding induced matrix norm ||A||0 is defined as the supremum of the ratio
||Az||/||z|| among complex nonzero vectors z. Because the spectral radius ρ(A) is
defined as the largest absolute value of the eigenvalues of A, we obtain the well-known
inequality

(1.1) ρ(A) ≤ ||A||0

for any induced matrix norm by choosing z to be an eigenvector. It was shown by
Householder ([H1, Theorem 4.4] and the remark preceding it) that ρ(A) is equal to
the infimum of all induced matrix norms ||A||0. (See also [H2, p. 46] or [HJ, Lemma
5.6.10].)

The proof consists of observing that for every ε > 0 there is a nonsingular matrix
Xε such that XεAX

−1
ε is in Jordan form with the off-diagonal elements ε. Householder

then concludes that this implies that the matrix norm ||XεAX
−1
ε ||02 induced by the

`2 norm is arbitrarily close to ρ(A), so that, in fact, ρ(A) = inf‖XAX−1‖02.
It was shown by Bauer, Stoer, and Witzgall [BSW, Theorem 3] (see also [HJ,

Theorem 5.6.37]) that the operator norm induced on a complex diagonal matrix by
any absolute norm (that is, any norm whose value depends only on the absolute values
of the components) is just the spectral radius of the matrix. Therefore the Householder
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argument shows that the matrix norm ||XεAX
−1
ε ||0 induced by any absolute norm is

arbitrarily close to ρ(A). In particular, we see that for every p ∈ [1,∞]

(1.2) ρ(A) = inf
X nonsingular

||XAX−1||0p,

where || ||0p denotes the matrix norm induced by the `p norm in the complex n-space
Cn. See Friedland [F] for further discussion.

For the special case of a real n× n matrix A there exists a real similarity matrix
such that XεAX

−1
ε is in a block Jordan form whose diagonal blocks are λ for real

eigenvalues and |λ| times a 2× 2 orthogonal matrix for complex λ, and with the off-
diagonal blocks of order ε. (See, e.g., [CL, Problem 40, p. 106] and the proof given
in [HJ, pp. 150–153].) The above argument shows that when A is real and p = 2,
then (1.2) still holds if the infimum is taken only over the real nonsingular matrices.
However, an example in the appendix shows that this extension is not true, even for
2× 2 matrices, when p 6= 2.

It was shown by Stoer and Witzgall [SW] that when A is not only real but also
entrywise positive, then for any p ∈ [1,∞],

(1.3) ρ(A) = min
X∈X

||XAX−1||0p,

where

(1.4) X = {X : X real, diagonal, and positive definite}.

This is a further improvement of (1.2) in two ways. The infimum is taken over the
smaller set X of matrices X, and the infimum is attained. We observe that when
X ∈ X , the norm ||z|| = ||Xz||p which induces the matrix norm ||XAX−1||0p is just a
weighted `p norm.

Recently, Albrecht [A] generalized the Stoer–Witzgall result to irreducible non-
negative matrices.

We now explain the contributions of this paper. In section 2, by considering infima
in place of minima, we extend the `2 case of the Albrecht–Stoer–Witzgall theorem to
arbitrary nonnegative matrices. In section 3 we apply this result to produce certain
classes of matrices for which the structured singular value introduced by Doyle [D]
and the volumetric singular value introduced by Barmish and Polyak [BP] can be
approximated with arbitrary accuracy by means of weighted `2 norms. In section 4
we show that in a special case the results in section 3 can be extended to yield sharp
weighted `p bounds for the structured and the volumetric singular values.

2. Approximability of the spectral radius. If A is a square matrix with
nonnegative entries, it has a nonnegative eigenvalue, the so-called Perron eigenvalue,
which is equal to its spectral radius ρ(A), and there exists (at least) one nonnega-
tive left eigenvector v and one nonnegative right eigenvector u corresponding to this
eigenvalue. (See, e.g., [HJ, Theorem 8.3.1].) We call such eigenvectors Perron eigen-
vectors of A. When A is also irreducible, Frobenius showed that the left and right
Perron eigenvectors are unique (up to scalar multiples) and positive. (See, e.g., [HJ,
Theorem 8.4.4].)

The following simple proof of a generalization which covers irreducible matrices
of the special `2 case of the Stoer–Witzgall theorem is probably known, although we
have been unable to find it written down.
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Proposition 2.1. Let A be a matrix with nonnegative entries and suppose that
there exist left and right Perron eigenvectors u and v which are positive. If

(2.1) X := diag{v1/2
j u

−1/2
j },

then

(2.2) ρ(A) = min
X∈X

||XAX−1||02

so that the Stoer–Witzgall equation (1.3) is valid when p = 2.
Proof. Observe that by (2.2), Xu = X−1v, so that

(XAX−1)∗(XAX−1)Xu = (X−1A∗X)Xρ(A)u = ρ(A)2X−1v = ρ(A)2Xu.

Thus ρ(A)2 is an eigenvalue of the nonnegative matrix (XAX−1)∗(XAX−1), and
the corresponding eigenvector Xu is positive. Because a positive eigenvector of a
nonnegative matrix must correspond to the spectral radius (see, e.g., [HJ, Corollary
8.1.30]), the spectral radius of this matrix is ρ(A)2. Thus ||XAX−1||02 = ρ(A), which
is the statement of the proposition.

We now extend the result in such a way that it also applies to all nonnegative
matrices.

Theorem 2.2. Let A be a matrix with nonnegative entries. Then

(2.3) ρ(A) = inf
X∈X

||XAX−1||02,

where

X = {X : X diagonal and positive definite}.
Proof. It was shown by Frobenius that there exists a permutation matrix P such

that the matrix PAP t is block upper triangular, with the diagonal blocks irreducible.
We shall assume that this permutation has been done, so that the matrix A has this
form. By Proposition 2.1 there exists for each of the diagonal blocks Ajj a positive
definite diagonal matrix Xj such that the matrix

Dj := XjAjjX
−1
j

has the property

(2.4) ρ(Dj) = ||Dj ||02.
For any positive ε we define the block diagonal matrix

Xε := diag{ε−jXj}.
It is easily verified that

(2.5) XεAX
−1
ε = D + εE,

where D is the block diagonal matrix with the blocks Dj , and E is a strictly upper
triangular matrix whose entries are polynomials in ε.

Since

ρ(D) = max
j
{ρ(Dj)}
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and

||D||02 = max
j
{||Dj ||02},

the property (2.4) implies that

(2.6) ρ(D) = ||D||02.
We see from this, (2.5), the continuity of the norm and the spectral radius, and

the definition of D that

ρ(A) = ρ(XεAX
−1
ε ) = ρ(D) + o(1) = ||D||02 + o(1) = ||XεAX

−1
ε ||02 + o(1).

In other words,

lim
ε→0

||XεAX
−1
ε ||02 = ρ(A).

Since Xε is in the class X , this implies statement (2.3) of Theorem 2.2.
We note that a similar construction can be found in [S, p. 17] for a related problem.

The example of the matrix (1
0

1
1 ) shows that the infimum in (2.3) need not be attained.

3. Structured and volumetric singular values. For any complex square ma-
trix A the matrix norm ||A||02 induced by the `2 norm is equal to ρ(A∗A)1/2. The
latter quantity is also the largest singular value of A and is often written as µ(A).

By using the polar decomposition A = V H where V is unitary and H is Hermitian
positive semidefinite, one sees that µ(A) = µ(H) = ρ(H). Since for any unitary matrix
U we have ρ(UA) ≤ µ(UA) = µ(A) and since ρ(V ∗A) = ρ(H) = µ(A), we see that

µ(A) = max
U∈U

ρ(UA),

where U is the group of unitary matrices.
In order to study the robustness of feedback controls, Doyle [D] introduced the

concept of structured singular value. Let the set of n coordinate vectors of Cn be
partitioned into some number ` of disjoint subsets. The spans of the vectors in the
subsets form ` orthogonal subspaces which together span Cn.

For the sake of simplicity, we suppose that the indices of the vectors in any one
subset are contiguous. Then an n × n matrix is naturally partitioned into a block
matrix in which each block represents a transformation from one of the prescribed
subspaces into the same or a different subspace.

For this reason the partition of Rn into coordinate subspaces is called a block
structure. We shall use B to denote the block structure.

Let UB be the group of unitary matrices which are block diagonal in the given
block structure B. Doyle’s definition of the structured singular value µs(A) is1

(3.1) µs(A) := max
U∈UB

ρ(UA).

We let XB denote the set of all positive definite matrices which commute with all
the matrices of UB . It is easily seen that

(3.2)
XB = {X : X diagonal and positive definite, and the

diagonal entries of X on each block are equal}.
1 Note that µs depends upon the block structure B, so that it might have been better to denote

it by µB(A).



APPROXIMABILITY BY WEIGHTED NORMS 253

In connection with the same problem, Barmish and Polyak [BP, p. 8] introduced
the volumetric singular value which may be defined as

(3.3) µv(A) := inf
R∈XB

det(R)=1

µs(AR).

The infimum in (3.3) need not be attained; see [BP, p. 5].
It was observed by Doyle [D] that because the matrices of XB commute with those

of UB , because a similarity transformation leaves the spectral radius invariant, and
because a unitary matrix leaves the `2 norm invariant, one finds that for any U ∈ UB
and any X ∈ XB ,

(3.4) ρ(UA) = ρ(XUAX−1) = ρ(UXAX−1) ≤ ||XAX−1||02.
By maximizing the left-hand side and minimizing the right, Doyle obtained the bound

(3.5) µs(A) ≤ inf
X∈XB

||XAX−1||02.

By replacing A by AR, defining Y = RX−1, and minimizing both sides of the
inequality (3.4), Barmish and Polyak obtained the bound

(3.6) µv(A) ≤ inf
X,Y∈XB

det(XY )=1

||XAY −1||02.

Because it is relatively easy to produce good algorithms to approximate the right-
hand sides of (3.5) and (3.6), Doyle asked for conditions on A which ensure that
equality holds in these bounds. We shall use the results of section 2 to find such
conditions.

Let SB denote the `-dimensional subspace of Rn which consists of those vectors
whose components on each of the prescribed subspaces are equal.

Definition. A matrix A is said to be adapted to the block structure B if SB is
an invariant subspace of both A and its adjoint (complex transpose) A∗.

It is easily seen that a matrix A is adapted to the block structure B if and only
if each of the `2 block matrices into which A is partitioned by the block structure has
constant row sums and constant column sums.

We can now state our result on structured and volumetric singular values.
Theorem 3.1. Let A be nonnegative and adapted to the block structure B. Then

the structured singular value of A is equal to the spectral radius of A, and equality
holds in the inequalities (3.5) and (3.6).

Proof. We define the nonnegative `×` matrix AB whose ij element is the common
row sum of the ij block of A. Suppose for the moment that AB is irreducible, and let
uB denote its (positive) right Perron eigenvector. Define the positive n-vector u ∈ SB
by requiring that its components in the jth block of B equal the jth component of
uB . The definitions of AB , uB , and u show that Au = ρ(AB)u, so that u is a positive
eigenvector of A. As in the proof of Proposition 2.1, this shows that ρ(A) = ρ(AB),
so that A has the positive right Perron eigenvector u.

Similar reasoning also shows that A also has a positive left Perron eigenvector.
One must work with the matrix ÃB whose ij entry is the common column sum of the
ij block, and it easy to see that ÃB is irreducible if AB is irreducible.

We have thus shown that if AB is irreducible, A has positive left and right Perron
eigenvectors in SB , even though A itself may be reducible. Then Proposition 2.1
shows that if X is defined by (2.2), ρ(A) = ||XAX−1||02.
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If the matrix AB is reducible, we can put it into the Frobenius form by means of
a permutation of its rows and columns. By performing the same permutations on the
row and column blocks of A, we obtain a matrix which is adapted to a permutation
of the partition B and whose restriction to the permuted SB is in Frobenius form.
We suppose this permutation to have been done beforehand, so that the matrix AB

is in the Frobenius form.
Then the matrix A is block upper triangular, with each block a union of the

blocks of the structure B. The restriction of each of the diagonal blocks Aαα to SB
is a diagonal block of the Frobenius matrix AB and is therefore irreducible. As we
showed at the beginning of this proof, this property implies that there is a positive
definite diagonal matrixX(α) which is adapted toB such that ||X(α)Aαα(X(α))−1||02 =
ρ(Aαα).

As in the proof of Theorem 2.2, we now define

Xε = diag{ε−αX(α)},
and show that

ρ(A) = lim
ε→0

||XεAX
−1
ε ||02.

Since Xε ∈ XB , the right-hand side is bounded below by the right-hand side of (3.5).
By definition, the left-hand side is bounded above by µs(A) which is the left-hand side
of (3.5). We conclude that µs(A) = ρ(A) and that the two sides of (3.5) are equal.

In order to obtain equality in (3.6), we see from the definition (3.3) that there is an
Rε ∈ XB with determinant 1 which makes µs(ARε) close to µv(A). We use the above
construction with A replaced by ARε to find an Xε ∈ XB so that ||XεARεX

−1
ε ||02 is

close to µs(ARε) and hence close to µv(A). Equality in (3.6) follows from defining
Yε = RεX

−1
ε , and the theorem is proved.

Remark 1. The above proof shows that if, in addition to satisfying the hypotheses
of Theorem 3.1, the matrix A is block irreducible in the sense that there is no nontrivial
direct sum of subspaces of the partition B which is an invariant subspace of A, then
there is a matrix X ∈ XB for which ||XAX−1||02 = ρ(A).

Remark 2. Doyle [D] also considered a definition of structured singular value in
which the group UB in the definition (3.1) is replaced by its subgroup of real orthogonal
matrices. Because Theorem 3.1 shows that µs(A) = ρ(A), the maximum in (3.1) is
attained when U = I, which is real and orthogonal. Thus the statement of Theorem
3.1 is still valid for this definition.

We now observe that if A is any matrix and V and W are any matrices in UB ,
then replacing A by V AW does not change either side of (3.5) or (3.6). We can
thus immediately generalize the class of matrices for which equality in (3.5) and (3.6)
holds.

Theorem 3.2. If A is any complex matrix with the property that there exist
matrices V and W in UB such that V AW is nonnegative and adapted to the block
structure B, then equality holds in the bounds (3.5) and (3.6).

4. Some results in `p. Additional results can be obtained for the particular
block structure B1 in which all the blocks are 1× 1. In this case the set UB1

consists
of the diagonal unitary matrices, and these preserve not only the `2 norm but also
all the `p norms. Therefore, we can immediately replace `2 by any `p in the bounds
(3.5) and (3.6):

(4.1) µs(A) ≤ inf
X∈XB1

||XAX−1||0p,
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(4.2) µv(A) ≤ inf
X,Y∈XB1
det(XY )=1

||XAY −1||0p.

We note that the set XB1
is just the set X of all diagonal positive definite matrices

and that any matrix is adapted to the block structure B1.
Albrecht [A] has recently obtained the following extension to nonnegative irre-

ducible matrices of the result of Stoer and Witzgall [SW] for positive matrices. This
analog of Proposition 2.1 will permit us to extend Theorem 3.1 to this case.

Proposition 4.1. Let A be an irreducible nonnegative matrix with the left and
right Perron eigenvectors v and u. For any 1 ≤ p ≤ ∞ the matrix

(4.3) X = diag(v
1/p
j u

(1−p)/p
j )

has the property that

ρ(A) = ||XAX−1||0p.

By replacing Proposition 2.1 with Proposition 4.1 in the proof of Theorem 2.2,
we find the following extension.

Theorem 4.2. If A is nonnegative and 1 ≤ p ≤ ∞, then

ρ(A) = inf
X∈X

||XAX−1||0p.

Question: For which induced matrix norms does Theorem 4.2 hold?
By replacing Theorem 2.2 by Theorem 4.2 in the proof of Theorems 3.1 and 3.2,

we immediately find the following result.
Theorem 4.3. Let B1 be the block structure which consists entirely of 1×1 blocks.

If the complex matrix A has the property that there are diagonal unitary matrices V
and W such that the matrix V AW is nonnegative, then for any p ∈ [1,∞],

µs(A) = inf
X∈X

||XAX−1||0p = ρ(V AW )

and

µv(A) = inf
X,Y∈X

det(XY )=1

||XAY ||0p.

Remark 3. If C is a complex matrix, an inequality which goes back to Frobenius
asserts that ρ(C) ≤ ρ(|C|), where |C| is the matrix whose entries are the absolute
values of the corresponding entries of C (see, e.g., [HJ, Theorem 8.1.18]). This in-
equality applied to (3.1) yields an alternative proof of the equality µs(A) = ρ(V AW )
in Theorem 4.3.

Appendix: A counterexample. We shall show that when p 6= 2 and A is the
2× 2 matrix ( 1

1
−1
1 ), equality does not hold in (1.2) when the infimum is taken only

over real matrices X.
Any real matrix which is similar to A must have the same trace and determinant.

Therefore if X is real, XAX−1 has the form

XAX−1 =

(
1 + α − 1+α2

c
c 1− α

)
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with α and c real. By inserting the two coordinate vectors into the definition of the
induced matrix norm, we find that ||XAX−1||0p is bounded below by the larger of the
`p norms of the two columns. That is,

(‖XAX−1‖0p)p ≥ max{|1 + α|p + |c|p, (1 + α2)p|c|−p + |1− α|p}.

We observe that for |c| ≥ |1 − α|, the first expression on the right is bounded
below by |1+α|p + |1−α|p. Since 1+α2 ≥ |1+α||1−α|, we see that for |c| ≤ |1−α|,
the second expression on the right has the same lower bound. Thus

(‖XAX−1‖0p)p ≥ |1 + α|p + |1− α|p

for any c.
Since

1

2

(
1 + α
1− α

)
+

1

2

(
1− α
1 + α

)
=

(
1
1

)
,

the triangle inequality shows that |1+α|p+ |1−α|p ≥ 2. Therefore we have the lower
bound

‖XAX−1‖0p ≥ 21/p.

When p > 2, we use the fact that the matrix norm induced on a matrix by `p is
equal to the norm induced on its conjugate transpose by the conjugate norm `q to
conclude that inf ‖XAX−1‖0p ≥ max{21/p, 2(p−1)/p} for every p. Since ρ(A) = 21/2,
we conclude that when p 6= 2, the right-hand side of (1.2) with X restricted to real
matrices is strictly larger than the left-hand side.

Remark 4. By using the easily obtained equations ‖A‖02 = 21/2 and ‖A‖01 = 2
for the above matrix A and using the Riesz convexity theorem (see [R, p. 472]), one
obtains the inequality ‖A‖0

p ≤ max{21/p, 2(p−1)/p}. Together with the above lower
bound, this shows that for every p the minimum of ‖XAX−1‖0p over real diagonal X
is attained when X is the identity.

Acknowledgment. We thank Michael Neumann for comments which have helped
to improve this paper.
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Abstract. Let A,B be positive operators and let f be any operator monotone function. We
obtain inequalities for |||f(A)X−Xf(B)||| in terms of |||f (|AX −XB|) ||| for every unitarily invariant
norm. The case X = I was considered by T. Ando [Math. Z., 197 (1988), pp. 403–409], and some of
our results reduce to his results in this special case. Some related inequalities are obtained.

Key words. operator monotone functions, unitarily invariant norms, singular values, commu-
tators
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1. Introduction. The aim of this paper is to present commutator versions of
some perturbation inequalities proved by Ando [1] and by Jocic and Kittaneh [4]. For
simplicity, we will state our results first for n × n matrices and then point out the
small modifications needed to extend their validity to operators on a Hilbert space.

Let A,B be positive (semidefinite) matrices, f any nonnegative operator mono-
tone function on [0,∞), and ||| · ||| any unitarily invariant norm. Then we have the
following inequality due to Ando [1]:

|||f(A)− f(B)||| ≤ |||f(|A−B|)|||.(1)

Here, |X| denotes (X∗X)
1/2

.
Our first theorem is the following extension of this result.
Theorem 1. Let A,B be positive matrices. LetX be any matrix and let sj(X), 1 ≤

j ≤ n be the decreasingly ordered singular values of X. Then for every nonnegative
operator monotone function f and for every unitarily invariant norm we have

|||f(A)X −Xf(B)||| ≤ 1 + s21(X)

2

∣∣∣∣∣∣∣∣∣∣∣∣f ( 2

1 + s2n(X)
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣.(2)

After this we prove another inequality, which implies the following.
Theorem 2. Let A,B be positive matrices and let X be any contraction (i.e.,

||X|| := s1(X) ≤ 1). Then for every nonnegative operator monotone function f and
for every unitarily invariant norm we have

|||f(A)X −Xf(B)||| ≤ 5

4
|||f (|AX −XB|) |||.(3)

For the special case of the operator norm || · || and the power functions f(t) =
tr, 0 < r ≤ 1 the inequality (3) has been proven by Pedersen [8].

Note that while the choice X = I reduces the inequality (2) to (1) the same is not
the case with (3). It is an interesting open question to decide whether the constant

∗ Received by the editors March 24, 1995; accepted for publication (in revised form) by R. A.
Horn March 26, 1996.
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5/4 occurring here could be replaced by 1. We show that for 2 × 2 matrices this can
indeed be done.

Section 2 of this paper contains the proofs of these results, several related in-
equalities, and some remarks. We then obtain extensions, in the same spirit, of the
following result from [4]: If A,B are Hermitian, then for every positive integer m∣∣∣∣∣∣(A−B)2m+1

∣∣∣∣∣∣ ≤ 22m
∣∣∣∣∣∣A2m+1 −B2m+1

∣∣∣∣∣∣ .(4)

The extension we obtain is the following.
Theorem 3. Let A,B be Hermitian and let X be any matrix. Then for every

positive integer m and for every unitarily invariant norm

||| |AX −XB|2m+1||| ≤
(
1 + s21(X)

)2m+1

1 + s2n(X)
|||A2m+1X −XB2m+1|||.(5)

If X is a contraction we have

||| |AX −XB|2m+1 ||| ≤ 22m

(
5

4

)2m+1

|||A2m+1X −XB2m+1|||.(6)

2. Proofs and remarks. We will use standard facts about unitarily invariant
norms and singular values (see, e.g., [3]) and about operator monotone functions [9].
Recall that if f is a nonnegative operator monotone function on [0,∞) then it has an
integral representation

f(t) = α+ βt+

∫ ∞

0

λt

λ+ t
dµ(λ),(7)

where α, β ≥ 0 and µ is a positive measure. We will repeatedly use the identity

f (UAU∗) = Uf(A)U∗,(8)

valid for all unitary operators U , Hermitian operators A, and functions f whose
domain contains the spectrum of A. (In the infinite-dimensional case f(A) is defined
via the spectral theorem for all measurable functions f . The representation (7) shows
that operator monotone functions are infinitely differentiable.)

Lemma 4. For every positive A, unitary U , and nonnegative operator monotone
function f on [0,∞) we have

|||f(A)U − Uf(A)||| ≤ |||f (|AU − UA|) |||.(9)

Proof. Using the unitary invariance of ||| · |||, the relation (8), and the inequality
(1) we have

|||f(A)U − Uf(A)||| = |||f(A)− Uf(A)U∗|||
= |||f(A)− f (UAU∗) |||
≤ |||f (|A− UAU∗|) |||
= |||f (|AU − UA|) |||.

Lemma 5. Let X,Y, Z be any three matrices. Then

|||f(|XY Z|)||| ≤ |||f (||X|| ||Z|| |Y |) |||(10)
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for any monotone increasing function f on [0,∞).
Proof. It is an easy consequence of the min–max principle that

sj(XY Z) ≤ ||X|| ||Z|| sj(Y ) for all j.

Hence,

sj (f(|XY Z|)) = f (sj(XY Z))

≤ f (||X|| ||Z|| sj(Y ))

= sj (f(||X|| ||Z|| |Y |)) .
This is more than adequate to ensure (10).

The special case A = B, X = X∗. We will first prove the inequality (2) in this
special case. Let

U = (X − i) (X + i)
−1

(11)

be the Cayley transform of X; U is unitary and its spectrum does not contain the
point 1. We have

X = i(1 + U)(1− U)−1 = 2i(1− U)−1 − i.(12)

So, we can write

|||f(A)X −Xf(A)|||
=
∣∣∣∣∣∣f(A)

(
2i(1− U)−1 − i

)− (2i(1− U)−1 − i
)
f(A)

∣∣∣∣∣∣(13)

= 2
∣∣∣∣∣∣f(A)(1− U)−1 − (1− U)−1f(A)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣(1− U)−1 (f(A)U − Uf(A)) (1− U)−1
∣∣∣∣∣∣

≤ 2
∣∣∣∣(1− U)−1

∣∣∣∣2 |||f(A)U − Uf(A)|||
≤ 2

∣∣∣∣(1− U)−1
∣∣∣∣2 |||f (|AU − UA|)||| ,

using Lemma 4. Now use (12) to obtain

||(1− U)−1||2 =

∣∣∣∣∣∣∣∣X + i

2

∣∣∣∣∣∣∣∣2 =
1 + s21(X)

4
.(14)

Also note that

|||f (|AU − UA|)||| = ∣∣∣∣∣∣f (|A (1− 2i(X + i)−1
)− (1− 2i(X + i)−1

)
A|)∣∣∣∣∣∣(15)

=
∣∣∣∣∣∣f (2 ∣∣(X + i)−1A−A(X + i)−1

∣∣)∣∣∣∣∣∣
=
∣∣∣∣∣∣f (2 ∣∣(X + i)−1(AX −XA)(X + i)−1

∣∣)∣∣∣∣∣∣
≤ ∣∣∣∣∣∣f (2||(X + i)−1||2 |AX −XA|)∣∣∣∣∣∣

using Lemma 5. Finally, note that

||(X + i)−1||2 =
1

1 + s2n(X)
.(16)

The proof of (2) in the special case is completed by combining (13), (14), (15), and
(16).
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Proof of Theorem 1. The general case follows from the special one by a much-used
trick. Let

C =

[
A 0
0 B

]
, Y =

[
0 X
X∗ 0

]
.

Then C is positive and Y is Hermitian. The singular values of Y are the same as
those of X (but each counted twice now). The special case of the theorem applied to
C in place of A and Y in place of X leads to the inequality (2).

Proof of Theorem 2. Let t be any nonzero real number. Then the inequality (2)
with tX in place of X gives

|||f(A)X −Xf(B)||| ≤ 1 + t2s21(X)

2|t|
∣∣∣∣∣∣∣∣∣∣∣∣f ( 2|t|

1 + t2s2n(X)
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣.(17)

Let ||X|| ≤ 1. Put t = 1/2 in (17) to get

|||f(A)X −Xf(B)||| ≤ 5

4

∣∣∣∣∣∣∣∣∣∣∣∣f ( 4

4 + s2n(X)
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣.(18)

Since f is operator monotone, the inequality (3) follows from (18).
Remark 1. With slight modifications, the results above carry over to operators in

an infinite-dimensional Hilbert space. We need to replace s1(X) by ||X|| in (14) and
in the subsequent discussion. In (16) we need to replace sn(X) by inf ||ψ||=1 ||Xψ||,
and in the subsequent discussion we need to replace it by inf||ψ||=1 ||Y ψ||, where

Y =

[
X 0
0 X∗

]
.

Note that inf ||ψ||=1 ||Xψ|| is equal to zero if X is compact and is equal to ||X−1||−1

if X is invertible.
Remark 2. In [6], Mathias showed that Ando’s inequality (1) is true if f is a

nonnegative matrix monotone function of order n on [0,∞). (This means that f
is assumed to be order preserving on positive semidefinite matrices of order n only,
while an operator monotone function is one which is matrix monotone of order n for
all n.) Our proof shows that the inequalities (2) and (3) in the special case A = B
and X = X∗ are true for all functions f that are matrix monotone of order n. The
proof for the general case works if f is matrix monotone of order 2n.

Remark 3. The special case in which f(t) = tr, 0 < r ≤ 1, and the norm is the
operator norm has been studied before. In [7] it was shown that for every positive A
and for every X

||ArX −XAr|| ≤ (1− r)r−1 ||X||1−r ||AX −XA||r, 0 < r ≤ 1.(19)

It was mentioned in that paper that Haagerup showed that the factor (1 − r)r−1

occurring in (19) could be replaced by (sin rπ)/πr(1− r). This, and some extensions,
were also proven in [2]. Pedersen [8], using arguments like the ones we have used,
showed that the factor (1 − r)r−1 can be replaced by 5/4. He remarks that for the
special case r = 1/2 this can be reduced further to 2/

√
π. In some special situations

our inequality (2) can give better results. For example, this is so when ||X|| = 1 and
sn(X) > .76.
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Remark 4. For 2× 2 matrices, the factor 5/4 occurring in the inequality (3) can
be replaced by 1. To see this, let

A =

[
a1 0
0 a2

]
, X =

[
x11 x12

x21 x22

]
.

Then

|f(A)X −Xf(A)| =
[ |(f(a1)− f(a2))x21| 0

0 |(f(a1)− f(a2))x12|
]

and

f (|AX −XA|) =

[
f (|(a1 − a2)x21|) 0

0 f (|(a1 − a2)x12|)
]
.

So, it is enough to show that if |x| ≤ 1, then

|(f (a1)− f (a2))x| ≤ f (|(a1 − a2)x|) .(20)

It follows from the representation (7) that cf(t) ≤ f(ct) for 0 ≤ c ≤ 1. So, if x = ceiθ,
we have

|(f(a1)− f(a2))x| = c
∣∣(f(a1)− f(a2)) e

iθ
∣∣

≤ cf
(∣∣(a1 − a2) e

iθ
∣∣)

≤ f (|(a1 − a2)x|) .
Our next proposition shows that if we replace the operator norm with the Hilbert–

Schmidt norm, then the first factor on the right-hand side of the inequality (19) can
be replaced by 1.

Proposition 6. Let A,B be positive and let X be any matrix. Then for 0 < r <
1,

||ArX −XBr||2 ≤ ||X||1−r2 ‖AX −XB‖r2.(21)

Proof. As in Theorem 1, the general case follows from the special case A = B.
Assume, without loss of generality, that A is diagonal with diagonal entries λ1, . . . , λn.
Then

||ArX −XAr||22 =
∑
i,j

∣∣(λri − λrj
)
xij
∣∣2

≤
∑
i,j

|λi − λj |2r |xij |2

=
∑
i,j

|λi − λj |2r |xij |2r |xij |2(1−r)

≤
∑

i,j

|λi − λj |2 |xij |2
r∑

i,j

|xij |2
1−r

= ||AX −XA||2r2 ||X||2(1−r)2 .

We have used Hölder’s inequality to arrive at our last inequality.
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The inequality (21) is valid for operators on Hilbert space. Let X be any Hilbert–
Schmidt operator and A any positive operator. By a theorem of Weyl and von Neu-
mann [5, p. 525] A can be expressed as a diagonal operator plus a Hilbert–Schmidt
operator with arbitrarily small Hilbert–Schmidt norm. So, the same proof gives the
inequality (21) in this case as well.

Following the same arguments as Ando [1] we can derive the following general-
ization of Theorem 2 in that paper.

Theorem 7. Let g be an increasing function on [0,∞) such that g(0) = 0,
limt→∞ g(t) = ∞, and the inverse function of g is operator monotone. Then for all
A,B ≥ 0 and for all X,

1 + s2n(X)

2

∣∣∣∣∣∣∣∣∣∣∣∣g( 2

1 + s21(X)
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ |||g(A)X −Xg(B)|||.(22)

Once again, first replacing X by tX and then making the special choice t = 1/2,
we get from this

4 + s2n(X)

4

∣∣∣∣∣∣∣∣∣∣∣∣g( 4

4 + s21(X)
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ |||g(A)X −Xg(B)||| .(23)

Since g is monotonically increasing, we obtain from this the following theorem.
Theorem 8. Let A,B ≥ 0 and let X be any operator with ||X|| ≤ 1. Then for

every function g satisfying the conditions of Theorem 7 we have∣∣∣∣∣∣∣∣∣∣∣∣g(4

5
|AX −XB|

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ |||g(A)X −Xg(B)||| .(24)

In particular, for every r ≥ 1 we have

||| |AX −XB|r||| ≤
(

5

4

)r
|||ArX −XBr|||.(25)

We remark that should it be possible to replace the factor 5/4 by 1 in inequality
(3), then the same could be done in (24) and (25).

The proof of Theorem 3 is analogous to that of Theorem 1. We leave the details
to the reader.

Acknowledgments. We are thankful to Ken Davidson for bringing [8] to our
attention.
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Abstract. After the paper cited in the title [George and Ikramov, SIAM J. Matrix Anal. Appl.,
17 (1996), pp. 348–354] was sent to the printer, the authors succeeded in finding a way to show that
the answer to the title question is no. This brief note contains a proof of the result.

Key words. polar decomposition, finite computation

AMS subject classification. 65F10
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Assume that, for any A, the polar decomposition of A can be computed finitely.
In particular, for a Hermitian matrix A, it is possible to compute finitely the positive
semidefinite matrix H = (A2)1/2. One can assume, without loss of generality, that
A has a simple spectrum. Otherwise, we could first transform A to tridiagonal form
and deal afterwards with the irreducible diagonal blocks in the latter matrix. In what
follows, it is important to note that since the spectrum is simple, it is possible, using
a finite amount of arithmetic, to find a shift γ such that A− γI has a single positive
eigenvalue.

Let

C = (A+H)/2.

Then the column space and the null space of C coincide with the invariant subspaces
of A corresponding to its positive and nonpositive eigenvalues, respectively. It is
obvious that a basis of the column space and that of the null space of any matrix
can be computed finitely (and even rationally). (We mention that, for our problem,
orthonormal bases of both subspaces are given by columns of the unitary factor in the
polar decomposition of A.) It follows that, for a Hermitian A with a single positive
eigenvalue λ, the eigenspace L associated with λ can be found finitely. Then any
nonzero vector x ∈ L can be used to find λ via the relation Ax = λx. Since this
argument is applicable to any shifted matrix A− αI, we conclude that the spectrum
of any Hermitian matrix can be computed finitely. It is widely known that this is not
true, in general, for n ≥ 5.
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Abstract. We discuss two spectral dichotomy techniques: one for computing an invariant sub-
space of a nonsymmetric matrix associated with the eigenvalues inside and outside a given parabola;
another one for computing a right deflating subspace of a regular matrix pencil associated with the
eigenvalues inside and outside a given ellipse. The techniques use matrices of twice the order of the
original matrices on which the spectral dichotomy by the unit circle and by the imaginary axis apply
efficiently. We prove the equivalence between the condition number of the original problems and that
of the transformed ones.

Key words. eigenvalue, regular matrix pencil, spectral dichotomy, spectral transformation,
spectral condition number
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1. Introduction. In this note we are concerned with some spectral transforma-
tions for computing right eigenspaces corresponding to the eigenvalues of a matrix
(matrix pencil) in a given domain D of the complex plane.

We first consider the case where D is the interior (exterior) of a given parabola
γ and where we seek a right eigenspace of a matrix A having no eigenvalues on γ.
By using a special matrix A, we show that we reduce the problem to that of the
computation of a right eigenspace of A corresponding to the left (right) half plane
of the complex plane. Therefore, the results concerning the spectral dichotomy by
the imaginary axis [11, 19, 20, 21] or matrix sign function [18, 7, 17] can be applied
efficiently.

In the second part we consider the case where D is the interior (exterior) of an
ellipse Γ and where we seek a right eigenspace of a regular matrix pencil λB−A having
no eigenvalues on Γ. By using a special regular matrix pencil λB − A, we show that
this problem is reduced to that of the computation of a right eigenspace of the pencil
λB−A corresponding to the interior (exterior) of the unit circle. Therefore, the results
concerning the circular spectral dichotomy [5, 19, 20, 21] can be applied efficiently.
This latter problem has recently been studied in [12]. We propose here a simple
solution based on standard linear algebra without making use of Green matrices.

We study the condition numbers of these two problems and prove the equivalence
between them and those of the transformed ones.

We mention that other possible approaches for solving these types of problems
include the inverse free spectral divide-and-conquer methods [2, 3] and the Schur-
based methods [8, 9, 14, 15].

Throughout this note, we use some standard conformal mappings that may be
found, for example, in [1]. The symbol ‖ x ‖ denotes the Euclidean norm of the vector
x. ‖ X ‖ and X∗ denote, respectively, the spectral norm and the conjugate transpose
of the matrix X. We denote by In the identity matrix of order n.
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2. Parabolic dichotomy. Let us consider a parabola γ in the (x, y) plane sat-
isfying the equation

y2 = 2p(p/2− x),(1)

where p > 0 is some real parameter. This parabola has its center at the origin and
its branches go to the left half plane symmetrically with respect to the real axis.

Consider the mapping ϕ : λ ∈ C 7→ z ∈ C defined by the formula z = (λ+
√
p/2)2.

If we write z = x+ iy then we obtain

x =
(
<λ+

√
p/2
)2

− (=λ)
2

and y = 2
(
<λ+

√
p/2
)
=λ.(2)

It follows that y2 = 4(<λ+
√
p/2)2[(<λ+

√
p/2)2 − x]. Thus ϕ bijectively maps the

straight line <λ = c ∈ R onto the parabola y2 = 2p̄(p̄/2− x) with p̄ = 2(c+
√
p/2)2.

This family of parabolae depending on the parameter p̄ has the same center at the
origin. In particular, ϕ bijectively maps the imaginary axis onto the parabola γ. It is
easy to see that ϕ maps the region

{λ ∈ C| <λ < −2
√
p/2 } ∪ {λ ∈ C| <λ > 0 }

onto the exterior of γ and maps the strip

{λ ∈ C| − 2
√
p/2 < <λ < 0 }

onto the interior of γ. The restriction of the mapping ϕ on the set

Ω = {λ ∈ C| <λ > −
√
p/2 }

is one-to-one and ϕ(Ω) = {λ ∈ C| (<λ > 0) or (=λ 6= 0) }; that is, ϕ(Ω) is the whole
(x, y) plane with the real negative axis deleted. Finally, it is easy to see that the right
half plane, i.e., the set of λ with <λ > 0, is mapped conformally onto the exterior of
the parabola y2 = 2p(p/2− x).

After these preliminaries we now consider a matrix A of order n having no eigen-
values on the parabola γ of equation y2 = 2p(p/2− x). Let A be the matrix of order
2n defined by

A =

[
−
√

p
2In A

In −
√

p
2In

]
.(3)

It is easy to see that the eigenvalues λ of A and the eigenvalues z of A satisfy

z =
(
λ+

√
p/2
)2

= ϕ(λ).(4)

From the above discussion about the properties of the mapping ϕ and the assumption
about the eigenvalues of A, we see that the matrix A has no eigenvalues on the
imaginary axis. Thus the problem of verification of absence of the eigenvalues of the
matrix A on the parabola γ is transformed into the spectral dichotomy problem with
respect to the imaginary axis. This latter problem has been deeply studied from both
theoretical and practical aspects [11, 20, 21].

We assume from now on that ||A|| = 1. This assumption is not restrictive since
otherwise we can take A1 = 1

||A||A and p1 = p
||A|| .
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In the spectrum dichotomy problem for the matrix A with respect to the imagi-
nary axis, the quality of the dichotomy is characterized by the numerical parameter
[20, 2]

α̃ = sup
<λ=0

‖(λI2n −A)−1‖.(5)

This parameter has already been used in the context of matrix stability [25, 6]. Sim-
ilarly, the quality of the dichotomy for the matrix A with respect to the parabola γ
is characterized by the parameter

α = sup
z∈γ
‖(zIn −A)−1‖.(6)

The natural question that one may ask is how to relate the two quantities α and α̃.
The answer is given in the following proposition.

Proposition 2.1. Let α and α̃ be the two parameters defined in (5) and (6).
Then

α ≤ α̃ ≤ α+
√
α
√

1 + α.(7)

Proof. We have

(λI2n −A)−1 =

[ (
λ+

√
p
2

)
In A

In
(
λ+

√
p
2

)
In

]

×
[ (

λ+
√

p
2

)2
In −A 0

0
(
λ+

√
p
2

)2
In −A

]−1

.

By considering the n× n block in position (2, 1) of the resulting matrix, we obtain

α̃ = sup
<λ=0

‖(λI2n −A)−1‖ ≥ sup
z∈γ
‖(zIn −A)−1‖ = α.

The use of (4) gives

‖(λI2n −A)−1‖ ≤
∥∥∥∥( √zIn A

In
√
zIn

)∥∥∥∥ ‖(zIn −A)−1‖,

and since ||A|| = 1 we have

‖(λI2n −A)−1‖ ≤ ‖(zIn −A)−1‖(1 +
√
|z|).

We deduce that if |z| ≤ 1+α
α , then ||(λI2n−A)−1|| ≤ α(

√
1+α
α + 1) = α+

√
α
√

1 + α.

Now if |z| > 1+α
α , the formula (zIn −A)−1 = 1

z In + 1
zA(zIn −A)−1 yields

||(λI2n −A)−1|| ≤
(
||(zIn −A)−1||+ 1

) √|z|+ 1

|z|

≤ (α+ 1)

(
1

|z| +
1√
|z|

)
< α+

√
α
√

1 + α.

Thus, provided that α is not small, the quality of the spectral dichotomy of the
matrix A with respect to the parabola γ and that of the matrix A with respect to the
imaginary axis is equivalent.
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We now describe how to obtain a solution to the spectral dichotomy problem for A
with respect to the parabola γ, having calculated a solution to the spectral dichotomy
problem for A with respect to the imaginary axis. Let P ∈ Cn×n be the projection
matrix onto the right eigenspace of A associated with the eigenvalues outside the
parabola γ and P ∈ C2n×2n the projection matrix onto the right eigenspace of A
associated with the eigenvalues on the right half plane of the complex plane. The
following proposition characterizes the relation between P and P.

Proposition 2.2. Let us partition P in the following form:

P =

(
P1 P2

P3 P4

)
with Pi ∈ Cn×n, i = 1, 4.(8)

Then

P = 2P1 = 2P4 = 4P2P3.(9)

Moreover,

P2 =
1

2
(PA)

1
2 .(10)

Proof. Suppose that the matrix A is nonsingular (below this restriction will be
removed). Let us define a solution X to the matrix equation(

X +

√
p

2
In

)2

= A,(11)

whose eigenvalues are assumed to be in the domain

D = {λ ∈ C| <λ > −
√
p/2 } ∪ {λ ∈ C| <λ = −

√
p/2 and =λ > 0 }.

It is clear that such a matrix X exists and is uniquely defined.1 Notice that the matrix
X1 = −X − 2

√
p/2 In also satisfies the equation (X1 +

√
p/2 In)2 = A.

The matrix A can thus be decomposed in the following form:

A =

(
X +

√
p
2 In −X −

√
p
2 In

In In

)(
X 0
0 −X − 2

√
p
2 In

)
(12)

×
(
X +

√
p
2 In −X −

√
p
2 In

In In

)−1

=

(
X +

√
p
2 In −X −

√
p
2 In

In In

)(
X 0
0 −X − 2

√
p
2 In

)
(13)

×1

2

( (
X +

√
p
2 In

)−1
In

−
(
X +

√
p
2 In

)−1
In

)
.

Consider the Jordan canonical form of the matrix X:

X = Q

(
J+ 0
0 J−

)
Q−1,(14)

1 The properties of the mapping ϕ ensure the uniqueness of X in D.
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where J+ (J−) corresponds to the Jordan block associated with the eigenvalues of X
in the right (left) half plane. Using the expression (14) of X, the decomposition (12)
of A reduces to

A = QJQ−1,(15)

where

Q =

(
Q 0
0 Q

) ( J+ 0
0 J−

)
+
√

p
2In −

(
J+ 0
0 J−

)
−
√

p
2In

In In


and

J =


(
J+ 0
0 J−

)
0

0 −
(
J+ 0
0 J−

)
− 2
√

p
2In

 .
Notice that the expressions of P and P are simply

P = Q
(
Ik 0
0 0

)
Q−1 and P = Q

(
Ik 0
0 0

)
Q−1,(16)

where k is the order of the matrix J+. The expression of P in (16) can easily be
written in form (8) with

P1 = P4 = Q

(
1
2Ik 0
0 0

)
Q−1 ≡ 1

2
P,(17)

P2 = Q

(
1
2 (J+ +

√
p
2Ik) 0

0 0

)
Q−1 ≡ 1

2
(PA)

1
2 ,(18)

and

P3 = Q

(
1
2 (J+ +

√
p
2Ik)−1In 0

0 0

)
Q−1.(19)

It remains only to observe that by the continuity arguments, that is, by considering,
for example, the matrix Aε = A+ εIn, one can remove the nonsingularity assumption
on A.

3. Elliptic dichotomy. Let λB−A be a regular matrix pencil of order n having
no eigenvalues on the ellipse Γ of equation

x2

a2
+
y2

b2
= 1.(20)

We assume throughout this section that a ≥ b > 0. Consider the mapping ψ : ξ ∈
C 7→ λ ∈ C defined by the formula

λ = ψ(ξ) =
(a+ b)ξ2 + (a− b)

2ξ
.(21)
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It is easy to see that ψ maps the region

R1 =

{
ξ ∈ C| |ξ| < a− b

a+ b

}
∪ {ξ ∈ C| |ξ| > 1 }

onto the exterior of Γ and maps the annulus

R2 =

{
ξ ∈ C| a− b

a+ b
< |ξ| < 1

}
onto the interior of Γ. In particular, ψ conformally transforms the exterior of the unit

circle onto the exterior of the ellipse Γ. The mapping ψ is a bijection when r >
√

a−b
a+b .

Now consider the quadratic matrix pencil

a+ b

2
Bξ2 −Aξ +

a− b
2

B.(22)

Then

a+ b

2
Bξ2 −Aξ +

a− b
2

B = ξ(λB −A),(23)

where λ = ψ(ξ) is defined in (21). This shows the relationship between the eigen-
structure of the quadratic matrix pencil (22) and that of the original pencil λB −A.

From (23) and the assumption on the eigenvalues of λB − A, we see that the
quadratic matrix pencil (22) has no eigenvalues on the unit circle and that

sup
|ξ|=1

∥∥∥∥∥
[
a+ b

2
Bξ2 −Aξ +

a− b
2

B

]−1
∥∥∥∥∥ = sup

λ∈Γ
‖(λB −A)−1‖.(24)

A classical way of dealing with the quadratic matrix pencil (22) is to consider a matrix
pencil [10] of the form µB −A, where

B =

(
a+b

2 B −A
0 a+b

2 B

)
and A =

(
−a−b2 B 0
A −a−b2 B

)
.

It is easy to show that if
(
a+b

2 Bξ2 −Aξ + a−b
2 B

)
x = 0, then

(
ξ2B −A

)
( ξxx ) = 0.

From the assumption on the eigenvalues of λB−A, we see that the eigenvalues of the
matrix pencil µB − A cannot be on the unit circle. Thus the problem of verification
of absence of the eigenvalues of the matrix pencil λB −A on the ellipse Γ is reduced
to a spectral dichotomy problem with respect to the unit circle; this latter problem is
now well understood [5, 19, 20, 21] and can be applied efficiently.

In the spectrum dichotomy problem for the matrix pencil λB −A, the quality of
the dichotomy is characterized by the numerical parameter [20, 21, 2]

β = sup
λ∈Γ
‖(λB −A)−1‖.(25)

Similarly, the quality of the dichotomy for the matrix pencil µB − A with respect to
the unit circle is characterized by the numerical parameter

β̃ = sup
|µ|=1

‖(µB −A)−1‖.(26)
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As in the previous section, we begin by comparing the two quantities β and β̃.
Proposition 3.1. The quantities β and β̃ defined in (25) and (26) are equal:

β = β̃.(27)

Proof. We have

(µ2B −A)−1 =

(
λµB −Aµ2

−A λµB

)−1

with λ = ψ(µ)

=

(
In 0
0 µ−1In

)(
λB −A
−A λB

)−1(
µ−1In 0

0 In

)
=

(
In 0
0 µ−1In

)
×1

2

[
(λB −A)−1 + (λB +A)−1 (λB −A)−1 − (λB +A)−1

(λB −A)−1 − (λB +A)−1 (λB −A)−1 + (λB +A)−1

]
×
(
µ−1In 0

0 In

)
=

(
In 0
0 µ−1In

)( In√
2
− In√

2
In√

2
In√

2

)[
(λB −A)−1 0

0 (λB +A)−1

]

×
(

In√
2

In√
2

− In√
2

In√
2

)(
µ−1In 0

0 In

)
.

We now describe how to obtain a solution to the spectral dichotomy problem for
the pencil λB − A with respect to the ellipse Γ, having calculated a solution to the
spectral dichotomy problem for the pencil µB−A with respect to the unit circle. Let
P ∈ Cn×n be the projection matrix onto the right eigenspace of the pencil λB − A
associated with the eigenvalues outside the ellipse Γ and P ∈ C2n×2n the projection
matrix onto the right eigenspace of µB − A associated with the eigenvalues outside
the unit circle. The following proposition characterizes the relation between P and
P.

Proposition 3.2. Let us partition P in the following form:

P =

(
P1 P2

P3 P4

)
with Pi ∈ Cn×n, i = 1, 4.(28)

Then

P = P1 + P4.(29)

Proof. Assume that the pencil λB−A has no infinite eigenvalues (this restriction
is removed by the continuity arguments afterwards). Let us define a solution X to
the matrix equation

a+ b

2
BX2 −AX +

a− b
2

B = 0,(30)

whose eigenvalues are assumed to be outside the circle of radius a−b
a+b . Since the

eigenvalues ξ of X are chosen by formula (21), that is, ξ = λ+
√
λ2−a2+b2

a+b , where
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λ = ψ(ξ) is an eigenvalue of the pencil λB − A, the eigenvalues of X corresponding
to λ outside the ellipse Γ are uniquely defined.2

It is easy to see that the matrix X1 = a−b
a+bX

−1 also satisfies a+b
2 BX2

1 − AX1 +
a−b

2 B = 0.
Consider the Jordan canonical form of the matrix X:

X = Q

(
J∞ 0
0 J0

)
Q−1,(31)

where J∞ (J0) corresponds to the Jordan block associated with the eigenvalues of X
outside (inside) the unit circle. From (31) and the identity[

a−b
2 B 0
−A a−b

2 B

] [
X X1

In In

]
+

[
a+b

2 B −A
0 a+b

2 B

] [
X X1

In In

] [
X2 0
0 X2

1

]
= 0

we see that

P =

(
X X1

In In

) Q

(
Ik 0
0 0

)
Q−1 0

0 0

( X X1

In In

)−1

,

where k is the order of the matrix J∞. Note that the matrix X −X1 is nonsingular if
and only if the matrix pencil λB − A does not have ±

√
a2 − b2 as eigenvalues. This

can be assumed without loss of generality (continuity arguments). Thus

P =

(
X X1

In In

) Q

(
Ik 0
0 0

)
Q−1 0

0 0

( In −X1

−In X

)(
X −X1 0

0 X −X1

)−1

=

(
Q 0
0 Q

)
J∞ 0 0 0
0 0 0 0
Ik 0 0 0
0 0 0 0



Ik 0 −a−ba+bJ

−1
∞ 0

0 0 0 0
0 0 0 0
0 0 0 0

( Q 0
0 Q

)−1

×
(
X −X1 0

0 X −X1

)−1

=

 Q

(
J∞ 0
0 0

)
Q−1 Q

(
−a−ba+bIk 0

0 0

)
Q−1

Q

(
Ik 0
0 0

)
Q−1 Q

(
−a−ba+bJ

−1
∞ 0

0 0

)
Q−1

( X −X1 0
0 X −X1

)−1

≡
(
P1 P2

P3 P4

)
with

P1 = Q

[
J∞

(
J∞ − a−b

a+bJ
−1
∞

)−1

0

0 0

]
Q−1,

P2 = Q

[
−a−ba+b

(
J∞ − a−b

a+bJ
−1
∞

)−1

0

0 0

]
Q−1,

2 This is due to the properties of the mapping ψ.
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P3 = Q

[ (
J∞ − a−b

a+bJ
−1
∞

)−1

0

0 0

]
Q−1,

P4 = Q

[
−a−ba+bJ

−1
∞

(
J∞ − a−b

a+bJ
−1
∞

)−1

0

0 0

]
Q−1,

and we have P1 + P4 = Q( Ik0
0
0 )Q−1 = P .

4. Numerical experiments. In this section we illustrate the numerical behav-
ior of the parabolic and elliptic spectral dichotomy. Before considering our test ex-
amples, let us recall some qualitative aspects of the proposed methods. When the
dichotomy with respect to the imaginary axis is used on the matrix A, the quantity

κ = 2||A|| ||HA||, where HA =
1

2π

∫ +∞

−∞
(A− iξ)−1(A− iξ)−∗dξ,(32)

will be referred to as the dichotomy condition number. It was shown in [4] that

α̃ ≡ sup
<λ=0

‖(λI2n −A)−1‖ ≤ π

3− 4 log 2
‖HA‖(33)

and that the parameter κ can be considered as an indicator of the absence of eigen-
values of the matrix A on the imaginary axis and within a small neighborhood of
it.

Similarly, when the dichotomy with respect to the unit circle is used on the pencil
λB −A, the quantity

ω = ||H||, where H =
1

2π

∫ 2π

0

(A− eiφB)−1(AA∗ + BB∗)(A− eiφB)−∗dφ,(34)

satisfies [20]

β̃ ≡ sup
|µ|=1

‖(µB −A)−1‖ ≤ max

{
min(||A||, ||B||) πω

3− 4 log 2
,

√
12

5
ω

}
(35)

and will play the role of κ. That is, if ω is large, then we conclude that the pencil
λB −A has eigenvalues on a small neighborhood of the unit circle.

For each test example, we plot a figure showing the evolution of the condition
number κ (ω) when the parabola (ellipse) varies. We also give in each figure the
trace of the projector P that indicates the number of eigenvalues of A outside the
parabola (ellipse) and its norm which gives an indication about the angle between the
invariant subspaces associated with the eigenvalues inside and outside the parabola
(ellipse). The larger the norm of the projector is, the smaller the angle between the
two invariant subspaces is.

Example 1. This example is artificially built in an attempt to illustrate the con-
ditions under which the algorithm works better. The matrix under consideration is
of order 40 and is of the form

A = Q

(
A11 A12

0 A22

)
Q∗.(36)

The matrix Q is a unitary matrix generated from the QR factorization of a matrix
whose elements are chosen randomly from [−1.0, 1.0]. The matrix A11 is a 20 × 20



274 A. N. MALYSHEV AND M. SADKANE

upper triangular matrix whose diagonal elements are on the parabola γ of equation
y2 = 1−2x. The other elements are generated randomly between 0 and 1. The matrix
A22 is also a 20× 20 upper triangular matrix whose diagonal elements are such that
A22(k, k) = 1 + k

40 , k = 1, . . . , 20 and the other elements are generated randomly
between 0 and 1. The matrix A12 is a 20× 20 random matrix with elements between
0 and 1. The norm of A is 13.41. Its condition number is equal to 1.73 × 103. The
condition number of the matrix X of eigenvectors of A is equal to 1.61 × 1015. The
spectrum of A is plotted in Figure 1.

We consider the family of parabolae y2 = 2p(p/2− x), where p is a parameter to
be varied. Figure 2 shows the evolution of the condition number κ, whose expression
is given in (32) when p varies between 0.05 and 6. There are three main branches
separated by asymptotes. The regions between asymptotes corresponding to 0.96 ≤
p ≤ 1.04 and 1.8 ≤ p ≤ 3.65 are such that the parabola y2 = 2p(p/2 − x) crosses
frequently (or is situated in a neighborhood of) some eigenvalues of A. This means
that the curve changes very frequently in these regions. In the branch corresponding
to 0.05 ≤ p ≤ 0.96 we have P = In; that is, all the eigenvalues are outside the
parabola. In the branch corresponding to 1.04 ≤ p ≤ 1.80 we have trace(P ) = 20 and
||P || = 3.25× 104. In the branch corresponding to 3.65 ≤ p ≤ 6 we have P ≡ 0; that
is, all the eigenvalues are inside the parabola.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Eigenvalue distribution of the matrix in Example 1.

Table 1 shows approximations of κ and α̃ for different values of the parameter p.
The approximation of α̃ is obtained by applying a nonlinear minimization algorithm
to the function x ∈ R → ‖(ixI2n − A)−1‖. The results shown in Table 1 reveal that
the parameter α̃ is roughly of the same order of magnitude as

√
κ. Actually, it was

proven in [2] that β̃ can be “as small as”
√
ω. Note, however, that the computation

of κ and ω, or their square root, is much cheaper than that of α̃ and β̃. These last
parameters may be approximated by either nonlinear minimization algorithms or the
bisection algorithm described in [6].

We mentioned in the introduction the possibility of using the Schur-based meth-
ods. This may be done by computing the Schur decomposition Q∗AQ = T =
(T11

0
T12

T22
), where T11 is m × m and T22 is (n − m) × (n − m). The eigenvalues of

T11 (T22) are outside (inside) the parabola γ. The spectral projector is then formed
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x y1.e+05

1.e+15

0.05 6

40

20

0

p

kappa

Fig. 2. κ vs. p. x ∈ [0.96, 1.04]; y ∈ [1.80, 3.65].

Table 1

p κ α̃
0.05 1.35e+05 2.09e+2
0.5 2.16e+08 2.99e+3
0.8 6.78e+11 4.00e+5
1.06 3.73e+14 2.36e+7
1.5 3.26e+13 4.47e+6
2 2.25e+19 7.87e+9
4 1.12e+13 1.34e+6
5 2.0584e+09 3.19e+4

afterwards from the corresponding Schur vectors of Q = [Q1 Q2].

The main problem with this approach is that in finite precision arithmetic the
eigenvalues of T are perturbed eigenvalues of A. Hence we are faced with the problem
of deciding whether these perturbed eigenvalues are close or not to the contour. One
possibility is to compute the ε-pseudospectrum of the matrix T [24], but this may be
too costly.

Another possibility is to use the quantity ∆ = 1/sep(T11, T22), where sep(T11, T22)
denotes the separation between T11 and T22 [23, 15]. This quantity may be used to
indicate the sensitivity of the computed invariant subspace. The advantage of this
approach is its moderate complexity compared to the complexity of the dichotomy
methods. Indeed, the cost of the Schur-based methods is equal to the cost of the Schur
decomposition plus O(m3(n−m)3) flops,3 whereas the cost of the spectral dichotomy
lies between 100n3 and 200n3 [22].

Applied to Example 1, this Schur-based method gives the results shown in Table
2.

Example 2. In this example, taken from [12], we treat only the elliptic spectral

3 Reliable sep estimates, costing only O(m2(n − m)2 + m(n − m)2) flops, can be obtained by
solving triangular Sylvester equations [15].
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Table 2

p ∆
0.05 ≤ p ≤ 0.95 1.50e + 02

≈ 1 4.87e + 15
1.05 ≤ p ≤ 2.05 2.51e + 05

2.1 ≤ p ≤ 3 7.50e + 10 ≤ ∆ ≤ 1.00e + 14
3.05 ≤ p ≤ 6 1.50e + 2

dichotomy. We consider the matrix pencil λB −A of order 20 defined by

A =


a2i−1,2i−1 = 1

4 if 1 ≤ i ≤ 10,
a2i,2i+2 = 1 if 1 ≤ i ≤ 9,
a2i+2,2i = −5 if 1 ≤ i ≤ 9,
a2i,2i−1 = −2 if 1 ≤ i ≤ 9,
ai,j = 0 otherwise

and B =


b2i,2i = − 1

3 if 1 ≤ i ≤ 10,
b2i−1,2i+1 = 1 if 1 ≤ i ≤ 9,
b2i+1,2i−1 = 1

5 if 1 ≤ i ≤ 9,
b2i,2i+1 = 3 if 1 ≤ i ≤ 9,
bi,j = 0 otherwise.

The spectrum of this pencil is plotted in Figure 3. We consider a family of ellipses
whose major and minor semiaxes are given, respectively, by a = 3t and b = 1

t ; t is
a parameter to be varied. Figure 4 shows the evolution of ω when t varies between
0.1 and 1. Starting from the left, we have in the successive branches trace(P ) = 12
and ||P || = 1.09e + 5; trace(P ) = 12 and ||P || = 1.01e + 5; trace(P ) = 10 and ||P || =
1.98e + 5; trace(P ) = 12 and ||P || = 2.03e + 5; trace(P ) = 10 and ||P || = 6.89e + 5;
trace(P ) = 12 and ||P || = 8.94e + 4; and finally trace(P ) = 10 and ||P || = 4.66e + 4.
As in the first example, we did not plot the curve situated between the asymptotes
since it changes very frequently in these regions.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-15

-10

-5

0
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10

15

Fig. 3. Eigenvalue distribution of the matrix pencil in Example 2.

5. Conclusion. We have proposed some transformation techniques for the spec-
trum dichotomy problem of a matrix (matrix pencil) with respect to a parabola (el-
lipse) which use and generalize the cases of the circle and the straight line. Both
the theoretical aspect and the numerical treatment of the proposed techniques are
illustrated. The proposed spectral transformations can be useful for preparing the
initial problems for the matrix sign function methods and projection methods.
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Fig. 4. ω vs. t. a ∈ [0.107, 0.116]; b ∈ [0.133, 0.150]; c ∈ [0.176, 0.181]; d ∈ [0.214, 0.231];
e ∈ [0.514, 0.535]; f ∈ [0.641, 0.668].

It is known that even if the eigenvalues are globally ill conditioned, a subset
of them in a given region of the complex plane may be well conditioned. The nice
feature of the dichotomy techniques is that the spectral projector associated with the
eigenvalues inside and outside the chosen domain, together with an indication of the
confidence to be placed in the accuracy of the computed projector, is provided.
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Abstract. We address the problem of computing a low-rank estimate Y of the solution X of
the Lyapunov equation AX + XA′ + Q = 0 without computing the matrix X itself. This problem
has applications in both the reduced-order modeling and the control of large dimensional systems
as well as in a hybrid algorithm for the rapid numerical solution of the Lyapunov equation via the
alternating direction implicit method. While no known methods for low-rank approximate solution
provide the two-norm optimal rank k estimate Xk of the exact solution X of the Lyapunov equation,
our iterative algorithms provide an effective method for estimating the matrix Xk by minimizing the
error ‖AY + Y A′ +Q‖F .

Key words. Sylvester equation, least squares, iterative, conjugate gradient

AMS subject classifications. 15A06, A5A24, 65F05

PII. S0895479893252337

1. Introduction. The Lyapunov equation

AX +XA′ +Q = 0,(1.1)

A,Q ∈ Rn×n, Q = Q′ plays a significant role in numerous problems in control, com-
munication systems theory, and power systems. Recent applications of the Lyapunov
equation include the design of reduced-order state estimators and controllers [2], [20],
[28], [29] and the solution of robust decentralized control problems [30], [33]. The
Lyapunov equation also has applications in stability analysis [21], [25]. Standard
methods for the numerical solution of the Lyapunov equation [1], [12] make use of the
real Schur decomposition A = USU ′, where U is an orthogonal matrix and S is quasi-
upper triangular. The matrix U is used to transform the Lyapunov equation (1.1)
into a form that is readily solved through forward substitution. More recently, Lu
[26] and Wachspress [34] proposed the use of the alternating direction implicit (ADI)
method for the iterative solution of Lyapunov equations for which all eigenvalues of
the matrix A (or of −A) are in the right half of the complex plane.

Recently proposed numerical techniques for the numerical solution of the Lya-
punov equation have involved iterative solution techniques [23], [19], [31] or low-rank
approximate solution techniques [17], [18], [22]. Each of these methods requires the
numerical solution of either a reduced-order Lyapunov equation

(V ′AV )ΣV + ΣV (V ′A′V ′) + V ′QV = 0(1.2)

or a least-squares problem

ΣV = arg min ‖AV ΣV V
′ + V ΣV V

′A′ +Q‖F .(1.3)
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The numerical solution of generalized Lyapunov equations

AXB′ +BXA′ + C = 0

may be achieved through the use of a QZ decomposition [27] of the matrix pencil
(A,B) [7], [8]; low-rank approximate solution techniques may be applied to these
problems in a fashion analogous to the standard case (1.1).

In this paper, we address the least-squares solution of minimizations of the form

min
X
‖AXB′ + CXD′ + F‖F ,(1.4)

where (for simplicity in exposition) A,B,C, and D ∈ Rn×k, X ∈ Rk×k, F ∈ Rn×n,
and k � n. Note that (1.3) then simply reduces to a special case of (1.4). The
minimization (1.4) can be transformed to a minimization of the form

min
∥∥Āx̄+ b̄

∥∥
2

(1.5)

through a Kronecker product expansion; see [24]. Techniques for the solution of
large, sparse least-squares problems (1.5) have been addressed in several iterative
algorithms, e.g., [9], [13], [32]. It should be noted that, unlike the Kronecker product
expansion of the Lyapunov equation (1.1), the Kronecker product expansion (1.5)
of the least-squares minimization (1.4) yields a dense matrix Ā in general, since no
sparsity structure can be assumed for the matrices A, B, C, D, and F in applications
that do not involve Krylov subspaces [15], [16], [18], [19].

It should be noted that a difficulty associated with flexible structures (second-
order PDEs) that does not usually occur in heat flow problems is that the discretiza-
tions ẋ = Ax+ Bu do not automatically satisfy the constraint A+ A′ < 0 discussed
in [15] and [16]. Hence, a least-squares approach as proposed in this paper becomes
preferable to a reduced-order Lyapunov equation (the approach studied at length in
[15] and [31]).

In the case k = n, (1.4) becomes a generalized Sylvester equation

AXB′ + CXD′ + F = 0,(1.6)

which can be solved by reduction of the matrix pencils (A,C) and (D,B) to Schur-
triangular form and Hessenberg-triangular form [27], respectively, and then by apply-
ing a modified version of the Golub–Nash–Van Loan algorithm [10]. Unfortunately,
this approach is not directly applicable to the minimization (1.4); in particular, if
rank

([
A C

])
= 2k then all of the generalized eigenvalues of the pencil (A− λC)

are zero, and no useful decomposition of the problem can be obtained. However, the
solution of (1.6) plays a key role in our algorithm for the solution of (1.4).

We propose the numerical solution of the minimization (1.4) through a precondi-
tioned conjugate gradient (CG) algorithm [6]; the development of our algorithm is as
follows. First, in section 2 we present an overview of Krylov subspace techniques as
related to the numerical solution of the Lyapunov equation. In section 3 we give an
overview of the minimization of (1.4) and present algorithms for its numerical solution
in section 4. Following this, we present numerical examples in section 5. In section 6
we make some concluding remarks.

2. Krylov subspaces and iterative techniques. Krylov subspace techniques
have gained increasing popularity in the solution of large, sparse systems of linear
equations

Ax = b.(2.1)



SOLUTION OF OVERDETERMINED SYLVESTER EQUATIONS 281

A Krylov subspace K(A, v, k) is defined as

K(A, v, k) = span(
[
v Av · · · Ak−1v

]
),

where A ∈ Rn×n, v ∈ Rn, and k is an integer. One typically uses the Arnoldi algorithm
[11] or a variation thereof to compute an orthogonal matrix Vk ∈ Rn×k, or simply
V , such that span(V ) = K(A, v, k). The Arnoldi algorithm generates a sequence of
orthogonal matrices Vk such that AVk = Vk+1Hk+1, where Hk+1 ∈ Rk+1×k is an
upper Hessenberg matrix; i.e., i > j + 1⇒ Hij = 0.

The GMRES algorithm [32] uses Krylov subspace bases Vk obtained by the
Arnoldi algorithm to “project” the underlying problem (2.1) into a low-rank mini-
mization

y∗ = arg min
y

∥∥Hk+1y − Vk+1
′b
∥∥

2

and approximates the solution x of (2.1) as x ≈ Vky
∗. If the corresponding resid-

ual is too large, then the algorithm may either (1) increase the dimension k of the
Krylov subspace or (2) use iterative refinement on the residual with a rank k Krylov
subspace (GMRES(k)). Barring algorithm stagnation due to the identification of
an A-invariant subspace (a consequence of catastrophic breakdown in the Arnoldi
method) [4], the iterative application of GMRES(k) guarantees monotone decreasing
residuals corresponding to each iteration.

Hu and Reichel [19] propose an iterative algorithm, based on GMRES [32], for
the solution of large, sparse Sylvester equations

AX +XB + C = 0.(2.2)

Each iteration of the Hu–Reichel algorithm uses Krylov subspaces of G and H to
construct a minimization (1.4) with rank

([
A C

])
= rank

([
B D

])
= k + 1

whose solution X is obtained by a CG algorithm. A related approach is proposed by
Jaimoukha and Kasenally [23].

Hodel and Poolla [17] and Hodel, Tenison, and Poolla [18] iteratively compute
estimates of the dominant invariant subspace of the solution X of the Lyapunov
equation (1.1). Similarly, Hodel [16] proposes gradient-based schemes that attempt
to identify a low-rank subspace basis V that minimizes the associated residual of the
Lyapunov equation. Since each of these algorithms identifies a subspace basis V ∈
Rn×k and not a low-rank approximate solution X̂ ∈ Rn×n of the Lyapunov equation
(1.1), either of these algorithms may be used in tandem with the minimization of
(1.4) to obtain a low-rank estimate X̂ = V ΣV ′, where Σ is computed from (1.4).
This approach does not necessarily yield estimates X̂ that lie in a Krylov subspace.

Saad [31] obtains a low-rank approximate solution of the Lyapunov equation (1.1)
by applying Krylov subspaces to the identity

X =

∫ ∞
0

eA
′tQeAtdt,(2.3)

where A is stable (all eigenvalues lie in the left half plane); the evaluation of this
integral is clearly undesirable when A is not stable. This algorithm computes an
estimate X̂ = V ΣV ′ of X by solving a reduced-order Lyapunov equation (1.2). This
approach is applied in [22] to construct low-order models/controllers for very large,
sparse linear dynamic systems. While error bounds are available for this approach,
care must be taken in its application, especially when the matrix (A + A′) is not
negative definite; see [17]. Further issues in the use of the integral (2.3) are discussed
in [15].
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3. Reduction of problem dimension. The minimization (1.4) can be rewrit-
ten as a standard least-squares problem (1.5) through a Kronecker product expansion.
More precisely, in (1.5) we let Ā = (B ⊗ A + D ⊗ C), x̄ = vec(X), and b̄ = vec(F ),
where Y ⊗ Z =

[
yijZ

]
is the Kronecker product of two arbitrary matrices Y and

Z, and vec(A) is the vector stack of the matrix A; e.g., if Z ∈ Rn×m, then

vec(Z) =
[
Z·1
′ · · · Z·m

′ ]′,
where Z·j is the jth column of the matrix Z. (Observe that vec(ABC) = (C ′ ⊗
A) vec(B) [3].) The Kronecker product expansion of (1.4) yields an overdetermined
sparse system of n2 equations in k2 unknowns so that a naive application of a QR
algorithm would require O(n2k4 + k6) flops to obtain the optimal solution X. If
k < n/3, then the dimension of the minimization may be reduced, as shown in the
following lemma.

Lemma 3.1. Let A,B,C,D ∈ Rn×k, F ∈ Rn×n, and let A1, A2, B1, C1, D1, D2 ∈
Rk×k satisfy the QR factorizations

[
Q

(1)
1 Q

(1)
2 Q

(1)
3

] C1 A1

0 A2

0 0

 =
[
C A

]
,

[
Q

(2)
1 Q

(2)
2 Q

(2)
3

] B1 D1

0 D2

0 0

 =
[
B D

]
,

where Q
(j)
1 , Q

(j)
2 ∈ Rn×k and Q

(j)
3 ∈ Rn×n−2k, and [Q

(j)
1 Q

(j)
2 Q

(j)
3 ] is an orthogonal

basis of Rn, j = 1, 2. Then X ∈ Rk×k minimizes ‖AXB′ + CXD′ + F‖F if and only
if X minimizes ∥∥∥∥∥∥

 A1XB1
′ + C1XD1

′

A2XB1
′

C1XD2
′

+

 F̂11

F̂21

F̂12

∥∥∥∥∥∥
F

,(3.1)

where F̂ij = Q
(1)
i

′
FQ

(2)
j .

Proof. Let Qj = [Q
(j)
1 Q

(j)
2 Q

(j)
3 ], j = 1, 2, so that

[
C A

]
= Q1

 C1 A1

0 A2

0 0

 , [
B D

]
= Q2

 B1 D1

0 D2

0 0


and define

F̂ = Q1
′FQ2 =

 F̂11 F̂12 F̂13

F̂21 F̂22 F̂23

F̂31 F̂32 F̂33

 .
Then

min ‖AXB′ + CXD′ + F‖F
= min

∥∥Q1
′ (AXB′ + CXD′ + F )Q2

∥∥
F
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= min

∥∥∥∥∥∥
 A1

A2

0

X [ B1
′ 0 0

]
+

 C1

0
0

X [ D1
′ D2

′ 0
]

+ F̂

∥∥∥∥∥∥
F

= min

∥∥∥∥∥∥
 A1XB1

′ + C1XD1′ + F̂11 C1XD2
′ + F̂12 F̂13

A2XB1
′ + F̂21 F̂22 F̂23

F̂31 F̂32 F̂33

∥∥∥∥∥∥
F

.

Since F̂13, F̂22, F̂23, F̂31, F̂32, and F̂33 are constant for all values of X, the above min-
imization is unaffected by these terms, and the lemma follows.

Remark 3.1. The practical reduction of (1.4) to (3.1) for the general case (F does
not possess a sparse or other exploitable structure) can be accomplished in O(n2k)
flops as follows.

1. Compute and store the Householder vectors h
(j)
i , i = 1, 2k, j = 1, 2, obtained

in the QR factorizations of
[
C A

]
and

[
D B

]
in O(nk2) flops.

2. Accumulate Householder reflections H
(j)
i = (I − (2/h

(j)
i

′
h

(j)
i )h

(j)
i h

(j)
i

′
) to ob-

tain

Q̄j =
[
Q

(j)
1 Q

(j)
2

]
,

i = 1, . . . , 2k, j = 1, 2, in O(nk2) flops.
3. Compute Z = FQ̄2 ∈ Rn×2k in O(n2k) flops.
4. Compute [

F̂11

F̂21

]
= Q̄′1Z and F̂12 = Q

(1)
1

′
Z

 0k×k
Ik
0


(i.e., multiply by the last k columns of Z) in O(nk2) flops.

Observe that the dominant computational cost of O(n2k) flops occurs in step 3. This
cost can be greatly reduced if matrix-vector products Fv can be computed in much
less than n2 flops, e.g., if F is sparse or low-rank. The latter will be the case in con-
troller/model reduction applications such as [28]. Since the number of inputs/outputs
is greatly exceeded by the number of states in a typical dynamic system, the matrix F
is given by B̂B̂′, B ∈ Rn×m, m� n. Then step 3 above can be computed in O(mnk)
time, rendering the overall complexity to O(nmk) or O(nk2) (whichever is smaller).

Remark 3.2. If the least-squares minimization (1.4) is obtained via Krylov sub-
spaces as in [19], then the corresponding minimization has A,B,C,D ∈ R(k+1)×k,
which obviates the need for the above reduction.

4. Iterative solution by CG methods. We shall henceforth assume that the
minimization (1.4) has been posed in the form of Lemma 3.1; i.e., we wish to solve
the least-squares problem

min

∥∥∥∥∥∥
 A1XB1

′ + C1XD1
′

A2XB1
′

C1XD2
′

+

 F̂11

F̂21

F̂12

∥∥∥∥∥∥
F

.(4.1)

As in the case of (1.4), (4.1) can be solved by a Kronecker product expansion (1.5)
with

Ā =

 L1

L2

L3

 ∆
=

 B1 ⊗A1 +D1 ⊗ C1

B1 ⊗A2

D2 ⊗ C1

 ,(4.2)
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x̄ = vec(X), and b̄ =

 b̄1
b̄2
b̄3

 ∆
=

 vec(F̂11)

vec(F̂21)

vec(F̂12)

 .
The QR method allows the computation of a matrix X that minimizes (4.1) in O(k6)
flops.

We may also minimize (4.1) in O(k5) flops by applying the CG algorithm [14] to
the normal equations Ā′Āx̄ = −Ā′b̄ as follows.

Algorithm 1. Solution of (4.1) by CGs.
Inputs A1, A2, B1, C1, D1, D2, F̂11, F̂21, F̂12 ∈ Rk×k.
Outputs X ∈ Rk×k satisfying the minimization (4.1).

1. X0 = 0, j = 0, R
(0)
11 = F̂11, R

(0)
21 = F̂21, R

(0)
12 = F̂12,

R0 = A1
′F̂11B1 + C1

′F̂11D1 +A2
′F̂21B1 + C1

′F̂12D2

2. while Rj 6= 0
(a) j = j + 1
(b) if j = 1

Pj = R0

(c) else βj =
vec(Rj−1)

′
vec(Rj−1)

vec(Rj−2)
′
vec(Rj−2)

, Pj = Rj−1 + βjPj−1

(d) end if

(e) Compute W
(j)
11 = A1PjB1

′ + C1PjD1
′, W

(j)
21 = A2PjB1

′, and W
(j)
12

= C1PjD2
′, and let Wj = [ vec(W

(j)
11 )
′

vec(W
(j)
21 )
′

vec(W
(j)
12 )
′

]
′
.

(f) αj =
vec(Rj−1)

′
vec(Rj−1)

vec(Pj)
′
Āpj

(g) Xj = Xj−1 + αjPj
(h) Compute residuals

R
(j)
11 = A1Xj−1B1

′ + C1Xj−1D1
′ + F̂11 R

(j)
21 = A2Xj−1B1

′ + F̂21

R
(j)
12 = C1Xj−1D2

′ + F̂12

Rj = A1
′R

(j)
11 B1 + C1

′R
(j)
11 D1 +A2

′R
(j)
21 B1 + C1

′R
(j)
12 D2

3. end while
4. X = Xj

In exact arithmetic, the CG algorithm will converge in at most k2 iterations; if
Ā′Ā is a rank l modification to the identity matrix, then the CG algorithm will con-
verge in at most l iterations; see [11] and [14] for details. The chief disadvantage of the
CG method is the loss of (Ā′Ā) orthogonality between the vectors pj as j increases;
that is, computed vectors pj do not satisfy the relation pj

′Ā′Ā
[
p1 · · · pj−1

]
= 0.

Because of this numerical behavior, the CG algorithm has come to be regarded as
a purely iterative method for large, sparse linear systems of equations. However, if
rank

(
L2
′L2 + L3

′L3

)
is not too large, as in [19], then convergence can be acceler-

ated by using a preconditioned conjugate gradient (PCG) algorithm [6]. The PCG
algorithm is based on the use of a splitting (Ā′Ā) = M +N , where M is symmetric,
positive definite, and easy to invert and “near” Ā. The PCG algorithm is as follows.

Algorithm 2. Generalized CGs.
Inputs M,N ∈ Rn×n, both symmetric, M positive definite and (by assumption)

Ā = M +N positive definite, and b ∈ Rn.
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Outputs x ∈ Rn satisfying Āx+ b = 0.
1. x−1 = x0 = 0, j = 0, r0 = b
2. while rj 6= 0

(a) j = j + 1; compute zj := −M−1rj−1.

(b) γj =
zj
′Mzj

zj ′Āzj

(c) ωj = 1 if j = 1, else ωj =

(
1− γj(zj

′Mzj)

ωj−1γj−1(zj−1
′Mzj−1)

)−1

(d) xj = xj−2 + ωj (γjzj + xj−1 − xj−2).
(e) rj = Āxj + b̄.

3. end while
4. x = xj

We apply the PCG algorithm to the minimization (4.1) as follows. The normal
equations corresponding to (4.1) are

(L′L)x = −L′f̄ .

Observe that L′L = L1
′L1 +L2

′L2 +L3
′L3, and so this problem decomposes naturally

to the splitting M = L1
′L1, N =

(
L2
′L2 + L3

′L3

)
. In order to solve Mzj = −rj ,

observe that if L1 is nonsingular then zj satisfies

0 = L1
′L1zj + L1

′r
(j−1)
1 + L2

′r
(j−1)
2 + L3

′r
(j−1)
3

= L1zj + r
(j−1)
1 + L1

−T
(
L2
′r

(j−1)
2 + L3

′r
(j−1)
3

)
,

which may be solved in matrix form in O(k3) flops as

0 = A1
′TjB1 + C1

′TjD1 −
(
A2
′R

(j−1)
21 B1 + C1

′R
(j−1)
12 D2

)
,

0 = A1ZjB1
′ + C1ZjD1

′ + (R
(j−1)
11 + Tj).

The resulting matrix-valued PCG algorithm is shown below.
Algorithm 3. Solution of (4.1) by PCGs.

Inputs A1, A2, B1, C1, D1, D2, F̂11, F̂21, F̂12 ∈ Rk×k.
Outputs X ∈ Rk×k satisfying the minimization (4.1).

1. X−1 = X0 = 0, j = 0, R
(0)
11 = F̂11, R

(0)
21 = F̂21, R

(0)
12 = F̂12,

R0 = A1
′F̂11B1 + C1

′F̂11D1 +A2
′F̂21B1 + C1

′F̂12D2

2. while Rj 6= 0
(a) j = j + 1; Solve for Tj and Zj :

0 = A1
′TjB1 + C1

′TjD1 −
(
A2
′R

(j−1)
21 B1 + C1

′R
(j−1)
12 D2

)
0 = A1ZjB1

′ + C1ZjD1
′ + (R

(j−1)
11 + Tj)

(b) Compute W
(j)
11 = A1ZjB1

′ + C1ZjD1
′, W

(j)
21 = A2ZjB1

′, and W
(j)
12

= C1ZjD2
′, and let Wj = [ vec(W

(j)
11 )
′

vec(W
(j)
21 )
′

vec(W
(j)
12 )
′

]
′
.

(c) γj =
−vec(Zj)

′
vec(Rj−1)

vec(Wj)
′
vec(Wj)
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u(t)

y3y2y1

. . .

yNyN−1

Fig. 5.1. Mass-spring-dashpot system.

(d) ωj = 1 if j = 1, else ωj =

(
1− γj(zj

′rj−1)

ωj−1γj−1(zj−1
′rj−2)

)−1

(e) Xj = Xj−2 + ωj (γjZj +Xj−1 −Xj−2).
(f) Compute residuals

R
(j)
11 = A1Xj−1B1

′ + C1Xj−1D1
′ + F̂11 R

(j)
21 = A2Xj−1B1

′ + F̂21

R
(j)
12 = C1Xj−1D2

′ + F̂12

Rj = A1
′R

(j)
11 B1 + C1

′R
(j)
11 D1 +A2

′R
(j)
21 B1 + C1

′R
(j)
12 D2

3. end while
4. X = Xj

Remark 4.1. If rank
([

L2 L3

])
is small (� k2), then in exact arithmetic this

algorithm should converge much faster than CG (Algorithm 1); see [6, pp. 319–320].
For example, minimizations (4.1) that arise in [19] can be solved in only 2k iterations,
or O(k4) work. However, it should be pointed out that the PCG algorithm is not
necessarily numerically superior to the CG algorithm; in particular, the operator M
is explicitly inverted in step 2a of Algorithm 1; this is undesirable when L1 is poorly
conditioned.

Remark 4.2. Unfortunately, it is not immediately obvious how the conditioning
of L1 relates to the original matrices A, B, C, D. Hence, an explicit bound on
the conditioning of L1

′L1 appears impossible to determine. However, one may use
Byers’s condition estimator [5] to determine when an ill-conditioned system occurs;
a variant of this algorithm may be employed with the preconditioner in the present
algorithm. The response to an ill-conditioned estimator depends on the scenario in
which it occurs; one may simply increase the dimension of V (as in Krylov subspace-
based algorithms) or one may dispense with the preconditioner to use either the
CG algorithm or (if applicable) the algorithms presented in [19] or [23]. When well
conditioned, the PCG algorithm in this paper provides an improvement in algorithm
speed.

5. Numerical examples. Algorithms 1 and 3 were tested on a lumped mass-
spring-damper model of a vibrating system (see Figure 5.1); such models arise in
numerous engineering applications. In Figure 5.1, yj denotes the displacement of
mass j from its rest position; u(t) is an external (controlled) force; and all N masses,
springs, and dashpots are assumed to be identical with mass m, stiffness ρ, and
damping δ, respectively. The first-order dynamic model of the system is

ẋ = Ax+Bu,



SOLUTION OF OVERDETERMINED SYLVESTER EQUATIONS 287

Table 5.1

Flop counts vs. k for implementations of Algorithms 1 and 3.

k Algorithm 1 Algorithm 3
5 6635 3.918E+04
10 5.043E+04 3.232E+05
15 1.674E+05 1.172E+06

where A = [ 0
A21

In
−(δ/m)In

] ∈ R2N×2N ,

A21 =
ρ

m



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1


, and B =


0
...
0
1

 .

Example systems were run with N = 100, 200, 300, and 400. Results presented in
this section are for N = 300 with parameters (ρ, δ,m) selected as either (1, 0.1, 1)
or (10, 10−3, 10−2), respectively. The second set of parameters yields a very lightly
damped system.

A solution X was sought to the minimization

min
X∈Rk×k

‖(AV )XV ′ + V X(A′V ′) +BB′‖F ,

where V was an orthogonal basis of the Krylov subspace

span
([

b Ab · · · Ak−1b
])

for k = 5, 10, and 15. Numerical implementation of Algorithms 1 and 3 was done
using MATLAB version 4.2a on a Sun Sparc-10. Table 5.1 shows returned flop counts
per iteration for the two algorithms vs. problem dimension parameter k. Figure
5.2 shows the plots of the residual of the normal equations for the CG and PCG
iterations; system parameters were δ = 0.1, ρ = 1, and m = 1. Observe that the PCG
method residual reaches its equilibrium value in roughly k iterations, consistent with
its expected convergence behavior. Both algorithms are sensitive to the condition
of the underlying system; Figure 5.3 shows the residuals for δ = 10−3, ρ = 10, and
m = 0.01. The deterioration in performance is due to the wide spread in singular
values of L′L associated with lightly damped, high-frequency modes of the system
(see equation (4.2)).

6. Conclusions. The numerical solution of overdetermined Sylvester equations
(1.4) has applications in both the reduced-order modeling and the control of large
dimensional systems as well as low-rank approximate solution of Lyapunov equations
(1.1) and Sylvester equations (2.2). Our solution procedure involves the reduction of
the original problem to a minimization of dimension at most 3k×k, followed by either
a CG algorithm for the general case, or a PCG algorithm for minimizations (1.4) that
are low-rank perturbations of a reduced-order general Sylvester equation (1.6). A
CG algorithm requires O(k5) flops before convergence, while a PCG algorithm may
require as few as O(k4) flops before convergence.
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Fig. 5.2. Residual plot: δ = 0.1, ρ = 1, m = 1.

Fig. 5.3. Residual plot: δ = 10−3, ρ = 10, m = 0.01.
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Abstract. A numerical procedure is presented for the efficient solution of sets of linearly coupled
matrix Lyapunov equations. Such equations arise in numerical continuation methods for the design
of robust and/or low-order control systems.
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1. Introduction. The algebraic Riccati equation ATP+PA−PBP+C = 0 has
played a central role in modern control theory. For example, the central computation
in the synthesis of a linear-quadratical Gaussian (LQG) (globally H2 optimal) con-
troller is the solution of two decoupled algebraic Riccati equations [1], [25]. It has also
been shown more recently that the “central” controller yielding a closed-loop system
with a specified H∞ constraint can also be computed by first solving two decoupled
algebraic Riccati equations [14], [16].

Unfortunately, both the LQG controller and central H∞ controller have limited
usefulness. First of all, both have dimension equal to the dimension of the design plant
and hence may not be implementable due to constraints on the achievable throughput
of the control processors. Also, it is well known that an LQG controller may be
nonrobust and hence can destabilize or yield poor performance when implemented
to control the physical plant [15], [31]. When properly designed, the full-order H∞
controller can guarantee a certain measure of robust stability, but the design may
be conservative because the H∞ measure does not allow the incorporation of phase
information regarding the uncertainty. In addition, H∞ controllers do not adequately
address the problem of robust performance.

As modern control has been extended to alleviate the deficiencies of the LQG and
central H∞ controllers, the computational requirements for control synthesis have be-
come increasingly complex. For example, the design equations characterizing H2

optimal reduced-order controllers appear as four nonlinearly coupled algebraic Ric-
cati equations [17], [23]. Four coupled Riccati equations also characterize maximum
entropy controllers [6], [7], [9], which have been seen to enable effectively the design
of controllers that are robust with respect to frequency-dependent uncertainties [8],
[9], [12], [13]. Mixed-norm H2/H∞ controller synthesis, which can enable the design
of multiple-objective controllers, similarly yields coupled Riccati equations [4], [19].
Recently developed control theory utilizes absolute stability theory (e.g., Popov sta-
bility theory) to synthesize controllers that are nonconservatively robust with respect
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to real parametric uncertainty [20], [22]. This theory has also led to coupled Ric-
cati equations. In fact, coupled Riccati equations appear in theories for optimal pole
placement [21], optimal output feedback [26], optimal model reduction [10], [18], [24],
[32], [33], and optimal reduced-order state estimation [5].

It is possible to solve sets of nonlinearly coupled Riccati equations using either
continuation or homotopy algorithms [9], [10], [11], [30], [32], [33]. These algorithms
are essentially prediction/correction schemes. The computation of the tangent direc-
tions for prediction or Newton steps for correction typically requires the numerical
solution of sets of linearly coupled Lyapunov equations

AiXi +XiAi
T +

N∑
j=1

Fij(Xj) +Bi = 0, i = 1, . . . , N,(1.1)

where Ai, Xi, and Bi are real ni × ni matrices, Bi = Bi
T , and Fij is a symmetric

linear operator; i.e., Fij maps the set of nj × nj symmetric matrices into the set of
ni × ni symmetric matrices.

Richter, Davis, and Collins [29] outline an algorithm for the solution of a single
modified Lyapunov equation

AX +XAT +B + F (X) = 0, X ∈ Rn×n,(1.2)

where F is a symmetric linear operator. The basis of their algorithm is as follows: if
the value of the perturbation function F (X) were known a priori, then equation (1.2)

reduces to the solution of a standard Lyapunov equation. Further, the dimension δ
∆
=

dim (span (F (·))) of the range space of the perturbation terms F is often quite small
(δ � n2). With these features in mind, we may broadly summarize the algorithm of
[29] in the following steps.

1. Select a set of basis functions φk ∈ Rn×n such that F (X) can be written as
a linear combination of φk for any value of X; i.e.,

F (X) =
δ∑

k=1

φkyk(1.3)

for appropriate scalars yk, dependent on X.
2. Construct and solve a linear system of equations

(I +G)y = d

for the unknown parameters y =
[
y1 ... yδ

]T
without first solving for the un-

knowns X.
3. Compute the value of the perturbation term F (X) from equation (1.3) and

substitute into equation (1.2).
4. Compute the unknown matrix X by the numerical solution of a standard

Lyapunov equation.
The construction of the matrix G in step 2 requires the numerical solution of a

set of Lyapunov equations

AXi +XiA
T +Bi = 0, i = 1, . . . , δ.(1.4)

Since the equations (1.4) differ only in the right-hand side matrices Bi, . . . , Bδ, a
single linear transformation Ã← T−1AT is performed so that each of the δ Lyapunov
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equations in (1.4) may be solved rapidly (in O(n2) flops versus O(n3) for, e.g., the
Bartels–Stewart algorithm [2]). The purpose of this change of basis is strictly for the
reduction of computational burden in the numerical solution of (1.4).

The above algorithm may be adapted in a straightforward fashion for the solution
of sets of coupled Lyapunov equations (1.1). A preliminary procedure for this purpose
is presented in [29]. A deficiency of this approach is that it fails to make use of the
underlying structure in the coupling terms Fij , 1 ≤ i, j ≤ N , between the Lyapunov
equations (1.1). For example, if the dependency structure of the set of equations
(1.1) forms a directed, acyclic graph [28] (i.e., the block data dependency matrix,
defined later in this paper, is upper triangular), then a maximally efficient algorithm
should simply reduce to the solution of a series of N Lyapunov equations that are
solved sequentially. However, the algorithm in [29] does not reduce in this manner.
The present paper extends the algorithm of [29] to exploit the relative structure
of the coupling terms in the coupled Lyapunov equations (1.1) and provides some
examples of its application. More precisely, this algorithm exploits the block structure
of the matrix G defined above while respecting the matrix-valued form of the original
problem. The (usually) sparse block structure of the matrix G can be used to reduce
the computational requirements (storage, flops) associated with the original algorithm
of [29].

The remainder of this paper is organized as follows. We briefly discuss contin-
uation methods in section 2 and further illustrate how linearly coupled Lyapunov
equations arise in continuation algorithms for solving nonlinearly coupled Riccati
equations. Section 3 then reviews the algorithm of [29] for the solution of linearly
coupled Lyapunov equations, and section 4 extends the algorithm to make it effi-
ciently exploit the relative structure of the coupling terms. Section 5 presents some
examples to illustrate the results. Finally, section 6 gives the conclusions.

2. Coupled algebraic Riccati equations. Consider the set of N coupled al-
gebraic Riccati equations

AiTPi + PiAi − PiBiPi + Ci + Fi(P1, . . . , PN ) = 0, i = 1, . . . , N,(2.1)

where

Ai, Bi, Ci, Pi, and Im(Fi) ∈ Rni×ni , i = 1, . . . , N,

Fi, i = 1, . . . , N are differentiable functions of P1, . . . , PN , and P1, . . . , PN symmetric
implies that

Fi(P1, . . . , PN ) = Fi(P1, . . . , PN )
T
, i = 1, . . . , N.

Observe that a Lyapunov equation may be regarded as an algebraic Riccati equation
with Bi = 0; hence, equation (2.1) encompasses the coupled algebraic Riccati and
Lyapunov equations that arise in the motivational problems [3], [4], [5], [6], [7], [17],
[18], [19], [20], [21], [22], [23], [24], [26].

For notational convenience, we shall rewrite the set of equations (2.1) as

ATP + PA− PBP + C + F (P ) = 0,(2.2)

where A = block-diag(A1, . . . ,AN ); the block diagonal matrices B,C, and P are
defined similarly, and, with some abuse of notation,

F (P ) = block-diag(F1(P1, . . . , PN ), . . . , FN (P1, . . . , PN )

= block-diag(F1(P ), . . . , FN (P )).
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In this form, the set of coupled modified algebraic Riccati equations (2.1) can be
viewed as a single modified algebraic Riccati equation. Richter, Hodel, and Pruett
[30] present a simple Newton-descent algorithm for the solution of general modified
algebraic Riccati equations (2.2); however, this approach fails to exploit the block-
diagonal structure of equation (2.2). In the simplest case in which the equations (2.1)
are uncoupled, the individual solutions Xi may be obtained in O(n3

1 + · · ·+n3
N ) flops.

However, since the algorithm of [30] ignores the underlying structure, this solution
approach requires O((n1 + · · · + nN )3) flops and so loses computational efficiency in
this application.

Coupled algebraic Riccati equations of the form (2.1) can be solved through a
continuation process or, if desired, a homotopy process; see [9], [10], [11], [30], [32],
[33]. Continuation methods embed a problem f(x) = 0 into a parameterized family
of problems

f(x, λ) = 0,

where the problems f(x(λ), λ) = 0, λ ∈ [0, 1] are related by a continuous deformation
parameterized in λ. For example, a candidate parameterization P (λ) for equation
(2.2) would be

ATP (λ) + P (λ)A− P (λ)B(λ)P (λ) + C(λ) + F (P (λ)) + (λ− 1)E = 0,(2.3)

where E
∆
= F (P (0)) and P (0) satisfies the block-diagonal algebraic Riccati equation

ATP (0) + P (0)A− P (0)B(0)P (0) + C(0) = 0.

Differentiation of equation (2.3) with respect to λ along the candidate continuation

path may be performed in order to obtain a differential equation for Ṗ (λ)
∆
= dP (λ)/dλ.

The solution P (1) of equation (2.2) (and, by consequence, the solution matrices
P1, . . . , PN of equation (2.1)) may be obtained by the application of a numerical
integration technique to compute P (λ), λ ∈ [0, 1]. This approach has been used
fruitfully in a number of studies on specific example design methodologies.

In this study, we shall consider the use of Newton and approximate-Newton de-
scent strategies for the numerical solution of coupled algebraic Riccati equations (2.1).
For this purpose, differentiate equation (2.3) with respect to λ to obtain

(A−BP )
T
Ṗ + Ṗ (A−BP )− (PḂP + Ċ + E) +

dF (P (λ))

dλ
= 0,(2.4)

where Ṗ (λ)
∆
= dP (λ)/dλ. From matrix calculus properties, dF/dλ will be linear in

Ṗ (λ), and so equation (2.4) is a modified Lyapunov equation (1.2). The solution Ṗ (λ)
of equation (2.4) may be used in a numerical integration scheme to follow the path
P (λ) from P (0) (the solution of a standard algebraic Riccati equation) to P (1) (a
solution of the modified algebraic Riccati equation). Algorithms such as [9], [10], [11],
[30] use a numerical integration technique in tandem with a Newton descent step in
order to ensure tracking of the desired solution path P (λ).

In many applications (e.g., [4], [5], [6], [7], [17], [18], [19], [20], [21], [22], [24],
[26]), the set of coupled modified algebraic Riccati equations (2.1) involves perturba-
tion functions Fi(P ) that (1) have a low-rank range space and (2) yield sparse data
dependency graphs among the solutions P1, . . . , PN . That is, the modified Lyapunov
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equation (2.4) is more appropriately written as the set of linearly coupled Lyapunov
equations

(Ai −BiPi)T Ṗi + Ṗi(Ai −BiPi)− (PiḂiPi + Ċi + Ei) +

N∑
j=1

Fij(Ṗj) = 0(2.5)

for appropriate linear operators Fij , i, j = 1, . . . , N , whose image forms a low-rank
subspace of Rni×ni . The numerical solution of sets of coupled Lyapunov equations is
dealt with in section 3.

3. Parameterization of coupling. Consider the set of linearly coupled Lya-
punov equations (1.1). The set of equations (1.1) may be written in a Kronecker
product expansion through the application of the following theorem [29].

Theorem 1. Let Fij, 1 ≤ i, j ≤ N , be a set of linear functions that maps the set
of N -tuples of symmetric matrices (X1, . . . , XN ) ∈ (Rn1×n1×· · ·×RnN×nN ) into itself.
Then there exist integers p1, . . . , pN and corresponding matrices Lkij, M

k
ij ∈ Rni×nk ,

1 ≤ i, j ≤ N , 1 ≤ k,≤ pi such that

Fij(Xj) =

pi∑
k=1

(
LkijXjM

k
ij

T
+Mk

ijXjL
k
ij

T
)
.(3.1)

The set of coupled Lyapunov equations (1.1) may be written as a single linear
system of equations as follows. Let b̄i = vec(Bi) (the vector stack of the columns of
the matrix Bi) and define

b̄ =
[
b̄T1 · · · b̄TN

]T
= vec

([
B1 · · · BN

])
.

Define x̄1, . . . , x̄N , and x̄ similarly in terms of X1, . . . , XN . Let

Āi = Ini ⊗Ai +Ai ⊗ Ini , i = 1, . . . , N,(3.2)

where Y ⊗Z =
[
yijZ

]
is the Kronecker product and define n̄ =

∑N
i=1 n̄i, n̄i

∆
= n2

i . A
consequence of Theorem 1 is that the set of Lyapunov equations (1.1) may be written
as

(Ā+ F̄ )x̄ = −b̄,(3.3)

where

Ā = block-diag(Ā1, . . . , ĀN ) ∈ Rn̄×n̄(3.4)

and F̄ =
[
F̄ij

]
, where

F̄ij =

pi∑
k=1

Mk
ij ⊗ Lkij + Lkij ⊗Mk

ij ∈ Rn̄i×n̄j , 1 ≤ i, j ≤ N.

Observe that F̄ijvec(X) = vec(Fij(X)) for all X ∈ Rnj×nj . While it is generally
impractical to solve the set of equations (1.1) by the direct solution of (3.3), the latter
equation may be used to determine dependency structure among the coupled solutions
X1, . . . , XN .
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The matrix F̄ frequently is of low rank; e.g., rank(F̄ ) = r̄ � n̄. In this event, it
is possible to express

F̄ = C̄D̄
∆
=

 C̄1

...
C̄N

 [ D̄1 · · · D̄N

]
,(3.5)

where C̄, D̄T ∈ Rn̄×r̄ and such that

Fij(Xj) = Ci(Dj(Xj)) and vec(Fij(Xj)) = C̄iD̄j x̄j(3.6)

for appropriately defined linear operators C1, . . . , CN , D1, . . . , DN , and for all xj ∈
Rn̄j .

Remark 1. For simplicity, we shall write the composition of two operators Ψ1

and Ψ2 as Ψ1Ψ2(·) ∆
= Ψ1(Ψ2(·)), or simply Ψ1Ψ2 when the context is clear. Similarly,

we shall write the sum of two operators (Ψ1 + Ψ2)(·) = (Ψ1 + Ψ2)
∆
= Ψ1(·) + Ψ2(·).

Thus, equation (3.6) may be written as vec(Fij(Xj)) = vec (CiDj(Xj)).
The import of equation (3.6) is that should there exist a low-rank factorization

(3.5), it is possible to represent the collective action of the N2 linear operators Fij ,
1 ≤ i, j ≤ N , in terms of 2N operators C1, . . . , CN , D1, . . . , DN , where the range of
(C1, . . . , CN ) composed with (D1, . . . , DN ) is a rank r̄ linear subspace. More precisely,
let F be the linear operator defined as

F : Rn1×n1 × · · · × RnN×nN → Rn1×n1 × · · · × RnN×nN

: (X1, . . . , XN )→

 N∑
j=1

F1j(Xj), . . . ,
N∑
j=1

FNj(Xj)

 .(3.7)

Similarly, define

C : Rr̄ → Rn1×n1 × · · · × RnN×nN : y → (C1(y), . . . , CN (y))

and

D : Rn1×n1 × · · · × RnN×nN → Rr̄ : (X1, . . . , XN )→
N∑
j=1

Dj(Xj),

where

vec(Cj(y)) = C̄jy for y ∈ Rr̄(3.8)

and

Dj(Xj) = D̄jvec(Xj) for all Xj ∈ Rnj×nj .(3.9)

Then F = CD has a range space of rank r̄.
Richter, Hodel, and Collins [29] present a numerical procedure that makes use

of this reduction in free parameters in order to solve the set of Lyapunov equations
(1.1). The algorithm is summarized in the following definition and theorem.

Definition 1. Let φ be the linear operator

φ : Rn1×n1 × · · · × RnN×nN → Rn1×n1 × · · · × RnN×nN

: (X1, . . . , XN )→ (A1X1 +X1A1
T , . . . , ANXN +XNAN

T ).
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The action of the operator φ−1 on data (B1, . . . , BN ) may be interpreted as the solution
of the set of independent Lyapunov equations

AiXi +XiAi
T = Bi, 1 ≤ i ≤ N.

Theorem 2 (see [29]). Consider the set of coupled Lyapunov equations (1.1).
Define the linear operators C,D, C̄, and D̄ as in equations (3.6), (3.8), and (3.9). Let

d̄ = vec
(
Dφ−1(B1, . . . , BN )

)
= D̄Ā−1vec

([
b̄1 · · · b̄N

])
,

and define Ḡ = D̄Ā−1C̄ as the matrix whose jth column may be computed as

ḡj = vec
(
Dφ−1C

(
e

(r̄)
j

))
,

where e
(r̄)
j is the jth elementary vector of length r̄. Then the set of equations (1.1) has

a solution X1, . . . , XN if and only if there exists a solution to

ȳ = −(Ḡȳ + d̄).(3.10)

In the event that a solution to (3.10) exists, the set of solutions to (1.1) may be written
as

X = {(X1, . . . , XN ) : AiXi +XiAi
T + Ci(ȳ) +Bi = 0, ȳ = Ḡȳ + d̄}.(3.11)

Proof. Let X̄ be the N -tuple of matrices X̄ = (X1, . . . , Xn), and similarly define
B̄ = (B1, . . . , BN ). From (3.3), (3.6), (3.7), and Definition 1

(φ+ CD)(X̄) = −B̄,

and so

X̄ = −φ−1
(
CD(X̄) + B̄

)
.

Premultiply by D and define ȳ = D(X1, . . . , XN ) to obtain

ȳ = −(Dφ−1C(ȳ) +Dφ−1(B1, . . . , BN )) = −(Dφ−1C(ȳ) + d̄).

It is readily shown that Dφ−1Cȳ = D̄Ā−1C̄ȳ for all ȳ ∈ Rr̄, and the result follows.
Remark 2. It follows from the reasoning in Theorem 2 that if φ is invertible,

then (I + Ḡ) is invertible if and only if there exists a unique solution (X1, . . . , XN )
to the set of coupled Lyapunov equations (1.1). The applications listed in section
2 typically result in coupled Lyapunov equations with stable coefficient matrices Ai
(i.e., λ(Ai) ∈ left half-plane), and so the condition that φ be invertible is not overly
restrictive.

The algorithm of [29] is summarized below.
Procedure LyapSetSolve.
1. Compute the vector ȳ = D(X1, . . . , XN ) without first computing the un-

knowns X1, . . . , XN as follows:
(a) Transform the Lyapunov equations (1.1) into suitable bases for rapid

solution (e.g., diagonal, block diagonal, tridiagonal).
(b) Construct the vector d̄ = Dφ−1(B1, . . . , BN ).
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(c) Construct the matrix Ḡ =
[
ḡ1 · · · ḡN

]
as

ḡj = Dφ−1
(
C1e

(r̄)
j , . . . , CNe

(r̄)
j

)
,

where C1, . . . , CN are defined in (3.6) and e
(r̄)
j is the jth elementary

vector of length r̄.
(d) Solve the linear system of equations

ȳ = −(Ḡȳ + d̄).

2. Solve the uncoupled set of Lyapunov equations

AiXi +XiAi
T +Bi + Ci(ȳ) = 0.

Observe that step 1c above requires the solution of Nr Lyapunov equations; the
transformation in 1a is made in order to reduce the computational requirements in
this step.

A weakness in the above approach is that it fails to detect exploitable structure
in the data dependencies in the set of equations (1.1). For example, if the matrix
Ḡ were (block) upper triangular (i.e., the data dependencies in the original problem
(1.1) formed a directed, acyclic graph [28]), then the solutions X1, . . . , XN to (1.1)
could be computed in reverse order using backward substitution; i.e., inversion of the
entire matrix (I + Ḡ) would be unnecessary. Similarly, if a subset of the equations
(1.1) depended upon only a small number of other equations, then one could reduce
Ḡ to a block upper triangular matrix through a straightforward manipulation of the
corresponding rows of Ḡ. It should be emphasized that much of the structure of the
matrix Ḡ will be known based on the motivating design problem (see the example
in section 5). We present our approach for identifying and exploiting the available
structure of the matrix Ḡ in the next section.

4. Detection of dependency structure. In this section we discuss identifica-
tion and the use of structure in the system of Lyapunov equations (1.1) so that the
computational burden in the algorithm LyapSetSolve may be reduced. The principal
area of attention is in algorithm steps 1b–1d. The issue that we address in this section
is the failure of Procedure LyapSetSolve to exploit any underlying problem structure
in the construction and solution of the linear system of equations

(I + Ḡ)ȳ = −d̄

in steps 1c–1d.
From the definition of the reduced-dimension parameter vector ȳ = D(X1, . . . , XN )

and the linearity of the operator D, we may assume without loss of generality that

the vector ȳ is partitioned and ordered such that ȳ = [ ȳT1 · · · ȳTN ]
T ∈ Rr̄ with

ȳj ∈ Rrj a function of the unknown matrix Xj only. (It may be necessary for this
purpose to increase the column dimension of C̄, D̄T to be larger than r̄ (see (3.5)).)
Conformably partition the matrix Ḡ and the vector d̄; i.e., ȳ1

...
ȳN

 = −


 Ḡ11 · · · Ḡ1N

...
. . .

...
ḠN1 · · · ḠNN


 ȳ1

...
ȳN

+

 d̄1

...
d̄N


 ,

Ḡij ∈ Rri×rj , d̄ ∈ Rrj .
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We identify the structure of the matrix Ḡ via a block incidence matrix

Ĝ =

 ĝ11 · · · ĝ1N

...
. . .

...
ĝN1 · · · ĝNN

 ,
where Ĝij = 1 if

∥∥Ḡ∥∥
ij
6= 0 and ĝij = 0 otherwise. Suppose that some row i of Ĝ has

only one nonzero entry ĝij off the diagonal. Then ȳi is (directly) coupled only to ȳj
and may be written as

ȳi = (I + Ḡii)
−1 (

d̄i − Ḡij ȳj
)
.

Substitution of this identity in the remaining blocks of Ḡ and d̄ decouples ȳi from the
remaining unknowns in ȳ and thus reduces the associated computational burden. We
state this approach more formally as follows.

Procedure SolveSys(Ĝ,Ḡ(·, ·), d̄(·), k).

Inputs: Ĝ: the block incidence matrix of Ḡ (ĝij 6= 0 ⇐⇒ Ḡij 6= 0).
Ḡ(), d̄(): G(i, j) returns the block Ḡij , d̄(j) returns d̄j .
k: integer parameter used in problem reduction.

Outputs: Solution vector ȳ satisfying (I + Ḡ)ȳ = d̄.

1. Construct vectors Ir and Ic such that Ic(j) = the total number of nonzero
off-diagonal entries in column j of Ĝ, and Ir is similarly defined in terms
of the rows of Ĝ. We shall refer to these vectors as the row/column total
incidence vectors, respectively.

2. If possible, permute Ĝ to be block upper triangular. (A simplistic approach
for this purpose would first permute Ĝ = PT ĜP so that Ic(j) decreases mono-
tonically and then permute “offending” rows/columns in order to maintain
block upper triangular structure.)

3. For each block on the diagonal of Ĝ:
(a) Permute rows of Ĝ with fewer than k nonzero entries to the top of the

block. (Use Ir to identify these rows.)
(b) For each row permuted in step 3a (index = i)

i. Identify indices jν , ν = 1, . . . , νmax, where ĝijν 6= 0.
ii. Identify indices kσ, σ = 1, . . . , σmax, where ĝkσi 6= 0.

iii. Set ĝkσi = 0, σ = 1, . . . , σmax and update Ir, Ic.
iv. For each pair (kσ, jν), set ĝkσjν = 1, 1 ≤ σ ≤ σmax, 1 ≤ ν ≤ νmax,

update Ir, Ic, and record (kσ, i, jν) in the index list. (In steps 3c and

3d below, the triple (kσ, i, jν) indicates that Ḡkσi(I − Ḡii)
−1
Ḡijν

should be added to the (kσjν) block of Ḡ and that (I − Ḡii)
−1
d̄i

should be added to the vector block d̄kσ .)
(c) Permute remaining rows of the block to be block upper triangular, if

possible.
(d) For each block on the diagonal solve for the associated segment of ȳ and

back substitute.
4. Return the vector ȳ.

Remark 3. Step 2 differs from the permutation behavior of EISPACK routine
balanc [27] in that it does not require that the leading/trailing blocks are upper trian-
gular; the action of this step is to identify acyclic (one-way) block-data dependencies.
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5. Numerical examples. The utility of the algorithm SolveSys is illustrated
in the following examples.

Example 1. Maximum entropy design [6], [7] is a robust control system design
technique that requires the numerical solution of the four coupled modified algebraic
Riccati equations for matrix unknowns P,Q, P̂ , Q̂ that satisfy

0 = As
TP + PAs +R1 −

(
BTP +R12

)T
R2
−1
(
BTP +R12

)
+

nα∑
i=1

α2
iAi

T (P + P̂ )Ai,(5.1)

0 = AsQ+QAs
T + V1 −

(
QCT + V12

)
V2
−1
(
QCT + V12

)T
+

nα∑
i=1

α2
iAi(Q+ Q̂)Ai

T ,(5.2)

0 = (As −
(
QCT + V12

)
V2
−1C)P̂ + P̂ (As −

(
QCT + V12

)
V2
−1C)

T

+
(
BTP +R12

)T
R2
−1
(
BTP +R12

)
,(5.3)

0 = (As −
(
BR2

−1
(
BTP +R12

))T
Q̂+ Q̂

(
As −

(
BR2

−1
(
BTP +R12

)))
+
(
QCT + V12

)
V2
−1
(
QCT + V12

)T
(5.4)

(notation consistent with [9]). The matrices A1, . . . , Anα are typically rank 2 matrices
that specify frequency-domain uncertainty in a nominal plant model. One recently
proposed iterative algorithm for the numerical solution of the maximum entropy equa-
tions [9] requires the solution of four linearly coupled Lyapunov equations of the form

0 = AP
TP + PAP +R+

nα∑
i=1

α2
iAi

T (P + P̂)Ai,(5.5)

0 = AQQ+QAQT + V +

nα∑
i=1

α2
iAi(Q+ Q̂)Ai

T ,(5.6)

0 = AQ
T P̂ + P̂AQ + R̂+GCQF̂ + F̂QGC +HP

HP + PHP ,(5.7)

0 = AP Q̂+ Q̂AP T + V̂ +GBPÊ + ÊQGB +HQQ+QHQ
H(5.8)

for unknowns P, Q, P̂, Q̂, where AP , AQ, A1, . . . , Anα , Ê, F̂ , GB , GC , HP , HQ, R,

V , R̂, V̂ ∈ Rn×n and A1, . . ., Anα , Ê, F̂ , GB , GC , HP , HQ are low rank. Equations
(5.5)–(5.8) are of the form (1.1) with N = 4. The coupling terms yield a block-
incidence matrix

Ĝ =


ĝ11 0 ĝ13 0
0 ĝ22 0 ĝ24

ĝ31 ĝ32 0 0
ĝ41 ĝ42 0 0

 .
Notice that the perturbations in (5.5)–(5.8) are functions of more than one unknown
matrix; however, as observed in the previous section, the data vector ȳ is easily
constructed such that each segment ȳi depends on exactly one unknown matrix.

Step 2 in Procedure SolveSys will be unable to permute Ĝ to block upper trian-
gular form. However, observe that Ĝ has only two off-diagonal entries on rows 1 and
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2. With k ≥ 1, SolveSys step 3a identifies these two rows so that step 3b will zero
out elements ĝ31, ĝ41, ĝ32, and ĝ42 after storing the triples (3, 1, 3), (4, 1, 3), (3, 2, 4),
and (4, 2, 4) in the index list. The four triples correspond to substitutions in blocks
Ḡ33, Ḡ43, Ḡ34, and Ḡ44, respectively, and so the corresponding elements of Ĝ are set
nonzero with the result that

Ĝ =


ĝ11 0 ĝ13 0
0 ĝ22 0 ĝ24

0 0 ∗ ∗
0 0 ∗ ∗


with *’d entries indicating modified nonzero entries. The matrix Ĝ is not further
reducible by permutation, and so the vector segments ȳ3 and ȳ4 are computed as[

ȳ3

ȳ4

]
=

([
Ḡ33 − Ḡ31(I + Ḡ11)

−1
Ḡ13 −Ḡ32(I + Ḡ22)

−1
Ḡ24

Ḡ41(I + Ḡ11)
−1
Ḡ13 Ḡ44 − Ḡ42(I + Ḡ22)

−1
Ḡ24

])−1

×
[

d̄3 + (I + Ḡ11)
−1
d̄1

d̄4 + (I + Ḡ22)
−1

+ d̄2

]
.

These vector elements are then back substituted in order to obtain ȳ1, ȳ2, and the
solution of the coupled set of Lyapunov equations (1.1) is obtained through Theorem
2.

Remark 4. The efficacy of our algorithm lies in the rapid solution of the matrix
equation (3.10). The identification of block dependencies allows the careful implemen-
tation of both the construction of the matrix G and, in turn, the rapid computation
of the parameter vector ȳ.

We further illustrate the algorithm behavior with the following numerical exam-
ple.

Example 2. We tested our algorithm on a set of seven coupled Lyapunov equations
(1.1), where Ai = A ∈ R7×7, i = 1, . . . , 7 were tridiagonal with diagonal elements
set to −2, superdiagonal elements set to 1, and subdiagonal elements set to −1, and
Bi = B = e7e7

T , i−1, . . . , 7, where e7 is the seventh elementary vector. For simplicity,
the perturbations Fij were selected as

Fij(·) =

{
eiej

T (·)ejeiT , i = j + 1 and (i, j) = (1, 7),
0 otherwise.

(We discuss below the impact of higher-rank coupling terms on the computational
cost of the algorithm.) The corresponding block-incidence matrix

Ĝ =



0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


is a periodic Markov probability transition matrix and hence irreducible by permuta-
tions only. Application of Procedure SolveSys with k = 1 to Ĝ yields an index list
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of 
2 1 7
4 3 2
5 4 2
6 5 2
7 6 2


delete entry at (2,1), add entry at (2,7)
delete entry at (4,3), add entry at (4,2)
etc.
...

When the resulting block-incidence matrix is permuted so that the rows/columns
appear in the order

[
1 3 4 5 6 2 7

]
, then the matrix Ĝ is reduced to an

upper triangular matrix

Ĝred =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,

which is upper triangular except for the last two rows, which remain coupled. That is,
where there were originally seven coupled blocks of the matrixG, now only two need to
be solved simultaneously, and the segments of the parameter vector y that correspond
to remaining blocks of Ĝ may be computed individually by back substitution.

For this example, the data vector is

d =



0.39338
5.2853 · 10−6

2.4355 · 10−5

1.5788 · 10−4

1.0047 · 10−3

6.5815 · 10−3

0.045537


and the parameter vector is

ȳ =



0.41186
9.2950 · 10−2

1.9400 · 10−2

4.2056 · 10−3

1.8823 · 10−3

6.9743 · 10−3

0.046984


.

Remark 5. The computational savings of Procedure SolveSys are shown in
Example 2 as follows. First, use of the block-incidence matrix Ĝ allows for the con-
struction of the coupling matrix G through the solution of only N = 7 Lyapunov
equations instead of N2 = 49 Lyapunov equations; that is, the sparsity structure of
Ĝ provides insight into the efficient construction of the matrix G. Further, once the
matrix G is constructed, Procedure SolveSys obviates the need for the simultaneous
inversion of the entire N ×N matrix G, since only blocks 2 and 7 remain coupled in
Ĝred.
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Remark 6. Since Example 2 used only rank 1 coupling terms for each Lyapunov
equation, the savings in computational effort provided by SolveSys in this case is
diminished from the general case. For example, suppose that the block-incidence
matrix Ĝ was left unchanged but that the range space of the nontrivial coupling
functions Fij was a rank r subspace. Then the matrix G ∈ RNr×Nr requires O((Nr)3)
flops for inversion without the use of Procedure SolveSys. However, our procedure
reduces this amount of work to O(N(r3)) flops. That is, the greater the dimension
of the range space of the coupling terms Fij , the greater the savings provided by
Procedure SolveSys over the original procedure presented in [29].

6. Conclusions. We have presented an algorithm for the solution of linearly
coupled sets of Lyapunov equations (1.1). This algorithm is a refinement of an al-
gorithm presented in [29], which failed to exploit data dependency structure in the
coupling terms Fij , 1 ≤ i, j ≤ N . Our algorithm takes advantage of these data
dependencies in order to reduce the computational burden in the solution of (1.1).
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Abstract. This paper improves Oppenheim’s inequality as follows: if A = (aij) is an M-
matrix and B = (bij) is an M-matrix or positive definite real symmetric matrix and Ak and Bk
(k = 1, 2, . . . , n− 1) are the k × k leading principal submatrices of A and B, respectively, then

det (A ◦B) ≥ a11b11

n∏
k=2

[
bkk

detAk

detAk−1
+

detBk

detBk−1

(
k−1∑
i=1

aikaki

aii

)]
.

Key words. M-matrix, positive definite real symmetric matrix, determinant, Oppenheim’s
inequality

AMS subject classifications. 15A15, 15A48

PII. S0895479895296033

1. Introduction. Let Rm×n denote the set ofm×n real matrices. Let S+
n denote

the set of n×n positive definite real symmetric matrices. For A = (aij) and B =
(bij) ∈ Rm×n, the Hadamard product of A and B is the matrix (aijbij), which we
denote by A ◦B. We write A ≥ B if aij ≥ bij for all i, j.

A real n × n matrix A is called an M-matrix if A = sI − B, where s > 0, B ≥0,
and s > ρ(B), the spectral radius of B. Let Mn denote the set of n× n M-matrices.
Let

Zn×n = {A = (aij) ∈ Rn×n : aij ≤ 0 for all i 6= j}.(1)

Suppose A ∈ Rn×n, the comparison matrix µ(A) = (µij), is defined by

µij =

{
−|aij |, i 6= j,
|aij |, i = j.

(2)

Let A be partitioned in the form

A =

[
A11 A12

A21 A22

]
,

where A11 is a nonsingular submatrix of A. A/A11 = A22 − A21A
−1
11 A12 is called the

Schur complement of A11 in A.
On the estimation of bounds for determinant, we have the following well-known

classical result.
Oppenheim’s inequality. If A = (aij) and B = (bij) ∈ S+

n , then

det(A ◦B) ≥
(

n∏
i=1

aii

)
detB.(3)
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Lynn [1] proved that inequality (3) holds for M-matrices and Fiedler and Ptak [2]
gave a similar result when A is an M-matrix and B is a weakly diagonally dominant
matrix.

In the paper, we shall obtain some inequalities which are stronger than inequality
(3) for M-matrices and others.

Lemma 1.1 (see [3]). If A and B ∈Mn, then µ(A ◦B) ∈Mn.
Lemma 1.2 (see [4]). Let A ∈ Zn×n; then each of the following conditions is

equivalent.
(I) A is an M-matrix.
(II) A has all positive diagonal elements, and there exists a positive diagonal

matrix D such that AD is strictly diagonally dominant ; that is,

aiidi >
∑
j 6=i
|aij |dj (i = 1, 2, . . . , n).

(III) There exists a positive diagonal matrix D such that AD +DAT ∈ S+
n .

(IV) All of the leading principal minors of A are positive.
Lemma 1.3 (see [4]). If A and B ∈ Zn×n, A ≤ B, and A is an M-matrix, then
(I) A−1 and B−1 exist and A−1 ≥ B−1 ≥ 0.
(II) detB ≥ detA > 0.
(III) B is an M-matrix.
Lemma 1.4. If A is a strictly diagonally dominant matrix with aii > 0 (i =

1, 2, . . . , n), then

detA ≥ detµ(A) > 0.(4)

Proof. By [1, Lemma 2.2], we have

| detA| ≥ detµ(A) > 0.

Furthermore, using the Gers̆gorin theorem, we obtain (4).
Lemma 1.5 (see [5]). Let

A =

[
A11 A12

A21 A22

]
.

If A11 is a nonsingular submatrix of A, then

det(A/A11) =
detA

detA11
.(5)

Lemma 1.6 (see [6]). If A ∈ Rn×n, then

minλ

(
A+AT

2

)
≤ Reλ(A) ≤ maxλ

(
A+AT

2

)
,(6)

where λ(A) denotes a characteristic root of matrix A.

2. Main results. In this section, for A and B ∈ Mn we study Oppenheim’s
inequality.

Theorem 2.1. Let A = (aij) and B = (bij) ∈Mn,Ak and Bk(k = 1, 2, . . . , n−1)
be the k × k leading principal submatrices of A and B, respectively ; then

det(A ◦B) ≥ a11b11

n∏
k=2

[
bkk

detAk
detAk−1

+
detBk

detBk−1

(
k−1∑
i=1

aikaki
aii

)]
.(7)
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Proof. We prove (7) by induction on n. When n = 1, the inequality is understood
as the trivial one, det(A◦B) ≥ a11b11. We suppose that the result is valid for all m×m
(m < n and n ≥ 2) M-matrices.

Let any n× n M-matrices A and B be partitioned:

A =

[
A11 A12

A21 ann

]
, B =

[
B11 B12

B21 bnn

]
,

where A11 and B11 ∈Mn−1.
For any ε > 0, let

Ã =

[
A11 A12

A21 A21A
−1
11 A12 + ε

]
, B̃ =

[
B11 B12

B21 B21B
−1
11 B12 + ε

]
;

then by the property of the Schur complement we shall get

det Ã = ε detA11 > 0, det B̃ = ε detB11 > 0.

Therefore all of the leading principal minors of Ã and B̃ are positive, so by Lemma
1.2 we have Ã and B̃ ∈Mn.

By Lemma 1.2(II) then there exist two positive diagonal matrices D1 and D2 such
that ÃD1 and B̃D2 are strictly diagonally dominant matrices, respectively. Thus

(Ã ◦ B̃)D1D2 = (ÃD1) ◦ (B̃D2)

is a strictly diagonally dominant matrix. By Lemma 1.4, we have

det(Ã ◦ B̃) =
1

det(D1D2)
det[(ÃD1) ◦ (B̃D2)] > 0.(8)

Furthermore, using the property of the Schur complement and (4), (5), we have

det(Ã ◦ B̃) = det(A11 ◦B11)[(A21A
−1
11 A12 + ε)(B21B

−1
11 B12 + ε)

− (A21 ◦B21)(A11 ◦B11)−1(A12 ◦B12)]

= det(A11 ◦B11)[(ann −A/A11 + ε)(bnn −B/B11 + ε)

− (A21 ◦B21)(A11 ◦B11)−1(A12 ◦B12)]

= det(A11 ◦B11)[annbnn − (A21 ◦B21)(A11 ◦B11)−1(A12 ◦B12)]

− det(A11 ◦B11)[ann(B/B11) + bnn(A/A11)− (A/A11)(B/B11)

− (A21A
−1
11 A12)ε− (B21B

−1
11 B12)ε− ε2]

= det(A ◦B)− det(A11 ◦B11)[bnn(A/A11) + (A21A
−1
11 A12)(B/B11)

− (A21A
−1
11 A12)ε− (B21B

−1
11 B12)ε− ε2].(9)

Letting ε→ 0 in (9), we have

det(A ◦B) ≥ det(A11 ◦B11)[bnn(A/A11) + (A21A
−1
11 A12)(B/B11)]

= det(A11 ◦B11)

[
bnn

detA

detAn−1
+

detB

detBn−1
(A21A

−1
11 A12)

]
.(10)
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Since  a11 0
. . .

0 an−1 n−1

 ≥ A11,

by Lemma 1.3, we have

A21A
−1
11 A12 ≥ A21

 a−1
11 0

. . .

0 a−1
n−1 n−1

A12 =
n−1∑
i=1

ainani
aii

.(11)

Combining (10), (11), and the inductive hypothesis, we obtain

det(A ◦B) ≥ det(A11 ◦B11)

[
bnn

detA

detAn−1
+

detB

detBn−1

(
n−1∑
i=1

ainani
aii

)]

≥ a11b11

n∏
k=2

[
bkk

detAk
detAk−1

+
detBk

detBk−1

(
k−1∑
i=1

aikaki
aii

)]
.

Corollary 2.2. If A = (aij) and B = (bij) ∈Mn, then

det(A ◦B) ≥
(

n∏
i=1

bii

)
detA+

(
n∏
i=1

aii

)
detB

(
n∏
k=2

k−1∑
i=1

aikaki
aiiakk

)
.(12)

Proof. Since all terms appearing in (12) are nonnegative, by Theorem 2.1 we have

det(A ◦B) ≥ a11b11

n∏
k=2

[
bkk

detAk
detAk−1

+
detBk

detBk−1

(
k−1∑
i=1

aikaki
aii

)]

≥ a11b11

n∏
k=2

bkk
detAk

detAk−1
+ a11b11

n∏
k=2

detBk
detBk−1

(
k−1∑
i=1

aikaki
aii

)

=

(
n∏
i=1

bii

)
detA+

(
n∏
i=1

aii

)
detB

(
n∏
k=2

k−1∑
i=1

aikaki
aiiakk

)
.

Remark. Lynn [2] and Ando [7] have given the following result:

det(A ◦B) + detA detB ≥ detA

n∏
i=1

bii + detB
n∏
i=1

aii(13)

for M-matrices A and B.
We point out that inequality (13) is better than (12).
In fact,

{the left side − the right side of (12)} − {the left side − the right side of (13)}

= detB
n∏
i=1

aii

1− detA
n∏
i=1

aii

−
n∏
k=2

k−1∑
i=1

aikaki
aiiakk

 ≥ 0
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or, equivalently, for any M-matrix A = (aij)

1− detA
n∏
i=1

aii

−
n∏
k=2

k−1∑
i=1

aikaki
aiiakk

≥ 0.(14)

Here when n = 1 the expression
∏n
k=2

∑k−1
i=1

aikaki
aiiakk

is understood as 0.

To see (14), we may assume that a11 = a22 = · · · = ann = 1. It is easy to see that
(14) is true even with the equality sign for n = 1, 2.

Now assume that n > 2 and (14) is true for the case n − 1. Represent A, B as
block forms

A =

[
A11 A12

A21 ann

]
, B =

[
B11 B12

B21 bnn

]
.

Then by the Schur formula

1 − detA−
n∏
k=2

k−1∑
i=1

aikaki

= 1− det(A11)(1−A21A
−1
11 A12)−

n∏
k=2

k−1∑
i=1

aikaki

=

{
1− det(A11)−

n−1∏
k=2

k−1∑
i=1

aikaki

}
+ det(A11) A21A

−1
11 A12

+

(
1−

n−1∑
i=1

ainani

)
n−1∏
k=2

k−1∑
i=1

aikaki.(15)

Since A11 is again an M-matrix, on the right side of (15) the first term is > 0
by the induction assumption and the second one is obviously > 0. Finally, as to the
third term, by (11) we have

1−
n−1∑
i=1

ainani ≥ 1−A21A
−1
11 A12 =

detA

detA11
> 0.

This completes the induction.
Theorem 2.3. Let all the assumptions of Theorem 2.1 be satisfied. Then

det[µ(A ◦B)] ≥ a11b11

n∏
k=2

[
bkk

detAk
detAk−1

+
detBk

detBk−1

(
k−1∑
i=1

aikaki
aii

)]
.(16)

Proof. Let A,B, Ã, and B̃ satisfy the assumptions of Theorem 2.1. By Lemma
1.1, we get µ(Ã ◦ B̃) ∈Mn. Note that

µ(A ◦B) =

[
µ(A11 ◦B11) −A12 ◦B12

−A21 ◦B12 annbnn

]
,

µ(Ã ◦ B̃) =

[
µ(A11 ◦B11) −A12 ◦B12

−A21 ◦B12 (A21A
−1
11 A12 + ε)(B21B

−1
11 B12 + ε)

]
.
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Then

0 < det[µ(Ã ◦ B̃)] = det[µ(A ◦B)]− det[µ(A11 ◦B11)][bnn(A/A11)

+ (A21A
−1
11 A12)(B/B11)− (A21A

−1
11 A12)ε− (B21B

−1
11 B12)ε− ε2].

Now (16) can be proved in a similar manner as in the proof of Theorem 2.1.
Remark. By Lemmas 1.2(II) and 1.4 we shall easily know that Theorem 2.3 is the

improvement of Theorem 2.1.

3. A similar result. In this section, for A ∈ Mn and B ∈ S+
n , we study Op-

penheim’s inequality.
Theorem 3.1. If A ∈Mn and B ∈ S+

n , then

det(A ◦B) > 0.(17)

Proof. By Lemma 1.2(III), there exists a positive diagonal matrix D such that
AD +DAT ∈ S+

n . By Lemma 1.6, we have

Reλ[(AD) ◦B] ≥ minλ

[
(AD) ◦B + (DAT ) ◦B

2

]
= minλ

[
(AD) + (DAT )

2
◦B
]
> 0.

Therefore,

0 < det[(AD) ◦B] = det(A ◦B) detD.

Thus we obtain (17).
Theorem 3.2. If A = (aij) ∈Mn and B = (bij) ∈ S+

n , then

det(A ◦B) ≥ a11b11

n∏
k=2

[
bkk

detAk
detAk−1

+
detBk

detBk−1

(
k−1∑
i=1

aikaki
aii

)]
.(18)

Ã is an M-matrix and B̃ is positive definite by Theorem 3.1 det(Ã ◦ B̃) > 0. Now
using a similar method of the proof of Theorem 2.1 we can prove Theorem 3.2.

Corollary 3.3. If A = (aij) ∈Mn and B = (bij) ∈ S+
n , then

det(A ◦B) ≥
(

n∏
i=1

bii

)
detA+

(
n∏
i=1

aii

)
detB

(
n∏
k=2

k−1∑
i=1

aikaki
aiiakk

)
.(19)
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This paper is dedicated to Gene H. Golub on the occasion of his 65th birthday.

Abstract. A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues,
of a given real matrix A1 is presented. From the eigenpairs of some real matrix A0, the eigenpairs of

A(t) ≡ (1− t)A0 + tA1

are followed at successive “times” from t = 0 to t = 1 using continuation. At t = 1, the eigenpairs of
the desired matrix A1 are found. The following phenomena are present when following the eigenpairs
of a general nonsymmetric matrix:

• bifurcation,
• ill conditioning due to nonorthogonal eigenvectors,
• jumping of eigenpaths.

These can present considerable computational difficulties. Since each eigenpair can be followed
independently, this algorithm is ideal for concurrent computers. The homotopy method has the
potential to compete with other algorithms for computing a few eigenvalues of large, sparse matrices.
It may be a useful tool for determining the stability of a solution of a PDE. Some numerical results
will be presented.

Key words. eigenvalues, homotopy, parallel computing, sparse matrices, bifurcation

AMS subject classifications. 65F15, 65H17

PII. S0895479894273900

1. Introduction. Given a real n × n matrix A, we wish to find some or all of
its eigenvalues and eigenvectors. That is, we seek λ ∈ C such that

Ax = λx

holds for nontrivial x ∈ Cn. We call (x, λ) an eigenpair.
The QR algorithm (see Golub and Van Loan [9]) is generally regarded as the best

sequential method for computing the eigenpairs. Briefly, the QR algorithm uses a
sequence of similarity transformations to reduce a matrix to upper Hessenberg form.
It then applies a sequence of Givens rotations from the left and right to reduce the size
of the subdiagonal elements. When these elements are sufficiently small, the diagonal
elements are taken to be approximations to the eigenvalues of the matrix. If the matrix
is large and sparse, the QR algorithm suffers two serious drawbacks. In the reduction
to Hessenberg form, the matrix usually loses its sparsity. Hence the algorithm requires
the explicit storage of the entire matrix. This may pose a problem if the matrix is
so large that not all of its entries can be accommodated within the main memory of
the computer. A second drawback is that it is inherently a sequential algorithm due
to the fact that Givens rotations must be applied sequentially. Bai and Demmel [3]
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somewhat circumvented the second problem by performing a “block” version of the
QR algorithm. This improved version seems to work well on vector machines.

We now describe a homotopy method to compute the eigenpairs of a given matrix
A1. From the eigenpairs of some real matrix A0, we follow the eigenpairs of

A(t) ≡ (1− t)A0 + tA1

at successive times from t = 0 to t = 1 using continuation. At t = 1, we have the
eigenpairs of the desired matrix A1. We call the evolution of an eigenpair as a function
of time an eigenpath.

When A1 is a real symmetric tridiagonal matrix with nonzero off-diagonal ele-
ments, a very successful homotopy method is known (see Li and Li [16] and Li, Zhang,
and Sun [21]). The following phenomena, while absent in the symmetric tridiagonal
case, are present for the general case:

• bifurcation,
• ill conditioning due to nonorthogonal eigenvectors.

The first can present computational difficulties if not handled properly. The homo-
topy method does not produce the Schur decomposition. Instead, it evaluates the
eigenvalues and eigenvectors and hence is subject to the difficulty of ill conditioning.

Since the eigenpairs can be followed independently, this algorithm is ideal for
parallel computers. We are primarily concerned with the case of a large, sparse, real
matrix. We assume that all the nonzero entries of the matrix can be stored in each
node of a parallel computer with distributive memory. Furthermore, we assume that
the associated linear systems can be solved quickly, say, in O(n2) time.

As a simple illustration, we consider 2×2 matrices where the matrix A0 is diagonal
and whose elements are the diagonal elements of A1:

A0 =

[
a 0
0 b

]
, A1 =

[
a d
c b

]
.

The eigenvalues of A(t) are

a+ b±
√

(a− b)2 + 4t2cd

2
.

Assuming a 6= b, three different situations arise (see Figure 1). In the first case, the
two eigenvalues never meet for all t in [0, 1]. In the second case, there is a double
eigenvalue at some time t ∈ (0, 1] with the eigenpaths remaining real throughout. In
the third case, there is a bifurcation point with the eigenpaths becoming a complex
conjugate pair to the right of the bifurcation point. Typically, this is how complex
eigenpaths arise from real ones. (Whenever a quantity is said to be complex, we
mean it has a nontrivial imaginary component.) The situation for higher-dimensional
matrices is similar except that an eigenpath can have more than one bifurcation point
and the reverse of case three described above can occur (i.e., a complex conjugate
pair of eigenpaths occur to the left of the bifurcation point and two real eigenpaths
to the right). See Figure 2 for the eigenpaths of a random 10× 10 matrix.

We now give a synopsis of the rest of the paper. In section 2, the homotopy
method along with complex bifurcations will be presented. We will discuss some
different types of bifurcations that may arise and identify the generic kind. We will
derive an upper bound on the number of bifurcation points of all the eigenpaths. The
numerical algorithm will be discussed in section 3. We will describe how to deal with
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Fig. 1. Eigenpaths of a 2× 2 matrix. The dotted lines denote complex eigenpaths.

bifurcations, how to choose the initial matrix, the selection of stepsizes etc. This
will be followed by some numerical results. We will see that our homotopy method is
impractical for dense matrices but has the potential to compete with other algorithms
for finding a few eigenvalues of large, sparse matrices. Matrices of dimension 104

arising from the discretization of PDEs have been tested. In the final section, we
recapitulate and suggest directions of further research.

Li, Zeng, and Cong [20] and Li and Zeng [19] have a very efficient homotopy
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Fig. 2. Eigenpaths of a random 10× 10 matrix. Only one path of a complex conjugate pair of
eigenpaths is shown.

method for the dense matrix eigenvalue problem. For other approaches to the non-
symmetric eigenvalue problem see, for example, Cullum and Willoughby [5], Dongarra
and Sidani [6], Saad [25], Shroff [28], Sorensen [29], Ruhe [24], and Bai, Day, and Ye
[2]. The classic reference for the eigenvalue problem is the treatise by Wilkinson [30].
See also Saad [26] and Bai and Demmel [4] and the references therein.

Except for some of the numerical results, the work in this paper was completed by
Lui [22]. In [20] Li, Zeng, and Cong proved Lemma A.1 (which they attribute to an
unpublished work of Keller), which gives a necessary condition for a certain quantity
(ψ∗(G0

uuφ
2)) to be nonzero. In this paper (Theorem 2), we give a necessary as well as
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sufficient condition. Using analytic bifurcation theory, we identify the generic kinds
of bifurcation which occur in following eigenpaths. We also give a bound on the
number of bifurcation points in the eigenpaths. While the paper of Li, Zeng, and
Cong addresses the dense eigenvalue problem, we address the complementary sparse
case, although our algorithm has not had the same degree of success as theirs.

2. Homotopy method and complex bifurcation. In this section, we discuss
some of the various phenomena that may arise on an eigenpath. Usually an eigenpath
will be locally unique. That is, there are no other eigenpaths nearby. This can be
characterized by a certain Jacobian being nonsingular. When this Jacobian is singular,
bifurcation may occur. In other words, two or more eigenpaths may intersect at a
point (u0, t0). Applying Henderson’s work [10] on general analytic equations to our
eigenvalue equations, we give a partial classification of some of the possible cases:
simple quadratic fold, simple bifurcation point, simple cubic fold, and simple pitchfork
bifurcation. We will show that the generic kind of bifurcation is the simple quadratic
fold. In fact, the transition between real and complex eigenpaths (and vice versa) is
via simple quadratic folds.

We first establish some notation. We use the superscripts T and ∗ to denote
the transpose and the complex conjugate transpose, respectively. The null and range
spaces of a matrix are written as N () and R(), respectively. The ith column of the
identity matrix I is denoted by ei.

Given a real n× n matrix A1, we form the homotopy

A(t) = (1− t)A0 + tA1, 0 ≤ t ≤ 1,(1)

where A0 is a real matrix. We write the eigenvalue problem of A(t) as

G(u, t) ≡
[
A(t)x− λx

n(x)

]
= 0,(2)

where u is the eigenpair (x, λ) of A(t) and n(x) is a normalization equation. In this
paper, we take

n(x) = c∗x− 1,

where c is some fixed vector that is not orthogonal to x. The usual normalization
n(x) ≡ x∗x − 1 is not differentiable, except at x = 0, and it only defines x up to a
complex constant of magnitude one. We will always assume that every eigenvector x
satisfies c∗x 6= 0; in section 3, we show how to choose c∗.

At this point, we make some remarks concerning the homotopy. It is known
(Kato [12]) that the eigenvalues of A(t) are analytic functions of t except at finitely
many points where some eigenvalue may have an algebraic singularity. Away from
these singularities, the eigenvectors can be chosen to be analytic functions of t. As we
shall see, these singularities are typically encountered when an eigenvalue makes the
transition from real to complex or vice versa.

Suppose an eigenpair u0 is known at time t0; i.e., G(u0, t0) = 0. We now describe
how to obtain an eigenpair at a later time t1. We must separate the discussion into
different cases, depending on whether the Jacobian G0

u ≡ Gu(u0, t0) is singular or not
and on the nature of the singularity.
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Fig. 3. Euler–Newton continuation.

2.1. Nonsingular Jacobian. When G0
u is nonsingular, the implicit function

theorem tells us that locally about t0 there is a unique solution u(t) with u(t0) = u0.
Differentiating (2) with respect to t and evaluating at t0, we obtain

G0
uu̇0 +G0

t = 0,

where the dot denotes the t derivative and G0
t ≡ Gt(u0, t0). Since G0

u is nonsingular,
the above equation has a unique solution u̇0. To obtain the eigenpair at a later
time t1, we apply Newton’s method to the equation G(u, t1) = 0 with initial guess
u0 + (t1 − t0)u̇0. This is the Euler–Newton continuation method. The Euler step
(t1 − t0)u̇0 is used to obtain the first Newton iterate (see Figure 3). Provided t1 − t0
is sufficiently small, the Newton iterates will converge quadratically to the eigenpair
at t1.

2.2. Singular Jacobian: Simple quadratic fold. Here we assume the eigen-
pair u0 is real and

• G0
u has a one-dimensional null space spanned by, say, φ, and let ψ span the

null space of G0T

u ,
• G0

t 6∈ R(G0
u),

• a ≡ ψT (G0
uuφ

2) 6= 0.

Note that G0
uuφ

2 is shorthand for G0
uuφφ. The point (u0, t0) having the above prop-

erties is said to be a simple (real) quadratic fold point of equation (2). Pictorially, the
real eigenpath is represented as the solid curve in Figure 4. Later, we will see that (1)
λ0 is an eigenvalue of A(t0) with algebraic multiplicity two and geometric multiplicity
one and (2) A′(t0)x0 is not in the range of [A(t0)− λ0I,−x0].

Since we can no longer use t to parametrize the solution, we employ the following
pseudoarclength method due to Keller [13]. Augment (2) with the scalar equation

g(u, t, s) ≡ φT · (u− u0)− (s− s0) = 0.

This is the equation of a hyperplane whose unit normal is φ and is at a distance s−s0
from u0. Now define

F (u, t, s) ≡
[
G
g

]
.(3)
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Fig. 4. Complex conjugate pair of solutions on the opposite side of a simple real quadratic fold
point. Dotted lines denote complex solutions.

We immediately have F (u0, t0, s0) = 0. It can be shown that the derivative of F with
respect to (u, t) and evaluated at (u0, t0, s0),

F 0
(u,t) =

[
G0
u G0

t

φT 0

]
,(4)

is nonsingular. Hence again by the implicit function theorem F has a locally unique
solution (u(s), t(s), s) with u(s0) = u0 and t(s0) = t0. In fact, the solution has the
form

u(s) = u0 + φ(s− s0) +O(s− s0)2,

t(s) = t0 + τ(s− s0)2 +O(s− s0)3,(5)

where

τ = −1

2

ψT (G0
uuφ

2)

ψ∗G0
t

.

From the definition of a simple quadratic fold, τ is well defined and nonzero. Note that
dt(s0)/ds = 0. We can apply the Euler–Newton continuation to the system F = 0
and follow the eigenpath around the fold point. Geometrically, the solution of F = 0
is the point at which the eigenpath punctures the hyperplane g = 0. Once around the
fold point, t will begin to decrease. This is undesirable since our goal is to compute
the eigenpair at t = 1. It turns out that a complex conjugate pair of eigenpaths will
emerge to the right of the fold point. We now elaborate on this point.

Recall that a point P0 ≡ (u0, t0) is called a bifurcation point of the equation
G(u, t) = 0 if in a neighborhood of P0 there are at least two distinct branches of
solutions (u1(s), t1(s)) and (u2(s), t2(s)) such that ui(s0) = u0 and ti(s0) = t0 for
i = 1, 2. If at least one of these branches is complex, we will call P0 a complex
bifurcation point. When u0 is real, (2) is a system of real equations. From the
last paragraph, we know that locally about the point P0 there is a unique path of
real solutions. However, when considered as a system of equations over the complex
numbers, Henderson and Keller [11] showed that P0 is a complex bifurcation point
with a complex conjugate pair of solutions on the opposite side of the real quadratic
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fold (see Figure 4). Furthermore, the complex solutions have local expansions:

u(s) = u0 + iφ(s− s0) +O(s− s0)2,

t(s) = t0 − τ(s− s0)2 +O(s− s0)3.

They are very similar in form to the real solution (5). Note that the tangent vector
of the complex solution is a rotation of the tangent (φ) of the real solution. We can
now use the Euler–Newton continuation with initial step in the direction iφ to find
the complex eigenpairs at a later time.

The result of Henderson and Keller can be generalized to a complex quadratic
fold point, i.e., u0 ∈ Cn+1, and satisfies the three properties outlined at the beginning
of this section.

Theorem 1 (Henderson [10]). Let G(u, t) be an analytic operator from Cn+1×R
to Cn+1. Let (u0, t0) be a simple quadratic fold point of G(u, t) = 0. Then in a
small neighborhood of (u0, t0) there exist exactly two solution branches. They have
the following expansions for small |ε|:

u1(ε) = u0 + εe−iα/2φ+O(ε2),

t1(ε) = t0 − rε2 +O(ε3),

u2(ε) = u0 + iεe−iα/2φ+O(ε2),

t2(ε) = t0 + rε2 +O(ε3),

where

reiα =
ψ∗(G0

uuφ
2)

2ψ∗G0
t

.

2.3. Singular Jacobian: Simple quadratic bifurcation. Here, we assume
the eigenpair u0 is real and

• G0
u has a one-dimensional null space spanned by, say, φ, and let ψ span the

null space of G0T

u ,
• G0

t ∈ R(G0
u),

• a 6= 0 and b2 − ac 6= 0, where

a = ψT (G0
uuφ

2),

b = ψT (G0
uuφφ0 +G0

utφ),

c = ψT (G0
uuφ

2
0 + 2G0

utφ0),

and φ0 is the unique solution of

G0
uφ0 = −G0

t(6)

orthogonal to N (G0
u).

The point (u0, t0) having the above properties is called a simple quadratic bifurcation
point. In any small neighborhood of (u0, t0) there are exactly two distinct branches
of solutions passing through the point (u0, t0) transcritically. If b2 − ac > 0, then
both branches are real. If b2− ac < 0, both branches are complex except at the point
(u0, t0). See Henderson [10] for a more detailed discussion.

The tangent vectors of the two bifurcating branches can be computed and the
Euler–Newton continuation can proceed as usual with these new directions. We will
show that a simple quadratic bifurcation point is not likely to occur. Even if one
existed, it would be transparent to a continuation method because it is highly unlikely
that a numerical step would land exactly at the point.
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Fig. 5. Cubic fold point.

2.4. Singular Jacobian: Cubic fold point. Here, we assume the eigenpair
u0 is real and

• G0
u has a one-dimensional null space spanned by, say, φ, and let ψ span the

null space of G0T

u ,
• G0

t 6∈ R(G0
u),

• a ≡ ψT (G0
uuφ

2) = 0,
• ψT (G0

uuφφ1) 6= 0, where φ1 is the unique solution of

G0
uφ1 = −G0

uuφ
2(7)

orthogonal to N (G0
u).

The point (u0, t0) having the above properties is called a cubic fold point. It can
be shown that (1) λ0 is an eigenvalue of A(t0) with algebraic multiplicity three and
geometric multiplicity one and (2) A′(t0)x0 is not in the range of [A(t0)− λ0I,−x0].
There is a unique branch of real solutions near (u0, t0) as well as a complex conjugate
pair of solutions. See Figure 5. Cubic fold points are discussed, for example, in Yang
and Keller [31] and Li and Wang [18]. Again, it will be seen that this case is not likely
to occur in practice.

2.5. Singular Jacobian: Simple pitchfork bifurcation. Here, we assume
the eigenpair u0 is real and

• G0
u has a one-dimensional null space spanned by, say, φ, and let ψ span the

null space of G0T

u ,
• G0

t ∈ R(G0
u),

• a ≡ ψT (G0
uuφ

2) = 0,
• ψT (G0

uuφφ1) · ψT (G0
uuφ0φ+G0

utφ) 6= 0, where φ0 and φ1 were defined in (6)
and (7).

The point (u0, t0) having the above properties is called a simple pitchfork bifurcation
point. On one side of the point there are three real solutions. On the other side there
is one real solution and a complex conjugate eigenpair. The situation is depicted in
Figure 6. See Henderson [10] for a more detailed discussion.

2.6. Generic singular Jacobians. In the previous sections, we discussed four
cases where the Jacobian G0

u has a one-dimensional null space. This list is of course not
exhaustive. We will now see that of all the singularities only one, the simple quadratic
fold, is likely to arise in the course of a calculation. The others are nongeneric.
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Fig. 6. Simple pitchfork bifurcation.

It is clear that of all the singular n × n matrices those with a one-dimensional
null space are generic. Of the four cases considered, all but the first are nongeneric
because they have nongeneric conditions ψT (G0

uuφ
2) = 0 and/or G0

t ∈ R(G0
u). The

next result characterizes the generic singular Jacobian G0
u.

Theorem 2. Let G be defined as in equation (2). Suppose for (u0, t0) ∈ Cn+1 ×
R, G(u0, t0) = 0 and G0

u is singular with a one-dimensional null space. Let φ and ψ
be spanning vectors for N (G0

u) and N (G0∗

u ), respectively. Then ψ∗(G0
uuφ

2) 6= 0 iff λ0

is an eigenvalue of A0 ≡ A(t0) of algebraic multiplicity two and geometric multiplicity
one.

Proof. From (2), we obtain

G0
u =

[
A0 − λ0I −x0

c∗ 0

]
∈ Cn+1×n+1.

Partition the null vectors as

φ =

[
h
ν

]
, ψ∗ = [p∗, µ],

where h, p ∈ Cn and ν, µ ∈ C. By a direct calculation, we get

ψ∗(G0
uuφ

2) = −2νp∗h.(8)

We rewrite the equation ψ∗G0
u = 0, using the definitions of ψ∗ and G0

u, as

[p∗(A0 − λ0I) + µc∗, −p∗x0] = 0.(9)

Taking the dot product of the first n components of the above vector with x0, we
obtain

p∗(A0 − λ0I)x0 + µc∗x0 = 0.

Since c∗x0 = 1,

µ = 0.(10)

The following two cases are the only possible ones in which dim N (G0
u) = 1.
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Case 1: λ0 is an eigenvalue of A0 with algebraic multiplicity m ≥ 2 and geometric
multiplicity one. Let

J ≡ Q−1(A0 − λ0I)Q =



0 1

0
. . .

. . . 1
0

J2

(11)

be a Jordan form of A0 − λ0I where J2 is nonsingular of dimension n−m and x0 is
the first column of the matrix Q of principal (generalized) eigenvectors. Note that
G0
u is similar to [

J −e1

c∗Q 0

]
.

Now from (9) and (10), we have

0 = p∗(A0 − λ0I)

= p∗QJQ−1.

Let y∗ = p∗Q. Then

y∗J = 0.

Thus from (11), we can take y∗ to be e∗m.
From

G0
u

[
h
ν

]
= 0,

we get

(A0 − λ0I)h = νx0.(12)

Using (11) in the above, we obtain

QJQ−1h = νx0,

which implies that

Jw = νQ−1x0 = νe1,

where w = Q−1h. From (11), we obtain the solutions w = αe1 + νe2, where α is any
complex number. Hence y∗w = νδm2. Finally, from (8),

ψ∗(G0
uuφ

2) = −2ν(p∗Q)(Q−1h)

= −2νy∗w

= −2ν2δm2.

Note that ν 6= 0 since otherwise w = αe1, which implies h = αx0. Since c∗h = 0 and
c∗x0 = 1, we must have α = 0. We have reached a contradiction that φ is the zero
vector. Hence ψ∗(G0

uuφ
2) is nonzero iff m = 2.
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Case 2: λ0 is an eigenvalue of A0 with algebraic multiplicity m ≥ 2 and geometric
multiplicity two. Let

J ≡ Q−1(A0 − λ0I)Q =

 J1 0
0 J2

J3

(13)

be a Jordan form of A0−λ0I where J1 and J2 are Jordan blocks of sizes m1 and m2,
respectively, with m1 + m2 = m; J3 is nonsingular and of dimension n −m; and x0

is the first column of the matrix Q of principal eigenvectors. J1 and J2 have zeros on
the diagonal. If J1 is diagonal then, as before, we have from (12),

Jw = νe1,

where w = Q−1h. From the form of J , it is clear that ν = 0. Hence

ψ∗(G0
uuφ

2) = −2νp∗h = 0.

Finally, if J1 is a nondiagonal Jordan block so that m1 > 1, then J has at least
two linearly independent left null vectors (e∗m1

and e∗m). This implies that G0
u has

at least two linearly independent left null vectors ([e∗m1
Q−1, 0] and [e∗mQ

−1, 0]). (For
example,

[e∗mQ
−1, 0]G0

u = [e∗mQ
−1, 0]

[
Q 0
0 1

] [
J −e1

c∗Q 0

] [
Q−1 0

0 1

]
= 0

since m > 1 and e∗m is a left null vector of J .) This contradicts the assumption that
dim N (G0

u) = 1.
Note that if λ0 is an eigenvalue of A0 of geometric multiplicity greater than two,

it can be checked that the dimension of the null space of G0
u is at least two. We have

established the claim of the theorem.
See also Li, Zeng, and Cong [20].
The fact that the generic case of a singular G0

u occurs when λ0 is an eigenvalue of
A0 of algebraic multiplicity two and geometric multiplicity one may seem surprising.
We now attempt to give an intuitive explanation. Let X be the set of n× n matrices
which have λ0 as an eigenvalue of algebraic multiplicity two. Suppose A is a member
of X. Now A− λ0I can be similarly transformed to one of 0 1

0 0
J1

 or

 0 0
0 0

J2

 ,
where J1 and J2 are some nonsingular matrices. The rank of the left and right matrices
are n − 1 and n − 2, respectively. Hence in the space X the matrix A − λ0I with
geometric multiplicity one (i.e., similar to the left matrix) is generic.

Using the notation of Theorem 2, we can show the following corollary.
Corollary 1. Suppose n ≥ 4 and N (G0

u) is one dimensional. Then, generically,
λ0 is an eigenvalue of A0 of algebraic multiplicity two and geometric multiplicity one
and is real.

Proof. Let Xr be the set of real n×n matrices with one real eigenvalue of algebraic
multiplicity two and geometric multiplicity one and all other eigenvalues simple and
let Xi be the set of real n×n matrices with one complex conjugate pair of eigenvalues
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of algebraic multiplicity two and geometric multiplicity one and all other eigenvalues
simple. Define X = Xr ∪Xi. From Theorem 2, the generic case of a one-dimensional
N (G0

u) implies that A0 ∈ X. We now show that Xr is generic in X.
For each A ∈ Xr, we associate V (A) ≡ (A, Y, λ, d3, . . . , dn), where Y is a real n×n

matrix, λ is the unique multiple eigenvalue of A, and d3, . . . , dn are real numbers. In
the case in which all the eigenvalues of A are real, the columns of Y can be considered
as the generalized eigenvectors of A and dj as the eigenvalues. If A has a complex
eigenvalue µ with eigenvector z, then we could take µ = d3 + id4 and z = y3 + iy4, for
example. (yj denotes the jth column of Y .) Note that (µ, z) is also an eigenvalue–
eigenvector pair of A. The point is that the information contained in Y and dj is
enough to determine the eigenvalues and eigenvectors of A. In the case in which all
eigenvalues are real, V (A) must satisfy

AY = Y J, J =


λ 1
0 λ

d3

. . .

dn

 .

If complex eigenvalues exist, the above must be appropriately modified. In addition,
there are n normalization equations for the eigenvectors. Thus, V (A) consists of
2n2 + n − 1 real variables which must satisfy n2 + n real polynomial equations and
thus has n2 − 1 degrees of freedom.1

For A ∈ Xi, let V (A) ≡ (A, Y, λr, λi, d5, . . . , dn), where λ ≡ λr+iλi is the complex
eigenvalue of A of algebraic multiplicity two. The Jordan form (in the case in which
all other eigenvalues are real) is

J =



λ 1
0 λ

λ 1

0 λ
d5

. . .

dn


.

Thus, V (A) consists of 2n2 + n − 2 real variables and must also satisfy n2 + n real
equations and thus it has n2− 2 degrees of freedom. Hence we see that Xr is generic.

We remark that the equations AY = Y J and the normalization equations are
linearly independent. If one normalization equation is omitted, then the length of some
eigenvector is not uniquely determined. Also, if one of the real equations in AY = Y J
is omitted, then we may not have an eigenvalue–eigenvector pair. Also, in the above
calculation we actually include matrices with eigenvalues of higher multiplicities and
other multiple eigenvalues (besides λ). This is acceptable because they are nongeneric
in X.

At simple quadratic folds and simple quadratic bifurcation points the eigenvalue
has algebraic multiplicity two and geometric multiplicity one. At both cubic fold
and simple pitchfork bifurcation points the algebraic and geometric multiplicities are

1 In the language of algebraic geometry, V (A) is a variety and the degrees of freedom correspond
to the dimension of the variety.
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Table 1

Summary of some of the different types of points at a singular Jacobian G0
u. With the exception

of the quadratic fold, additional generic conditions must be satisfied for all.

ψ∗G0
t 6= 0 ψ∗G0

t = 0

ψ∗G0
uuφ

2 6= 0 simple quadratic fold simple quadratic bifurcation

ψ∗G0
uuφ

2 = 0 simple cubic fold simple pitchfork bifurcation

three and one, respectively. See Table 1. The Jacobian G0
u of course may have other

types of nongeneric singularities. For example, the eigenvalue may have multiplicities
three and two, respectively. However, these are nongeneric and unlikely to occur in
practice.

The significance of the above theory is that in practice we encounter only simple
real quadratic folds, and this is the route by which real eigenpaths become complex.

2.7. A bound on the number of bifurcation points. It is not difficult to
show that at a real or complex bifurcation point of (2) the algebraic multiplicity of
the eigenvalue of A(t) is at least two. Let

p(t, λ) ≡ det(A(t)− λI).

Since A(t) is linear in t, the above is a polynomial in (t, λ) of degree n. In fact, p can
be written in the form

p(t, λ) = a0(t) + a1(t)λ+ · · ·+ an(t)λn,(14)

where ai(t) is a polynomial in t of degree at most n − i for i = 0, . . . , n and an(t) =
(−1)n. Define

q(t, λ) =
∂p(t, λ)

∂λ
.

From (14), it is easy to show that q is a polynomial of degree n− 1. At a bifurcation
point (t, λ) we must have

p(t, λ) = q(t, λ) = 0.

This is a system of two polynomial equations of degrees n and n− 1 in two variables.
By Bézout’s theorem, it has at most n(n− 1) roots. Hence the eigenpaths collectively
can have at most n(n− 1) bifurcation points.

We remark that some of these roots may have a complex time t and that some
roots may lie outside the region of interest (i.e., t ∈ [0, 1]). In practice we usually see
on the order of n bifurcation points.

3. Numerical algorithm. In this section, we describe the numerical implemen-
tation of the homotopy algorithm including choice of the initial matrix A0, stepsize
selection, and transition from real to complex eigenpairs and vice versa. For a more
thorough treatment of some of these topics, see Keller [14] and Allgower and Georg [1].
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Suppose that we have computed the eigenpairs at time t0. The normalization
equation for the eigenvector x at the new time is taken to be

x∗0x− 1 = 0,

where x0 is the eigenvector at time t0. We always perform real arithmetic so that
the pseudoarclength formulation (3) is written as an equivalent system of 2n+ 4 real
equations whenever we are following a complex eigenpath.

3.1. Choice of initial matrix A0. The constraint that the eigenpairs of A0

be computable quickly severely limits the choice of A0. Ideally, A0 should be chosen
so that the number of real and complex bifurcation points are minimized. This is
because there is extra work involved in locating real fold points. In the example shown
in Figure 2, A0 is a diagonal matrix. By simply reordering the diagonal elements of
this A0 it is possible for the eigenpaths to have just three real fold points. This is
the minimum possible because this A1 has six complex eigenvalues. There are no
“unnecessary” fold points. Another desirable property of A0 is that the eigenpaths be
well separated. This decreases the chance of the path-jumping phenomenon. However,
it seems extremely difficult to choose a priori an initial matrix which has all of the
above properties.

We tried three different kinds of initial matrices: real diagonal, real block diagonal
with 2×2 diagonal blocks, and block upper triangular with 2×2 diagonal blocks. We
now describe them in more detail.

The real diagonal initial matrix is defined as follows. Let a denote the trace of A1

divided by n, the size of the matrix. This is the average value of the eigenvalues of A1.
Let ρ be the square root of the maximum of the Gerschgorin radii of A1. Define the
diagonal elements of A0 as equally distributed points in [a−ρ, a+ρ] in ascending order.
There is no theoretical justification for this choice of A0 except that the eigenvalues
are initially simple and the eigenvectors are just the standard basis vectors. Without
the square root in the definition of ρ, numerical experiments on random matrices show
that the initial eigenvalue distribution is too spread out. An alternative is to simply
use the diagonal part of A1 as the initial matrix. One problem here is that this initial
matrix may have multiple eigenvalues, leading to potential difficulties.

For a real diagonal initial matrix, the eigenpaths are real initially. As we shall
see, the resultant homotopy usually has a large number of “unnecessary” fold points.
As an attempt to remedy the situation, we tried initial matrices which have complex
eigenvalues. One avenue is to try an A0 which is real block diagonal with 2×2 diagonal
blocks of the form [

α β
−β α

]
.

The eigenvalues of this block are α ± iβ. The pairs (α, β) are chosen as uniformly
distributed in the square box in the complex plane with center at the point a + 0i
(the average of the eigenvalues of A1) and width 2ρ, where ρ was defined in the above
paragraph. Now the eigenpaths start out complex. Since the complex space is much
bigger than the real space, there is less likelihood of two eigenpaths venturing close
together (hence less chance of path jumping) and less possibility of encountering fold
points.

The final kind of initial matrix we consider is block upper triangular with 2× 2
diagonal blocks. The upper triangular part of the matrix is taken to be the upper
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triangular part of A1 and the 2 × 2 diagonal blocks are as defined above. We define
the 2 × 2 diagonal blocks this way, instead of copying those of A1, to avoid possible
multiple eigenvalues in the beginning. The eigenpairs of this initial matrix can be
found quickly. The motivation for this initial matrix is that it is closer to A1 than
previous initial matrices. A smaller ‖A1 − A0‖ should lead to straighter eigenpaths
and possibly fewer fold points.

Some very limited experiments with 100× 100 random matrices confirm our ob-
servations. A diagonal initial matrix leads to many more fold points than the other
two initial matrices. The third type of initial matrix performs marginally better than
the second type.

3.2. Transition at real fold points. We first describe the transition from a
real eigenpath to a complex one. When it detects that it is going backwards in time,
then, generically, a real fold has been passed. By the theory of the last section, there
must be a complex conjugate pair of solutions on the opposite side of the real fold.
We first get a more accurate location of the fold point by using the secant method to
approximate the point at which dt/ds = 0. (Recall that this is a necessary condition
at a fold point.) With the augmented system, the Jacobian (4) is nonsingular, so there
is no numerical difficulty in the task. We store the location of this fold point in a table
for later reference. Using the tangent vector φ at the fold point, we solve problem
(2) in complex space at a later time. This is done by carrying out the Euler–Newton
continuation with the initial tangent iφ, in accordance with the theory of Henderson
and Keller.

When the partner of the above path comes from the other arm of the same fold,
it checks that the fold point has been visited before and stops further computation.
This way, only one path of a complex conjugate pair of eigenpaths is computed.

The reverse of the above situation also arises, although less frequently. That is,
time decreases while advancing along a complex path. Generically, there must be a
real fold on the opposite side of this complex path. Once the fold point has been
located, we compute the real tangent vector φ. We then apply the Euler–Newton
continuation in both the directions φ and −φ. See Figure 7. Because the problem
is being solved in real space, there is no chance of converging back to the complex
solution. On a parallel computer, a node which became idle at another fold point
can be invoked to carry out the computation along one of these directions. If we
begin with k complex eigenpaths, we may end up with many more than k eigenpaths
because of these complex-to-real bifurcations. Fortunately, in practice, at most a few
more have been encountered.

3.3. Computing the tangent. Suppose two eigenpairs u0 and u1 have been
found. We wish to compute the tangent vector at t1. In formulation (3), we have

F 1
u u̇1 + F 1

t ṫ1 = 0,

where the superscript 1 denotes the evaluation of the Jacobian at (u1, t1) and the dot
denotes the s derivative. For a unit tangent, we require in addition that

u̇∗1u̇1 + ṫ21 = 1.(15)

Note that the above two equations define the tangent up to a sign. To ensure that
we are always computing in the same direction, we further impose the condition

<(u̇∗0u̇1) + ṫ0ṫ1 > 0.
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Fig. 7. Transition from a complex solution to a real solution at a fold point. Dotted lines
denote complex solutions.

Because (15) is nonlinear, we instead solve the linear system (when u0 is real)[
F 1
u F 1

t

u̇T0 ṫ0

] [
φ
α

]
=

[
0
1

]
.

The tangent (u̇1, ṫ1) is obtained by normalizing the solution of the above system.

3.4. Selection of stepsize. Suppose we have the two eigenpairs u0 and u1. We
obtain stepsize δs2 for u2 as follows:

δs2 = δs1 (<(u̇∗0u̇1) + ṫ0ṫ1 + .5),

where δs1 is the stepsize used to obtain u1. The idea is that when the two previous
tangents are parallel we increase the stepsize by 50%. If the tangents are perpendic-
ular, we decrease the stepsize by a half. We use the above scheme until the time is
close to one, at which time we solve the system G(u, 1) = 0.

Whenever a Newton iteration fails to converge after, say, six iterations, we restart
it with a stepsize that is one-half of the original one.

3.5. Path jumping. Path jumping is a serious problem for the homotopy
method. This is the phenomenon in which the Newton iteration converges to another
eigenpath. This occurs when the stepsize is overly ambitious or the linear system
involved in the solution of a Newton iterate has a large condition number. The latter
situation arises whenever eigenvalues are poorly separated.

An elegant method of detecting path jumping is available when the matrix is
symmetric tridiagonal with nonzero off-diagonal elements (Li and Rhee [17]). They
employ the Sturm sequence property of symmetric matrices. Li and Zeng [19] can also
detect path jumping in the case in which the eigenpath is real and the matrix is in
Hessenberg form. However, no satisfactory procedure is known for general matrices.
One inefficient way is to use the property that the sum of the eigenvalues of a matrix
is equal to the trace of the matrix. Noting that

Tr(A(t)) = Tr(A0) + t(Tr(A1 −A0)),

almost all path jumps can be detected by comparing the sum of the computed eigen-
values and the above expression for the trace of A(t). However, this does not tell us
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which path has jumped, and hence it is necessary to recompute the last step for all
eigenpaths. Other drawbacks include the necessity of synchronizing the computation
of the eigenpaths and the fact that this method works only if all the eigenpaths are
computed.

Our approach is perhaps the simplest, but certainly not the best. We keep track
of the initial eigenvalue (at t = 0) of each eigenpath, and for each eigenpath that
has been computed more than once (this is checked at t = 1) we repeat the entire
calculation for those eigenpaths with a smaller stepsize.

3.6. Parallel aspects. The homotopy method is fully parallel because each
eigenpath can be computed independently of the others. If the sparse matrix A(t) can
be stored in each node, then there is no communication overhead at all other than
the trivial broadcast of the location of fold points.

3.7. Homotopy algorithm of Li, Zeng, and Cong. Li, Zeng, and Cong
[20] use a different strategy in their homotopy algorithm. They first use Householder
transformations to reduce the given matrix to a similar matrix A1 in upper Hessenberg
form. Their initial matrix A0 is the same as A1 except that one subdiagonal entry
is set to zero. They use a divide-and-conquer strategy to obtain the eigenpairs of
A0. Because A0 is very close to A1, the eigenpaths will be nearly straight and path
jumping is much less of a problem here. The performance of this method is very
encouraging. However, it requires storage of the entire matrix plus large amounts of
work storage. For another approach to finding the eigenvalues using homotopy, see
Lenard [15].

4. Numerical results. We have done very limited testing on random matrices
and matrices arising from the finite difference approximations of partial differential
equations. The tests were performed on SUN Sparc workstations. In our code, we
computed the eigenpairs one at a time. As mentioned already, in a parallel code each
eigenpair can be assigned to a separate processor.

We use an initial ds = .1, a final tolerance of 10−12, and an intermediate tolerance
of 10−4. The final tolerance means that the stopping criterion for the Newton iteration
is that the norm of the Newton step is less than 10−12 at t = 1. Intermediate tolerance
refers to the stopping criterion at t < 1. The criterion for stopping the iteration to
locate a fold point is |ṫ| < 10−3.

Empirically, we notice that the eigenpaths move in a relatively simple fashion as
t progresses. That is, there are no wild oscillations. Thus, the homotopy method has
the potential to find efficiently a few special eigenvalues, for example, those with the
largest real part. Such eigenvalues are of interest in linear stability theory for partial
differential equations. It is in this area that we believe the homotopy method will be
most useful.

Our first set of test examples comes from the usual second-order finite difference
discretization of the elliptic operator

4+ f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
+ p(x, y)(16)

on a rectangle of size 1 × 1.2 with homogeneous Dirichlet boundary condition. We
choose the initial matrix as the discrete Laplacian whose eigenpairs are known. We
make the following changes to the algorithm to account for the nature of the problem.
Assuming a uniform mesh size h in both x and y, the modified equation for the tangent
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Table 2

Execution times for five eigenpaths of matrices of various sizes corresponding to the discretiza-
tions of a PDE with different grid sizes.

size 238 696 1394 3510 10622
time (sec) 4 18 49 197 1619

is

h2v̇∗0 v̇ + λ̇0λ̇+ ṫ0ṫ = 1.

Here, v̇ denotes the s derivative of the eigenvector and the subscript denotes the
corresponding quantity at the previous time t0. The reason for the modification is
that this approximates the underlying continuous equation∫

v̇0v̇dxdy + λ̇0λ̇+ ṫ0ṫ = 1.

Similarly, we employ the following pseudoarclength condition:

h2v̇∗0(v − v0) + λ̇0(λ− λ0) + ṫ0(t− t0)− ds = 0.

For the numerical experiments, we take a uniform 95×114 grid leading to a matrix
of dimension 10622. We follow the five paths whose initial eigenvalues are largest with
the aim of computing the five eigenvalues of the PDE having the largest real parts.
Our Fortran code uses GMRES [27] to solve each linear system. (An alternative is
the QMR method of Freund and Nachtigal [8].) Here, only the nonzero entries of the
matrices need be stored. The average number of time steps per eigenpath is 5 and
the number of Newton iterations per step is 1. The program successfully computed
the five eigenpairs with the five largest real parts in a number of examples that we
tried. These computed paths all turned out to be real. Execution times for various
choices of the coefficients of the PDE are between 27 and 28 minutes.

In Table 2, we give the execution times for computing five eigenpaths for the
PDE with coefficients f = ex − 2y2, g = y2 cos(2x), p = 0 for various grid sizes. The
maximum dimension of the Krylov subspace, a parameter of GMRES, was set at 100
for all the test runs. Hence, the execution time for smaller matrices is more favorable
than for larger matrices. The complexity is slightly less than O(n2).

We also tried a symmetric problem (with f = g = 0 and various choices of p).
The execution times are between 16 and 22 minutes for matrices of size 10622.

We have not been able to devise a mechanism to guarantee that an eigenpath will
end up (at t = 1) having an eigenvalue with the largest real part, even for the scalar
PDE above. Problems which arise in practice (for example, in fluid mechanics) often
involve systems of PDEs. It would be very difficult to obtain any theoretical result in
this direction.

As our final illustration, we compute singular points of a parameter-dependent
scalar PDE which arises in population biology. The PDE is

4u+ αf(u) + γux = 0

on a rectangular domain of sides of widths 1 and 1.2, and homogeneous Dirichlet
boundary conditions are imposed. This is a population model for insects in a domain
with a constant prevailing wind of strength γ in the −x direction. Here, u represents
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the population of the insects and α is a parameter depending on the birth rate and
diffusion coefficient. The boundary conditions mean that the exterior of the domain
is completely hostile to the insects. See Murray [23] for further details. We will
only consider the Fisher model; i.e., f(u) = u(1 − u). The problem is to determine
values of α for which the PDE becomes singular. Such points are of interest because
bifurcation typically occurs there. These points are special because there solutions
lose/gain stability. Singular points occur when the corresponding linearized eigenvalue
problem (linearized about u = 0)

4v + αf ′(0)v + γvx = λv

has a zero eigenvalue. Hence the problem reduces to finding a zero eigenvalue of the
matrix which arises from the discretization of the above equation.

Here is how the algorithm proceeds. Using the matrix which arises from the
discretization of the Laplacian as the initial matrix, we use the homotopy algorithm
to find the largest eigenvalue at α = 0 (where all the eigenvalues are negative). We
then follow this eigenpath at increasing values of α until the eigenvalue becomes
positive. At that point, we use the secant method to locate the zero of the eigenvalue
(as a function of α). For the eigenvalue problem at αi+1, we use the corresponding
matrix at αi as the initial matrix.

Dividing the rectangle into a uniform 95 × 114 grid, we obtain a matrix of size
10622. For a wind strength γ = 1, the code computed the eigenvalue at α = 0, 5, 10, 15,
and 20. Discovering that the eigenvalue becomes positive at the last value of α, it
proceeded to compute the critical value α∗ = 16.97 . . . in one step of the secant
method. It found α∗ with the eigenvalue at that point on the order of 10−12. The
entire procedure took 534 seconds, with the first eigenvalue solve at α = 0 taking
416 seconds and the rest of the calculation taking about 120 seconds. This example
illustrates the power of the homotopy method. When the initial matrix and the final
matrix do not differ significantly, the eigenvalues can be found quite rapidly.

We have also tried the Lanczos code of Freund, Gutknecht, and Nachtigal [7] on
problem (16) with a matrix of size 10622. With 500 Lanczos iterations, it computed
the same five eigenpairs in about 280 seconds for each problem. This code is superior
to our code in terms of both efficiency and robustness. However, it suffers the same
problem as ours in that it cannot guarantee which eigenvalues it computed.

5. Conclusion. We have presented a homotopy method for computing the eigen-
pairs of a real matrix. Starting with a matrix with known eigenpairs, Euler–Newton
continuation is used to advance the eigenpaths. A real eigenpath will remain real
unless it encounters a real fold point. On the opposite side of this fold point, two
complex conjugate eigenpairs emerge. The reverse situation in which two complex
conjugate eigenpairs meeting at a real fold point with two real paths bifurcating to
the right also occurs. By restricting the solutions in the real space, we have shown
how to deal with these transitions without numerical difficulties.

The storage requirement is on the order of the number of nonzero elements of
the matrix, and thus it is attractive for computing a few eigenpairs of a large, sparse
matrix. This together with the fully parallel nature of the algorithm may make it a
competitive method for the large, sparse nonsymmetric eigenvalue problem. However,
several formidable obstacles must first be overcome. The path-jumping problem has
already been mentioned. Another is the absence of a robust general-purpose iterative
linear solver. GMRES had considerable convergence difficulties for general matrices.
Even for the PDE examples that we tried, it encountered convergence problems when
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computing interior eigenvalues. The homotopy method also has difficulty whenever
eigenvalues are clustered together. This occurs even if the eigenvectors are orthonor-
mal. The difficulty lies in the fact that eigenvectors cannot be computed accurately
by a straightforward application of the inverse iteration (or Newton’s method) if the
corresponding eigenvalues are clustered together. One solution is to compute the
clustered eigenvalues by subspace iteration. However, if the initial matrix is not well
chosen, then it is possible that eigenvalues which are far apart initially at t = 0
drift together at some point t ≤ 1. Choosing a good initial matrix for the homo-
topy which would minimize the number of bifurcation points and keep the eigenpaths
well separated is another open problem. Finally, we would like to determine selected
eigenvalues (for example, those with the largest real part) by following just one or two
eigenpaths. The homotopy method seems to be a very efficient method for locating
singular points of bifurcation problems.

The history of the homotopy method as a computational tool for the eigenvalue
problem is rather short. We hope this work will stimulate further interest in this area.

Acknowledgment. We thank the referees for suggesting numerous improve-
ments to the original draft.
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Abstract. We consider operator norms on rectangular matrices. When the underlying vector
norms are semiabsolute/absolute and the matrices are nonnegative, we obtain an inequality involving
Schur (Hadamard) products of fractional Schur powers of matrices and the product of the fractional
powers of the norms of the matrices. This leads naturally to the concept of fractional Schur (non-
negative) submultiplicativity factors for a norm. As a corollary, we obtain a necessary and sufficient
condition for a norm to be Schur submultiplicative on nonnegative matrices. We also consider the
relation of the least fractional Schur submultiplicativity factor and the least Schur submultiplica-
tivity factor for general matrices, and we prove some necessary and sufficient conditions for Schur
submultiplicativity.
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1. Introduction. Let F be R or C, where R and C are the fields of real num-
bers and complex numbers, respectively. Denote by Fn the vector spaces of all n-
dimensional column vectors over F, and denote by Fmn the set of all m× n matrices
over F. A matrix A ∈ Fmn is called nonnegative if A is nonnegative entrywise.

The Schur (Hadamard) product of two matrices A = (aij) and B = (bij) in Fmn,
denoted by A ◦B, is defined as A ◦B = (cij), where cij = aijbij .

Let µ and ν be norms on the vector spaces Fm and Fn, respectively. Let [µ/ν]
be the operator norm on Fmn induced by the norms µ and ν; i.e.,

[µ/ν](A) := max{µ(Ax) : ν(x) = 1}(1)

for all A ∈ Fmn. In this paper, we focus on the behavior of the operator norms [µ/ν]
under Schur multiplication of rectangular matrices. For further definitions of terms
italicized below see section 2 and the beginnings of the following sections.

In the remainder of this introduction, we shall assume that µ is a semiabsolute
norm and that ν is an absolute norm.

In section 3, we investigate the behavior of norms and operator norms on Schur
products of fractional Schur powers of nonnegative matrices. We show that the least
fractional Schur submultiplicativity factor for the norm [µ/ν] is determined by the
values of the norms µ and ν on the unit vectors, and that it is equal to the least
nonnegative submultiplicativity factor for the same norm; see Proposition 3.3, Theo-
rem 3.5, and Remark 3.6(a). Our proof uses a generalization of Hölder’s inequality
[Ho1889], which was shown in [JN91]. In Corollary 3.7, we give two necessary and
sufficient conditions for [µ/ν] to be nonnegative Schur submultiplicative.

In section 4, we investigate the behavior of the norms and operator norms on Schur
products of (general) vectors and matrices, and this leads naturally to the study of
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Schur submultiplicativity factors. Example 4.6 (due to Bit-Shun Tam) shows that the
least Schur submultiplicativity factor may be larger than the least nonnegative Schur
submultiplicativity factor. We prove some inequalities that must hold for these two
types of factors; see Theorem 4.4 and Remark 4.5. In Corollary 4.8, under the more
restrictive assumption that either µ or νD is a weighted l∞ norm, we give a necessary
and sufficient condition for an operator norm [µ/ν] to be Schur submultiplicative. We
end section 4 with two open questions.

In section 5, we introduce the concept of the Schur K-operator norm induced
by a norm. If K is the cone of all nonnegative matrices in Fmn, we apply a result
on the limits of norms of Schur powers of nonnegative vectors to show that, for
any nonnegative matrix, the Schur K-operator norm induced by [µ/ν] equals the
elementwise l∞ norm; see Corollary 5.3.

At the beginning of each of the following sections, a summary of the results in
that section and some useful definitions will be given.

The subject of norms on Schur products was investigated in [S11], [Ok87], [MKS84],
[On84], [W86], [HJ87], [AHJ87], [Zh88], [N89], [HM90], [JN91], and [AG94], etc. (also
see [H90], [HJ91, Chapter 5], and some further references at the beginning of sec-
tion 4). The behavior of (subadditive) norms and corresponding (sub)multiplicativity
factors on more general algebras was studied previously; see, e.g., [G90], [AG90],
[AGL92], [AGL93a], and [AGL93b]. Fractional Schur powers of nonnegative matrices
were investigated in [FH77], [KO85], [EJS88], and [MP96].

2. Preliminaries. A norm N on Fmn is a function N : Fmn 7→ F satisfying the
following axioms for all A,B ∈ Fmn:

(1) N (A) ≥ 0, and N (A) = 0 if and only if A = 0;
(2) N (cA) = |c|N (A) for all c ∈ F;
(3) N (A+B) ≤ N (A) +N (B).
Next we state some known results on norms which are used in what follows.

Recall that the dual norm µD of any norm µ on Fn with the standard inner product
is defined by (see [BSW61] or [HJ85, 5.4.12])

µD(x) := max{|x∗y| : µ(y) = 1}(2)

for all x ∈ Fn. Using the concept of dual norm, one has a simple formula for the
operator norm [µ/ν], as shown in the following proposition (see [Ba63] for the first
formula for [µ/ν]; the second formula can be obtained immediately by (1) and (2)).

Proposition 2.1. For any A ∈ Fmn, x ∈ Fm, and y ∈ Fn we have

[µ/ν](A) = max{|x∗Ay| : µD(x) = 1, ν(y) = 1}

and

[µ/ν](xy∗) = µ(x)νD(y).

Let µ be a norm on Fm. Then µ is called absolute if µ(|x|) = µ(x) for all
x ∈ Fm, where |x| is the vector obtained from x by replacing the entries of x by
their magnitudes. The norm µ is called semiabsolute if µ(x) ≤ µ(|x|) for all x ∈ Fm.
Further, µ is called quasi-monotonic if µ(x) ≤ µ(y) whenever 0 ≤ x ≤ y, where x ≥ 0
means that x is entrywise nonnegative and x ≤ y means that y − x ≥ 0.

It is well known that a norm µ is absolute if and only if it is a monotonic norm in
the sense that µ(x) ≤ µ(y) whenever |x| ≤ |y| (see [BSW61], [SS75], [G89], and [HJ85,
5.5.10]). By [HM90, Lemma 2.4] (cf. [JN91, Theorem 2 (D−→B)]), it can easily be
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shown that a norm µ is semiabsolute if and only if it is a semimonotonic norm in the
sense that µ(x) ≤ µ(y) whenever |x| ≤ y. The definitions of semimonotonic norms
and quasi-monotonic norms can be found in [G90]. Obviously, every monotonic norm
is semimonotonic, and every semimonotonic norm is quasi-monotonic (see [G90]).

A norm µ on Cm is called conjugate invariant if µ(x̄) = µ(x) for all x ∈ Cm,
where x̄ is the vector obtained from x by changing its entries to their conjugates.
Clearly, any absolute norm is conjugate invariant.

A norm µ on Fm is called axis standardized if µ(e
(m)
i ) = µ(e

(m)
j ) for all 1 ≤ i, j ≤

m, where e
(m)
i denotes the ith unit vector in Fm.

Suppose µ and ν are norms on Fm. We say that ν is a weighted µ norm if there
exists an entrywise positive vector w ∈ Fm such that ν(x) = µ(w ◦ x) for all x ∈ Fm.

For A = (aij) ∈ Fmn, denote by |A| the matrix with |aij | as its (i, j) element.
Proposition 2.2. Let µ be a semiabsolute norm on Fm and let ν be an absolute

norm on Fn. Then, for all A ≥ 0 in Fmn, we have

[µ/ν](A) = max{µ(Ax) : ν(x) = 1, x ≥ 0}.

Further, for all B ∈ Fmn, we have

[µ/ν](B) ≤ [µ/ν](|B|).(3)

Proof. Assume x ∈ Fn and ν(x) = 1. Since µ is semiabsolute, we have

µ(Ax) ≤ µ(|Ax|) ≤ µ(A|x|).

Since ν is absolute, it follows that ν(|x|) = 1, and the above inequalities show that
[µ/ν](A) ≤ max{µ(Ax) : ν(x) = 1, x ≥ 0}. Thus the first formula follows.

The second assertion follows immediately from the first formula.
Remark 2.3.
(a) We observe that [µ/ν] is also conjugate invariant if µ and ν are conjugate

invariant.
(b) By Proposition 2.2, the operator norm [µ/ν] induced by a semiabsolute norm

µ and an absolute norm ν is semiabsolute.

Since ν(e
(n)
i )νD(e

(n)
i ) = 1 for all i if ν is an absolute norm on Fn, we can deduce

the following result concerning [µ/ν](Eij) from Proposition 2.1, where Eij denotes
the standard unit matrix with the (i, j) element equal to 1 and the other elements
equal to 0.

Corollary 2.4. Suppose ν is an absolute norm. Then

[µ/ν](Eij) =
µ(e

(m)
i )

ν(e
(n)
j )

.

Corollary 2.5. Let µ and ν be absolute norms on Fm and Fn, respectively.
Then

|aij | ≤ [µ/ν](A)[µ/ν](Eij)
−1

for all A = (aij) ∈ Fmn, 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Proof. Let A ∈ Fmn. Then, by Proposition 2.1 and Corollary 2.4,

[µ/ν](A) ≥
∣∣∣∣∣ e

(m)
i

µD(e
(m)
i )

A
e
(n)
j

ν(e
(n)
j )

∣∣∣∣∣ = |aij |
µ(e

(m)
i )

ν(e
(n)
j )

= |aij |[µ/ν](Eij)
−1,

and so the corollary follows.
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3. Fractional Schur products of nonnegative matrices. In this section, we
investigate the behavior of vector norms and operator norms on a fractional Schur
product of nonnegative vectors and matrices, where a matrix A ∈ Fmn is called non-
negative if A is entrywise nonnegative.

For a nonnegative number t, the tth Schur power of a nonnegative matrix A =
(aij) in Fmn, denoted by A[t], is defined as A[t] = (atij).

Let N be a norm on Fmn. A positive number C is called a fractional Schur
submultiplicativity factor for the norm N if for any positive integer k and all positive
numbers δ1, . . . , δk such that

∑k
i=1 δi ≥ 1 we have

N (A
[δ1]
1 ◦ · · · ◦A[δk]

k ) ≤ Cδ−1
k∏
i=1

N (Ai)
δi(4)

for all nonnegative matrices A1, . . . , Ak, where δ =
∑k
i=1 δi. If C = 1 in (4), then

N is called fractional Schur submultiplicative. If (4) holds for fixed k = 2 and δ1 =
δ2 = 1 and all nonnegative matrices A1, A2 in Fmn, we call C a nonnegative Schur
submultiplicativity factor for N . In this case, if C = 1, then N is called nonnegative
Schur submultiplicative.

Note that (A,B) 7→ N (A ◦B) is a continuous function on Fmn×Fmn and Ω×Ω
is a compact set in the usual Euclidean topology, where Ω = {A : N (A) = 1}. Thus
one can define

S+
N := max{N (A ◦B) : N (A) = N (B) = 1, A ≥ 0, B ≥ 0}.(5)

It is not hard to show that S+
N is the least nonnegative Schur submultiplicativity

factor for N (see [G90] and [AG90], etc.).

The purpose of this section is to find the least fractional Schur submultiplicativity
factor for an operator norm. In particular, a necessary and sufficient condition for
[µ/ν] to be nonnegative Schur submultiplicative is given (see Corollary 3.7). Further,
we give a short proof for an inequality (see (14)) due to [KO85] and [EJS88] (see
Proposition 3.8).

We shall identify Fn1 with Fn. If µ is a norm on Fn and ν is the absolute value
on F, then it is easily shown that [µ/ν] = µ.

We begin with results on Fn. The following lemma is essentially shown in the
course of the proof of [JN91, Theorem 1]. For the sake of completeness, we give a
short proof as follows.

Lemma 3.1. Let µ be a quasi-monotonic norm on Fn. Then, for x, y ≥ 0 in Fn

and 0 ≤ δ ≤ 1,

µ(x[δ] ◦ y[1−δ]) ≤ µ(x)δµ(y)1−δ.

Proof. First, we assume that µ(x) = µ(y) = 1 and all the coordinates of x and y
are positive. By the well-known weighted mean-value inequality, we have

xδi y
1−δ
i ≤ δxi + (1− δ)yi

for i = 1, . . . , n. It follows that

x[δ] ◦ y[1−δ] ≤ δx+ (1− δ)y.
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Since µ is quasi-monotonic, we have

µ(x[δ] ◦ y[1−δ]) ≤ µ(δx+ (1− δ)y)

≤ δµ(x) + (1− δ)µ(y) = 1.

So, for x, y in Cn with positive entries, we have

µ

((
x

µ(x)

)[δ]

◦
(

y

µ(y)

)[1−δ]
)
≤ 1.

Thus the inequality holds for vectors with positive entries. By continuity, the lemma
is true for x ≥ 0 and y ≥ 0 in Cn.

For a given norm N on Fmn, we define

CN := max
{
N (Eij)

−1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n
}
.(6)

In particular, for a norm µ on Fm,

Cµ = max
{
µ(e

(m)
i )−1 : 1 ≤ i ≤ m

}
.(7)

Lemma 3.2. Let µ be a quasi-monotonic norm on Fn and suppose t ≥ 1.
(a) Let C ≥ Cµ. Then, for all nonnegative x ∈ Fn, we have

µ(x[t]) ≤ Ct−1µ(x)t.(8)

(b) If t > 1, then C = Cµ is the least positive number such that (8) holds.
Proof.
(a) Obviously, the conclusion is true if x = 0.
For nonzero x ∈ Fn, it is sufficient to prove (8) with C = Cµ. First, assume that

µ(x) = 1. Since 0 ≤ xiei ≤ x, we have xiµ(ei) ≤ 1, and so xi ≤ Cµ for i = 1, . . . , n.
This implies that

x[t] ≤ Ct−1
µ x.

Since µ is quasi-monotonic, it follows that

µ(x[t]) ≤ Ct−1
µ µ(x) = Ct−1

µ ,

so the conclusion is true when µ(x) = 1. Applying the proven result to x/µ(x) for
x 6= 0, we have proved (a).

(b) Suppose that C is any positive number such that (8) holds. Let x = e
(n)
i

(1 ≤ i ≤ n). By (8), we have

µ(e
(n)
i ) ≤ Ct−1µ(e

(n)
i )t.

Since t > 1, the preceding inequality implies that

µ(e
(n)
i )−1 ≤ C

for 1 ≤ i ≤ n. By (6), it follows that Cµ ≤ C.
Proposition 3.3. Let µ be a quasi-monotonic norm on Fn. Suppose k is a

positive integer and δ1, . . . , δk are nonnegative numbers such that δ =
∑k
i=1 δi ≥ 1.
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(a) Let C ≥ Cµ. Then, for any nonnegative x1, . . . , xk in Fn, we have

µ(x
[δ1]
1 ◦ · · · ◦ x[δk]

k ) ≤ Cδ−1
k∏
i=1

(µ(xi))
δi .(9)

(b) If δ =
∑k
i=1 δi > 1, then C = Cµ is the least positive number such that (9)

holds.
Thus Cµ is the smallest fractional submultiplicativity factor for the norm µ.
Proof.
(a) It is sufficient to prove (9) with C = Cµ. First, we prove the case of δ = 1.
If k = 1, the conclusion is obvious. Suppose k ≥ 2 and

y = (x
[δ1]
1 ◦ · · · ◦ x[δk−1]

k−1 )
1

1−δk .

Since 0 ≤ δk ≤ 1, Lemma 3.1 ensures that

µ(x
[δ1]
1 ◦ · · · ◦ x[δk]

k ) = µ(y[1−δk] ◦ x[δk]
k ) ≤ µ(y)1−δkµ(xk)δk .(10)

By induction on k, we have

µ(y) = µ(x
[
δ1

1−δk
]

1 ◦ · · · ◦ x
[
δk−1
1−δk

]

k−1 ) ≤
k−1∏
i=1

µ(xi)
δi

1−δk .(11)

By (10) and (11), it follows that

µ(x
[δ1]
1 ◦ · · · ◦ x[δk]

k ) ≤
k∏
i=1

µ(xi)
δi .(12)

Now, assume that δ ≥ 1. We have

k∑
i=1

δi
δ

= 1.

By (12) and Lemma 3.2, it follows that

µ(x
[δ1]
1 ◦ · · · ◦ x[δk]

k ) = µ((x
[
δ1
δ ]

1 ◦ · · · ◦ x[
δk
δ ]

k )[δ])

≤ Cδ−1
µ µ(x

[
δ1
δ ]

1 ◦ · · · ◦ x[
δk
δ ]

k )δ ≤ Cδ−1
µ

k∏
i=1

(µ(xi)
δi
δ )δ

= Cδ−1
µ

k∏
i=1

µ(xi)
δi .

So, (a) is proved.
(b) Suppose that C is an arbitrary positive number such that (9) holds. Let each

xj (1 ≤ j ≤ k) in (9) be e
(n)
i . By (9), we can obtain

µ(e
(n)
i ) ≤ Cδ−1µ(e

(n)
i )δ.
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Since δ > 1, we have

µ(e
(n)
i )−1 ≤ C

for 1 ≤ i ≤ n. By (7), one has that Cµ ≤ C. Therefore, Cµ is the least positive
number such that (9) holds for the given δ1, . . . , δk.

Next we study the fractional Schur products of nonnegative matrices on Fmn.
When the underlying norms µ and ν are semiabsolute and absolute, respectively, we
prove that C[µ/ν] is the least fractional Schur submultiplicativity factor for [µ/ν].

Lemma 3.4. Let µ and ν be norms on Fm and Fn, respectively. If ν is an absolute
norm, then

C[µ/ν] = max

{
ν(e

(n)
j )

µ(e
(m)
i )

: 1 ≤ i ≤ m, 1 ≤ j ≤ n
}
.

Proof. It follows immediately by Corollary 2.4.
Since [µ/ν] is a quasi-monotonic norm on Fmn if µ is semiabsolute and ν is

absolute (see Remark 2.3(b)), we can immediately obtain the following theorem by
applying Proposition 3.3 to the norm [µ/ν] on Fmn.

Theorem 3.5. Let µ be a semiabsolute norm on Fm and let ν be an absolute
norm on Fn. Suppose k is a positive integer and δ1, . . . , δk are nonnegative numbers
such that δ =

∑k
i=1 δi ≥ 1.

(a) Let C ≥ C[µ/ν]. Then, for any nonnegative A1, . . . , Ak in Fmn, we have

[µ/ν](A
[δ1]
1 ◦ · · · ◦A[δk]

k ) ≤ Cδ−1
k∏
i=1

[µ/ν](Ai)
δi .(13)

(b) If δ =
∑k
i=1 δi > 1, then C = C[µ/ν] is the least positive number such that

(13) holds.
Thus C[µ/ν] is the smallest Schur fractional submultiplicativity factor for the norm

[µ/ν].
Remark 3.6.
(a) Note that we have proved more than that C[µ/ν] is the smallest fractional Schur

submultiplicativity factor for the quasi-monotonic norm [µ/ν] since, in Proposition 3.3
and Theorem 3.5, δ1, δ2, . . . , δk are fixed nonnegative numbers. In particular, under
the assumptions of Proposition 3.3 and Theorem 3.5 on norms, by putting k = 2 and
δ1 = δ2 = 1, we see that the least nonnegative Schur submultiplicativity factor equals
the least fractional Schur submultiplicativity factor.

(b) Suppose that µ is a weighted lp norm on Fm with positive weight vector
x = (u1, . . . , um) and ν is a weighted lq norm on Fn with positive weight vector
(v1, . . . , vn), where 1 ≤ p, q ≤ ∞. Then (6) ensures that

C[µ/ν] = max

{
vj
ui

: 1 ≤ i ≤ m, 1 ≤ j ≤ n
}
.

In particular, if µ is the lp norm and ν is the lq norm, then [µ/ν] is nonnegative
Schur submultiplicative and 1 is the least fractional Schur submultiplicativity factor
for [µ/ν].

By Theorem 3.5, (6), and Lemma 3.4 the following corollary follows immediately.
Corollary 3.7. Let µ be a semiabsolute norm on Fm and ν be an absolute norm

on Fn. Then C[µ/ν] is a nonnegative Schur submultiplicativity factor.
Further, the following statements are equivalent:
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(a) [µ/ν] is nonnegative Schur submultiplicative ;
(b) [µ/ν](Eij) ≥ 1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n;

(c) µ(e
(m)
i ) ≥ ν(e

(n)
j ) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In the following, we use ρ(A) to denote the spectral radius of a square matrix
A. The following proposition is due to [KO85] and [EJS88]. As an application of
Theorem 3.5, we give a short proof of the result as follows.

Proposition 3.8. Suppose k ≥ 1. Let A1, . . . , Ak ∈ Fnn be nonnegative. Then,
for any positive numbers δ1, . . . , δk with

∑k
i=1 δi ≥ 1, we have

ρ(A
[δ1]
1 ◦ · · · ◦A[δk]

k ) ≤
k∏
i=1

ρ(Ai)
δi .(14)

Proof. Note that in [A] (for the irreducible nonnegative matrices) and in [HHSW,
Theorem 2.2] it is proved that, for all nonnegative matrices A ∈ Fnn,

ρ(A) = inf
X∈X

N (XAX−1),(15)

where X denotes the group of all n × n positive diagonal matrices and N is the
operator norm on Fnn induced by some lp norm on Fn. By Remark 3.6 and Theorem
3.5, for any X1, . . . , Xk in X , we have

N ((Xδ1
1 · · ·X

δk
k )(A

[δ1]
1 ◦ · · · ◦A[δk]

k )(Xδ1
1 · · ·X

δk
k )−1)

= N ((X1A1X
−1
1 )[δ1] ◦ · · · ◦ (XkAkX

−1
k )[δk])

≤ N (X1A1X
−1
1 )δ1 · · · N (XkAkX

−1
k )δk .

Let Xi (i = 1, . . . , k) run over the set X . By (15), it follows that (14) holds.

4. Schur submultiplicativity. Let N be a norm on Fmn. Let C be a positive
number. We call C a Schur submultiplicativity factor for the norm N if

N (A ◦B) ≤ CN (A)N (B)(16)

holds for all A,B ∈ Fmn. The submultiplicativity factor for a matrix norm for the
usual matrix multiplication was investigated in [GS79], [GS82], [GS83a], and [GS83b],
etc. In the terminology of [G90], [AG90], [AGL92], [AG93], [AGL93a], and [AGL93b],
the number C would be called a multiplicativity factor for the algebra Fmn under
Schur multiplication.

Similar to the definition of S+
N , one can define

SN := max{N (A ◦B) : N (A) = N (B) = 1}.(17)

It is not hard to show that SN is the least Schur submultiplicativity factor for N . It
is of interest to have some formulas for SN so that it can be easily determined, say,
computed in a finite number of steps. We are also interested in finding necessary and
sufficient conditions for SN ≤ 1. If this inequality holds, we call the norm N Schur
submultiplicative.

In this section, we will obtain some simple expressions for S[µ/ν]. We will also

investigate the relationships among the numbers S[µ/ν], S
+
[µ/ν], and C[µ/ν]; see, e.g.,

Remark 4.5 and Theorem 4.7.



342 WENCHAO HUANG, CHI-KWONG LI, AND HANS SCHNEIDER

Proposition 4.1. Let µ and ν be norms on Fm and Fn, respectively. Then

C[µ/ν] ≤ max{[µ/ν](A ◦A) : [µ/ν](A) = 1}

and

C[µ/ν] ≤ max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1},

where Ā is the entrywise conjugate of A.
If µ and ν are conjugate invariant, then max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1} ≤

S[µ/ν].
Proof. Let η = max{[µ/ν](A◦A) : [µ/ν](A) = 1}. Since [µ/ν](Eij) ≤ η[µ/ν](Eij)

2,
it follows that 1/[µ/ν](Eij) ≤ η, where 1 ≤ i ≤ m, 1 ≤ j ≤ n. By (6), the first in-
equality follows. Similarly, the second inequality is true.

If µ and ν are conjugate invariant, then [µ/ν](Ā) = [µ/ν](A) for all A ∈ Fmn, so
the last assertion follows.

Note that if F = R we have

max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1} = max{[µ/ν](A ◦A) : [µ/ν](A) = 1}.

Hence, for any norms µ on Rm and ν on Rn, we have

C[µ/ν] ≤ max{[µ/ν](A[2]) : A ∈ Rmn, [µ/ν](A) = 1} ≤ S[µ/ν].

In the rest of this section, we focus on the operator norms induced by semiabsolute
or absolute norms.

Theorem 4.2. Let µ and ν be absolute norms on Fm and Fn, respectively. Then

S[µ/ν] = max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1}.

Proof. Since µ and ν are absolute, by Proposition 4.1 it follows that

max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1} ≤ S[µ/ν].

Conversely, denote

η = max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1}.

Then, for any A,B ∈ Fmn with [µ/ν](A) = [µ/ν](B) = 1, by Proposition 2.2 and
Theorem 3.5, we have

[µ/ν](A ◦B) ≤ [µ/ν](|A| ◦ |B|) = [µ/ν]((|A|[2])[1/2] ◦ (|B|[2])[1/2])
≤ [µ/ν](|A|[2])1/2 [µ/ν](|B|[2])1/2 = [µ/ν](A ◦ Ā)1/2 [µ/ν](B ◦ B̄)1/2

≤ η1/2 · η1/2 = η.

This shows that

S[µ/ν] ≤ max{[µ/ν](A ◦ Ā) : [µ/ν](A) = 1}.

Theorem 4.2 shows that the definition of S[µ/ν] can be simplified if the operator
norm is induced by absolute norms. The following corollary follows immediately from
Theorem 4.2.
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Corollary 4.3. Let µ and ν be absolute norms on Fm and Fn, respectively.
Then [µ/ν] is Schur submultiplicative if and only if [µ/ν](A ◦ Ā) ≤ [µ/ν](A)2 for all
A ∈ Fmn.

In the remainder of this section, we will investigate the relationship between S[µ/ν]

and S+
[µ/ν].

Theorem 4.4. Let µ and ν be absolute norms on Fm and Fn, respectively. Then

S[µ/ν] ≤ min{m,n}C[µ/ν].

Proof. Assume A ∈ Fmn with [µ/ν](A) = 1. Let 1 ≤ i ≤ n and let Ai be
the matrix in Fmn such that the ith column of Ai is the same as the ith column
of A and the other columns of Ai equal zero. For any x ∈ Fn with ν(x) ≤ 1, we

have Aix = A(xie
(n)
i ). Since ν is also monotonic, it follows that ν(xie

(n)
i ) ≤ 1,

and so [µ/ν](Ai) ≤ [µ/ν](A) = 1. On the other hand, since µ is absolute, we have
[µ/ν](|Ai|) = [µ/ν](Ai). Hence, we have

[µ/ν](A ◦ Ā) = [µ/ν]

(
n∑
i=1

|Ai|[2]
)
≤

n∑
i=1

[µ/ν](|Ai|[2])

≤ C[µ/ν]

n∑
i=1

[µ/ν](|Ai|)2 = C[µ/ν]

n∑
i=1

[µ/ν](Ai)
2

≤ nC[µ/ν],

where the second inequality follows from Theorem 3.5. By applying similar arguments
to the rows of A, we can prove that [µ/ν](A ◦ Ā) ≤ mC[µ/ν]. By Theorem 4.2 and the
preceding arguments, the theorem follows.

Remark 4.5. By (5), (17), Remark 3.6(a), and Theorem 4.4 we have the following
relationships among S[µ/ν], S

+
[µ/ν], and C[µ/ν] if µ and ν are absolute norms:

C[µ/ν] = S+
[µ/ν] ≤ S[µ/ν] ≤ min{m,n}C[µ/ν].(18)

Thus, for the case n = 1, we have S+
µ = Cµ = Sµ, which is easily proved independently.

The following example of Bit-Shun Tam shows that S+
[µ/ν] = S[µ/ν] need not be

true when µ and ν are absolute norms.
Example 4.6. On F2, define µ(x) = max{|x1|, |x2|, 2(|x1|+ |x2|)/3}. Let ν = µD.

Then the unit norm ball of ν = µD has

E = {λe(2)i : i = 1, 2, |λ| = 1} ∪ {(u1, u2)t : u1, u2 ∈ F, |u1| = |u2| = 2/3}

as its set of extreme points. By Proposition 2.1,

[µ/ν](B) = max{|x∗By| : x, y ∈ E}.

Let A = [ 1
1/2

−1/2
1 ]. Then [µ/ν](A) = 1 and [µ/ν](A◦Ā) ≥ 10/9, and so S[µ/ν] ≥ 10/9.

But by Lemma 3.4 and Remark 3.6(a), we have S+
[µ/ν] = C[µ/ν] = 1.

Some sufficient conditions on µ and ν for S[µ/ν] = S+
[µ/ν] are given in the following

theorem.
Theorem 4.7. Let µ and ν be absolute norms on Fm and Fn, respectively. If

either µ or νD is a weighted l∞ norm, then S[µ/ν] = S+
[µ/ν] = C[µ/ν].
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Proof. Since S+
[µ/ν] ≤ S[µ/ν], by Remark 4.5, it is sufficient to prove that S[µ/ν] ≤

C[µ/ν].
Assume that µ(x) = l∞(w◦x) for all x ∈ Fm, where w ∈ Fm is entrywise positive.

Then µD(x) = l1(w[−1] ◦ x) for all x ∈ Fm. By Proposition 2.1, for all A ∈ Fmn we
have

[µ/ν](A) = max{wi|(e(m)
i )tAy| : 1 ≤ i ≤ m, ν(y) = 1}.

Now, suppose A ∈ Fmn with [µ/ν](A) = 1 and y ∈ Fn with ν(y) = 1. By Corollary
2.5, |aij | ≤ C[µ/ν] for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then, for each i,

wi|(e(m)
i )t(A ◦ Ā)y| ≤ wi

n∑
j=1

|aij |2|yj | ≤ C[µ/ν]wi

n∑
j=1

|aij ||yj |

= C[µ/ν]wi|(e(m)
i )tA(Diy)| ≤ C[µ/ν],

where Di is a unitary diagonal matrix in Fnn, and so ν(Diy) = 1 since ν is an absolute
norm. So, [µ/ν](A ◦ Ā) ≤ C[µ/ν]. By Theorem 4.2, it follows that S[µ/ν] ≤ C[µ/ν].

If νD is a weighted l∞ norm, the proof is similar.
By Theorem 4.7, (6), and Lemma 3.4 the following corollary follows immediately.
Corollary 4.8. Let µ and ν be absolute norms on Fm and Fn, respectively.

Suppose either µ or νD is a weighted l∞ norm. Then the following are equivalent:
(a) [µ/ν] is Schur submultiplicative;
(b) [µ/ν](Eij) ≥ 1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n;

(c) µ(e
(m)
i ) ≥ ν(e

(n)
j ) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Under the conditions of Corollary 4.8, (b) and (c) are equivalent (see Lemma
3.4). In general, neither (b) nor (c) implies (a) (see Example 4.6), even if µ and ν are
both absolute and permutation invariant in the sense that µ(Px) = µ(x) for all x and
permutation matrices P . If the operator norm [µ/ν] is also absolute, then obviously
S[µ/ν] = S+

[µ/ν]. But the operator norm induced by absolute norm(s) need not be

absolute, e.g., the operator norm induced by the l2 norm. On the other hand, the
inequality in (16) with C = 1 shows that S[µ/ν] = S+

[µ/ν] = C[µ/ν] if the operator norm

is induced by the lp and lq norms, and further that they are all equal to 1 (see [Be77],
[N89], [S11], [On84], [Ok87], and [HJ91, 5.5.15]). So, the absolute property of [µ/ν]
is not necessary for S[µ/ν] = S+

[µ/ν].

The following questions arise naturally.
Questions 4.9.
(a) What is a necessary and sufficient condition on µ and ν for S[µ/ν] = S+

[µ/ν]?

(b) How does one determine S[µ/ν]?

5. Limit of norms and Schur operator norms. Suppose µ is a norm on Fn

and K is a nonempty closed cone (convex) in Fn with nonempty interior. The Schur
K-operator norm induced by µ on Fn, denoted by µK , is

µK(x) = max{µ(x ◦ y) : y ∈ K,µ(y) = 1}, x ∈ Fn.(19)

Two typical choices of K are Fn and the cone of all nonnegative vectors in Fn. If
K = Fn, the induced norm µK is called a Schur operator norm on Fn.

Theorem 5.1. Let µ be a norm on Fn. Then limt→∞ µ(x[t])1/t exists and is
equal to l∞(x) for all x ∈ Fn.
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Proof. By [HJ85], there exist finite positive constants C1 and C2 such that

C1l∞ ≤ µ ≤ C2l∞.

Obviously, l∞(x[t]) = l∞(x)t for all x ∈ Fn and all positive t. Hence, for all x ∈ Fn

and all positive t, it follows that

C
1/t
1 l∞(x) ≤ µ(x[t])1/t ≤ C1/t

2 l∞(x).

Let t→∞. The above inequalities show that limt→∞ µ(x[t])1/t exists and is equal to
l∞(x).

The following theorem shows that µK(x) can be computed in a finite number of
steps if K is the cone of all nonnegative vectors in Fn, x is in K, and µ is quasi-
monotonic.

Theorem 5.2. Let µ be a quasi-monotonic norm on Fn. Let K be the cone of
all nonnegative vectors in Fn. Then, for all nonnegative x ∈ Fn,

µK(x) = l∞(x).

Proof. If x = 0, the conclusion is trivial.
Assume that x 6= 0. For any y ∈ K with µ(y) = 1, we have

µ(x ◦ y) ≤ l∞(x)µ(y) = l∞(x).

It follows that µK(x) ≤ l∞(x).
Suppose t is a positive integer. Then, by (19),

µ(x[t])

µ(x[t−1])
=
µ(x ◦ x[t−1])

µ(x[t−1])
≤ µK(x),

so

µ(x[t]) ≤ µK(x)µ(x[t−1]), t = 1, 2, . . . .

It follows that

µ(x[t]) ≤ µK(x)µ(x[t−1]) ≤ (µK(x))2µ(x[t−2]) ≤ · · · ≤ (µK(x))t−1µ(x).

Therefore,

µ(x[t])1/t ≤ (µK(x))(t−1)/tµ(x)1/t.

Let t→∞. By Theorem 5.1, we have l∞(x) ≤ µK(x).
Corollary 5.3. Let µ be a semiabsolute norm on Fm and ν be an absolute

norm on Fn. Let K be the cone of all nonnegative matrices in Fmn. Then for all
nonnegative A ∈ Fmn we have [µ/ν]

K
(A) = l∞(A).

Proof. Since [µ/ν] on Fmn is quasi-monotonic (Remark 2.3(b)), the assertion
follows immediately by applying Theorem 5.2 to the space Fmn.
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Abstract. Motivated by operator splitting, a new two-stage-splitting iteration is proposed for
the solution of maximum penalized likelihood estimation (MPLE) problems. The resulting algorithm,
called two-step-late (TSL), is as practical and as easily implemented as the one-step-late (OSL)
algorithm. Matrix analysis is applied to compare the rates of convergence of the TSL and OSL
algorithms. It is proved that under quite general conditions for which OSL and TSL converge to
the same solution the rate of convergence of TSL exceeds that of two steps of OSL, which is its
computational counterpart. Numerical experimentation can then be used to check the range of the
smoothing parameter for which these proofs hold.

Key words. EM, OSL, perturbation and spectral theory, two-stage-splitting

AMS subject classifications. 15A18, 65U05, 92C55
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1. Introduction. The expectation maximization (EM) methodology [4] is a gen-
eral approach for maximizing a likelihood or posterior distribution rather than a spe-
cific algorithm. The common strand in problems where this approach is applicable
is the notion of “incomplete data,” which includes the conventional sense of “missing
data.” The EM methodology demonstrates its strength in such situations [14]. The
resulting algorithms are extremely simple and remain practical for large problems
where other approaches do not appear to be feasible.

Along with the recent growth of interest in the use of Bayesian and penalized
likelihood methods, the EM methodology has been increasingly used to implement
these methods. Green [7] has discussed the EM methodology for MPLE problems.
He proposed an OSL algorithm which is often much easier to implement than the
original EM algorithm and converges slightly faster than it does. The OSL algorithm
can also be applied to posterior probability problems [6].

This paper proposes a new two-stage-splitting iteration. The motivation is the
iterative methods based on operator splitting [5]. They are popular in other contexts
such as the solution of the Navier–Stokes equations in fluid dynamics [5] since, through
a judicious splitting of the underlying operator, iterative schemes can be constructed
which have improved rates of convergence as well as other desirable numerical prop-
erties. In fact, the splitting introduces flexibility into the way iterative methods can
be defined. For the new algorithm, called two-step-late (TSL), the nonlinear opera-
tor, whose kernel maximizes the MPLE functional, is split into two parts as outlined
below. It is then desirable to construct an appropriate mathematical framework to
evaluate the numerical performance of the TSL algorithm, such as a comparison of
its rate of convergence with its computational counterpart—two steps of OSL. Matrix
perturbation and spectral theories are invoked for this purpose. It is proved that
under quite realistic conditions if the OSL and TSL methods converge they converge
to the same point, and the rate of convergence of TSL exceeds that of two steps of
OSL. A general convergence theory for the TSL algorithm, as well as that of the
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OSL algorithm, remains an open question, but for MPLE problems convergence will
depend heavily on the penalty employed. However, numerical experiments indicate
that for such problems with a small penalty the OSL and TSL algorithms converge.

Remark 1. As shown by Lange [12], in any implementation of OSL (and hence
by default TSL), convergence is greatly improved through the judicious introduc-
tion of a line search strategy into the maximization. Within any multistage iter-
ation such as TSL one has greater flexibility for the introduction of line searches.
Numerical experimentation, which is reported elsewhere [17], shows that the numer-
ical performance of TSL with line search compares favorably with OSL with line
search.

An explanation of the EM methodology and its use for the solution of MPLE
problems is given in section 2. Two-stage-splitting is introduced in section 3 along
with the definition of the TSL algorithm. Three theorems (Theorems 1, 2, and 3)
with three different sets of conditions are proved to demonstrate the superiority of
the rate convergence of TSL over that of two steps of OSL. Theorem 1 is based on
perturbation results for eigenvalues and eigenvectors. Theorem 2 is derived using
estimates of the spectral norm; Theorem 3 is proved using matrix commutativity
and, in particular, applies to the one-dimensional case. In section 4, a numerical
experiment is provided to illustrate the theoretical results in section 3. The example
used is that of a multinomial sample as considered by other authors [4, 7].

2. The OSL algorithm and MPLE problems. In many applications, the
given data (measurements) y can be viewed (interpreted) as indirect (incomplete)
measurements of the underlying phenomenon of interest x . The goal therefore be-
comes one of recovering information about the phenomenon x from the available data
y . There are various mathematical and statistical ways in which this can be done
[1, 8]. Here, attention focuses on the maximum penalized likelihood formalism for
incomplete data and its solution via the OSL algorithm.

Let f(x |θ) denote the sampling density of the complete data x which depends
on some parameters θ and g(y |θ) the corresponding sample density of the incomplete
data y . The aim of the ML (maximum likelihood) methodology is to determine the
θ which maximizes log g(y |θ) for a given y but by making essential use of the family
f(x |θ). The key to the derivation of the EM algorithm is the decision as to how to
make use of the underlying family f(x |θ).

The underlying heuristic, proposed in [4], is the observation that one would like
to determine θ so as to maximize log f(x |θ), except that x is unknown. There-
fore it is necessary to work with some appropriate approximation of log f(x |θ), such
as

Q(θ′|θ) = E(log f(x |θ′)|y ,θ), θ′ = θ.

In practice, one determines the θ∗ which maximizes Q(θ|θ) by iteratively maximizing
Q(θ̄|θ0) as a function of θ̄ with respect to the current estimate θ0 of θ∗. There is
clearly some flexibility in how this might be done depending on how one decides to
formulate the iterative process. The approach of [4] is to specify the iteration so as
to retain the essential structure of the EM algorithm for exponential families. In this
way, one obtains the iterative process θ(n) → θ(n+1) for n ≥ 0 defined by an E-step:
for the current θ(n), estimate

Q(·|θ(n)) = E(log f(x |·)|y ,θ(n)),

where the notation implies that the conditional expectation, given y and θ(n), is ap-
plied to log f(x |·) as if it were only a function of x (i.e., with the θ held constant).
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This is followed by an M -step: determine the θ(n+1) which maximizes Q(θ|θ(n)).

Formally, these steps are implemented by replacing an initial θ(0) by that θ(1) which
maximizes Q(θ|θ(0)). This replacement is continued until convergence is achieved,
though practical considerations require that this process be stopped at an appropri-
ate earlier stage.

The justification for this iterative process is that the θ∗ which the above EM
method aims to approximate in fact does maximize L(θ) (defined below). In addi-
tion, the iterates monotonically increase the incomplete data likelihood and thereby
converge [2, 3, 15].

If k(x |y ,θ) denotes the conditional density of x given y , then Q(θ′|θ) takes the
form [4]

(1) Q(θ′|θ) = L(θ′) +H(θ′|θ),

where

L(θ′) = log g(y |θ′) and H(θ′|θ) = E(log k(x |y ,θ′)|y ,θ).

For MPLE, instead of choosing Q(θ′|θ) as the approximation to log f(x |θ), one
takes the penalized objective function

(2) Q(θ′|θ)− λJ(θ′),

where J(θ) is the penalty and λ > 0 is the smoothing (regularization) parameter. In
this way, the EM method for MPLE corresponds to replacing Q(θ′|θ) by (2) in the
above definition of EM. In addition, the corresponding M-step reduces iteratively to
solving, with respect to a given starting solution θ(0), the (nonlinear) equation

(3) D10Q(θ(n+1)|θ(n))− λDJ(θ(n+1)) = 0,

where D denotes the derivative operator and, more generally, DijF (ζ|η) denotes
Di
ζD

j
ηF (ζ|η).

For λ > 0 and a general J(θ), (3) could involve considerable computational effort
as encountered in [6]. Hence, the OSL algorithm is defined as a modification of (3);
namely,

(4) D10Q(θn+1|θn)− λDJ(θn) = 0, n = 0, 1, . . . .

Although in many applications of the EM methodology physical constraints im-
posed on the necessary optimization require consideration of the more general Kuhn–
Tucker conditions, the scope of this paper is restricted to the simpler case in which all
the iterates (for θ) lie in the interior of the parameter space and, therefore, equations
such as (3) and (4) hold.

Let M denote the OSL map M : θn 7→ θn+1; i.e., θn+1 = M(θn), where θn+1 is
defined implicitly by (4). Differentiating (4) with respect to θn yields

D11Q(θn+1|θn) +D20Q(θn+1|θn)DM(θn)− λD2J(θn) = 0.

If the sequence {θn}n≥0 converges to θ̂, then by continuity

D11Q(θ̂|θ̂) +D20Q(θ̂|θ̂)DM(θ̂)− λD2J(θ̂) = 0,

which can be rewritten as DM(θ̂) = (B + C)−1(C − λK), where [7, p. 445]

C = D11Q(θ̂|θ̂) = D11H(θ̂|θ̂) = −D20H(θ̂|θ̂),

B = −D2L(θ̂), and K = D2J(θ̂).
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Note that B, C, and K depend implicitly on λ through their dependence on θ̂(λ).
In order to illustrate how the EM and OSL algorithms work on real problems, we

consider a concrete example; namely, the multinomial sample problem considered in [4]
and [7]. This example illustrates the essential nature of EM: the data set is completed
using the current estimate of the parameter, and then using this completed data a
new (MPL) estimate of the parameter is generated (cf. (7) below). This process is
then iterated. Additional concrete illustrations can be found in section 8.8 of [10].

Example. Let the observed data consist of

y = (y1, y2, y3, y4)T = (125, 18, 20, 34)T ,

which are drawn from the multinomial distribution

M

(
197;

1

2
+

1

4
θ,

1

4
(1− θ), 1

4
(1− θ), 1

4
θ

)
for some θ with 0 ≤ θ ≤ 1. The hypothesized complete data, which are drawn from

M

(
197;

1

2
,

1

4
θ,

1

4
(1− θ), 1

4
(1− θ), 1

4
θ

)
,

consist of x = (x1, x2, x3, x4, x5)T , where

y1 = x1 + x2, y2 = x3, y3 = x4, and y4 = x5.

For this example, one easily computes that

x̂1(y , θ) = 2y1/(2 + θ), x̂2(y , θ) = y1θ/(2 + θ),

x̂3(y , θ) = y2, x̂4(y , θ) = y3, x̂5(y , θ) = y4,

log f(x |θ′) = x1 log
1

2
+ (x2 + x5) log

θ′

4
+ (x3 + x4) log

1− θ′
4

+ log
197!

Π5
j=1xj !

,

L(θ′) = y1 log
2 + θ′

4
+ (y2 + y3) log

1− θ′
4

+ y4 log
θ′

4
+ log

197!

Π4
j=1yj !

,

where x̂j , j = 1, 2, . . . , 5, are estimates (expectations) of xj given y and θ.
It follows that

(5) Q(θ′|θ) = x̂1 log
1

2
+ (x̂2 + x̂5) log

θ′

4
+ (x̂3 + x̂4) log

1− θ′
4

+ E

(
log

197!

Π5
j=1xj !

)
.

Now suppose that one seeks the MPLE θ̂ which maximizes L(θ) − λ(θ − 1/2)2.
Differentiation of Q(θ′|θ)− λ(θ′ − 1/2)2 with respect to θ′ yields

(6)
x̂2 + x̂5

θ′
− x̂3 + x̂4

1− θ′ − λ(2θ′ − 1) = 0.

Note that the last term of Q(θ′|θ) in (5) is independent of θ′ and so does not contribute
when differentiating Q(θ′|θ) with respect to θ′.

The EM algorithm therefore takes the form

(7)

{
x̂2 = y1θ

n/(2 + θn),

(x̂2 + y4)/θn+1 − (y2 + y3)/(1− θn+1)− λ(2θn+1 − 1) = 0, n = 0, 1, 2, . . . ,
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which yields a cubic equation for updating θ. The OSL method uses the current value
of θ in the last term of (6), so the iteration scheme becomes

(8)

{
x̂2 = y1θ

n/(2 + θn),

(x̂2 + y4)/θn+1 − (y2 + y3)/(1− θn+1)− λ(2θn − 1) = 0, n = 0, 1, 2, . . . ,

which yields a quadratic equation for updating θ.

3. The two-step-late iteration. In some ways, one can view the OSL method
as being the first step of an operator splitting strategy for the maximization of (2).
If this point of view is adopted, then one is led naturally to seek a more involved
iterative strategy than simply applying OSL alone. In fact, the TSL method, defined
below, amounts to a simple modification of the second of two steps of OSL.

Consider the following TSL iteration:

D10Q(θ(n+1/2)|θn)− λDJ(θn) = 0,(9)

D10Q(θn+1|θ(n+1/2))− λDJ(θn) = 0, n = 0, 1, 2, . . . .(10)

Let N denote the TSL map N : θn 7→ θn+1; i.e., θn+1 = N(θn), where θn+1 is
defined implicitly by (9) and (10). Differentiating (10) with respect to θn yields

D11Q(θn+1|θ(n+1/2))DM(θn) +D20Q(θn+1|θ(n+1/2))DN(θn)− λD2J(θn) = 0.

If {θn}n≥0 converges to θ̂, then by continuity

D11Q(θ̂|θ̂)DM(θ̂) +D20Q(θ̂|θ̂)DN(θ̂)− λD2J(θ̂) = 0

and consequently

DN(θ̂) = [−D20Q(θ̂|θ̂)]−1[D11Q(θ̂|θ̂)DM(θ̂)− λD2J(θ̂)]

= (B + C)−1(C(B + C)−1(C − λK)− λK).

Note. TSL is just one example of a procedure resembling a two-point iteration
scheme [13, pp. 336–339] for the solution of MPLE problems of the form (2).

Comparing the OSL and TSL algorithms, one can easily see from (4), (9), and
(10) that

1. TSL is as practical and as easily implemented as OSL,
2. the limit points of the OSL and TSL algorithms satisfy the equation

(11) DL(θ)− λDJ(θ) = 0.

For some problems, (11) has a unique solution for a large class of J(θ) and any suitably
small λ > 0 [16]. In this situation, if the OSL and TSL algorithms converge, they
converge to the same point. The general convergence of the TSL algorithm, though,
like the OSL algorithm, remains an open question.

In what follows, we assume that for any suitably small positive λ both OSL
and TSL converge and that (11) has a unique solution. Hence, when OSL and TSL
converge, they do so to this solution.

Remark 2. There are two oversights in [7]. First, the dependence of B, C, and
K on λ is not mentioned; second, the proof of the proposition doesn’t make sense
unless both the EM algorithm without penalty (i.e., λ = 0) and the OSL algorithm
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(for λ > 0) converge to the same point. This is typically not the case because the
solutions of (11) for λ = 0 and λ > 0 are usually different.

Since TSL corresponds to one step of OSL followed by a simple modification of
OSL before the process is repeated, it is a natural consequence that (cf. equations (9)
and (10)) one TSL step corresponds computationally to two steps of OSL. Thus, in
order to compare the asymptotic rates of convergence of OSL and TSL, it is necessary
to compare the spectral radii, respectively, of (DM)2 and DN or, equivalently, of

G1 = ∆2 and G2 = (B + C)−1(C∆− λK),

where ∆ = (B + C)−1(C − λK) corresponds to DM(θ̂).

In essence, the purpose of this paper is an investigation of the following proposi-
tion.

PROPOSITION. Under suitable conditions on B, C, K, and λ,

(12) ρ(G2) < ρ(G1),

where ρ(Gi) denotes the spectral radius of Gi, i = 1, 2.

Below, we prove three separate theorems which establish three independent classes
of conditions on B, C, and K which guarantee that (12) holds. All three theorems
require λ > 0 to be suitably small; B, C, and K to be symmetric and positive
definite for nonnegative and small λ; and the matrices (B + C)−1, C, and K to
be continuous at λ = 0. In addition, the first requires that (B + C)−1C|λ=0 has a
simple largest eigenvalue; the second requires that either spectral norm ‖B−1C‖2 or
‖C−1B‖2 be suitably small; while the third requires that B, C, and K commute with
each other.

Remark 3. Observe that, trivially, ρ(G2) = ρ(G1) when λ = 0 because then
G1(0) = G2(0) = ((B + C)−1C)2|λ=0. All the results below make use of a property
of the matrix (B + C)−1C|λ=0 which is just the linearization of the nonlinear map
determined by the OSL algorithm applied without penalty (i.e., λ = 0).

Theorem 1. For small nonnegative λ, if

(i) B, C, and K are symmetric and positive definite,

(ii) (B + C)−1, C, and K are continuous at λ = 0 with respect to λ,

(iii) (B + C)−1C|λ=0 has a simple largest eigenvalue,

then ρ(G2) < ρ(G1) for sufficiently small positive λ.

Proof. Since (B + C)−1 is symmetric and positive definite, it has a Cholesky
decomposition

(13) (B + C)−1 = LLT ,

where L is a real matrix. Hence, G1 is similar to LT (C − λK)∆L; i.e., LT (C −
λK)(B +C)−1(C − λK)L, which is symmetric and positive definite when C − λK is
invertible, and therefore this matrix and G1 have the same eigenvalues, all of which
are real and positive.

From [7, p. 446], all eigenvalues of (B + C)−1C are real and positive and less
than one. Suppose (B + C)−1|λ=0 has the largest eigenvalue α < 1, and let the
corresponding eigenvector be y ; i.e., (B+C)−1Cy = αy . Consequently, (1−α)Cy =
αBy , and therefore

(14) (B + C)−1By =
1− α
α

(B + C)−1Cy =
1− α
α
· αy = (1− α)y .
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The largest eigenvalue and the corresponding eigenvector of the matrix (B +
C)−1C(B +C)−1C|λ=0(= G1(0) = G2(0)) are, respectively, α2 and y . Let the eigen-
values of largest modulus of the OSL and TSL matrices G1 and G2 be β1 and β2, and
let the corresponding eigenvectors be y1 and y2, respectively. Clearly,

(15) ρ(G1) = β1 and ρ(G2) = |β2|.

It follows from [9] that

(16)

β1 = α2 + o(1), y1 = y + o(1),

β2 = α2 + o(1), y2 = y + o(1) as λ→ 0.

Here, limλ→0 o(1) = 0 and limλ→0 ‖o(1)‖ = 0. β1 is real and positive.
Because

G2 = (B + C)−1(C∆− λK∆ + λ(B + C)−1K∆− λK)

= ∆2 − λ(B + C)−1K(I −∆),

it follows that

(17) ∆2y2 − λ(B + C)−1K(I −∆)y2 = β2y2.

Let x = L−1y2 (i.e., y2 = Lx ). Using (13) and premultiplying (17) by x ∗L−1 yields

(18) x ∗LT (C − λK)∆Lx − β2x
∗x = λy∗2K(I −∆)y2.

Expanding the right-hand side of (18) gives

(19)

y∗2K(I −∆)y2 = y∗2K(B + C)−1(B + λK)y2

= y∗2K(B + C)−1By2 + λy∗2K(B + C)−1Ky2.

Obviously, λy∗2K(B + C)−1Ky2 > 0 because (B + C)−1 and K are symmetric and
positive definite. Using (14) and (16) in the first term on the right-hand side of (19)
yields

y∗2K(B + C)−1By2

= (y + o(1))∗K(B + C)−1B(y + o(1))

= (1− α)y∗Ky + (1− α)o(1)∗Ky

+ y∗K(B + C)−1Bo(1) + o(1)∗K(B + C)−1Bo(1),

and hence from (18)

(20)
x ∗LT (C − λK)∆Lx − β2x

∗x

= λ(1− α)y∗Ky + λ2y∗2K(B + C)−1Ky2 + o(λ) as λ→ 0.

Assume that β2 = β21 + iβ22, where β21 and β22 are real. Since LT (C − λK)∆L
is symmetric positive definite, x ∗LT (C−λK)∆Lx is real and positive. Furthermore,

λ(1− α)y∗Ky + λ2y∗2K(B + C)−1Ky2(= O(λ))

is real and positive (for λ > 0), and hence (20) can be written as

(21) [x ∗LT (C − λK)∆Lx − β21x
∗x ]− iβ22x

∗x = O(λ) + io(λ),
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where O(λ) > 0, provided λ remains positive. Now from (21) β21, the real part
of β2, which is positive, is less than β1, and the difference β1 − β21 is O(λ). The
imaginary part β22 of β2 is o(λ), while that of β1 is 0. Therefore, for sufficiently small
positive λ,

|β2| < β1,

which verifies that the spectral radius of G2 is less than that of G1 for sufficiently
small positive λ.

The following lemma is required for a proof of Theorem 2 and assists in further
identifying alternative conditions under which the proposition holds.

Lemma 1. If B, C, and K are symmetric and positive definite and either
(i) the spectral norm of the matrix B−1C satisfies q := ‖B−1C‖2 < 1 or
(ii) the spectral norm of the matrix C−1B satisfies q := ‖C−1B‖2 < 1,

then for any unit vector x ,x ∗K(I −∆)x is a complex number which correspondingly
satisfies

(i)
Re(x ∗K(I −∆)x ) > ξmin + λµmin −O(q),

|Im(x ∗K(I −∆)x )| < O(q) as q → 0,

(ii)
Re(x ∗K(I −∆)x ) > λµmin −O(q),

|Im(x ∗K(I −∆)x )| < O(q) as q → 0,

where ξmin and µmin are positive and denote, respectively, the smallest eigenvalues of
K and K(B + C)−1K, and O(q) is positive.

Proof. Clearly

K(I −∆) = K(I − (B + C)−1(C − λK))

= K(B + C)−1(B + λK)

= K(B + C)−1B + λK(B + C)−1K.

(i) When ‖B−1C‖ = q < 1, then [11]

(B + C)−1B = (B−1(B + C))−1

= (I +B−1C)−1

= I −B−1C +B−1CB−1C − · · · .

Thus, for any vector x

x ∗K(I −∆)x

= x ∗Kx + x ∗K(−B−1C +B−1CB−1C − · · ·)x + λx ∗K(B + C)−1Kx .

If x is a unit vector, then

|x ∗K(−B−1C +B−1CB−1C − · · ·)x |

≤ ‖K‖(||B−1C‖+ ‖B−1C‖2 + ‖B−1C‖3 + · · ·)

=
qξmax

1− q = O(q) as q → 0,
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where ξmax, which is the largest eigenvalue of K, is also its spectral norm.
On the other hand,

K(I −∆) = K(I − (B + C)−1(C − λK))

= K −K(B + C)−1C + λK(B + C)−1K.

(ii) When ‖C−1B‖ = q < 1, then [11]

(B + C)−1C = (C−1(B + C))−1

= (I + C−1B)−1

= I − C−1B + C−1BC−1B − · · · ,

and so

x ∗K(I −∆)x

= x ∗K(−C−1B + C−1BC−1B − · · ·)x + λx ∗K(B + C)−1Kx .

If x is a unit vector, then

|x ∗K(−C−1B + C−1BC−1B − · · ·)x |

≤ ‖K‖(‖C−1B‖+ ‖C−1B‖2 + ‖C−1B‖3 + · · ·)

=
qξmax

1− q = O(q) as q → 0.

Because x ∗Kx and λx ∗K(B + C)−1Kx are real and

x ∗Kx ≥ ξmin,

λx ∗K(B + C)−1Kx ≥ λµmin and

|x ∗K(−B−1C +B−1CB−1C − · · ·)x | < O(q).

Then Lemma 1 is proved.
We are now in a position to state and prove our second theorem. Lemma 1 pro-

vides one set of the aforementioned alternative conditions under which the proposition
holds.

Theorem 2. If
(i) B, C, and K are symmetric and positive definite,
(ii) the spectral norm ‖B−1C‖2 (or ‖C−1B‖2) is sufficiently small in a neigh-

borhood of λ = 0, λ > 0,
(iii) (B + C)−1, C, and K are continuous at λ = 0 with respect to λ,

then ρ(G2) < ρ(G1) for sufficiently small positive λ.
Proof. Suppose γ is an eigenvalue of G2 and z is the corresponding eigenvector

such that ‖z‖ = 1. Let x = L−1z , where L is as given in (13). Then, proceeding in
a manner similar to the proof of Theorem 1, we get

(22) x ∗LT (C − λK)∆Lx − γx ∗x = λz ∗K(I −∆)z .

From Lemma 1, the real part of γ is less than the spectral radius of G1, and the
difference is greater than

λ

x ∗x
(ξmin + λµmin −O(q))

(
or

λ

x ∗x
(λµmin −O(q))

)
,
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while the difference of imaginary parts is less than λO(q). By the continuity of γ with
respect to λ [9], when λ is sufficiently small and positive, the real part of γ is positive,
because when λ→ 0, γ approximates one eigenvalue of ((B + C)−1C)2|λ=0, which is
positive. Therefore, for sufficiently small q, the absolute value of γ is less than the
spectral radius of G1. This is true for each eigenvalue of G2, so ρ(G2) < ρ(G1).

Finally, we give a third result in which TSL is superior to OSL. However, in this
case the assumed conditions may be more difficult to satisfy in practice for higher
dimensional problems.

Theorem 3. If
(i) B, C, and K are symmetric and positive definite matrices which commute

with each other (i.e., BC = CB,BK = KB,CK = KC),
(ii) (B + C)−1, C, and K are continuous at λ = 0 with respect to λ,

then for sufficiently small positive λ, ρ(G2) < ρ(G1).
Proof. Assume the same notation as in the proof of Theorem 1. From [7, p. 446]

as well as above, all eigenvalues of (B + C)−1C are real and positive. Under the
commutativity condition, the TSL matrix G2 is symmetric, so all of its eigenvalues
are real. Furthermore, when λ = 0, G2 reduces to be ((B+C)−1C)2|λ=0, for which the
largest eigenvalue is α2. Hence, for sufficiently small λ and because of the continuity
of the eigenvalues of G2 with respect to λ, β2 is positive.

It easily follows from the commutativity condition and the positive definiteness
of B, C, and K that K(B+C)−1B is positive definite. Hence, for any nonzero vector
u , u∗K(B + C)−1Bu > 0, and, therefore, from (19)

y∗2K(I −∆)y2 > 0.

In this case for positive λ, (18) becomes

(23) x ∗LT (C − λK)∆Lx − β2x
∗x = λy∗2K(I −∆)y2 > 0.

Hence β2 < ρ(LT (C − λK)∆L); i.e., β2 < ρ(G1). Since ρ(G2) = β2, then ρ(G2) <
ρ(G1) for sufficiently small positive λ.

Theorems 1, 2, and 3 establish conditions which guarantee that the TSL algorithm
asymptotically converges faster than the OSL algorithm and give different verifications
of the proposition.

Remark 4. The fact that in all three theorems λ must be sufficiently small does
not pose a problem since λ plays the role of the regularization parameter which, by its
very nature, must be kept appropriately small in order not to generate oversmoothed
approximations θ̂.

4. A numerical example. To illustrate the practical applicability and useful-
ness of the above results, we consider the same test problem as that used in [4] and
[7], namely, a multinomial sample for which the parameter space is one dimensional
and Theorem 3 automatically holds. Results corresponding to those given below for
this example have also been obtained for ridge regression [17].

Let the setting be the same as that in section 2. The EM and OSL algorithms
for this problem have been derived in section 2 as equations (7) and (8), respectively.

The TSL iteration scheme for this problem takes the form
x

(1/2)
2 = y1θ

n/(2 + θn),

(x
(1/2)
2 + y4)/θ(n+1/2) − (y2 + y3)/(1− θ(n+1/2))− λ(2θn − 1) = 0,

x̂2 = y1θ
(n+1/2)/(2 + θ(n+1/2)),

(x̂2 + y4)/θn+1 − (y2 + y3)/(1− θn+1)− λ(2θn − 1) = 0, n = 0, 1, 2, . . . .
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Table 1

Convergence in a multinomial example.

λ θ̂ OSL2 TSL

0.001 0.6268214 0.01765 0.01761

0.005 0.6268187 0.01762 0.01760

0.01 0.6268153 0.01762 0.01758

0.02 0.6268086 0.01761 0.01753

0.04 0.6267951 0.01759 0.01743

0.05 0.6267884 0.01757 0.01738

0.1 0.6267548 0.0175 0.0171

0.2 0.6266878 0.0174 0.0166

0.3 0.6266207 0.0173 0.0161

0.4 0.6265537 0.0172 0.0156

0.5 0.6264863 0.0171 0.0151

1.0 0.6261530 0.0165 0.0125

2.0 0.6254897 0.0155 0.0074

3.0 0.6248319 0.0144 0.0023

4.0 0.6241797 0.0134 0.0029

5.0 0.6235331 0.0125 0.0081

6.0 0.6228920 0.0115 0.0133

Fig. 1. Approximate rate of convergence ρ plotted against λ for the multinomial sample: dashed
line OSL2, solid line TSL.

Both OSL and TSL converge to the same solution even for different initial esti-
mates θ0. Numerical experimentation confirms that the rates of convergence of OSL
and TSL vary with λ and that for sufficiently small positive λ, TSL is superior to
OSL. The numerical rates of convergence which demonstrate this are illustrated in
Table 1 and Figure 1, where the notation OSL2 is used to denote two steps of OSL,
the computational equivalent of one step of TSL. These data were obtained using
θ0 = 0.4. The numbers in the third and fourth columns of Table 1 are the quan-
tity ρ = |θN − θN−1|/|θN−1 − θN−2| for the last iterate before convergence to θ̂.
Convergence here is defined by |θN − θN−1| ≤ 10−8.
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From Figure 1 it is clear that for this example, the size of λ for which the better
convergence of TSL is achieved exceeds those values likely to be useful in practice
(cf. Remark 4).

Acknowledgment. The authors wish to thank Mark Westcott for providing
valuable insights into the EM methodology.
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Abstract. It is proved that for polynomially bounded sets of matrices the notions of pointwise
convergence and uniform convergence coincide. This result is also proved for certain sets of nonlinear
maps on finite-dimensional real or complex vector spaces.
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1. Introduction. Let A be a set of n × n matrices with complex or real en-
tries. Various notions concerning convergence of infinite products of matrices in A
have been studied extensively in the literature. We mention [DL2, BW, DL1], where
right-convergent product sets are studied (such sets appear in many applications,
for example, in constructing wavelets with compact support; see the bibliography in
[DL1]). Various notions of stability of discrete linear inclusions lead to a study of
infinite products of matrices and their convergence (see [G]). We also mention [S,
SU], where a notion of convergence of finite matrix products is studied; the type of
convergence there is motivated by the theory of multimodal linear control systems.

In this paper we mainly study pointwise convergence and uniformly convergent
sets. The definitions of these notions of convergence will now be given. We set up
notation and conventions first. Let F = R or F = C. It will be convenient to represent
the set A as indexed by some index set K; thus, we write A = {Ai : i ∈ K}, where
each Ai is an n× n matrix with entries in F . A word w of length k is by definition a
function w : {1, . . . , k} → K; we denote by |w| the length of the word w. For a given
word w, let Aw be the left product Aw(k)Aw(k−1) · · ·Aw(1), where k = |w|. Sometimes
we consider words of infinite length; i.e., functions w : {1, 2, . . .} → K; for such a
word w we denote by w(k) the restriction of w to the finite set {1, 2, . . . , k}. Thus w(k)

has length k. A set A = {Ai : i ∈ K} is called pointwise convergent (more precisely,
pointwise convergent to zero) if for every x ∈ Fn there is a word w of infinite length
(which may depend on x) such that

lim
k→∞

(Aw(k)x) = 0.

The set A is called uniformly convergent if there is a word w of infinite length such
that

lim
k→∞

(Aw(k)x) = 0(1.1)

for all x ∈ Fn. Clearly, every uniformly convergent set is pointwise convergent. It is
well known that the converse is generally false (examples to illustrate this fact, as well
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as some basic information on pointwise convergent and uniformly convergent sets, are
given in section 2). The main result of this paper is the following theorem.

Theorem 1.1. Assume that the set A = {Ai : i ∈ K} of n× n matrices over F
generates a polynomially bounded semigroup; i.e.,

sup
|w|=k

‖Aw‖ ≤ Ckp, k = 1, 2, . . . ,(1.2)

where the positive constants C and p are independent of k and where some norm ‖ · ‖
on the algebra of all n×n matrices over F is used (the property of being polynomially
bounded is obviously independent of ‖ · ‖). Then A is pointwise convergent if and only
if A is uniformly convergent.

Theorem 1.1 will be proved in section 3. The main ingredient in the proof is a
probabilistic argument (this type of argument originates in [G]).

In section 4 we present various generalizations and extensions of Theorem 1.1. In
particular, it turns out that the linearity of transformations x 7→ Ax, x ∈ Fn, where
A ∈ A is fixed, plays a secondary role in Theorem 1.1; in fact, this result (assuming A
generates a bounded semigroup) is extended in section 4 to a large class of nonlinear
maps. Also, an abstract setting in which a result analogous to Theorem 1.1 is proved
is presented in the same section 4.

We conclude the introduction with an illustrative example where Theorem 1.1 is
applied.

Example 1.1. Let A be an n× n matrix with entries in F such that the singular
values of A do not exceed 1, and A has an eigenvalue λ ∈ C with |λ| < 1. Let
{Ui}i∈K , Ui ∈ Fn×n, be a semigroup of unitary matrices which is almost transitive;
i.e., for every x ∈ Fn having the Euclidean norm equal to 1 and every ε > 0 there
is i ∈ K such that ‖Uie1 − x‖ < ε. Here e1 = (1, 0, . . . , 0)T ∈ Fn. Then the set
A = {Ui : i ∈ K} ∪ {A} is uniformly convergent. Indeed, the almost transitive
property of {Ui}i∈K and the existence of λ ∈ σ(A) with |λ| < 1 guarantee that A is
pointwise convergent (see Proposition 2.2). Clearly, the set A generates a bounded
semigroup; in fact, the largest singular value of any (finite) product of matrices in A
does not exceed 1. By Theorem 1.1, A is uniformly convergent.

2. Pointwise and uniform convergence: Preliminaries. As in the previous
section, A = {Ai : i ∈ K} is a set of n × n matrices with entries in F , where either
F = R or F = C.

Proposition 2.1. A is uniformly convergent if and only if there exists a finite
product of matrices in A whose spectral radius is less than 1.

This is Theorem 3.5 in [SU].
Using the well-known fact that, for a single n × n matrix X, the condition

limk→∞(Xkx) = 0 for all x ∈ Fn (or, equivalently, limk→∞Xk = 0) is equivalent
to the spectral radius of X being less than 1, Proposition 2.1 can be reformulated as
follows. We say that a set A is periodically uniformly convergent if (1.1) holds for some
periodic infinite word w. It follows from Proposition 2.1 that a set A is uniformly
convergent if and only if it is periodically uniformly convergent.

A set A is called precontractive with respect to a norm ‖ · ‖ in Fn if for every
x ∈ Fn, x 6= 0, there is a word w such that ‖Awx‖ < ‖x‖.

Proposition 2.2. The following statements are equivalent for a set A of n × n
matrices over F :

(i) A is pointwise convergent,
(ii) A is precontractive with respect to some norm in Fn,
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(iii) A is precontractive with respect to every norm in Fn.

For a proof, see Theorem 1 in [S] and Theorem 3.2 in [SU].

By analogy with the notion of uniform convergence, we introduce the following
definition. A set A is called periodically pointwise convergent if for every x ∈ Fn there
is a word w (which depends on x) such that

lim
k→∞

(Akwx) = 0.

We now give two examples showing that the notions of pointwise convergence,
periodically pointwise convergence, and uniform convergence are all distinct.

Example 2.1. Let F = R, A = {A1, A2}, where

A1 =

[
cosφ − sinφ

sinφ cosφ

]
, A2 =

[
γ 0

0 µ

]
.

Here φ is a fixed real number such that (2π)−1φ is irrational (so A1 is an “irrational
rotation”), and γ and µ are fixed positive numbers such that µ < 1 < γ and µγ = 1.
By Proposition 2.2, A is pointwise convergent (indeed, for every x ∈ R2, ‖x‖ = 1,

there is a positive integer m such that ‖Am1 x − (0, 1)T ‖ < ((1 − µ2)(γ2 − 1))
1
2 ; then

‖A2A
m
1 x‖ < ‖x‖). On the other hand, A is not periodically pointwise convergent.

Indeed, for every word w we have det Aw = 1, and therefore there is at most one
(up to a multiplication by a scalar) eigenvector of Aw corresponding to an eigenvalue
having absolute value less than 1. Call this eigenvector xw. Clearly, limk→∞Akwx = 0
if and only if x is a scalar multiple of xw. But the set of all vectors xw such that
‖xw‖ = 1 is at most countable (because the set of words is countable). Thus, there
exists a vector y which is not a scalar multiple of any xw. For this vector we have

lim
k→∞

Akwy 6= 0

for all words w; hence A is not periodically pointwise convergent.

Example 2.2. Let F = R. Fix two positive real numbers µ and γ such that
µ < 1 < γ and µγ > 1. Let A = {Av : v ∈ S}, where S is the Euclidean unit
sphere in R2 and Av is the 2×2 matrix defined by the property that Av(xv+yv⊥) =
µxv + γyv⊥; v⊥ is the unit vector orthogonal to v. Since det Av > 1 for all v ∈ S,
the set A is not uniformly convergent (see Proposition 2.1). However, for every v ∈ S
we have Akvv → 0 as k →∞. So A is periodically pointwise convergent.

In connection with Example 2.2 we note that if A = {Ai : i ∈ K} is a count-
able (or finite) periodically pointwise convergent set, then A is uniformly convergent.
Indeed, let w be an arbitrary (finite) word and define

Ωw = {x ∈ Fn : lim
k→∞

(Aw)kx = 0}.

Clearly, Ωw is a subspace in Fn, and by the periodically pointwise convergence of A
we have Fn =

⋃
w Ωw. But the set of finite words in the at most countable alphabet

K is itself countable. A countable union of subspaces coincides with Fn if and only
if at least one of these subspaces itself coincides with Fn. Thus, Ωw = Fn for some
word w, which means that A is periodically uniformly convergent and hence A is
uniformly convergent.
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3. Proof of Theorem 1.1. The proof is based on a series of lemmas.
Lemma 3.1. Let A be a set of matrices satisfying (1.2). Then the set A is bounded,

and, up to a simultaneous similarity, all matrices in A have the block diagonal form

Ai =



A
(i)
11 A

(i)
12 · · · A

(i)
1m

0 A
(i)
22 · · · A

(i)
2m

...
...

...

0 0 · · · A
(i)
mm


, i ∈ K,(3.1)

where, for j = 1, . . . ,m, the jth diagonal blocks A
(i)
jj have size nj × nj (independent

of i ∈ K) and generate a bounded semigroup; i.e.,

sup
k

sup
|w|=k

∥∥∥A(w(k))
jj A

(w(k−1))
jj · · ·A(w(1))

jj

∥∥∥ <∞.(3.2)

Conversely, if A = {Ai : i ∈ K} is a bounded set of matrices having the block
triangular form (3.1) and satisfying (3.2), then A generates a polynomially bounded
semigroup.

Proof. The direct part is proved in [BW, Proposition III]. We prove the converse
part. Because of (3.2), there is a norm ‖ · ‖j on Fnj such that the induced operator
norm ‖ · ‖j on the nj × nj matrices satisfies∥∥∥A(i)

jj

∥∥∥
j
≤ 1 for all i ∈ K.(3.3)

Indeed, take

‖x‖j = max

{
sup
k

sup
|w|=k

∥∥∥A(w(k))
jj · · ·A(w(1))

jj x
∥∥∥ , ‖x‖} ,

where ‖ · ‖ is the Euclidean norm (for example). Let

‖x‖∗ = ‖x1‖1 + · · ·+ ‖xm‖m,

where

x =


x1

x2

...
xm

 ∈ Fn, xj ∈ Fnj (j = 1, . . . ,m),

and let ‖ · ‖∗ be the corresponding induced operator norm on n × n matrices. Then
for every word w of length k we have ‖Aw‖∗ ≤ ‖Bk‖, where B is the m ×m matrix
whose diagonal elements are equal to 1 and whose (q, r) entry (q < r) is equal to

sup
i∈K
‖A(i)

q,r‖q,r.(3.4)

Here ‖X‖q,r is the induced operator norm when an nq × nr matrix X is considered
as a linear transformation from Fnr (with the norm ‖ · ‖r) into Fnq (with the norm
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‖ · ‖q). The supremum in (3.4) is finite because A is bounded. Now (1.2) follows with
p = m.

In general, it is not true that if the diagonal blocks of a set of diagonal matrices
form uniformly convergent sets, then the whole set is uniformly convergent.

Example 3.1. Let

A =

{[
α 0
0 α−1

]
: α > 0

}
.

The set A is not uniformly convergent because det A = 1 for every A ∈ A. Neverthe-
less, the diagonal blocks {α : α > 0} and {α−1 : α > 0} form uniformly convergent
sets of 1× 1 matrices.

Lemma 3.2. Let A = {Ai : i ∈ K} be given in the form (3.1). Assume that, for

j = 1, . . . ,m, the jth diagonal blocks {A(i)
jj : i ∈ K} generate a bounded semigroup.

If the sets Aj = {A(i)
jj : i ∈ K} (j = 1, . . . ,m) are uniformly convergent, then A is

uniformly convergent.
Proof. Using the induced operator norm on nj × nj matrices, as in the proof of

Lemma 3.1, we can (and do) assume that

‖A(i)
jj ‖j ≤ 1 for all i ∈ K and j = 1, . . . ,m(3.5)

for some induced operator norms ‖ · ‖j . By Proposition 2.1, for every j = 1, . . . ,m,

there exists a word wj such that the matrix products A
(wj)
jj satisfy

‖A(wj)
jj ‖j < 1 (j = 1, . . . ,m).(3.6)

Let k = |w1| + · · · + |wm| and w be the word of length k that acts as w1 on the
set {1, . . . , |w1|}, as w2 on the set {|w1| + 1, . . . , |w1| + |w2|}, . . ., as wm on the set
{|w1|+ · · ·+ |wm−1|+ 1, . . . , |w1|+ · · ·+ |wm|}. In view of (3.5) and (3.6), we have∥∥∥A(w(k))

jj · · ·A(w(1))
jj

∥∥∥
j
< 1 for j = 1, . . . ,m.

Thus, the spectral radius of the product(
A

(w(k))
11 ⊕ · · · ⊕A(w(k))

mm

)
· · ·
(
A

(w(1))
11 ⊕ · · · ⊕A(w(k))

mm

)
is less than 1. Hence the same is true of the product Aw(k)Aw(k−1) · · ·A1, and the set
A is uniformly convergent by Proposition 2.1.

Lemma 3.3. Let A = {Ai : i ∈ K} be a set of n × n matrices such that A
generates a bounded semigroup. Then A is pointwise convergent if and only if A is
uniformly convergent.

Proof. Assume A is pointwise convergent. As in the proof of Lemma 3.1, assume
that

‖Ai‖ ≤ 1 for all i ∈ K,(3.7)

where ‖ · ‖ is the operator norm induced by a norm (also denoted ‖ · ‖) on Fn. By
Proposition 2.2 for every x on the unit sphere S (with respect to the norm ‖ · ‖) there
exists a finite product Bx of matrices in A such that ‖Bxx‖ < αx for some αx < 1.
Let Ux be an open set containing x such that ‖Bxy‖ < αx‖y‖ for every y ∈ Ux.
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Using the compactness of the unit sphere S, select a finite set Ux1
, . . . , Uxq such that⋃q

j=1 Uxj ⊇ S. Thus, for every y ∈ S, there exists j ∈ {1, . . . , q} such that

‖Bxjy‖ ≤ α,(3.8)

where 0 < α < 1 is independent of y. Abbreviate Bj = Bxj . It is sufficient to prove
that the finite set B = {B1, . . . , Bq} is uniformly convergent.

Let ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-
ables such that each ξj takes values in the set {1, . . . , q} with equal probability q−1

of each value. We claim that for every x ∈ Fn

lim(· · ·BξmBξm−1
· · ·Bξ1x) = 0(3.9)

with probability 1.
We say that Bj covers y ∈ Fn if ‖Bjy‖ ≤ α‖y‖, where α is taken from (3.8).

Denote by P{X} the probability of the event X. We prove

P

{
Bξ1 does not cover y; Bξ2 does not cover Bξ1y; . . . ;

Bξm does not cover Bξm−1
Bξm−2

· · ·Bξ1y
}
≤ ((q − 1)/q)m.(3.10)

Inequality (3.10) will be proved by induction on m. For m = 1, we have

P

{
Bξ1 does not cover y

}
= P

{
y 6= 0 and ξ1 is not equal to

one of the values j ∈ {1, . . . , q} for which y is a scalar multiple

of a vector in Uxj

}
≤ (q − 1)/q(3.11)

by the definition of ξ1. Assume (3.10) is proved with m replaced by m − 1. Denote
by Sm = Sm(y) the event

Bξ1 does not cover y; . . . ;Bξm does not cover Bξm−1Bξm−2 · · ·Bξ1y.

Then, the left-hand side of (3.10) is

P{Sm−1}P{Bξm does not cover Bξm−1
· · ·Bξ1y|Sm−1}.

Observe that under the conditions that the event Sm−1 happened we have

Bξm−1
· · ·Bξ1y 6= 0.

Let z = Bξm−1
· · ·Bξ1y; the vector z is a random vector which (under the condi-

tion that Sm−1 happened) takes a finite number of nonzero values z1, . . . , zp with
probabilities α1, . . . , αp, respectively. Thus

P

{
Bξm does not cover Bξm−1

· · ·Bξ1y|Sm−1

}
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=

p∑
j=1

αjP

{
Bξm does not cover zj

}

≤
p∑
j=1

αj(q − 1)/q = (q − 1)/q,(3.12)

where we have used (3.11). Apply the induction hypothesis to P{Sm−1} and use
(3.12) to prove (3.10).

Consider the infinite product

· · ·BξmBξm−1 · · ·Bξ1x (x 6= 0).

Partition the product into blocks as follows: Bξ1 is the first block, Bξ3Bξ2 is the
second block, and so on, with the property that the mth block has length m for
m = 1, 2, . . .. Let BξuBξu−1

· · ·Bξv be the mth block (here v < u depend on m).
Denote by Tm = Tm(x) the event

P

{
Bξv does not cover Bξv−1 · · ·B1x; Bξv+1 does not cover

BξvBξv−1
· · ·B1x; . . . , Bξu does not cover Bξu−1

Bξu−2
· · ·B1x

}
.(3.13)

In particular, if Tm happens then the vectors Bξv−1
. . . B1x, . . . , BξuBξu−1

. . . B1x are
nonzero. By (3.10),

P{Tm} ≤ ((q − 1)/q)m.

Since
∑∞
m=1((q − 1)/q)m <∞, by the Borel–Cantelli lemma with probability 1 only

a finite number of the events T1, T2, . . . happen. Thus, with probability 1 there are
infinitely many blocks (say, the blocks numbered m1 < m2 < m3 < · · ·) such that Tmj

does not happen. But Tmj does not happen precisely when either Bξv−1 · · ·B1x = 0
or at least one of Bξj (j = v, v + 1, . . . , u) covers Bξj−1

· · ·B1x (we denote here the
mjth block by BξuBξu−1

· · ·Bξv , where v < u depend on mj). In the latter case we
have

‖BξjBξj−1 · · ·B1x‖ ≤ α‖Bξj−1 · · ·B1x‖.

So, if Qmj
stands for the product of the first mj blocks, we have

‖Qmj
x‖ ≤ αj‖x‖

(here we have used the inequalities ‖Bj‖ ≤ 1). This proves that (3.9) happens with
probability 1.

Apply (3.9) to a dense countable set D on the unit sphere. Using the countable
additivity of the probability measure, it follows that there exists an infinite word w
such that

lim
k→∞

Bw(k)x = 0 for every x ∈ D.(3.14)

(In fact, we have proved more; namely, (3.14) holds with probability 1 when w is
considered a random infinite word.) Since ‖Bj‖ ≤ 1 for j = 1, . . . , q, it follows that
(3.14) holds for all x on the unit sphere. This proves Lemma 3.3.



CONVERGENCE OF MATRIX SEMIGROUPS 367

Proof of Theorem 1.1. In view of Lemmas 3.1, 3.2, and 3.3, we only need to verify
that if A = {Ai : i ∈ K} is pointwise convergent and has the form (3.1), then for

j = 1, . . . ,m, the diagonal block Aj = {A(i)
jj : i ∈ K} is a pointwise convergent set.

But this statement is obvious from the definition of pointwise convergence.

4. Some generalizations and extensions. The methods employed in this pa-
per, especially the proof of Lemma 3.3, can be applied to obtain analogous results in
other frameworks involving the notions of pointwise and uniform convergence. In this
section we present several such results.

4.1. Nonlinear maps in F n. Let A = {Ai : i ∈ K} be a set of nonlinear maps
Ai : Fn → Fn (as before, F = R or F = C). The definitions of uniform convergence
and pointwise convergence given in section 1 carry over to this situation, replacing
the product of matrices by superposition of nonlinear maps.

A map A : Fn → Fn is called homogeneous if A(cx) = cA(x) for all x ∈ Fn and
c ∈ F . Clearly, a composition of homogeneous continuous maps is again homogeneous
and continuous. Also, a homogeneous continuous map A : Fn → Fn is Lipschitz
continuous; i.e., there is a constant C > 0 such that

‖A(x)−A(y)‖ ≤ C‖x− y‖

for all x, y ∈ Fn; here ‖ · ‖ is some norm in Fn. It is easy to see that the notion of
Lipschitz continuity is independent of the choice of the norm.

Theorem 4.1. Let A = {Ai : i ∈ K} be a set of homogeneous continuous maps
Ai : Fn → Fn. Assume that A generates a bounded semigroup (with superposition
as the algebraic operation in the semigroup). Then A is pointwise convergent if and
only if A is uniformly convergent.

The proof of Theorem 4.1 is essentially the same as that of Lemma 3.3.

4.2. An abstract formulation. LetX be a metric space with the metric d(x, y).
Consider a set A = {Ai : i ∈ K} of continuous functions X → X. We say that A is
pointwise convergent to x0 ∈ X if for every x ∈ X there is an infinite word w (which
depends on x) such that

lim
k→∞

d
(
Aw(k)

(
Aw(k−1) · · ·

(
Aw(1)x

)
· · ·
)
, x0

)
= 0.(4.1)

We say that A is uniformly convergent to x0 if there is an infinite word w such that
(4.1) holds for all x ∈ X.

Theorem 4.2. Let X be a compact separable metric space, and let A be a set of
continuous functions X → X. Assume, in addition, that

d(Aix, x0) ≤ d(x, x0)

for all x ∈ X and all Ai ∈ A. (In particular, x0 is a fixed point for every Ai ∈ A.)
Then A is pointwise convergent to x0 if and only if A is uniformly convergent to x0.

The proof again follows by repeating the arguments used in the proof of Lemma
3.3.
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Abstract. This paper proposes a complete orthogonal decomposition (COD) algorithm for
solving weighted least-squares problems. In applications, the weight matrix can be highly ill con-
ditioned, and this can cause standard methods like QR factorization to return inaccurate answers
in floating-point arithmetic. Stewart and Todd independently established a norm bound for the
weighted least-squares problem that is independent of the weight matrix. Vavasis proposed a def-
inition of a “stable” solution of weighted least squares based on this norm bound: The solution
computed by a stable algorithm must satisfy an accuracy bound that is not affected by ill condi-
tioning in the weight matrix. A forward error analysis shows that the COD algorithm is stable in
this sense, but it is simpler and more efficient than the algorithm proposed by Vavasis. Our forward
error bound is contrasted to the backward error analysis of other previous works on weighted least
squares.
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1. Introduction. We consider solving the problem

min
y∈Rn

‖D−1/2 (Ay − b) ‖(1.1)

for y, where D ∈ Rm×m is symmetric and positive definite, A ∈ Rm×n, y ∈ Rn, and
b ∈ Rm. Two equivalent ways to write this problem are

ATD−1Ay = ATD−1b

and [
D −A
AT 0

] [
x
y

]
=

[
b
0

]
,

which is a special case of an equilibrium system. Applications of equilibrium systems
include optimization, finite elements, structural analysis, and electrical networks [24].
These applications are discussed in more detail in section 2.

The following assumptions are made throughout the paper.
A1. A has rank n, i.e., full column rank.
A2. D is diagonal.
A1 and A2 imply that (1.1) is a full-rank weighted least-squares problem with a

unique solution, and they allow the use of the norm bound obtained independently
by Stewart [23] and Todd [25]. It should be noted that a similar result appears in a
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number of other works. See Forsgren [5] for a list of references. That bound is given
in the following theorem.

Theorem 1.1 (see [23], [25]). Let D denote the set of all positive-definite m×m
real diagonal matrices. Let A be an m× n real matrix of rank n. If we define χA and
χ̄A as follows,

(a) χA = sup{‖
(
ATD−1A

)−1
ATD−1‖ : D ∈ D} and

(b) χ̄A = sup{‖A
(
ATD−1A

)−1
ATD−1‖ : D ∈ D},

then both χA and χ̄A are finite.
In this theorem, the norm can be any matrix norm induced by a vector norm.

However, in this paper, ‖ · ‖ = ‖ · ‖2. Similarly, the condition number of a matrix M
is the condition number of M in the 2-norm; i.e., κ(M) = κ2(M). We make one more
assumption.

A3. D is very ill conditioned.
A discussion of the ill conditioning of D in applications is included in section

2. This assumption indicates that the coefficient matrix of the least-squares problem
can also be ill conditioned. For this reason, the methods typically used to solve least-
squares problems can give highly inaccurate solutions y, as argued by Vavasis [28].
Since D is ill conditioned, we use the following definition of stability.

Definition 1.2 (see [28]). An algorithm for (1.1) is stable if, in the presence of
finite-precision arithmetic, an error bound of the form

‖y − ŷ‖ ≤ ε · f(A) · ‖b‖(1.2)

is satisfied, where y is the true solution, ŷ is the computed solution, f(A) is some
function of A not depending on D, and ε > 0 is machine roundoff.

For the purposes of the upcoming analysis, other standard terminology is modified
analogously. For example, a well-conditioned matrix is one for which there is an upper
bound on the condition number that does not depend on D. In order to show that the
proposed algorithm is stable, then, we strive to obtain bounds on norms, condition
numbers, and errors that do not depend on D.

We now present the algorithm.
Algorithm: Complete orthogonal decomposition (COD).

Step 1: QR factor, with column pivoting, ATD−1/2 to get

ATD−1/2 = QRP,(1.3)

where Q is an n×n orthogonal matrix, R is an n×m upper triangular (“trapezoidal”)
matrix, and P is an m×m permutation matrix.

Step 2: Apply reduced QR factorization (without pivoting) to RT to get

RT = Z1U1,(1.4)

where Z1 is an m × n matrix with orthonormal columns and U1 is an n × n upper
triangular matrix.

Step 3: Solve the following system, via backsubstitution, for ȳ:

U1ȳ = ZT1 PD
−1/2b.(1.5)
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Step 4: To get y, multiply the result of Step 3 by Q:

y = Qȳ.(1.6)

Both QR factorizations can be computed with Householder reflections, although other
methods are also acceptable. Note that the QR factorization for the least-squares
problem occurs in Step 2. The QR factorization in Step 1 is to make the algorithm
stable. The solution of least-squares problems via QR factorization with column
pivoting was introduced by Golub [9]. The term “complete orthogonal decomposition”
refers to a factorization of the form QRZ in which Q and Z are orthogonal and R is
triangular [10]. Therefore, we have chosen this name for the above algorithm, which
computes a particular kind of COD.

In exact arithmetic, the COD algorithm solves the weighted least-squares problem
given by (1.1). Writing the problem as a system of equations gives

D−1/2Ay
LS
= D−1/2b.

After performing the QR factorization in Step 1, D−1/2A can be replaced by the
equivalent quantity PTRTQT . The system of equations becomes

PTRTQTy
LS
= D−1/2b

or, equivalently,

RTQTy
LS
= PD−1/2b.

Letting ȳ = QTy constitutes a change of variables and transforms the above system
of equations into

RT ȳ
LS
= PD−1/2b,

which is again a least-squares problem. Steps 2 and 3 are a standard method for
solving least-squares problems, so the result in exact arithmetic is the solution ȳ to
the transformed problem.

The most common methods for solving weighted least-squares problems are the
same as those used to solve unweighted problems. These include QR factorization
and solving the normal equations via Cholesky factorization. There are also some
specialized algorithms for weighted least squares that will be discussed in section 7.

Most of this paper is devoted to an analysis of the stability of the COD algorithm.
Before giving a rigorous stability analysis of the algorithm, we offer an intuitive ex-
planation of why this algorithm finds an accurate solution. The first step is a QR
factorization of a matrix that is well conditioned up to a scaling of the columns. So
the result is a computed upper triangular matrix that is close to the exact upper
triangular matrix. It would be useful to know something about the condition num-
ber of this matrix as well. To minimize confusion assume, without loss of generality,
that ATD−1/2 has been “prepivoted.” This means that the columns of ATD−1/2 are
ordered in such a way that the norms of the first n columns are, loosely speaking, in
decreasing order. In addition, the norms of the first n columns are larger than those
of the last m − n columns. One might suspect that this implies that the entries of
D−1/2 are ordered in the same way. In other words, some inequality similar to

d
−1/2
i ≥ d−1/2

j for i ≤ j, 1 ≤ i ≤ n, 1 ≤ j ≤ m
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might hold. This ordering becomes significant in the second step of the algorithm.
Recall that

R = QTATD−1/2.

Notice that QTAT is upper triangular. So let

R̄ = QTAT .

Notice also that R is ill conditioned and that the ill conditioning arises from D−1/2.
We try to “offset” the effects of D−1/2 in the following naive way. Let D̄ = D(1 : n,
1 : n) and consider the following:

D̄1/2R = D̄1/2R̄D−1/2 =


(
d1
d1

)1/2

r̄11 · · ·
(
d1
dn

)1/2

r̄1n · · ·
(
d1
dm

)1/2

r̄1m

. . .
...

...(
dn
dn

)1/2

r̄nn · · ·
(
dn
dm

)1/2

r̄nm

 .
Recall that in this paper “well conditioned” means that the matrix under consider-
ation has a condition number determined by a property of A independently of D,
because our focus is on the ill conditioning in D. Thus, R̄ is trivially well conditioned
since it has the same singular values as A. If the weights are indeed in the order
described above, then it is not difficult to show that there are upper bounds on all
entries of D̄1/2R. It can also be shown that there are upper bounds on the entries

of
(
D̄1/2R(:, 1 : n)

)−1
. Using this information, it is not difficult to show that D̄1/2R

(and hence RT D̄1/2) is well conditioned; i.e., RT is well conditioned up to a scaling
of the columns. In the second step, then, we have a least-squares problem with a
coefficient matrix that is well conditioned up to a scaling of the columns; namely,
solve

min
ȳ∈Rn

‖RT ȳ −D−1/2b‖

for ȳ. This yields an upper triangular matrix U1 in (1.4) that is also well conditioned
up to scaling of the columns. We show that U1 is also well conditioned up to scaling
of the rows (see (5.1) below). In traditional analysis, U1 being well conditioned up
to a scaling of rows indicates that the standard algorithms for solving (1.5) give an
accurate solution (e.g., inequality (3.1.1) from [10] combined with Theorem 2.7.3 of
[10] shows that scaling rows does not change the error bounds).

The remainder of the paper contains a detailed discussion of the topics mentioned
in this section. Applications of weighted least-squares problems are described in sec-
tion 2, and the relevance of a forward error bound in terms of each specific application
is explained. Then a discussion in section 3 of a numerical issue, namely, checking for
linear dependence among the rows of A, leads into the rigorous forward error analy-
sis of the COD algorithm in sections 4 through 6. In section 7, the analysis is then
compared to the (backward error) analyses of algorithms found in the literature. The
paper concludes with a discussion of open questions.

2. Applications of stable weighted least squares. In this section we discuss
three applications of (1.1) that involve ill-conditioned weight matrices D and explain
the role of our forward error bound (1.2) in these applications. In two of the three
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applications, we provide summaries of computational experiments from our previous
work.

Electrical networks. Perhaps the simplest application of (1.1) is to resistive net-
works with fixed voltage sources (batteries). In this case, D encodes the resistances of
the resistors in the network, y encodes the voltages of the nodes, A encodes node-wire
adjacency (A is a node-arc adjacency matrix; all of its entries are either 0, 1, or −1),
and b encodes battery voltages.

The case when D is ill conditioned arises when there are highly varying resistances
in the circuit. Highly varying resistances can occur, for instance, when one tries to
model current leakage through insulators as part of the problem.

We have conducted small-scale computational experiments on electrical networks
using the COD algorithm and the nullspace-scaled hybrid (NSH) method [28], which
also satisfies (1.2). For node-arc adjacency matrices, χA and χ̄A are bounded byO(m),
so (1.2) states that the voltages should be calculated to within machine precision
multiplied by the norm of the battery voltages. When applied to such problems,
the NSH and the COD algorithms yield solutions with 15 digits of accuracy, while
textbook methods (e.g., [3]) routinely give answers without any significant digits of
accuracy.

Finite element methods. A more sophisticated application of (1.1) is to solve
boundary value problems of the form

∇ · (c∇u) = 0 on Ω,

u = g on ∂Ω

for u. Here, c is a user-specified conductivity field on the domain Ω that must be
positive at every point. Function g is the user-specified Dirichlet boundary data.
This boundary value problem arises in many fields of science and engineering; an
example application is the heat equilibrium equation, in which case u stands for the
steady-state temperature field in the domain and c stands for thermal conductivity.

As argued in [27], it is possible to express the standard piecewise-linear finite
element method for this boundary value problem as a weighted least-squares problem.
The diagonal weight matrix D encodes the conductivity field c. Matrix A encodes
geometric information about the triangulation. Vector y stands for the solution field
u, and vector b encodes the Dirichlet boundary data. Thus, the case when D is ill
conditioned corresponds to finite element problems with highly varying conductivity.
This in turn corresponds to applications in which the domain is composed of varying
materials.

The analysis in [27] shows that variants of χA, χ̄A are modest for this geometry
matrix A, at least in the case of finite element triangulations with bounded aspect
ratio and with all dihedral angles bounded by π/2. Thus, the stability bound (1.2)
states that our method should compute the finite element solution y to all significant
digits of accuracy, relative to the boundary data. This solution y is still inexact for
u because of truncation error that is always present in finite element methods; our
analysis addresses roundoff error rather than truncation error.

The computational experiments presented in [27] are larger-scale computations.
In a problem with conductivity varying by 15 orders of magnitude, the traditional
finite element solution method returns an answer with no significant digits because of
roundoff error. In contrast, a variant of the NSH method (which takes advantage of
the isotropic nature of the problem) [27] that satisfies our stability bound (1.2) returns
an answer which was as accurate as could be hoped for compared to an analytically-
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derived solution, given the presence of truncation error. The COD method of this
paper would require a similar modification to take advantage of isotropy.

Interior-point methods. It is well known that the system of equations for the
Newton step in an interior-point method can be expressed as a weighted least-squares
problem [11] of the form (1.1). To be precise, consider the linear programming problem

minimize cTx
subject to ATx = b,

x ≥ 0

whose dual is

maximize bTy
subject to Ay + s = c,

s ≥ 0

(which is standard form, except that we have transposed A to be consistent with
least-squares notation). A standard primal-dual method starting at a feasible interior
point (x,y, s) for this problem computes an update to y of the form

ATDA∆y = ATD(s− σµX−1e),(2.1)

where X = diag(x), S = diag(s), D = S−1X, σ is an algorithm-dependent parameter,
µ is the duality gap, and e is the vector of all ones [31]. Thus, (2.1) is the system of
normal equations for a weighted least-squares problem to compute ∆y, and therefore
our accuracy bound (1.2) implies that algorithm COD computes ∆y accurately with
respect to s. (The other term µX−1e in (2.1) is on the same order as s because of
proximity to the central path.)

Interior-point methods are an especially interesting application of weighted least
squares for several reasons. First, the distance to some of the constraints must tend to
zero. This means that ill conditioning in D always occurs, unlike in the preceding ap-
plication domains. Another interesting difference is that in the interior-point method
we need not only ∆y, but also updates to x and s usually denoted as ∆x and ∆s.
These are obtained from ∆y; for example, ∆s = −A∆y. In fact, our forward error
bound is not sufficiently strong to obtain the requisite accuracy bound on ∆x or ∆s
because some components are very small as convergence is achieved [30]. This means
that there is a demand for more accuracy in some components of A∆y than what
could be obtained from our forward error bound (1.2). A final issue with interior-point
methods is that, unlike the two preceding applications, we have no estimates a priori
of χA or χ̄A. The COD algorithm does not require estimates of these parameters, but
without knowledge of the parameters we cannot evaluate the strength of our stabil-
ity bound (1.2). For certain special classes of linear programming problems such as
network optimization, prior estimates are possible.

We return to the topic of interior-point methods in section 8.

3. A note on numerical tolerance. In the upcoming analysis we assume
throughout that any occurrence of exact linear dependence among the columns of
AT is always determined correctly in Step 1 of the algorithm (QR factorization with
pivoting). This requires the use of a numerical tolerance. To illustrate this point,
consider applying the algorithm when D−1/2 = diag(1, 1, 1, 10−20) and

AT =

 1 1 0 3
0 1 −1 0
1 0 1 7

 .
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Observe that the third column of AT is dependent on the first two. If the QR factor-
ization of ATD−1/2 were done in exact arithmetic, this dependence would be mani-
fested as a “0” in the (3, 3) position of the factored ATD−1/2 after the first two QR
factorization steps, and column 4 would be chosen for the third pivot.

In finite-precision arithmetic, however, we would expect the (3, 3) entry to be on
the order of machine-epsilon rather than 0. Because column 4 is weighted by 10−20,
the unwanted residual in the (3, 3) position could cause column 3 to be chosen for the
third column pivot instead of column 4. Thus, without modification, ordinary QR
factorization with column pivoting procedure has missed a linear dependence.

We address this problem as follows: after the kth QR factorization step, we check
whether the residual portion (that is, positions k + 1, . . . , n) of any uneliminated
column has become very small (according to some tolerance level) with respect to
the original norm of that column. If so, those entries are changed to zeros. Notice
that this test requires very little additional work because the usual QR factorization
algorithm with column pivoting already monitors the norms of the residual portions
of the columns [9]. In this way, if there are exact dependences among the rows of A,
the algorithm does not miss them.

If this numerical test fails to detect exact dependence, then the following stability
analysis no longer holds. It can be shown that the test we have proposed will fail
only in the case that there is near-dependence among the columns of AT . However, in
this case, the parameter χA given by Theorem 1.1 is large, and so the stability bound
(which depends on χA and χ̄A) is not practically applicable.

4. The first QR factorization. The intuitive discussion in section 1 asserted
that the ordering of the weights produced in Step 1 of the algorithm is important in
stabilizing the algorithm. It is necessary, then, to establish this order. The pivoting
in Step 1 chooses a particular set of rows of D−1/2A. The corresponding rows of A
form a basis for the row space of A. Thus, we will refer to the rows chosen by the
column pivoting as the “basis rows” of A. We must determine how the weight of a
particular basis row compares to those of other rows in the same basis and to those
of the rows not in that basis. To do this, we start with a general result about any set
of rows that forms a basis for the row space of A.

Lemma 4.1. Let B be an n × n matrix whose columns are an arbitrary set of n
rows aTi1 , . . . , a

T
in

of A that form a basis for the row space of A. Then

max
1≤j≤n

‖aij‖ ≤ (χA‖A‖) · min
1≤j≤n

‖aij‖.(4.1)

Proof. Let B and aTi1 , . . . , a
T
in

be as in the lemma. Without loss of generality,
suppose that ‖ain‖ = min1≤j≤n ‖aij‖. Then write

B =
[
B̂,ain

]
and partition B−1 as

B−1 =

[
X
vT

]
.

Then

B−1B = I =

[
XB̂ Xain
vT B̂ vTain

]
.
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This means vTain = 1. By the Cauchy–Schwarz inequality, ‖v‖ ≥ 1/‖ain‖. Also,
‖v‖ ≤ ‖B−1‖ because v is a row of B−1, and

‖B−1‖ ≤ χA(4.2)

(see [28] for the proof of (4.2)). Combining these inequalities yields

1/‖ain‖ ≤ χA;

i.e.,

min
1≤j≤n

‖aij‖ ≥ 1/χA.

Multiply both sides of this inequality by the inequality ‖A‖ ≥ max1≤j≤n ‖aij‖ to
obtain

max
1≤j≤n

‖aij‖ ≤ (χA‖A‖) · min
1≤j≤n

‖aij‖,

as required.
Notice that the above lemma implies that there is a lower bound on the norm of

every column of any basis for the row space of A.
Suppose now that k > 0 steps of the factorization have been completed. Partition

the resulting matrix by rows as follows:

AQ1 · · ·Qk = Ā =



α11 0 · · · 0T

...
. . .

. . .
...

αk1 · · · αkk 0T

αk+1,1 · · · αk+1,k āTk+1
...

...
...

αm,1 · · · αm,k āTm


.

Lemma 4.1 can be extended so that it applies to the residual portions of the rows of
Ā, i.e., āTk+1, . . . , ā

T
n , as follows.

Lemma 4.2. Let B be an n × n matrix whose first k columns are the k rows of
A, say aTi1 , . . . , a

T
ik

, chosen by the column pivoting in the first k steps of the QR fac-

torization. Let the remaining columns of B be arbitrary rows of A, say aTik+1
, . . . , aTin ,

such that the columns of B form a basis for the row space of A. As with Ā above,
write

QTk · · ·QT1 B =


αi1,1 · · · αik,1 αik+1,1 · · · αin,1

0
. . .

...
...

...
...

. . . αikk αik+1k

...
0 · · · 0 āik+1

· · · āin

 .
Then

max
k+1≤j≤n

‖āij‖ ≤ (χA‖A‖) · min
k+1≤j≤n

‖āij‖.(4.3)

Proof. Let Q = Q1 · · ·Qk, and let B be defined as above. Then

QTB =

[
R X
0 B̄

]
,
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where R is upper triangular. Comparing this matrix to the partitioned one above, we
see that the columns of B̄ are āik+1

, . . . , āin . To prove Lemma 4.2, then, we need a
lower bound on a typical column of B̄. Notice that

(QTB)−1 =

[
R−1 −R−1XB̄−1

0 B̄−1

]
.

Therefore,

‖B̄−1‖ ≤ ‖B−1‖ ≤ χA.

Now, as above, turn an upper bound on ‖B̄−1‖ into a lower bound on any column of
B̄.

Using the previous two lemmas, we can determine the relationships between the
weights of the basis rows and those of the nonbasis rows. For the remainder of the
paper assume, as in the intuitive discussion in section 1, that the columns of ATD−1/2

have been reordered so that no pivoting is necessary. This implies that not only do the
first n columns of AT form a basis for the column space of AT , but that there is also
an order that has been imposed on the columns of AT . Notice that the “prepivoting”
also implies that āij becomes āj for the remainder of the paper. So let B be the n×n
matrix whose columns are rows aT1 , . . . , a

T
n and let d1, . . . , dm denote the (reordered)

entries of D.
Theorem 4.3. Suppose the first k ≥ 0 steps of the QR factorization have been

completed. If d
−1/2
k+1 is the weight assigned to ak+1 ∈ B and d

−1/2
j is the weight

assigned to aj 6∈ B, then

dk+1

dj
≤ (χA‖A‖)4

,(4.4)

provided aj is linearly independent of the first k basis vectors.
Proof. For k ≥ 0, let Ā be as defined before Lemma 4.2. (Notice that when k = 0

this is just the matrix A partitioned into rows.) Since the columns of B form a basis
for the row space of A,

aj =
n∑
i=1

ciai.

Assuming aj is linearly independent of the first k basis rows implies

aj −
k∑
i=1

ciai =
n∑

i=k+1

ciai 6= 0,

which means that ci 6= 0 for at least one i such that k+1 ≤ i ≤ n. Take Q = Q1 · · ·Qk.
Then

QTaj −
k∑
i=1

ciQ
Tai =

n∑
i=k+1

ciQ
Tai

and

āj −
k∑
i=1

ciāi =

n∑
i=k+1

ciāi,
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where āi is the residual portion of ai. Notice that āi = 0 for 1 ≤ i ≤ k. So

āj =
n∑

i=k+1

ciāi,

where ci 6= 0 for at least one i. Let l be such that k + 1 ≤ l ≤ n and cl 6= 0. Then

āl =
1

cl

āj −
n∑

i=k+1,i6=l
ciāi

 .

So B̄ = {āj , āk+1, . . . , āl−1, āl+1, . . . , ān} is a basis for {āk+1, . . . , ām} . Since (4.1)
and (4.3) hold for any basis for the row space of A,

‖āj‖ ≥
max

{
‖āi‖ : āi ∈ B̄

}
χA‖A‖

.

Recall that the columns of ATD−1/2 have been reordered so that no pivoting is nec-
essary. This means that there is an order imposed on the columns of ATD−1/2. More
specifically, at step k + 1(

1

dj

)1/2

‖āj‖ ≤
(

1

dk+1

)1/2

‖āk+1‖.

Thus,

dk+1

dj
≤
(
‖āk+1‖
‖āj‖

)2

≤
(
χA · ‖A‖ ·maxk+1≤i≤n ‖āi‖

max
{
‖āi‖ : āi ∈ B̄

} )2

≤
(
χA · ‖A‖ ·maxk+1≤i≤n ‖āi‖

mink+1≤i≤n ‖āi‖

)2

≤ (χA‖A‖)4
,

which is (4.4).
It is also necessary to know the relationships between the weights of the basis

rows of A. Suppose ai,aj ∈ B, where i < j. It follows from (4.1), (4.3), and the
implicit order indicated by the absence of column pivoting that

di
dj
≤ (χA‖A‖)2 ≤ (χA‖A‖)4

.(4.5)

Recall that the intuitive argument given in section 1 relied on the weights being in
the following order:

d
−1/2
i ≥ d−1/2

j for i ≤ j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Theorem 4.3 indicates, however, that they are not ordered in exactly this way. Instead,
this ordering holds up to scaling by a constant; i.e.,

d
−1/2
i ≥

d
−1/2
j

(χA‖A‖)2 for i ≤ j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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This bound is sufficient for the arguments that follow.
The second step of the algorithm performs a QR factorization on RT . To analyze

that step, then, it is necessary to know something about the condition of R. The
relationships between the weights of the rows ofA are used in the proof of the following
theorem, which states that R is well conditioned up to a scaling of the rows or the
columns. Recall that for an m×n matrix M of rank n, κ(M) is the condition number
(in the 2-norm) of M ; i.e.,

κ(M) = ‖M‖ · ‖
(
MTM

)−1
MT ‖.

Theorem 4.4. Let C = D̄aRD1/2−a, where a ≥ 0 and D̄ = D(1 : n, 1 : n). If
C̃ = C(1 : k, :), then

κ(C̃) ≤ n4 · (χA‖A‖)16a+2
(4.6)

for any 1 ≤ k ≤ n.
Proof. First, we must find an upper bound on ‖C̃‖. Since C̃ is a submatrix of C,

‖C̃‖ ≤ ‖C‖. Therefore, it is sufficient to show that there is an upper bound on ‖C‖.
Write C as follows:

C = D̄aRD1/2−a = D̄aQTATD−1/2D1/2−a = D̄aR̄D−a,

where R̄ = QTAT = RD1/2. If the entries of C are written explicitly,

C =


(
d1
d1

)a
r̄11 · · ·

(
d1
dn

)a
r̄1n · · ·

(
d1
dm

)a
r̄1m

. . .
...

...(
dn
dn

)a
r̄nn · · ·

(
dn
dm

)a
r̄nm

 .
Consider R̄1 = R̄(:, 1 : n). Again, let B be the basis consisting of the first n columns
of AT . Then R̄1 = QTB. So | 1

r̄ii
| ≤ ‖B−1‖ ≤ χA for 1 ≤ i ≤ n. If r̄Ti is the ith

row of R̄, then ‖r̄Ti ‖ ≤ ‖A‖ for all 1 ≤ i ≤ n. These facts, (4.4), and (4.5) imply the
following:

1

χA
≤ |r̄ii| ≤ ‖A‖, 1 ≤ i ≤ n and(4.7) ∥∥dai r̄Tj D−a∥∥ ≤ ‖A‖ · (χA‖A‖)4a

, 1 ≤ i ≤ j ≤ n.(4.8)

Recall that Theorem 4.3 (and thus (4.8)) holds only when aj is linearly independent of
the first i−1 basis vectors. We must now consider the case not covered by Theorem 4.3.
Suppose that B and D are defined as before. For each nonbasis row aj there is a
1 ≤ k ≤ n such that aj is linearly independent of the first k − 1 basis vectors, but is
linearly dependent on the first k basis vectors. So

aj =
k∑
i=1

ciai,

where ck 6= 0. Now suppose that k steps of the QR factorization have been completed.
Then

QTk · · ·QT1 aj =
k∑
i=1

ciQ
T
k · · ·QT1 ai =

k∑
i=1

ci


α1i

...
αii
0

 .
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So āj = 0 (where āj is as in Lemma 4.2). After this point, transformations act only
on āj . This gives

QTaj =
k∑
i=1

ci


α1i

...
αii
0

 ,
telling us that r̄ij = 0 for i > k, so these entries do not contribute to the norm in
(4.8). Thus, (4.8) holds even in the case where aj is not linearly independent of the
first i− 1 basis vectors.

If cTi is the ith row of C, then

‖C‖ ≤
n∑
i=1

‖cTi ‖

≤ n · max
1≤i≤n

‖cTi ‖

= n · max
1≤i≤n

‖dai r̄Ti D−a‖

≤ n · ‖A‖ · (χA‖A‖)4a
.(4.9)

The third line follows from the definition of C and the fourth line follows from (4.8).
The next step is to find an upper bound on ‖(C̃C̃T )−1‖. Let C̃1 = C̃(:, 1 : k). Notice
that

‖(C̃C̃T )−1‖ ≤ ‖C̃−T1 ‖2.

If C1 = C(:, 1 : n), it is easy to show that C̃−T1 is a submatrix of C−T1 . To obtain
an upper bound on ‖C−T1 ‖, we use the following fact, which will be proved after the
current proof.

Fact. If C1 = C(1 : n, 1 : n), then

‖C−T1 ‖ ≤ n · χA · (χA‖A‖)4a
.

So

‖(C̃C̃T )−1‖ = ‖C̃−T1 ‖2

≤ ‖C−T1 ‖2

≤
[
n · χA · (χA‖A‖)4a

]2
,

and the bound on the condition number is

κ(C̃) = ‖C̃‖ · ‖C̃T (C̃C̃T )−1‖
≤ ‖C̃‖2 · ‖(C̃C̃T )−1‖
≤ n4 · (χA‖A‖)16a+2

.

Thus, the theorem is proved.
The above theorem implies that R is not only well conditioned up to a scaling of

the rows, but is also well conditioned up to a scaling of either the rows or the columns.
This result will be useful later in the analysis.
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Recall that we must still prove the fact used in the above proof. We state it in
the form of the following lemma and give the proof below.

Lemma 4.5. Let C1 = C(:, 1 : n), where C is defined as in the previous theorem.
Then

‖C−T1 ‖ ≤ n · χA · (χA‖A‖)4a
.(4.10)

Proof. Recall that

C = D̄aR̄D−a,

where D̄ = D(1 : n, 1 : n) and R̄ = QTAT = RD1/2. So

C1 = D̄aR̄(:, 1 : n)D̄−a.

Notice that

R̄(:, 1 : n) = QTB,

where B is the row space basis consisting of the first n rows of A. If L = QTB−T ,
then

C−T1 = D̄−aLD̄a

=



(
d1
d1

)a
l11(

d1
d2

)a
l21

(
d2
d2

)a
l22

...
...

. . .(
d1
dn

)a
ln1

(
d2
dn

)a
ln2 · · ·

(
dn
dn

)a
lnn


.

If cTi is the ith row of C−T1 , then

‖C−T1 ‖ ≤
n∑
i=1

‖cTi ‖

≤ n · max
1≤i≤n

‖cTi ‖

≤ n · (χA‖A‖)4a · max
1≤i≤n

‖lTi ‖

≤ n · (χA‖A‖)4a · ‖QTB−T ‖
= n · (χA‖A‖)4a · ‖B−T ‖
≤ n · χA · (χA‖A‖)4a

,

as claimed. Notice that the third line follows from the definition of C1 and (4.8). The
fourth line follows from the definition of L, and the last line uses (4.2).

Next we show that the computed R̂ in Step 1 is close to the true R using a forward
error analysis.

Theorem 4.6. Let rTj and r̂Tj be the jth rows of R and R̂, respectively. Then

‖rTj − r̂Tj ‖
‖rTj ‖

≤ cε · χA‖A‖ ·


m∑
i=j

[
1 + (χA‖A‖)6

]
1/2

+O(ε2),(4.11)
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where c is a small constant.
Remark. For this proof we assume that Householder transformations are used for

the QR factorization in Step 1, although modified Gram–Schmidt or Givens rotations
could also be used. In addition, we assume that the diagonal entries of R have the
same signs as corresponding entries of R̂. (Recall that QR factorization is uniquely
determined only if an assumption is made about the signs of the diagonal entries of
R.)

Proof. Let B be the n × n matrix of basis columns of AT and consider first the
factorization B = QR0. Note that this Q is the same as Q in Step 1 and that R0

denotes the first n columns of RD1/2. Let Q̂ and R̂0 denote the computed versions of
these matrices. It follows from standard backward error analysis (see Theorem 18.4
of [15]) that there exists an exactly orthogonal matrix Q̃ such that ‖Q̃− Q̂‖ ≤ cε and
such that Q̃R̂0 = QR0 + E, where ‖E‖ ≤ cε‖B‖, where c is a small constant. We
must change this to a forward error bound on the computed factors. If we multiply
on the left by QT and the right by R−1

0 , we obtain QT Q̃R̂0R
−1
0 = I +QTER−1

0 . Let
E′ = QTER−1

0 . By multiplying the preceding equation by its transpose, we obtain

(R̂0R
−1
0 )T (R̂0R

−1
0 ) = (I + E′)T (I + E′) = I + E′ + (E′)T + (E′)TE′.

Notice that the left-hand side is a Cholesky factorization; i.e., R̂0R
−1
0 is an upper tri-

angular matrix with positive diagonal entries. The Cholesky factorization is uniquely
determined if the signs of diagonal entries are positive.

The right-hand side can be written as I+E′+(E′)T +O(ε2). Write E′+(E′)T =
UT +D+U , where U is strictly upper triangular and D is diagonal. Then we observe
that (I +D/2 + U)T (I +D/2 + U) = I +E′ + (E′)T +O(ε2) and that I +D/2 + U
is upper triangular. Thus, by the uniqueness of the Cholesky factorization, we have
R̂0R

−1
0 = I +D/2 + U +O(ε2), i.e.,

R̂0 = (I +D/2 + U)R0 +O(ε2),

i.e.,

R̂0 −R0 = (D/2 + U)R0 +O(ε2).

Recall that D/2 + U is part of E′ + (E′)T . So

‖D/2 + U‖ ≤ 2‖E′‖ ≤ 2‖E‖ · ‖R−1
0 ‖.

Recall that ‖E‖ is bounded by cε‖B‖ and ‖R−1
0 ‖ = ‖B−1‖, ‖R0‖ = ‖B‖. Thus,

‖R̂0 −R0‖ ≤ cε · ‖B‖ · κ(B) +O(ε2)

(with a different c). Recall from (4.2) that κ(B) ≤ χA‖A‖; hence

‖R̂0 −R0‖ ≤ cε‖A‖ · (χA‖A‖) +O(ε2).

A similar analysis, starting from the fact that QT Q̃ = R̂0R
−1
0 +E′ = I +D/2 + U +

E′ + O(ε2), gives a bound on ‖Q̂ − Q‖ of cεχA‖A‖. We will stop writing O(ε2) for
now.

Next we consider the actual QR factorization of ATD−1/2 in Step 1 of the COD
algorithm. Since we have now proved that the computed Q is close to the exact Q,
we conclude that the computed R̂, which is Q̂ATD−1/2, is close to the true R on a
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column-by-column basis. In other words, let us define vi to be the ith column of R
and v̂i to be the corresponding column of R̂; then

‖vi − v̂i‖ ≤ c · ε · χA‖A‖ · ‖vi‖, 1 ≤ i ≤ m.

This gives a bound on the elementwise error; namely,

|rji − r̂ji| ≤ ‖vi − v̂i‖ ≤ cεχA‖A‖ · ‖vi‖, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Notice that if the ith row aTi of A is not linearly independent of the first j − 1 basis
rows, then rji = 0 if i ≥ j. Because of the dependency test in the COD algorithm,
r̂ji = 0 also. This point will be important later in the proof. We can now find a
bound on the normwise error of the rows of R. Let rTj and r̂Tj be the jth rows of R

and the computed matrix R̂. Then

‖rTj − r̂Tj ‖2

‖rTj ‖2
≤
∑m
i=j (rji − r̂ji)2∑m

i=j r
2
ji

≤
c2ε2(χA‖A‖)2 ·

∑m
i=j ‖vi‖2

r2
jj

.

Based on the argument above, there will be no contribution (in the sum) from columns

vi if aTi is dependent only on the first j − 1 basis rows. Now consider all other ‖vi‖
2

r2jj
.

Suppose that j − 1, j ≥ 1 steps of the QR factorization have been completed. Let X
denote ATD−1/2 and x1, . . . ,xm the columns of X. Then

QTj−1 · · ·QT1 ATD−1/2 =


r11 · · · r1,j−1 r1j · · · r1m

0
...

...
...

... rj−1,j−1 rj−1,j · · · rj−1,m

0 · · · 0 x̄j · · · x̄m

 .
Then r2

jj = ‖x̄j‖2. Since no pivoting is necessary, the columns of A are ordered such

that ‖x̄i‖2 ≤ ‖x̄j‖2 for i ≥ j. Recall that R̄ = QTAT = RD1/2. So for i ≥ j,

‖vi‖2
r2
jj

=
‖x̄i‖2 + r2

1i + · · ·+ r2
j−1,i

r2
jj

≤ 1 +
r2
1i + · · ·+ r2

j−1,i

r2
jj

= 1 +
d−1
i

(
r̄2
1i + · · ·+ r̄2

j−1,i

)
d−1
j r̄2

jj

≤ 1 +
dj‖r̄i‖2
dir̄2

jj

≤ 1 + χ2
A · ‖ai‖2 · (χA‖A‖)

4

≤ 1 + (χA‖A‖)6
,

where r̄i in the fourth line is the ith column of R̄. The fifth line follows from (4.4),
(4.5), and the lower bound of (4.7) and holds only when ai is linearly independent
of a1, . . . , aj−1. Recall that we need not be concerned with the other case since, as
discussed above, there is no contribution from such terms. Thus,

‖rTj − r̂Tj ‖2

‖rTj ‖2
≤ c2ε2(χA‖A‖)2 ·

 m∑
i=j

[
1 + (χA‖A‖)6

]2

.
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Taking the square root of both sides gives the required result.
We have now established that the QR factorization in the first step of the algo-

rithm gives an upper triangular matrix R that is well conditioned up to a scaling of
the rows or the columns. It also yields a computed matrix R̂ whose rows are close to
those of R. With these results in hand, we move on to the analysis of the second step
of the algorithm.

5. The second QR factorization. Recall that in this step we use the “skinny”
QR factorization

RT = Z1U1,

where Z1 is an m × n matrix with orthonormal columns and U1 is an n × n upper
triangular matrix. The results of section 4 imply that RT is well conditioned up
to a scaling of the columns. The QR factorization in this step, then, gives an upper
triangular matrix Û1 that is close to the exact upper triangular matrix U1. In addition,
the results (concerning the condition number of R) of section 4 can be used to prove
similar results about the condition number of U1. Again, let D = diag(d1, . . . , dm)
and D̄ = D(1 : n, 1 : n). Since U1 is the coefficient matrix of the system of equations
in the backsubstitution step, the following theorem concerning the condition of U1

will be quite useful.
Theorem 5.1. Let U1 and D̄ be defined as above. Then

κ
(
D̄aU1D̄

1/2−a
)
≤ n20 · (χA‖A‖)52

(5.1)

for any − 1
2 ≤ a ≤

1
2 .

Proof. We separately bound ‖D̄aU1D̄
1/2−a‖ and ‖D̄a−1/2U−1

1 D̄−a‖, starting with
the second norm. Notice that

RTU−1
1 = Z1.

Let vk = U−1
1 (1 : k, k), R̃ = R(1 : k, :), and D̃ = D(1 : k, 1 : k). It follows from the

fact that U−T1 RRTU−1
1 = I that

1

ukk
R̃R̃Tvk = ek,

where ek is the kth column of the k × k identity matrix. So

vk = ukk

(
R̃R̃T

)−1

ek

=
(
zTk rk

)
D̃1/2

(
D̃1/2R̃R̃T D̃1/2

)−1

D̃1/2ek

=
(
zTk rk

)
d

1/2
k D̃1/2x,

where zk is the kth column of Z1, rk is the kth column of RT , and x is the last column
of (D̃1/2R̃R̃T D̃1/2)−1. Multiplying both sides by d−ak D̃a−1/2 yields

d−ak D̃a−1/2vk =
(
zTk rk

)
d

1/2−a
k D̃ax.

We show that there is an upper bound on the right-hand side as follows:

‖
(
zTk rk

)
d

1/2−a
k D̃ax‖ = d

1/2
k ·

∣∣zTk rk
∣∣ · ‖d−ak D̃ax‖



COMPLETE ORTHOGONAL DECOMPOSITION 385

≤ d1/2
k · ‖rk‖ · ‖D̃a(D̃1/2R̃R̃T D̃1/2)−1D̃−a‖

≤ ‖A‖ · (χA‖A‖)2 · ‖(D̃1/2+aR̃R̃T D̃1/2−a)−1‖

= ‖A‖ · (χA‖A‖)2 ·
κ
(
D̃1/2+aR̃R̃T D̃1/2−a

)
‖D̃1/2+aR̃R̃T D̃1/2−a‖

≤ ‖A‖ · (χA‖A‖)2 ·
κ
(
D̃1/2+aR̃D−aDaR̃T D̃1/2−a

)
r̄2
11

≤ χA · (χA‖A‖)3 · κ
(
D̃1/2+aR̃D−a

)
· κ
(
DaR̃T D̃1/2−a

)
.

The third line is an application of (4.8) with a = 1
2 . In the fifth line of the above

inequality, r̄11 is the (1,1) entry of R̄ = QTAT . Notice that if − 1
2 ≤ a ≤ 1

2 , then
Theorem 4.4 applies. So

‖d−ak D̃1/2−avk‖ ≤ χA · (χA‖A‖)3 · κ
(
D̃1/2+aR̃D−a

)
· κ
(
DaR̃T D̃1/2−a

)
≤ n8 · χA · (χA‖A‖)23

.

Now

‖D̄a−1/2U−1
1 D̄−a‖ ≤

n∑
i=1

‖d−ai D̄a−1/2vi‖

≤ n · max
1≤i≤n

‖d−ai D̃a−1/2vi‖

≤ n9 · χA · (χA‖A‖)23
(5.2)

for − 1
2 ≤ a ≤

1
2 .

In order to find an upper bound on ‖D̄aU1D̄
1/2−a‖, we proceed as follows. First,

recall that ZT1 Z1 = I and that Z1 = RTU−1
1 . Combining these yields the identity

U−T1 RRT = U1. Thus,

D̄aU1D̄
1/2−a= D̄aU−T1 RRT D̄1/2−a

= D̄aU−T1 D̄−a−1/2D̄a+1/2RD−aDaRT D̄1/2−a,

so

‖D̄aU1D̄
1/2−a‖≤ ‖D̄aU−T1 D̄−a−1/2‖ · ‖D̄a+1/2RDa‖ · ‖DaRT D̄aRT D̄1/2−a‖

≤ n9χA (χA‖A‖)23 · n · ‖A‖ · (χA‖A‖)4(a+1/2) · n · ‖A‖ · (χA‖A‖)4(1/2−a)
.

The second line was obtained from the first by using (5.2) to bound the first factor
on the right-hand side and (4.9) (with shifted values of “a”) for the other two factors.
The last line is written more simply as n11 · ‖A‖ · (χA‖A‖)28. Thus for − 1

2 ≤ a ≤
1
2 ,

κ
(
D̄aU1D̄

1/2−a
)

= ‖D̄aU1D̄
1/2−a‖ · ‖D̄a−1/2U−1

1 D̄−a‖

≤ n20 · (χA‖A‖)52
.

Now that we know that D̄aU1D̄
1/2−a is well conditioned for − 1

2 ≤ a ≤ 1
2 , we move

on to the analysis of the remainder of the algorithm.
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6. Finding the solution y. In analyzing the remainder of the algorithm, we
first show that the error introduced in the backsubstitution step is small. In Step 3
of the algorithm, the upper triangular system

U1ȳ = ZT1 D
−1/2b

is solved for ȳ. (Note that this is slightly different from the system given in Step 3
of the algorithm as presented in section 1 since the columns of ATD−1/2 have been
“prepivoted.”) Instead of working with the system given above, consider the following
system:

D̄1/2U1ȳ = D̄1/2ZT1 D
−1/2b,

where D = diag(d1, d2, . . . , dm) and D̄ = D(1 : n, 1 : n) as before. In working through
the steps of backsubstitution, one can see that solving this system is equivalent to
solving the original one, even in floating-point arithmetic. (In other words, a rescaling
of the rows does not change the numerical bounds.) Recall from the last section that
D̄aU1D̄

1/2−a is well conditioned for − 1
2 ≤ a ≤

1
2 . Therefore, standard techniques for

analyzing backsubstitution can be used to show that the error at this step is small.
The following theorem states that error bound.

Theorem 6.1. Let ȳ be the exact solution to D̄1/2U1ȳ = D̄1/2ZT1 D
−1/2b, and

let y̌ be the computed solution. Then

‖ȳ − y̌‖ ≤ ε · n39 · χA · (χA‖A‖)103 · ‖b‖+ O(ε2).(6.1)

Proof. Let y̌ be the computed solution to the above system. Then y̌ is the exact
solution to the nearby system of equations

(D̄1/2U1 + E)y̌ = D̄1/2ZT1 D
−1/2b.

The matrix E accounts for errors during the backsubstitution and |E| ≤ ε ·
∣∣D̄1/2U1

∣∣,
where ε is machine roundoff [10]. So

D̄1/2U1ȳ − (D̄1/2U1 + E)y̌ = 0

or

ȳ − y̌ = (D̄1/2U1)−1Ey̌.

Substituting for y̌ on the right-hand side yields

ȳ − y̌ = (D1/2U)−1E(D1/2U + E)−1D̄1/2ZT1 D
−1/2b.

Thus,

‖ȳ − y̌‖ ≤ ‖(D̄1/2U1)−1‖ · ‖E‖ · ‖(D̄1/2U1 + E)−1‖ · ‖D̄1/2ZT1 D
−1/2‖ · ‖b‖

≤ ε · ‖(D̄1/2U1)−1‖ · ‖D̄1/2U1‖ · ‖(D̄1/2U1 + E)−1‖ · ‖D̄1/2U−T1 RD−1/2‖ · ‖b‖
≤ ε · ‖(D̄1/2U1)−1‖ · ‖D̄1/2U1‖ · (‖I‖+ ‖(D̄1/2U1)−1E‖+ ‖(D̄1/2U1)−1E‖2

+‖(D̄1/2U1)−1E‖3 + · · ·) · ‖(D̄1/2U1)−1‖ · ‖D̄1/2U−T1 D̄−1D̄RD−1/2‖ · ‖b‖
≤ ε · κ(D̄1/2U1) · ‖(D̄1/2U1)−1‖ · ‖D̄1/2U−T1 D̄−1‖ · ‖D̄RD−1/2‖ · ‖b‖+ O(ε2)

≤ ε · n39 · χA · (χA‖A‖)103 · ‖b‖+ O(ε2),
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as claimed. The last line is obtained by applying (5.1), (5.2), and (4.9) with the
appropriate values of a.

In the theorem above, the errors in the computation of U1 itself (which also con-
tribute to the error in ȳ) are not included, but could be accounted for as a somewhat
larger perturbation matrix E. As we have already argued in the proof of Theorem 4.6,
the errors in computing the factors are small. A similar analysis could be applied to
the second factorization, showing that errors made in forming each row of U1 are small
with respect to the norm of that row. Therefore, the perturbation matrix E is small
with respect to D̄1/2U1. Explicitly including this analysis in the previous theorem
would make the proof more complicated, but the bound would be qualitatively the
same.

The final step is to obtain y by multiplying ȳ by Q. Let ŷ be the computed
result. Assume that ŷ accounts for the errors during both this step and the previous
step. Equations (5.2), (4.9), and (6.1) are used to obtain the following error bound:

‖y − ŷ‖ ≤ ε · n · ‖y‖+ ‖ȳ − y̌‖
≤ ε · n · ‖(D̄1/2U1)−1‖ · ‖D̄−1U−1

1 D̄1/2‖ · ‖D̄RD−1/2‖ · ‖b‖+ ‖ȳ − y̌‖

≤ ε ·
[
n19 · χA · (χA‖A‖)51

+ n39 · χA · (χA‖A‖)103
]
· ‖b‖+ O(ε2).(6.2)

Notice that the error bound is of the form

‖y − ŷ‖ ≤ ε · f(A) · ‖b‖.

Thus, the COD algorithm satisfies the definition of stability.

7. Related work. As discussed in section 2, weighted least-squares problems
arise in a number of applications. Consequently, there are numerous algorithms in
the literature that are specialized for weighted least squares. In this section, we give
a brief overview of backward error analysis, which is used in the stability analyses of
these algorithms, and describe the relationship to the forward error analysis of this
paper. In doing so, we show that there are difficulties in trying to obtain stability
bound (1.2) in such a setting, and we explain how the COD algorithm and its analysis
avoid these problems. We also take a closer look at several algorithms for which a
forward analysis has been done or for which proving a forward bound appears possible.

As just mentioned, there are many algorithms that appear in the literature. Such
algorithms are presented in Barlow [1], Björck and Duff [2], Golub [9], Gulliksson
[13], Gulliksson and Wedin [14], Paige [20], Peters and Wilkinson [21], Powell and
Reid [22], Van Loan [26], and Vavasis [28]. These algorithms are based on standard
algorithms for solving unweighted least-squares problems, and special techniques are
employed to exploit structure and to deal with widely varying weights. None of these
works, except [28], proves a forward stability bound for their algorithms. Many of
these papers were published before Theorem 1.1 appeared, so the absence of a forward
error bound is not surprising. Recall that a forward error bound has relevance for the
applications described in section 2.

Since Vavasis’s NSH method [28] is the only other algorithm that proves a for-
ward stability bound, we discuss it first. The NSH algorithm employs nonstandard
techniques, particularly when choosing the null space basis for ATD−1. In contrast,
the COD algorithm of this paper uses standard techniques that are well understood,
namely, QR decomposition and backsubstitution. Also, our algorithm is more efficient
than the NSH algorithm. The NSH method solves an m×m system of equations and
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thus requires O(m3) flops. The work for the QR factorizations dominates the work
required for the complete orthogonal algorithm, so this algorithm requires O(mn2)
flops. Since n < m (and n could be much smaller than m), the COD algorithm
requires less work.

In considering the other algorithms, the question arises whether a forward error
bound can be derived from the error analyses given by some of the authors mentioned
above. Several (e.g., [1], [2], [13], [20], [22]) prove a backward stability bound; i.e.,
they prove that their algorithms compute a solution ŷ that solves a nearby problem
given by

min
ŷ∈Rn

‖ (D + ∆D)
−1/2

[(A+ ∆A) ŷ − (b + ∆b)] ‖

(or something similar), where ‖∆D‖ ≤ ε · c1 · ‖D‖, ‖∆A‖ ≤ ε · c2 · ‖A‖, and ‖∆b‖ ≤
ε · c3 · ‖b‖. Here c1, c2, and c3 are small constants and ε is the machine precision. It
may seem at first that a forward error bound can be obtained by applying Theorem 1.1
to the backward error bounds. Since all of the backward error analyses of previous
authors introduce a perturbation ∆A into the coefficient matrix A, the forward error
bound will involve χA+∆A. The result is a forward bound of the form

‖y − ŷ‖ ≤ ε · c · χA+∆A · ‖b‖,(7.1)

where c is a constant for these other algorithms. Here a difficulty arises: χA is not
continuous with respect to perturbations of A as observed by [23]. In fact, there exists
a matrix A such that χA < 3 but for any ε > 0

sup{χA+∆A : ‖∆A‖ ≤ ε} =∞.

In particular, the example is

A =

 1 1
1 1
0 1

 .
Note that limn→∞ χAn =∞ if we define

An =

 1 + 1/n 1
1 1
0 1

 .
Thus, the supremum of the right-hand side of (7.1) over all arbitrarily small pertur-
bations of A is infinity for this particular A. Notice that the matrix A has the special
property that its first two rows are parallel. Indeed, it is a consequence of [23] and
[19] that χA is discontinuous at A whenever A has an n×n singular submatrix. (This
fact also follows from (4.2).) A “randomly chosen” matrix would never have an n×n
singular submatrix, but singular submatrices occur often in practice (e.g., consider a
node-arc adjacency matrix or a linear programming problem that includes two simple
bound constraints of the form yi ≥ c1 and yi ≤ c2). Thus, (1.2) is not established for
such an A; i.e., it cannot be established in general using the kind of backward error
analysis in the literature mentioned.

The most difficult question with respect to previous algorithms is the following:
Can a forward error bound be derived for such an algorithm by using a completely new
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analysis? We claim that any algorithm purporting to satisfy a forward error bound
like (1.2) must have an explicit test for singularity. To illustrate this, we consider the
impact of a singular submatrix upon algorithms for weighted least squares. Consider
the following two problems:

min

∥∥∥∥∥∥diag(1030, 1030, 1)

 1 1
1 1
0 1

y −

 1
2
3

∥∥∥∥∥∥(7.2)

and

min

∥∥∥∥∥∥diag(1030, 1030, 1)

 1 + 10−15 1
1 1
0 1

y −

 1
2
3

∥∥∥∥∥∥ .(7.3)

Observe that although the numerical data in (7.2) is very close to (7.3), the two
problems have sharply different solutions. In (7.2), the first two rows are parallel and
are minimized (in the absence of the third row) by any vector on the line y1 +y2 = 1.5.
The third row is minimized by any vector with y2 = 3. Thus, the solution to the
problem is (−1.5, 3).

In contrast, in (7.3) the first two rows are not parallel. Because of their huge
weights, both must be satisfied nearly as equations at the weighted least-squares
solution; i.e., the solution to the second problem will be very close to[

1 + 10−15 1
1 1

]−1 [
1
2

]
,

which will obviously be very large since the matrix being inverted is nearly singular.
Thus, any algorithm purporting to satisfy a forward error bound like (1.2) for the

example problem (7.2) must preserve the dependence between the first two rows of A
even if there is roundoff error. In fact, this is exactly how COD operates. The COD
algorithm, when it encounters rows of A that are nearly dependent, will perturb them
so that they become exactly dependent. This perturbation is the topic of section 3.
Ordinarily, it is considered undesirable for a numerical algorithm to make a yes/no
decision about linear dependence. It is apparent from the contrast between (7.2) and
(7.3), however, that any algorithm that is supposed to satisfy stability bound (1.2)
must “know” that the first two rows of A in (7.2) are parallel.

Thus, we conclude that forward-stable algorithms, that is, algorithms satisfying
(1.2), must apparently include a test for linear dependence among the rows with
heaviest weights. Most algorithms in the literature do not. One exception is Björck
and Duff’s modification of Peters and Wilkinson’s algorithm. This method is an
elimination-based decomposition of the normal equations. A special type of pivoting
is used to preserve sparsity. We suspect that a modification of this pivoting and an
appropriate test for linear dependence among the rows of A will yield an algorithm
for which a forward stability bound can be established. The only approach we know
of to establish this forward error bound would be an analysis similar to the preceding
analysis of COD.

Additionally, many interior-point implementations of Cholesky factorization ef-
fectively perform a test for linear dependence, e.g., [32]. If a Cholesky pivot is very
small, then the algorithm treats that column differently. Although a singularity test
is present, we do not expect that a method based on normal equations could be stable
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for weighted least squares. Too much information about rows of A corresponding
to small entries of D−1 is lost when forming ATD−1A (e.g., consider what happens
to the last row of A in the normal equations of (7.2)). Nevertheless, interior-point
practitioners report success with this approach.

8. Summary and open questions. The weighted least-squares problem

min
y∈Rn

‖D−1/2 (Ay − b) ‖,

where D ∈ Rm×m is a diagonal, positive-definite, ill-conditioned matrix; A ∈ Rm×n
is a full-rank matrix; y ∈ Rn; and b ∈ Rm, has a unique solution. Because of the
ill conditioning of D, the standard methods for solving least-squares problems do not
find an accurate solution. We have employed a version of COD for this problem.
The COD algorithm involves four steps, given in section 1. We then proceeded to
show that this algorithm is stable, as defined in section 1. The only previously known
stable algorithm is from [28], but it is much more complicated and also requires more
flops than the COD method. Other previous algorithms do not satisfy a forward error
bound of the form we seek.

Now that we know that the algorithm is stable, there are several open questions.
1. This paper contains a forward error analysis of the COD algorithm. The final

bound, which is (6.2), involves some very large factors. These factors appear to be an
artifact of our forward analysis rather than a feature of the algorithm. The alternative
to forward error analysis is backward error analysis. For many other problems in
numerical linear algebra, backward error analysis is successful in ultimately producing
the best known forward error bounds [10].

As pointed out in section 7, the straightforward approach to backward error
analysis for weighted least squares could not yield the kind of forward error bound we
seek. Is it possible to do a specialized backward error analysis of this algorithm, and
will such an analysis yield better forward bounds? It appears that such a backward
error analysis must be restricted to some special class of structured perturbations to
A.

2. This algorithm has been implemented using dense methods. In many applica-
tions, the matrix A is sparse. Can we implement this algorithm in such a way that it
takes advantage of that sparsity?

3. The results thus far are theoretical. This algorithm has not yet been tested in
larger applications. The question, then, is whether or not this algorithm is effective
in applications. We are currently beginning tests of our algorithm in interior-point
methods [16].

The problem of stably solving the ill-conditioned equilibrium system in barrier
methods for optimization has received a fair amount of attention [7]. In the case of
barrier methods for linear programming (that is, interior-point methods), the equi-
librium system reduces to weighted least squares, which is the problem addressed by
this paper. Other authors have recently looked at ill conditioning in barrier methods,
including Coleman and Liu [4], Forsgren, Gill, and Shinnerl [6], Gill, Saunders, and
Shinnerl [8], Gould [12], Murray [17], Nash and Sofer [18], M. H. Wright [29], and
S. J. Wright [30].

One difference between these other works and ours may be summarized as follows.
These other works typically look at the more general problem min‖H−1/2(Ay−b)‖,
where H is symmetric and positive definite, but not necessarily diagonal. This is a
problem that we currently cannot address with our techniques. In some recent work,
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Forsgren [5] derived a result similar to Theorem 1.1 for such matrices H that are also
diagonally dominant. The applicability of the COD algorithm to this case has not yet
been determined.

On the other hand, when specialized to diagonal weight matrices D, these au-
thors consider a more restricted problem in that they all make an assumption that
the large and small entries on the diagonal of D have some correlation with the
columns of AT . This corresponds to a nondegeneracy assumption about the underly-
ing optimization problem. In contrast, our method does not involve any restrictions
about where “large” versus “small” entries of D can appear, and thus it is hoped that
the COD method has less difficulty when there is degeneracy or near-degeneracy in
the underlying optimization problem.

The final bounds proved by some of these authors—[29] and [30] in particular,
but also [6], [12], and [18]—specifically address the following issue for interior-point
methods for the nondegenerate case. For an interior-point method, the steps ∆x,∆s
are small in some components as convergence is approached because of a special
correlation between the weight matrix and the right-hand side of (2.1), as mentioned
in section 2. This means that a better bound than (1.2) is needed for interior-point
methods. Our present analysis is not sufficiently strong to address this issue. This will
be considered in a forthcoming paper [16], and computational tests will be presented.

4. The COD algorithm is a direct method for solving the weighted least-squares
problem. Another approach to solving this problem is to solve the normal equa-
tions using iterative methods. This approach is currently being investigated by Bo-
brovnikova and Vavasis.

Acknowledgments. We revised this paper taking into account the helpful com-
ments of two anonymous referees and the journal editor.
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Abstract. Let A be an n × m (m < n) matrix, b be an m-dimensional vector, and y be an
n-dimensional nonzero vector. In this paper we consider the following open problem: find an explicit
expression of the optimal backward perturbation bound ηθ(y) defined by

ηθ(y) = inf{‖(FT , θg)‖F : y is the minimum 2-norm solution to (A+ F )T x = b+ g},

where θ is a positive number. This problem is solved.

Key words. underdetermined system, the minimum 2-norm solution, backward perturbation
bound
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1. Introduction. Let ATx = b be an underdetermined system, where A ∈
Rn×m with m < n. It is known [2] that the system either has no solution or has
an infinity of solutions. Effective numerical methods and perturbation results can be
found in the literature (see, e.g., [1], [2], [4], [7]).

Let A ∈ Rn×m (m < n), b ∈ Rm, and y ∈ Rn be given. In this paper we consider
the following open problem [3], [4, Problem 20.2]: find an explicit expression of the
optimal backward perturbation bound ηθ(y) defined by
(1.1)
ηθ(y) = inf

{
‖(FT , θg)‖F : y is the minimum 2-norm solution to (A+ F )Tx = b+ g

}
,

where θ is a positive number. Note that the optimal backward perturbation bound
ηθ(y) can also be called the normwise backward error [3], [4], [5].

For deriving an explicit expression of ηθ(y), we first consider a special case—only
the coefficient matrix A is perturbed. Let F be the set defined by

(1.2) F = {F ∈ Rn×m : y is the minimum 2-norm solution to (A+ F )Tx = b}.

Obviously, F is the set of all backward perturbations F of A with respect to y and b.
The optimal backward perturbation bound η(y) is defined by

(1.3) η(y) = inf
F∈F
‖F‖F .

Let F be the set defined by (1.2). Observe the following facts: (i) if b = 0 but
y 6= 0, or if y = 0 but b 6= 0, then F = ∅ (the empty set), (ii) if b = 0 and y = 0, then
F = Rn×m, and in such a case we have η(y) = 0. Hence, we shall assume b 6= 0 and
y 6= 0 for the set F .
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Some basic properties of the set F defined by (1.2) are revealed in section 2. An
equivalent definition of F and a characterization of the closure of F are given. On
the basis of the results of section 2, we derive an explicit expression of the optimal
bound η(y) in section 3, and the expression of η(y) is then used to derive an explicit
expression of the optimal bound ηθ(y) in section 4. Finally, in section 5 we give some
remarks.

Throughout this paper we use the following notation. A† denotes the Moore–
Penrose inverse of a matrix A, PA = AA† denotes the orthogonal projection onto the
column space R(A), and P⊥A = I − PA. σm(A) stands for the mth largest singular
value of A and λm(B) for the mth largest eigenvalue of a square matrix B having only
real eigenvalues. ‖ · ‖2 denotes the Euclidean vector norm and ‖ · ‖F the Frobenius
norm. For a subset S of Rn, the symbol S denotes the closure of S.

Before the main body of the paper, we now consider the simplest case: m = 1.
Let a ∈ Rn, nonzero b ∈ R, and nonzero y ∈ Rn be given. By (1.2), the set F is
defined by

F = {f ∈ Rn : y is the minimum 2-norm solution to (a+ f)Tx = b}.

It is easy to see that F contains a unique vector f , and the vector f satisfies

(1.4) y = (a+ f)T
†
b.

From (1.4) we get

f =
by

‖y‖22
− a

and

‖f‖22 =
b2 − 2baT y + ‖a‖22‖y‖22

‖y‖22
=

(b− aT y)2

‖y‖22
+ ‖(I − yy†)a‖22.

Consequently,

(1.5) η(y) =

√
r2

‖y‖22
+ σ2

1 ((I − yy†)a),

where σ1((I − yy†)a) = ‖(I − yy†)a‖2 denotes the singular value of (I − yy†)a, and
r = b− aT y.

2. Lemmas. In this section we study basic properties of the set F defined by
(1.2). The following result gives an equivalent definition of F . A proof of the result
can be found in [7, section 1].

Lemma 2.1 [7], [1]. Let A ∈ Rn×m, nonzero b ∈ Rm, and nonzero y ∈ Rn be
given. Let F be the set defined by (1.2), and let F1 be the set defined by

(2.1) F1 = {F ∈ Rn×m : (A+ F )T y = b and y ∈ R(A+ F )}.

Then F1 = F .
It is worth pointing out that the set F (= F1) is not necessarily closed when

m > 1. We now explain this fact by a simple example. Let

A = (a1, a2, a3) =


1 1 0
1 1 0
0 −1 1
0 −1 0

 , y =


1
0
0
0

 , b =

 2
0
0

 .
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Consider the matrices Fτ expressed by

Fτ = (f
(τ)
1 , f

(τ)
2 , f

(τ)
3 ) =


1 −1 0
1 −1 + τ 0
0 2 0
0 2 1

 with τ > 0.

From

A+ Fτ =


2 0 0
2 τ 0
0 1 1
0 1 1


we see that the matrices Fτ satisfy

(A+ Fτ )T y = b

and

y =
1

2
(a1 + f

(τ)
1 )− 1

τ
(a2 + f

(τ)
2 ) +

1

τ
(a3 + f

(τ)
3 ); i.e., y ∈ R(A+ Fτ ).

Consequently, by (2.1) and Lemma 2.1, Fτ ∈ F for any τ > 0. Taking τ → 0, we get

lim
τ→0

Fτ =


1 −1 0
1 −1 0
0 2 0
0 2 1

 = F

and

A+ F =


2 0 0
2 0 0
0 1 1
0 1 1

 .

Obviously, the matrix F satisfies (A+F )T y = b. However, y 6∈ R(A+F ). Therefore,
F 6∈ F . This means that the limit point F of the matrices Fτ ∈ F is not contained in
F . Hence, the set F associated with this example is not closed.

We now consider a special case:

(2.2) y = (η1, 0, . . . , 0)T ∈ Rn, b = (β1, 0, . . . , 0)T ∈ Rm, η1, β1 > 0.

The following lemma presents a characterization of the closure F(= F1) of F .
Lemma 2.2. Let A, b, y,F ,F1 be as in Lemma 2.1 with m > 1, and let b, y be in

the forms of (2.2). Define the set F2 by

(2.3) F2 =

{
F =

(
β1/η1 0
z1 Z2

)
−A :

z1 ∈ Rn−1, Z2 ∈ R(n−1)×(m−1),
rank(z1, Z2) ≤ m− 1

}
.

Then F2 = F1; i.e., F2 = F .
Proof. We only need to show the following three facts: (i) F1 ⊂ F2, (ii) F2 is a

closed set, (iii) F2 ⊂ F1.
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Assume F ∈ F1. By (2.1) and (2.2), F satisfies

A+ F =

(
β1/η1 0
z1 Z2

)
and z1 ∈ R(Z2),

which implies F ∈ F2. Consequently, F1 ⊂ F2.
By (2.3), F2 is obviously a closed set.
Finally, we prove F2 ⊂ F1. Assume F ∈ F2. By (2.3) we have (A + F )T y = b.

Let z1, Z2 be as in (2.3) and rank(z1, Z2) = j. If j = 0, then from (2.3) it follows that
y ∈ R(A+F ). By (2.1) we have F ∈ F1. We now consider the case 1 ≤ j ≤ m−1. By
using the QR factorization or the column pivoted QR factorization [2, Chapters 5, 5.2,
and 5.4.1], the matrix (z1, Z2) can be expressed by (z1, Z2) = Q(c1, C2), where Q ∈
R(n−1)×j , the columns ofQ form an orthonormal basis ofR(z1, Z2), and c1 ∈ Rj , C2 ∈
Rj×(m−1), rank(c1, C2) = j. Consequently, in this case A+ F can be expressed by

(2.4) A+ F =

(
η1 0
0 Q

)(
β1/η

2
1 0

c1 C2

)
.

If rank(C2) = j, then from (2.4)(
η1 0
0 Q

)
= (A+ F )

(
β1/η

2
1 0

c1 C2

)†
,

which shows that y = (η10 ) ∈ R(A + F ). By (2.1) we have F ∈ F1. If rank(C2) < j,

we can take a sequence E
(l)
2 ∈ Rj×(m−1) (l = 1, 2, . . .) that

(2.5) rank(C2 + E
(l)
2 ) = j and lim

l→∞
E

(l)
2 = 0.

Let

(2.6) F (l) =

(
η1 0
0 Q

)(
β1/η

2
1 0

c1 C2 + E
(l)
2

)
−A, l = 1, 2, . . . .

Then (A+ F (l))T y = b, and from (2.6)(
η1 0
0 Q

)
= (A+ F (l))

(
β1/η

2
1 0

c1 C2 + E
(l)
2

)†
,

which shows that y = (η10 ) ∈ R(A+F (l)). Consequently, by (2.1) we have F (l) ∈ F1 ∀l.
On the other hand, by (2.5)–(2.6) liml→∞ F (l) = F ∈ F2. Hence, we have proved
that for any F ∈ F2, either F ∈ F1 or F is a limit point of a sequence {F (l)}∞l=1 in
F1. This means that F2 = F1. 2

From Lemma 2.2 and (2.4) we get the following corollary immediately.
Corollary 2.3. Let A, b, y,F ,F2 be as in Lemma 2.2, and let

(2.7) Â = A−
(
β1/η1 0

0 0

)
.

Then F ∈ F2 if and only if Â+ F can be expressed by

(2.8) Â+ F = WC,
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where

(2.9)
W =

(
0
Q

)
∈ Rn×j with Q ∈ R(n−1)×j and QTQ = I,

C ∈ Rj×m, 1 ≤ j ≤ m− 1.

It is worth noting two facts: (i) there is not the restriction rank(C) = j in
(2.9), (ii) for any W ∈ Rn×j of (2.9), the matrix WC with C = 0 corresponds with
F = −Â ∈ F2.

3. Optimal bound η(y). In this section we study the optimal backward per-
turbation bound η(y) for the coefficient matrix A. The following result presents an
explicit expression of the optimal bound.

Theorem 3.1. Let A ∈ Rn×m, nonzero b ∈ Rm, and nonzero y ∈ Rn. Let η(y)
be the optimal backward perturbation bound defined by (1.2)–(1.3). Then

(3.1) η(y) =

√
‖r‖22
‖y‖22

+ σ2
m ((I − yy†)A),

where r = b−AT y.
Proof. Expression (3.1) has been proved when m = 1 (see (1.5)). We now assume

m > 1.
By (1.2)–(1.3) and Lemmas 2.1 and 2.2, we have

η(y) = inf
F∈F
‖F‖F = min

F∈F2

‖F‖F .

Expression (3.1) is proved by the following steps.
1. We first consider a special case:

y = (η1, 0, . . . , 0)T ∈ Rn, b = (β1, 0, . . . , 0)T ∈ Rm, η1, β1 > 0.

Write

A = (a1, . . . , am) with ai =

(
αi1

a
(0)
i

)
, a

(0)
i ∈ Rn−1 ∀i

and define the matrices A(0) and Â by

(3.2)
A(0) = (a

(0)
1 , . . . , a

(0)
m ) ∈ R(n−1)×m,

Â = (â1, a2, . . . , am) with â1 = a1 − (β1/η1, 0, . . . , 0)T .

Then the matrix Â can also be expressed by

(3.3) Â =

(
aT

A(0)

)
with a = (α11 − β1/η1, α21, . . . , αm1)T .

1a. By Corollary 2.3, any F ∈ F2 can be expressed by F = WC − Â, where W
and C are as in (2.9). For an arbitrarily fixed W = ( 0

Q ) ∈ Rn×j (1 ≤ j ≤ m − 1) of

(2.9), we now define a subset F2(W ) of F2 by

F2(W ) = {F = WC − Â : C ∈ Rj×m}.
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Then by Corollary 2.3

F2 =
⋃
W

F2(W ),

where W = ( 0
Q ) ∈ Rn×j , and Q runs through all (n−1)× j orthogonal matrices with

j = 1, . . . ,m− 1. Consequently,

(3.4)

min
F∈F2

‖F‖2F = min
W=( 0

Q )∈Rn×j

Q∈R(n−1)×j ,QTQ=I
j=1,...,m−1

min
F∈F2(W )

‖F‖2F

= min
W=( 0

Q )∈Rn×j

Q∈R(n−1)×j ,QTQ=I
j=1,...,m−1

min
F∈F2(W )

(
‖P⊥WF‖2F + ‖PWF‖2F

)
.

Let W be an arbitrarily fixed matrix of (2.9), and let F ∈ F2(W ). Then by (2.8)
we have

(3.5) P⊥W (Â+ F ) = 0, ‖P⊥WF‖F = ‖P⊥W Â‖F ,

and from the first relation of (3.5)

(3.6) PWF = Â+ F − PW Â.

We now take F ∗ ∈ Rn×m expressed by

(3.7) F ∗ = PW Â− Â.

From

Â+ F ∗ = PW Â = WC∗ with C∗ = QTA(0)

we see that F ∗ ∈ F2(W ). Substituting (3.7) into (3.6) gives

PWF
∗ = 0.

Combining it with (3.4) and (3.5), we get

(3.8) min
F∈F2

‖F‖2F = min
W=( 0

Q )∈Rn×j

Q∈R(n−1)×j ,QTQ=I
j=1,...,m−1

‖P⊥W Â‖2F ,

where Â is expressed by (3.3).
1b. By (3.3) and (2.9),

‖P⊥W Â‖2F =

∥∥∥∥( 1 0
0 I −QQT

)(
aT

A(0)

)∥∥∥∥2

F

= ‖a‖22 + ‖(I −QQT )A(0)‖2F .

Combining it with (3.8) shows that

(3.9) min
F∈F2

‖F‖2F = ‖a‖22 + ‖A(0)‖2F − max
1≤j≤m−1

max
Q∈R(n−1)×j

QTQ=I

tr(QTA(0)A(0)TQ),
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where A(0) and a are defined by (3.2) and (3.3), respectively.
Let σ1(A(0)) ≥ · · · ≥ σm(A(0)) be the singular values of A(0). Then we have

‖A(0)‖2F =
m∑
i=1

σ2
i (A(0))

and [6, p. 191 (4.3.19)]

max
1≤j≤m−1

max
Q∈R(n−1)×j

QTQ=I

tr(QTA(0)A(0)TQ) = max
1≤j≤m−1

j∑
i=1

σ2
i (A(0)) =

m−1∑
i=1

σ2
i (A(0)).

Moreover, from (3.3)

‖a‖22 =

(
β1

η1
− α11

)2

+
m∑
i=2

α2
i1.

Consequently, (3.9) yields

(3.10) min
F∈F2

‖F‖2F =

(
β1

η1
− α11

)2

+
m∑
i=2

α2
i1 + σ2

m(A(0)).

2. We now consider the general case: y ∈ Rn, b ∈ Rm, and y 6= 0, b 6= 0. Let

(3.11) y = U(η̃1, 0, . . . , 0)T = η̃1u1, b = V (β̃1, 0, . . . , 0)T = β̃1v1

be the QR factorizations of y and b, respectively, where

(3.12) U = (u1, U2) ∈ Rn×n, V = (v1, v2, . . . , vm) ∈ Rm×m

are orthogonal, and η̃1, β̃1 > 0. Then (A+ F )T y = b can be written as

(Ã+ F̃ )T ỹ = b̃,

where

F̃ = UTFV, Ã = UTAV =

(
α̃11 · · · α̃m1

Ã(0)

)
with

(3.13) α̃i1 = uT1 Avi, i = 1, 2, . . . ,m, Ã(0) = UT2 AV.

By (3.10),

(3.14) min
F∈F2

‖F‖2F =

(
β̃1

η̃1
− α̃11

)2

+

m∑
i=2

α̃2
i1 + σ2

m(Ã(0)),

where

(3.15)

(
β̃1

η̃1
− α̃11

)2

+
m∑
i=2

α̃2
i1

=
(vT1 b− yTAv1)2

η̃2
1

+
m∑
i=2

(uT1 Avi)
2 (by (3.11), (3.13))

=
‖V T (b−AT y)‖22

‖y‖22
=
‖r‖22
‖y‖22

,



400 JI-GUANG SUN AND ZHENG SUN

and

σ2
m(Ã(0)) = λm(Ã(0) T Ã(0)) = λm(ATU2U

T
2 A) (by (3.13))

= λm(AATU2U
T
2 ) = λm(AAT (I − u1u

T
1 )) (by (3.12))

= λm(AAT (I − yy†)) (by (3.11))

= σ2
m((I − yy†)A).

Combining it with (3.14) and (3.15) gives (3.1). 2

4. Optimal bound ηθ(y). In this section we apply Theorem 3.1 to derive an
explicit expression of ηθ(y) defined by (1.1).

Theorem 4.1. Let A ∈ Rn×m, b ∈ Rm, and nonzero y ∈ Rn, and let r = b−AT y.
Define the optimal backward perturbation bound ηθ(y) by (1.1). If b 6= r/(1 + θ2‖y‖22),
then

(4.1) ηθ(y) =

√
θ2‖y‖22

1 + θ2‖y‖22
· ‖r‖

2
2

‖y‖22
+ σ2

m ((I − yy†)A).

Proof. Define the set H by

H =

{(
F
gT

)
∈ R(n+1)×m : y is the minimum 2-norm solution to (A+ F )T y = b+ g

}
,

and for each fixed g ∈ Rm, define the vector rg and the set Hg by

rg = b+ g −AT y = r + g

and

Hg = {F ∈ Rn×m : y is the minimum 2-norm solution to (A+ F )T y = b+ g}.
Then by (1.1) we have

(4.2)

[ηθ(y)]2 = inf
g∈Rm

inf
F∈Hg

(‖F‖2F + θ2‖g‖22)

= inf
g∈Rm

(
θ2‖g‖22 + inf

F∈Hg
‖F‖2F

)

= inf
g∈Rm

(
θ2‖g‖22 +

‖rg‖22
‖y‖22

+ σ2
m((I − yy†)A)

)
(by (3.1))

= inf
g∈Rm

(
θ2‖g‖22 +

‖r + g‖22
‖y‖22

)
+ σ2

m((I − yy†)A).

Since

θ2‖g‖22 +
‖r + g‖22
‖y‖22

=
1 + θ2‖y‖22
‖y‖22

(∥∥∥∥g +
r

1 + θ2‖y‖22

∥∥∥∥2

2

+
θ2‖y‖22‖r‖22

(1 + θ2‖y‖22)2

)
,

we have

inf
g∈Rm

(
θ2‖g‖22 +

‖r + g‖22
‖y‖22

)
=

θ2‖y‖22
1 + θ2‖y‖22

· ‖r‖
2
2

‖y‖22
.

Combining it with (4.2) shows (4.1). 2
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5. Final remarks. In this section we give some remarks on the results of this
paper.

Remark 5.1. As Higham [3] pointed out, the formula for ηθ(y) appears to be quite
numerically stable. If we are solving the underdetermined system ATx = b using a QR
factorization of A, then we can compute the QR factorization of A− yy†A in O(m2)
flops using rank-one updating techniques and can then estimate σm(A−yy†A) using a
condition estimator for triangular matrices; thus the optimal backward perturbation
bound (i.e., the backward error) ηθ(y) can be estimated in O(m2) flops given a QR
factorization.

Remark 5.2. Let ηθ(y) and η(y) be defined by (1.1) and (1.2)–(1.3), respectively.
From (3.1) and (4.1) we see that

η(y) = lim
θ→∞

ηθ(y).

Remark 5.3. Let A, b be as in Theorem 3.1, and let nonzero vector y be the
minimum 2-norm solution to ATx = b. Then by (1.2) the n×m matrix F = 0 ∈ F .
By Lemma 2.1, y ∈ R(A); i.e., there is a nonzero z ∈ Rm such that y = Az. Thus we
have

(In − yy†)Az = (In − yy†)y = 0.

This means that rank((In − yy†)A) < m. Consequently,

(5.1) σm((In − yy†)A) = 0.

Substituting (5.1) and r = b − AT y = 0 into (3.1) yields η(y) = 0. From this
explanation we can understand why η(y) = 0 for the exact solution y.

Remark 5.4. If m ≥ n, then the same argument described in sections 2 and 3 can
be used to derive the explicit expression of η(y):

η(y) =

√
‖r‖22
‖y‖22

+ σ2
n ((I − yy†)A) =

‖r‖2
‖y‖2

.

Remark 5.5. Let A ∈ Rn×m (m ≤ n), b ∈ Rm, and nonzero y ∈ Rn be given.
Define η∗(y) by

(5.2) η∗(y) = min{‖F‖F : (A+ F )T y = b}.

It is well known [8] that

(5.3) η∗(y) =
‖r‖2
‖y‖2

,

where r = b − AT y. Comparing this result with that of Remark 5.4, we see that if
m = n and b and y are nonzero vectors, then η(y) = η∗(y).

Remark 5.6. Let A ∈ Rn×m (m ≤ n), nonzero b ∈ Rm, and nonzero y ∈ Rn
be given, and let η(y) and η∗(y) be defined by (1.2)–(1.3) and (5.2), respectively.
Then from expressions (3.1) and (5.3), η(y) ≥ η∗(y). We now give an example where
η(y)/η∗(y) can be arbitrarily large. Let

A =

 α 0
0 0
0 α

 with α =
√

2(1− 10−k) (k ≥ 1)
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and

b = (1, 0)T , y = (1/
√

2, 1/
√

2, 0)T .

Then we have

r = b−AT y =

(
1− α/

√
2

0

)
=

(
10−k

0

)
,

(I3 − yy†)A =

 α/2 0
−α/2 0

0 α

 , σ2((I3 − yy†)A) = α/
√

2 = 1− 10−k,

η∗(y) =
‖r‖2
‖y‖2

= 10−k,

η(y) =

√
‖r‖22
‖y‖22

+ σ2
2((I3 − yy†)A) =

√
10−2k + (1− 10−k)2,

and

η(y)

η∗(y)
=
√

1 + (10k − 1)2 ≈ 10k � 1 if k � 1.
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Abstract. In this paper we present a new parallel algorithm for computing the LLT decomposi-
tion of real symmetric positive-definite tridiagonal matrices. The algorithm consists of a preprocess-
ing and a factoring stage. In the preprocessing stage it determines a rank-(p − 1) correction to the
original matrix (p = number of processors) by precomputing selected components xk of the L factor,
k = 1, . . . , p− 1. In the factoring stage it performs independent factorizations of p matrices of order
n/p. The algorithm is especially suited for machines with both vector and processor parallelism, as
confirmed by the experiments carried out on a Connection Machine CM5 with 32 nodes. Let x̂k
and x̂′k denote the components computed in the preprocessing stage and the corresponding values
(re)computed in the factorization stage, respectively. Assuming that |x̂k/x̂′k| is small, k = 1, . . . , p−1,
we are able to prove that the algorithm is stable in the backward sense. The above assumption is
justified both experimentally and theoretically. In fact, we have found experimentally that |x̂k/x̂′k|
is small even for ill-conditioned matrices, and we have proven by an a priori analysis that the above
ratios are small provided that preprocessing is performed with suitably larger precision.

Key words. parallel algorithm; Cholesky decomposition; LR and QR algorithms; eigenvalues;
symmetric, tridiagonal, and band matrices; CM5

AMS subject classifications. 15A18, 15A23, 65F05, 65F15, 65Y05

PII. S0895479895282623

1. Introduction. We consider the problem of computing the Cholesky decom-
position of very large real symmetric positive-definite tridiagonal matrices. Cholesky
decomposition is a valuable tool in many diagonalization techniques for computing
eigenvalues and singular values of matrices. Rutishauser’s cubically convergent LR
algorithm is based on the iterative application of Cholesky decomposition [21]. The
divide-and-conquer approach can also be combined with it [4, 5]. More recently, the
Cholesky decomposition, or one of its variants, has been used in connection with the
accurate computation of the singular values of bidiagonal matrices [11, 15] and the
eigenvalues of specially structured symmetric tridiagonal matrices [9]. Moreover, it
has been shown that Francis’s QR algorithm (see [16, 17]) can be implemented using
a band Cholesky decomposition [3].

Cholesky decomposition, followed by the parallel solution of the respective bidi-
agonal systems [8], is one of the most natural approaches to the solution of positive-
definite linear systems [2, 12, 23, 24, 26], but as such has not received a great deal of
attention.

The classical sequential algorithms for computing the Cholesky decomposition
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cannot be efficiently parallelized or directly vectorized. It is thus natural to seek an
algorithm directly amenable for an efficient parallel implementation. In this paper we
introduce a new algorithm which borrows ideas from the substructured parallel cyclic
reduction algorithm for the solution of tridiagonal systems [19, 28]. Parallel cyclic
reduction consists of three stages.

1. (Almost) local forward and backward Gaussian elimination steps. During this
stage only one communication is required, usually with an adjacent processor.

2. Solution of a reduced system with one equation per processor.
3. Local backsubstitution.

Our algorithm consists of three stages as well. Let A be an N × N tridiagonal
matrix and assume for simplicity that N = np, where p is the number of available
processors. Also, viewing A as block partitioned, let Ti denote its n×n diagonal blocks,
i = 1, . . . , p. Finally, let L be the Cholesky factor of A, and let xi, i = 1, . . . , N , denote
its diagonal elements. The stages are as follows.

1. Local forward and backward Gaussian elimination steps. This stage, which
requires no communication, returns a reduced tridiagonal matrix B of order
2p− 3.

2. Computation of xn(i−1), i = 2, . . . , p, by applying suitable transformations to
B. This is the only stage which requires (tree-like structured) communications
between the processors.

3. Local factorization of p n×n matrices T ′i , where T ′1 = T1 and T ′i , i = 2, . . . , p,
is a rank-one update (involving xn(i−1)) of Ti.

We refer to 1 and 2 together as the preprocessing stage.

The time complexity of our algorithm is about 8Np + 15 log p if p processors are

available. If log p � N
p the complexity is governed by the factor 8n. Under this

circumstance, the parallel algorithm requires about four times the number of flops of
the classical sequential algorithm, with a (theoretical) speedup close to p/4. We show
that our parallel algorithm is also computationally efficient in practice. We report the
results obtained on a Connection Machine CM5 supercomputer with 32 nodes and
128 vector units altogether [27]. We achieve very satisfactory performances on large
matrices (say N ≥ 218). For smaller size matrices, very good performances can still
be obtained by appropriately scaling down the number of processors involved.

A natural competitor with our algorithm is the recursive doubling algorithm for
the LU decomposition of tridiagonal matrices [24]. When recursive doubling is used
in the LR algorithm (and to compute Cholesky rather than LU decomposition) it
achieves parallel complexity roughly ∼ 12 logN using an unbounded (i.e., linear in
N) number of processors [25]. In the more realistic case of p� N , and using parallel
prefix instead of recursive doubling, the parallel time complexity becomes roughly
∼ 27Np , which is more than three times larger than ours.

Cholesky decomposition is componentwise stable, and the variant presented here
retains this property. With respect to the classical algorithm, the backward error
affecting the coefficient matrix is further influenced, in the first diagonal entry of each
block Ti, by the factor |x̂n(i−1)/x̂

′
n(i−1)|, i = 2, . . . , p. Here x̂n(i−1) and x̂′n(i−1) denote

the components of the L factor computed in the preprocessing and recomputed in the
actual factorization stage, respectively. We find experimentally that these ratios are
small even for ill-conditioned matrices. We have also proven, by an a priori analysis,
that |x̂n(i−1)/x̂

′
n(i−1)| are small provided that preprocessing is performed with suitably

larger precision.

This paper is organized as follows. In section 2 we define concepts and notation
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used throughout the rest of the paper. In section 3 we review the LR algorithm
for computing the eigenvalues of symmetric tridiagonal matrices. This will provide
motivation for the development of a parallel algorithm for computing the Cholesky
decomposition of such matrices. In section 4 we describe a sequential algorithm that
computes the Cholesky factors and discuss its implementation, computational cost,
and numerical accuracy. In section 5 we describe the parallel algorithm, providing
details of the preprocessing stage, and, in section 6, we analyze its computational
cost and suitability to vectorization. In section 7 we present the experimental results
obtained on the CM5, and in section 8 we present the error analysis which shows the
numerical accuracy of the algorithm. We conclude with some suggestions for further
work.

2. Definitions and main notation. We denote by Rn the set of real vectors
of order n and by ei the n-vector whose entries are all zero except the ith one, which

is 1. When needed, we emphasize that a particular vector ei is in Rn by writing e
(n)
i .

We denote byM(n) the set of real n×n matrices and by AT the transpose of A.
We denote a tridiagonal symmetric matrix T ∈M(n) by

T =



a1 b2
b2 a2 b3

b3
. . .

. . . bn
bn an

 .(1)

In this paper we assume that T is unreduced, that is, bi 6= 0, i = 2, . . . , n.
We say that a nonsingular matrix P ∈M(m) is a cyclic transformation if

P =

(
H 0
hT 1

)
,

H ∈M(m− 1),
h ∈ R(m−1).

Note that by this definition H is nonsingular as well.
We say that the computation of the Cholesky decomposition of a matrix A is

componentwise stable if the computed Cholesky factors are the exact decomposition
of a small componentwise perturbation of A.

We measure the time complexity of a sequential algorithm by counting the number
of flops, i.e., floating point operations. We also refer to the flop count as the number
of (arithmetic) steps. The time complexity of a parallel algorithm implemented on a
p processor machine is the maximum, over the p processors, of the number of steps
performed. We refer to this measure as the number of parallel steps.

The speedup of a parallel algorithm A over a sequential algorithm B is the ratio

Sp(n) =
TB(n)

TA,p(n)
,

where TB(n) is the (time) complexity of B on inputs of size n and TA,p(n) is the
complexity of A on inputs of size n with p processors. Obviously, for any parallel
algorithm there is some sequential algorithm for which Sp(n) ≤ p, for otherwise a se-
quential simulation of the parallel algorithm would beat the (supposedly) best known
sequential one. However, in this paper we are interested in comparing the running
time of the parallel algorithm with that of the classical sequential method. Hence,
we may obtain superlinear speedups due to a more efficient use of the architecture
resources, namely, data transmission and vectorization.
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3. An overview of the LR algorithm. The LR algorithm developed by
Rutishauser was termed by Wilkinson “the most significant advance which has been
made in connection with the eigenvalue problem since the advent of automatic com-
puters” (see [29, p. 485]). This algorithm is very simple and efficient and computes
the eigenvalues of tridiagonal symmetric matrices with a cubic rate of convergence.

The LR algorithm iteratively computes a sequence of tridiagonal matrices that
gradually converge to a diagonal matrix with the same eigenvalues. Starting with the
original matrix A0 = A and with eig = 0, for s = 0, 1, . . . , the sth step consists of the
following stages:

• choose an appropriate shift ys,
• find the Cholesky decomposition of Bs = As − ysI = LsL

T
s ,

• set As+1 = LTs Ls and eig = eig + ys.
As soon as the last off-diagonal element becomes negligible, eig is a new exposed
eigenvalue. It is easy to see that the third stage of this algorithm can be efficiently
parallelized. In addition, after a few steps, the shifts ys in the first stage can be
read off the last diagonal element of the matrix (see Rutishauser and Schwarz [22]).
It follows that the main difficulty in implementing the LR algorithm on a parallel
machine lies in the Cholesky decomposition. This is one major motivation to focus
our attention on the development of an efficient parallel implementation of Cholesky
decomposition. For further discussions on the LR algorithm the reader is encouraged
to see Wilkinson [29], Parlett [20], Grad and Zakraǰsek [18], and Bar-On [3].

4. Cholesky decomposition. In this section we describe a sequential algorithm
to compute the Cholesky decomposition of a symmetric tridiagonal matrix which is
particularly suitable to implement the LR algorithm and analyze its computational
and numerical properties.

Consider the Cholesky decomposition stage in the LR algorithm described in
section 3 and let (1) be the matrix to be factored. We have that

T =


d1

y2 d2

y3 d3

. . .
. . .

yn dn




d1 y2

d2 y3
. . .

. . .

dn−1 yn
dn

 = LLT .(2)

Instead of computing decomposition (2) and taking into account that this process
must be repeatedly applied over LR iterations, we compute the quantities xi and zi
using the following recurrences:

zi = b2i /xi−1, xi = ai − zi, i = 1, . . . , n,(3)

with x0 = 1. Note that in recurrences (3) we use only the ai’s and b2i ’s (rather than
the bi’s). It can be easily proved by induction that xi = d2

i and zi = y2
i . Now, if we

set

LTL =



f1 g2
g2 f2 g3

g3
. . .

. . . gn
gn fn

 ,
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then we can efficiently compute the quantities fi and g2
i as follows:

g2
i = zi ∗ xi, fi = xi + zi+1, i = 1, . . . , n,

with zn+1 = 0.

This process can therefore be iterated. If needed, the elements of the matrix
(implicitly) generated at the ith step of the LR algorithm can be easily recovered. By
using this variant of the Cholesky decomposition, which we call the revised decompo-
sition, we avoid the computation of square roots.

Complexity. The purpose of this paragraph is to point out the rather poor per-
formance that one gets by using both classical and revised Cholesky decompositions
on sequential computers. Table 1 shows the running times, observed on a DEC Alpha
7000 Model 660 Super Scalar machine, of the following routines: the BLAS routine
“dgemm” which performs matrix multiplication; the LAPACK routines “dpotrf” and
“dpbtrf” [1] which perform the Cholesky decomposition on dense and tridiagonal ma-
trices, respectively; and the private routine “trid” which computes the above revised
decomposition. The revised decomposition is more efficient than the classical one
primarily because of the absence of square root computations. However, the Mflops
column shows that it is still very inefficient with respect to the dense computations
dgemm and dpotrf mainly because of the low number of flops per memory reference.

Table 1

LAPACK computational routines.

Routine n Flops Time Mflops

dgemm 400 2 ∗ n3 0.95 135.48

dpotrf 600 2 ∗ n3/6 0.99 72.11

dpbtrf 200000 2 ∗ n 1.01 0.39

trid 200000 2 ∗ n 0.08 5.00

Numerical stability. Cholesky decomposition is componentwise stable, and this
variant retains this property. Usually the entries of the given matrix are known up
to some perturbation so that it is very useful to investigate the “structure” of the
perturbations introduced by rounding. To show this, let us denote the computed
value of a by â = fl(a) and assume that the standard operations satisfy

fl(a op b) = (a op b)(1 + η), |η| ≤ θ,

where op stands for +,−, ∗, or / and θ is the machine relative precision. For example,
θ is roughly 10−16 in standard double precision. Then the actual computation of the
decomposition can be formulated as follows:

ẑi = ci(1 + βi)/x̂i−1 = ĉi/x̂i−1,
x̂i = (ai − ẑi)(1 + α′i) = âi − ẑi,

i = 1, . . . , n,

with ci = b2i , âi = ai(1 + αi), and |βi| ≤ θ, |αi| ≤ |α′i| ≤ θ. For the classical error
bounds for Cholesky decomposition see [30] and [14].

5. Parallel Cholesky decomposition.
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5.1. Mathematical formulation. Let T ∈M(n) be the unreduced symmetric
tridiagonal matrix in (1). In block notation, T can be written as

T =



T1 UT2
U2 T2 UT3

U3
. . .

. . .

. . .
. . . UTq
Uq Tq

 ,

Ti ∈M(ni),
q∑
i=1

ni = n,

mi =
i∑

j=1

nj ,

Ui+1 = bmi+1e
(ni+1)
1

(
e
(ni)
ni

)T
and the Cholesky factors of the decomposition in (2) as

L =


L1

R2 L2

R3 L3

. . .
. . .

Rq Lq

 ,
Li ∈M(ni),

Ri+1 = ymi+1e
(ni+1)
1

(
e
(ni)
ni

)T
.

By equating LLT and T we obtain

T ′1 ≡ L1L
T
1 = T1

and

T ′k ≡ LkLTk = Tk −RkRTk = Tk − y2
mk−1+1e

(nk)
1 (e

(nk)
1 )T , k = 2, . . . , q.

Our parallel algorithm precomputes the “perturbations” y2
mk−1+1 and then applies

the transformation

a′mk−1+1 ≡ amk−1+1 − y2
mk−1+1, k = 2, . . . , q,

thus reducing the computation of the Cholesky decomposition of T to q indepen-
dent instances of the same problem, i.e., the computation of the Cholesky factors of
T ′1, . . . , T

′
q. We now show some preliminary facts about these perturbations that we

will later use to prove the correctness of our parallel algorithm.
For i = 1, . . . , n, let

T(i) =



a1 b2
b2 a2 b3

b3
. . .

. . . bi
bi ai

 .

Then it easily follows that

y2
mk+1 = b2mk+1e

T
mk
T−1

(mk)
emk

.

Actually, our parallel algorithm does not explicitly compute the perturbation y2
mk+1

of the first diagonal element of the block Tk+1. Instead, it computes the quantity

xmk
≡ a′mk

= amk
− b2mk

eTmk−1T
−1
(mk−1)emk−1(4)
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(i.e., a perturbed last element of the preceding block) and then obtains

a′mk+1 = amk+1 − b2mk+1/xmk

by using recurrences (3). The perturbation originally sought can be expressed, in
terms of the computed quantity, as y2

mk+1 = b2mk+1/xmk
.

Lemma 5.1. Let Pi, i = 1, . . . , j, be a sequence of cyclic transformations. Then

P = Pj · · ·P2P1 =

j∏
i=1

(
Hi 0
hTi 1

)
=

(
H 0
hT 1

)
is a cyclic transformation.

Lemma 5.2. Let P(mk) be a cyclic transformation such that

P(mk)T(mk) =

(
Hk 0
hTk 1

)(
T(mk−1) bmk

emk−1

bmk
eTmk−1 amk

)
=

(
T̃(mk−1) ∗

0 ãmk

)
.(5)

Then we have

ãmk
= amk

+ bmk
hTk emk−1 = xmk

.(6)

Proof. From the second equality in (5) we have T(mk−1)hk = −bmk
emk−1; hence

hk = −bmk
T−1

(mk−1)emk−1 and (6) follows from (4).

In the preprocessing stage of our parallel algorithm we apply a sequence of parallel
cyclic transformations to obtain the values xmk

, k = 1, . . . , q − 1, called pivots.

5.2. The algorithm. We assume for simplicity that the tridiagonal matrix is
of order N = np, with p being the number of processors. We initially distribute the
entries of the matrix between the processors so that each processor stores n consecutive
rows. We denote these blocks of rows by

Bi =

 b(i−1)n+1 a(i−1)n+1 b(i−1)n+2

. . .
. . .

. . .

bin ain bin+1

 ∈M(n, n+ 2)

for i = 1, . . . , p.
Our parallel Cholesky algorithm consists of three stages:
(i) Diagonalization,
(ii) Bottom-Up and Top-Down sweeps,
(iii) Factorization.

In stage (i) each processor performs locally O(n) parallel steps independently.
In stage (ii) the processors perform O(log p) operations which require interprocessor
communication. Finally, in stage (iii) each processor performs O(n) parallel steps
independently. Altogether, the number of parallel steps is O(n+ log p).

Stage (i): Diagonalization. Let

B =

 b1 a1 zT

z A c
cT an bn+1

 ∈M(n, n+ 2)(7)

denote the block assigned to a generic processor, where A is a tridiagonal matrix of

order n − 2, z = b2e
(n−2)
1 , and c = bne

(n−2)
n−2 . Each processor i, 1 < i < p, performs
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a forward Gaussian elimination procedure to eliminate bn in the last row and then a
backward Gaussian elimination procedure to eliminate b2 in the first row. In matrix
notation this amounts to applying a cyclic transformation

B′ = PB =

 1 −b2fT
I

−bngT 1

B,
f = A−1e

(n−2)
1 ,

g = A−1e
(n−2)
n−2 ,

so that

B′ =

 b1 a′1 b′2
z A c
b′n a′n bn+1

 =

 b1 v y
z A c
y w bn+1

 ,(8)

since y = b′2 = b′n by symmetry. Processor 1 performs the forward Gaussian elimina-
tion step only to eliminate bn in the last row, obtaining

B′ =

(
A c

w bn+1

)
∈M(n, n+ 1),

and processor p remains idle. By the end of stage (i), the in-between rows and columns
do not further contribute to the search for the pivots xmk

, and they can be ignored.
We now consider the matrix T (0), of order 2p− 3, formed using the relevant elements
from the blocks B′ computed by processors 1 through p − 1. Note that processor 1
contributes one row, while processor i, 1 < i < p, contributes two rows; i.e.,

T (0) ≡



w
(0)
1 b

(0)
2

b
(0)
2

. . .

. . .
. . . b

(0)
p−1

b
(0)
p−1 v

(0)
p−1 y

(0)
p−1

y
(0)
p−1 w

(0)
p−1


,

where b
(0)
i+1 = bin+1. Processor i = 2, . . . , p− 1 stores the submatrix

T
(0)
i ≡

 b
(0)
i v

(0)
i y

(0)
i

y
(0)
i w

(0)
i b

(0)
i+1

 ,

while processor 1 stores

X
(0)
1 ≡

(
w

(0)
1 b

(0)
2

)
≡
(
x1 b

(0)
2

)
.

Stage (ii): Bottom-Up and Top-Down sweeps. This stage consists of two sequences
of cyclic transformations, called Bottom-Up and Top-Down sweeps, which involve the
submatrices stored in the different processors according to a tree-like pattern. Each
sweep corresponds to the merging of two submatrices with the generation of a new
submatrix using the extreme rows.
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Bottom-Up sweeps are performed as follows. For s = 1, . . . , log2 p − 1 and i =

2, . . . , p/2s − 1, first merge the matrices T
(s−1)
2i−1 and T

(s−1)
2i ,

 T
(s−1)
2i−1

T
(s−1)
2i

 =


b
(s−1)
2i−1 v

(s−1)
2i−1 y

(s−1)
2i−1

y
(s−1)
2i−1 w

(s−1)
2i−1 b

(s−1)
2i

b
(s−1)
2i v

(s−1)
2i y

(s−1)
2i

y
(s−1)
2i w

(s−1)
2i b

(s−1)
2i+1

 ,

and then eliminate y
(s−1)
2i−1 in the top row and y

(s−1)
2i in the bottom row by applying a

cyclic transformation P
(s)
i ; i.e.,

P
(s)
i

 T
(s−1)
2i−1

T
(s−1)
2i

 =


b
(s)
i v

(s)
i y

(s)
i

y
(s−1)
2i−1 w

(s−1)
2i−1 b

(s−1)
2i

b
(s−1)
2i v

(s−1)
2i y

(s−1)
2i

y
(s)
i w

(s)
i b

(s)
i+1

 .

Finally, form the matrix T
(s)
i using the extreme rows

T
(s)
i =

 b
(s)
i v

(s)
i y

(s)
i

y
(s)
i w

(s)
i b

(s)
i+1

 .

For i = 1 the merging operation involves only three rows, X
(s−1)
1

T
(s−1)
2

 =


x2s−1 b

(s−1)
2

b
(s−1)
2 v

(s−1)
2 y

(s−1)
2

y
(s−1)
2 w

(s−1)
2 b

(s−1)
3

 ,

and y
(s−1)
2 is eliminated from the bottom row

P
(s)
1

 X
(s−1)
1

T
(s−1)
2

 =


x2s−1 b

(s−1)
2

b
(s−1)
2 v

(s−1)
2 y

(s−1)
2

w
(s)
1 b

(s)
2

 ,(9)

yielding the matrix

X
(s)
1 =

(
w

(s)
1 b

(s)
2

)
≡
(
x2s b

(s)
2

)
.

The Top-Down sweeps are performed in a similar way.
For s = log2 p− 2, log2 p− 3, . . . , 0, and odd i (i.e., i = 3, 5, . . . , p/2s − 1), let the

nonnegative integer l and the positive odd j be such that i = 2lj + 1 (l and j are

uniquely determined). First merge X
(s+l)
j and T

(s)
i :

 X
(s+l)
j

T
(s)
i

 =


xj2s+l b

(s)
i

b
(s)
i v

(s)
i y

(s)
i

y
(s)
i w

(s)
i b

(s)
i+1

 .
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Fig. 1. A flowchart for p = 23 processors.

Then eliminate y
(s)
i in the bottom row and form X

(s)
i = (xi2s b

(s)
i+1).

Bottom-Up and Top-Down sweeps for p = 8 are depicted in Figure 1.

Theorem 5.3. Stages (i) and (ii) of the parallel Cholesky algorithm correctly
compute the pivots xk, k = 1, . . . , p− 1.

Proof. With respect to any processor k, 1 ≤ k ≤ (p − 1), each transformation
computed during stages (i) and (ii) of the algorithm is a cyclic transformation applied
to the submatrix T(mk). It follows from Lemma 5.1 that the whole sequence is still a
cyclic transformation applied to T(mk). Since this annihilates the off-diagonal element
bmk

, the proof follows from Lemma 5.2.

Note that the pivotal elements x2s are computed from the tridiagonal symmetric
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matrix

T2s =



X
(s−1)
1

T
(s−2)
3

. . .

T
(0)
2s−1

T2s


of order n+2s−1. Analogously, for i = 2lj+1, the pivot elements xi2s are computed
from the tridiagonal symmetric matrix

Ti2s =



X
(s+l)
j

T
(s−1)
2i−1

T
(s−2)
4i−1

. . .

T
(0)
i2s−1

Ti2s


of order n+ 2s+ 1.

Stage (iii): Factorization. The parallel factorization of the independent blocks
is straightforward. Processor 1 computes the Cholesky decomposition of its original
block T1, while processors i = 2, . . . , p modify their blocks according to the rule

a′(i−1)n+1 = a(i−1)n+1 − b2(i−1)n+1/x(i−1)n

and then compute their decompositions.

6. Parallel computational cost. In this section we study the computational
cost of the parallel Cholesky algorithm of section 5.2.

Stage (i). To determine the cost of this stage, we must give the details of the
forward and backward Gaussian elimination procedures. We denote the blocks in each
processor as in (7) and the computed transformations as in (8). Since we compute
the revised decomposition introduced in section 4, in what follows we actually use the
squares ci of the off-diagonal elements bi of the matrix T .
• Forward Gaussian elimination:
1. Set z = c2 and w = a2.
2. For i = 3, . . . , n, set

t = ci/w,

z = z ∗ t/w,
w = ai − t.

• Backward Gaussian elimination:
1. Set v = an−1.
2. For i = n− 1, . . . , 2, set

t = ci/v,

v = ai−1 − t.
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The flop count for stage (i) is therefore ∼ 6n.
Stage (ii). Let

T =


b1 v1 y1

y1 w1 b2

b2 v2 y2

y2 w2 b3

⇒


b1 v y

y1 w1 b2

b2 v2 y2

y w b3


denote a typical transformation in the Bottom-Up sweep. Again, we consider the
squares of the off-diagonal elements c2 = b22 and zi = y2

i , i = 1, 2, and compute
z = y2. Therefore, we perform the following calculation:

α = w1 ∗ v2, β = c2/α, γ = 1− β,
t1 = z1/(w1 ∗ γ), t2 = z2/(v2 ∗ γ),

v = v1 − t1, w = w2 − t2, z = β ∗ t1 ∗ t2,

which takes 11 parallel steps.
Similarly, let

T =


x1 b2

b2 v2 y2

y2 w2 b3

⇒


x1 b2

b2 v2 y2

x2 b3


denote a typical transformation in the Top-Down sweep. Then we compute t =
v2 − c2/x1 and x2 = w2 − z2/t in four parallel steps.

Stage (iii). The number of parallel steps is ∼ 2n (see section 4).
The total number Tp of parallel steps is therefore

Tp ∼ 6n+ 11 log p+ 4 log p+ 2n = 8n+ 15 log p.

Assuming that log p � n, we conclude that the cost of the parallel algorithm is
governed by the factor 8n. Hence, the parallel algorithm requires about four times
the number of flops of the sequential algorithm. The theoretical speedup is thus p/4.
However, on vector, pipelined, and super-scalar machines, the flop count determines
the true performance of an algorithm only to within a constant factor. Actually,
an algorithm with a worse flop count might perform better in the case it can be
vectorized. We show now that our parallel algorithm can be satisfactorily vectorized.

Vectorization. Let N = pn, where p = 2r is the number of “physical” processors,
each with vectorization capability. One possibility for exploiting this additional power
relies on employing some parallel slackness. In other words, we assume that the
number of available processors is larger than p and let each physical processor simulate
many such “logical” processors. More precisely, let n = mP , where P = 2t, so that
N = qm, with q = pP = 2r+t. We let each physical processor perform the tasks of
P corresponding logical processors. The number of flops in stages (i) and (iii) is still
approximately 8n. The number of flops in stage (ii) increases to about 15(r + P ),
which is still negligible for (r + P ) � n. However, the main stages of the algorithm,
namely, stages (i) and (iii), can now be vectorized, with each processor working on
vectors of length P = 2t. We provide an example of this sort in the next section.
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7. Numerical examples. In this section we present some experimental results
obtained on a CM5 parallel supercomputer with p = 32 nodes. Each node is in turn
composed of four vector units, controlled by a SPARC microprocessor, and 32 Mbytes
of memory. The running time and speedup for the largest problems on which we could
experiment are shown in Table 2. We have computed the Cholesky factorization of
several classes of tridiagonal matrices, including (a) the symmetric tridiagonal Toeplitz
matrix with the diagonal element equal to 2 and the off-diagonal element equal to 1,
(b) matrices obtained from the matrix defined in (a) by varying the diagonal elements,
and (c) random tridiagonal matrices. The order of the test matrices is N = pn = qm,
where p = 32 is the number of the “physical” processors actually available and q is
the number of “logical” processors (see section 5). Table 2 gives the running times
for each of the following stages of the algorithm.

1. D—Logical Diagonalization.
2. I—Bottom-Up and Top-Down stages performed by the logical processors within

any physical processor.
3. E—Bottom-Up and Top-Down stages performed by the physical processors.
4. C—Logical Factorization.
5. S—Sequential algorithm.

Table 2

Computational examples on the CM5, q = 216.

N 3 ∗ 224 225 224

m 3 ∗ 28 29 28

D 1.444 0.963 0.480

I 0.033 0.033 0.033

E 0.014 0.014 0.014

C 0.562 0.372 0.186

total 2.054 1.376 0.713

S 2704.12 1791.73 880.85

speedup 1316 1296 1235

Clearly, the speedup is larger than p/4. Besides the additional parallelization due
to having four vector units, we gain a factor of ∼ 40 due to vectorization.

In Table 3 we depict similar results for matrices of smaller size. The decrease in
performance is due to shorter vector length and the increased effect of communication
overheads. Thus, as the matrix size becomes smaller we should consider as a better
strategy using fewer processors. (We are not able to report on such experiments due
to the fixed system partition in ICSI.) The performance we observed suggests that we
should use vector sizes ≥ 128 and blocks of order ≥ 64, so that for N = 4 ∗ 213p we
should use p processors.

8. Error analysis. The main result of the a priori analysis (see [7]) is that
the pivots x̂nk and x̂′nk, computed by processor k at the end of stages (ii) and (iii),
respectively, satisfy

|x̂nk/x̂′nk| = (1 + η), |η| = O((n+ log p)θ̂),

where θ̂ represents the input precision, provided we use some higher precision θ < θ̂
in the computation. To appreciate the significance of this result we proceed with the
following.
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Table 3

Smaller size matrices.

N 220 219 218

q 214 213 213

m 26 26 25

D 0.037 0.022 0.011

I 0.012 0.007 0.007

E 0.014 0.014 0.014

C 0.016 0.010 0.005

total 0.079 0.053 0.037

S 50.43 24.78 12.36

speedup 638 468 334

A posteriori error analysis. Consider stage (iii) of the parallel algorithm, i.e.,
the actual transformation applied to the matrix. As in (7), let B denote the block
assigned to a given processor p, and let x0 be the pivot computed (during the first
two stages) by processor p − 1. Processor p computes the following recurrences (see
section 4):

zi = ci/xi−1, xi = ai − zi, i = 1, . . . , n.

Taking the rounding errors into account, we have

ẑi = ĉi/x̂i−1, ĉi = ci(1 + εi), |εi| ≤ θ,
x̂i = âi − ẑi, âi = ai(1 + ηi), |ηi| ≤ θ,

where x̂0 is the computed pivot. In this analysis there is a discrepancy; i.e., x̂n is not
the same as the pivot transmitted to processor p + 1. To fix this problem, define x̂′0
as the pivot computed by processor p− 1 by the end of stage (iii); then the first step
above can be written as ẑ1 = (c1/x̂

′
0)(1 + ε1)(x̂′0/x̂0) = ĉ1/x̂

′
0, where ĉ1 = (1 + ε′1)c1,

and (1 + ε′1) = (1 + ε1)(x̂′0/x̂0).
The above argument shows that the solution computed by our parallel algorithm

is the exact solution of a system in which the first off-diagonal elements of each block
are further perturbed (with respect to the classical sequential algorithm) by the factor
x̂′0/x̂0. Hence, when |(x̂′0 − x̂0)/x̂0| = O(θ) the algorithm is componentwise stable in
the backward sense, and this is confirmed by the a priori analysis.

We found experimentally that |(x̂′0 − x̂0)/x̂0| is relatively small even using stan-
dard double precision on very ill-conditioned matrices; see Table 4. The table contains
results related to three different kinds of tests: (i) Test 1: random diagonally dom-
inant matrices; (ii) Test 2: the Toeplitz tridiagonal symmetric matrix with aii = 2
and ai+1,i = ai,i+1 = 1; (iii) Test 3: random tridiagonal matrices. We have added
an appropriate shift to the diagonal elements to assure positive definiteness of the
perturbed matrix.

9. Further work. The efficiency of the LR scheme, accelerated with our algo-
rithm in the decomposition stage, should be compared with other algorithms for the
computation of the eigensystem of tridiagonal symmetric matrices, notably QR [6]
and divide-and-conquer algorithms [4, 10, 13].

Possible generalizations of this work include the cases of block tridiagonal and
band matrices. In fact, for both kinds of matrices the algorithmic framework appears
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Table 4

Error analysis for N = 223 and m = 28. Each test column gives the number of correct digits
in the computed factorization as produced by the a posteriori error bound.

Shift Test 1 Test 2 Test 3

10−4 14 15 16

10−8 12 14 16

10−12 12 14 8

10−14 12 14 6

to be essentially the same. In addition, it is possible to apply similar ideas to the
development of a parallel band version of the QR algorithm.
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Abstract. Block BICG (BBICG) is an appealing method for solving AX = B with A ∈ Rn×n
and X,B ∈ Rn×s. Because of its short-term recurrence form, memory allocation and computa-
tional cost do not depend on additional parameters. Unfortunately, loss of orthogonality prevents
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We present a new version of the algorithm that generates blocks of vectors that are vector-
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computation of the coefficients. In order to smooth the possibly erratic behavior of the residual
norm curve, the approximate solution is determined using a block QMR procedure. The new method
considerably improves the robustness of the original algorithm, showing very good performance on
dense or preconditioned matrices over both BBICG and the single right-hand side solver coupled
two-term QMR method applied on each system.

Key words. Krylov subspace, block iterative methods, two-sided Gram–Schmidt, multiple
right-hand sides, large linear systems
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1. Introduction. Some application problems require the solution of systems of
linear equations with the same coefficient matrix but different right-hand sides; see
the references in [30]. When the dimension n of the problem is small, a convenient
way to solve the given systems consists of decomposing the coefficients matrix into
two simpler factors and then solving the corresponding subproblem for all available
right-hand sides [14, 7]. Direct methods can also be advantageous if the right-hand
sides are not all simultaneously available. However, for n large this approach can
be prohibitively expensive both in terms of memory and computational cost, and so
iterative schemes become appealing. We are thus looking at the problem

AX = B, A ∈ Rn×n, X,B ∈ Rn×s(1.1)

with A nonsymmetric, n large, and s � n. Given a first guess X0 ∈ Rn×s, we
would like to determine an approximation Xm = X0 + Zm of X with Zm belong-
ing to the block Krylov subspace Km(A,R0) = span{R0, AR0, . . . , A

m−1R0}, where
R0 = B − AX0. In theory, the presence of blocks allows the computation of a good
approximation Xm with m smaller than if a single Krylov subspace were to be built
for each system; in practice, however, this is not always the case [31].

Natural implementations of methods that approximate X using a block Krylov
subspace are generalizations of single right-hand side solvers; available algorithms ei-
ther explicitly compute a basis of Km(A,R0) (such as BGMRES [32]) or use a short-
term recurrence for generating implicitly linearly independent elements of Km(A,R0)
(such as BBICG [23]). The choice between the two classes of methods is based on
several parameters, among which is the availability of the transpose of A. BGMRES
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requires the computation and storage of an orthogonal basis. Therefore, memory
limitations and high computational cost force restarting; the method can then experi-
ence stagnation or slow convergence [30]. Due to a biorthogonality condition, BBICG
exploits a short-term recurrence and does not require the explicit generation of an
orthogonal basis. As an important consequence, BBICG in general avoids restart.
On the other hand, round-off errors quickly destroy the linear independence of the
generated blocks, affecting the convergence of the method [30].

Due to the high computational cost per iteration, block methods are advanta-
geous when (i) the total number of iterations decreases considerably with respect to
the single right-hand side solver or (ii) a moderately lower number of iterations is
accompanied by a high cost of matrix-vector operations with the coefficients matrix
A. Consequently, the block approach can be effective when dealing with dense or
preconditioned matrices [18, 29, 20].

It is well known that robustness is related to a stable computation of the iteration
coefficients. In this paper we propose a new version of BBICG, reviewed in section
2, in which the computation of the recurrence coefficients is modified. Four sets of
matrices are introduced,

Qk = [Q0, . . . , Qk], Q̃k = [Q̃0, . . . , Q̃k],

Sk = [S0, . . . , Sk], S̃k = [S̃0, . . . , S̃k],

that are mutually orthogonal; that is, they satisfy Q̃TkQk = DQ and S̃Tk ASk = DS with
DQ and DS diagonal matrices. Note that in the original implementation of BBICG
both matrices DQ and DS are only required to be block diagonal. We provide ex-
perimental evidence that full biorthogonality, rather than only block biorthogonality,
improves the robustness of the original method. We would like to mention that the
idea of computing vectorwise orthogonal vectors was used by Ruhe in the symmetric
eigenvalue problem for stabilizing the Lanczos recurrence [26].

During the recurrence process, loss of rank may occur on matrices Qk, Sk or
Q̃k, S̃k. If this is the case, the exact solution of a related problem has been determined.
In order to deflate the block iterates, we restart the algorithm with the new full rank
bases. Another strategy would consist of continuing the recurrence process with the
deflated blocks, while keeping track in some way of the deflated vectors to maintain
biorthogonality. Due to the difficulties that the implementation of such a strategy
would encounter on the block algorithm, we have decided to discard this approach.

In section 3.1 and section 3.2 the tools used in the implementation of the new al-
gorithm, namely, the Gram–Schmidt biorthogonalization and the block quasi-minimal
residual procedure, will be described. In section 4 the new recurrences and the result-
ing algorithm are derived. The approximate solution is then determined via a block
smoothing residual technique based on the single right-hand side procedure QMR
[11]. Some stability issues are discussed in section 5. In particular, it is shown that
in some cases almost-singularity of DS or DQ can be overcome by simply permuting
the columns of the corresponding iteration matrices. In section 6 we show that for a
certain class of matrices the new method (QMR-MBCG) performs considerably better
than both the original BBICG and the corresponding single right-hand side solver.
Some applications are given in section 6.2.

The following notation will be used. The Frobenius norm for matrices and vec-
tors will be denoted by ‖ · ‖ ≡ ‖ · ‖F . Matrix 0n,s is the zero matrix in Rn×s,
abbreviated with 0s for n = s; matrix In,s is the principal submatrix of the iden-
tity matrix in Rn; and In will denote the corresponding square matrix. Moreover,



A STABILIZED QMR VERSION OF BLOCK BICG 421

Ei := [0s, . . . , Is, . . . , 0s]
T with Is at the ith block position; the total size of Ei will

be made clear from the context. We will denote by diag(d1, . . . , dm) a block diagonal
matrix of size m and diagonal elements di ∈ Rs×s. Vector X:,i is the ith column of
matrix X, for which |X| is the elementwise absolute value.

2. Review of block BICG. The block BICG algorithm, originally proposed
by O’Leary [23] as a generalization of the biconjugate gradient method [19], com-
putes two sets of direction matrices {P0, . . . , Pm−1} and {P̃0, . . . , P̃m−1} that span
the subspaces Km(A,R0) and Km(AT , R̃0), respectively, where R̃0 is a chosen addi-
tional matrix. Letting P0 = R0 and P̃0 = R̃0, the iterates are computed using the
following recursions:

Pi+1 = Ri+1 + Piβi, P̃i+1 = R̃i+1 + P̃iβ̃i,(2.1)

Ri+1 = Ri −APiαi, R̃i+1 = R̃i −AT P̃iα̃i,(2.2)

where the coefficients are defined as

βi = (R̃Ti Ri)
−1R̃Ti+1Ri+1, β̃i = (RTi R̃i)

−1RTi+1R̃i+1,(2.3)

αi = (P̃Ti APi)
−1R̃Ti Ri, α̃i = (PTi A

T P̃i)
−1RTi R̃i.(2.4)

In practice, the matrices Pi, P̃i can be computed so as to have orthogonal columns
[23, section 2]. Moreover, the iterates satisfy

R̃Tj Ri = 0, i > j, biorthogonality condition,(2.5)

P̃Tj APi = 0, i > j, A-biorthogonality condition.(2.6)

In finite arithmetic computation, these relations may not be satisfied even for |i− j|
small (cf. section 6.1). Indeed, the computation of the coefficients in (2.3) and (2.4)
requires the solution of s×s systems with possibly ill-conditioned coefficients matrices.
This will affect the computation of the next iterates.

The algorithm is also characterized by the erratic behavior of the residual norm.
This problem can be overcome using a quasi-minimization procedure; see [9, 11] and
the references therein for a general treatment of the QMR approach in Lanczos meth-
ods. The derivation of a block QMR scheme is described in section 3.2.

Finally, the residuals Ri and R̃i are involved in the computation. This may
cause some computational problems, especially when the associated system is close
to convergence; see section 6.2.

3. Some tools.

3.1. The two-sided modified Gram–Schmidt procedure. It was observed
in [24] that the Gram–Schmidt procedure does not require an inner product. Indeed,
given x, y ∈ Rn, the bilinear form (x, y) := xT y can be used for generating sets
of biorthogonal vectors [x1, . . . , xs] and [y1, . . . , ys], thus satisfying (xi, yj) = 0 and
(xi, yi) 6= 0 for i, j = 1, . . . , s, j 6= i; see also [5, 1]. Obviously, it may be that for
certain xi, yi (xi, yi) = 0; in this case the biorthogonalization will not be successful.
The basic procedure looks as follows.

Function [Q, ξ, Q̃, ξ̃,Ω] = MGS(X,Y ).
(a) for i = 1, s
(b) Q:,i = X:,i

(c) Q̃:,i = Y:,i
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(d) for j = 1, i− 1
(e) ξj,i = Ω−1

j,j Q̃
T
:,jQ:,i, Q:,i = Q:,i −Q:,jξj,i

(f) ξ̃j,i = Ω−Tj,j Q
T
:,jQ̃:,i, Q̃:,i = Q̃:,i − Q̃:,j ξ̃j,i

(g) end
(h) ξi,i = ‖Q:,i‖, Q:,i = Q:,iξ

−1
i,i

(i) ξ̃i,i = ‖Q̃:,i‖, Q̃:,i = Q̃:,iξ̃
−1
i,i

(l) Ωi,i = Q̃T:,iQ:,i

(m) end
Given X,Y ∈ Rn×s, function MGS determines matrices Q, Q̃ of the same size as

X,Y and normal columns such that Q̃TQ = Ω diagonal and Y = Q̃ξ̃, X = Qξ with
ξ, ξ̃ s×s upper triangular matrices; see [24]. The computational cost of MGS is about
4ns2 + 8ns floating point operations (flops).

Given A ∈ Rn×n and matrices Y, Z ∈ Rn×s, a similar problem consists of finding
S, S̃ such that S̃TAS = Ω and Z = Sξ, Y = S̃ξ̃ with Ω, ξ and ξ̃ as before. MGS can
be adapted to handle this case; we will call this version MGS.A. The input matrices
of MGS.A are AZ, Y, Z, where AZ plays the role of X in MGS. Function MGS.A is
obtained from MGS by adding the following lines:

(c′) T:,i = Z:,i

(f′) T:,i = T:,i − T:,jξj,i
(i′) T:,i = T:,iξ

−1
i,i

thus transforming (AZ, Y, Z) into the triple (Q, Q̃, T ) such that Q̃TAT = Ω diagonal,
Q = AT , and (Q̃ξ̃)TQξ = Y TAZ for a total cost of 5ns2 +9ns flops. As a by-product,
the routine implicitly determines Q = AT , which does not need to be computed again.

As already mentioned, due to the bilinear form (x, y) = xT y, both algorithms
can fail to generate Q and Q̃ if, for any j, Ωj,j = 0; the treatment of this important
problem is postponed until section 5.

3.2. Smoothing the curve of the residual norm. The QMR procedure was
first introduced by Freund and Nachtigal for smoothing the residual convergence curve
of the Lanczos method for solving non-Hermitian linear systems [11]. We will be
referring to QMR not as a system solver, but as a smoothing technique applicable to
the residual recurrence of a Krylov subspace solver characterized by a highly oscillating
convergence curve; an analysis of the QMR smoothing can be found in [6, 33]. The
procedure is described below for the recurrence iterates generated by BBICG. After i
iterations, BBICG has generated blocks Qi,Si ∈ Rn×(i+1)s satisfying

ASi−1Γi−1 = QiTi(3.1)

with Γi = diag(α0, . . . , αi) and Ti ∈ R(i+1)s×is block bidiagonal matrix, Ti = (Tk,j).
The approximate solution is written as Xi = X0 + Si−1Γi−1y, y ∈ Ris×s, and if
R0 = Q0ξ0, the residual Ri = B − AXi becomes Ri = Qi(E1ξ0 − Tiy). The block
quasi-minimization procedure consists of minimizing the quantity

min
y∈Ris×s

‖Wi(E1ξ0 − Tiy)‖,(3.2)

whereWi is a weight matrix that allows us to compute a simple approximation of the
residual norm [29]. If, for instance, the columns ofQi have unit norm, the computation
ofWi can be avoided. Problem (3.2) is solved by doing a QR decomposition of Ti with
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factors Yi and Ui such that Y Ti Yi = I and Ui is upper triangular. Due to the banded
structure of Ti, this can be carried out via Givens rotations in an incremental manner.
Moreover, matrix Si−1U

−1
i can be computed with a short-term recurrence formula so

that Xi+1 = Xi + Zi+1ηi, where Si−1U
−1
i = [Z0, . . . , Zi]. Note that the elements ηi

of η := Y TE1ξ0 are also updated iteratively. The final scheme is as follows.
Function [Zi+1, ηi, η̃i+1, Gi] = MINIM(Ti+1,i, γi, η̃i, Zi, Si, Gi−1).

− Apply the rotations of the previous step (matrix Gi−1)
− Generate new rotations matrix Gi
− Update η with the new rotations
− Generate Zi+1 with the new columns of Ti

We refer to [29] for a detailed description of the procedure in block form. The
major computational cost of the process is 6ns2 + ns+ 2s3 flops.

It is evident that the procedure only acts on the approximate solution iterate
by doing an appropriate decomposition of Ti, while the columns of Qi and Si are
generated by the underlying method. Therefore, the robustness properties of the
method remain unchanged.

4. A new recurrence. We next describe how to generate the iterates of the
sets Qk, Q̃k,Sk, and S̃k that are vectorwise biorthogonal. We will use the procedure
introduced in section 3.1 to stabilize the computation of the iteration parameters.
This will give the recurrence formulas for the new algorithm.

Assume that for k = 0, . . . , i there exist iterates Qk, Q̃k, Lk, L̃k satisfying R0 =
Q0ξ0, R̃0 = Q̃0ξ̃0, Q̃TkQk = Ωk with Ωk diagonal and R0 = L0τ0, R̃0 = L̃0τ̃0 such

that Π0 = L̃T0 AL0 is diagonal. Let Sk, S̃k be the A-biorthogonal form of Lk, L̃k,
respectively; that is,

Lk = Skτk, L̃k = S̃k τ̃k with S̃Tk ASk = Πk diagonal.(4.1)

We also assume that iterates Qk, Q̃k and Sk, S̃k satisfy (2.5) and (2.6). We want to
determine short-term recurrence relations to compute the next iterates Qi+1, Q̃i+1,
Si+1, and S̃i+1.

The first step consists of replacing the recursions (2.2) with iterations in Qi, Q̃i
and Li, L̃i. We seek matrices σi, σ̃i that force mutual orthogonality of the new blocks

gi+1 = Qi −ALiσi, g̃i+1 = Q̃i −AT L̃iσ̃i(4.2)

with respect to the previous iterates. Hence we define

σi = (L̃Ti ALi)
−1Q̃Ti Qi, σ̃i = (LTi A

T L̃i)
−1QTi Q̃i.(4.3)

From (4.1) it follows that L̃Ti ALi = τ̃Ti Πiτi. Moreover, the definition of Qi and Q̃i
gives1

σi = τ−1
i Π−1

i τ̃−Ti Ωi, σ̃i = τ̃−1
i Π−Ti τ−Ti ΩTi .

Using (4.1) once more, the recursions (4.2) can be written as

gi+1 = Qi −ASiΠ−1
i τ̃−Ti Ωi, g̃i+1 = Q̃i −AT S̃iΠ−Ti τ−Ti ΩTi .(4.4)

1 The notation ΩT ,ΠT for Ω,Π diagonal is used for keeping track of transposition when using
the safeguard procedure of section 5.1.
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We determine the new iterates Qi+1, Q̃i+1 so that biorthogonality inside the block is
preserved, that is, using the two-sided Gram–Schmidt decomposition,

gi+1 = Qi+1ξi+1, g̃i+1 = Q̃i+1ξ̃i+1 with Q̃Ti+1Qi+1 = Ωi+1.(4.5)

Relations (4.4) and (4.5) replace the original ones in (2.2). However, iterates
Ri+1, R̃i+1 can be recovered by observing that

Ri = Qiξiξi−1 . . . ξ0, R̃i = Q̃iξ̃iξ̃i−1 . . . ξ̃0.(4.6)

Recursions involving the direction matrices Pi and P̃i change accordingly. The
substitution of (4.6) and (4.5) in (2.1) gives

Pi+1 = Qi+1ξi+1 · · · ξ0 + Pi(ξi · · · ξ0)−1Ω−1
i ξ̃Ti+1Ωi+1ξi+1 · · · ξ0.

An analogous relation holds for P̃i+1. Let Li := Pi(ξi · · · ξ0)−1, L̃i := P̃i(ξ̃i · · · ξ̃0)−1.
Thus, the recurrences

Li+1 = Qi+1 + LiΩ
−1
i ξ̃Ti+1Ωi+1, L̃i+1 = Q̃i+1 + L̃iΩ

−T
i ξTi+1ΩTi+1(4.7)

complete the description of the new scheme. The iterates Si+1, S̃i+1 are generated by
forcing A-biorthogonality between the new matrices Li+1, L̃i+1 in (4.7).

Using (4.6) and the definition of Li, L̃i, the original BBICG recurrence Xi+1 =
Xi + Piαi becomes

Xi+1 = Xi + SiΠ
−1
i τ̃−Ti Ωiχi with χi = ξiχi−1, χ0 = ξ0.

An approximate solution with a smoother residual norm can be obtained using the
quasi-minimization technique of section 3.2. The ith block column in the matricial
equality (3.1) thus becomes

ASiγi = [. . . , Qi−1, Qi, gi+1]


...

0s
Is
−ξi+1

 .
The principal steps of the new algorithm QMR-MBCG are summarized below, where
the acronym stands for the quasi-minimum residual norm version of modified BBICG.
For the system (1.1) right preconditioning has been used, which allows the minimiza-
tion of the unpreconditioned residual.

Algorithm X=QMR-MBCG(A,M,B,X0, R̃, ε).
X = X0, R = B −AX0

Z = 0n,s
[Q0, ξ0, Q̃0, ξ̃0,Ω0] = MGS(R,M−T R̃)
L0 = R, L̃0 = R̃
[S0, τ0, AM

−1S0, S̃0, τ̃0,Π0] = MGS.A(AM−1L0, L̃0, L0)
G−1 = I2s, η̃0 = ξ0
for i = 0, 1, . . . ,
γi = Π−1

i τ̃−Ti Ωi, γ̃i = Π−Ti τ−Ti ΩTi
gi+1 = Qi −ASiγi, g̃i+1 = Q̃i −M−TAT S̃iγ̃i
[Qi+1, ξi+1, Q̃i+1, ξ̃i+1,Ωi+1] = MGS(gi+1, g̃i+1)
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[Z, ηi, η̃i+1, Gi] = MINIM(ξi+1, γi, η̃i, Z, Si, Gi−1)
X = X + Zηi
If X good enough then stop
δi = Ω−1

i ξ̃Ti+1Ωi+1, δ̃i = Ω−Ti ξTi+1ΩTi+1

Li+1 = Qi+1 + Liδi, L̃i+1 = Q̃i+1 + L̃iδ̃i,
[Si+1, τi+1, AM

−1Si+1, S̃i+1, τ̃i+1,Πi+1] = MGS.A(AM−1Li+1, L̃i+1, Li+1)
end

The biorthogonalization functions MGS and MGS.A are as described in section
3.1. We note that MGS generates biorthonormal matrices Q, Q̃; thus the weight
matrix Wk in (3.2) can be taken to be the identity matrix. Convergence can be
checked at each step using the upper bound [29]

‖B −AXi‖ ≤ s
√
i+ 1‖η̃i+1‖.

The residual of the underlying BBICG can be recovered by updating formula (4.6),
while the true residual could be determined by adding a recurrence relation [11, 29].
A theoretical analysis of convergence properties of block Krylov subspace methods
was recently proposed in [31], where it was shown that standard results for s = 1 can
be naturally generalized to s ≥ 1 by using matrix polynomials; see also [29] for results
concerning the block QMR approach.

We also remark that when A is symmetric the iteration recurrence is analogous to
that of the modified block CG algorithm introduced in [1]. Moreover, QMR-MBCG
can be seen as a generalization to multiple systems of the coupled two-term QMR
method proposed in [12].

5. On the robustness of modified BBICG. It is known that loss of orthog-
onality affects the performance of BICG and, in general, of Lanczos methods [10, 25].
The block form of BBICG further exacerbates this problem, precluding the conver-
gence of the method in many cases [30]. The new implementation, QMR-MBCG, is
characterized by local biorthogonality with high accuracy, while maintaining global
biorthogonality with low accuracy. Incidentally, global properties seem to be better
preserved in the new scheme. The two Gram–Schmidt procedures also yield a more
stable computation of the recurrence parameters. Indeed, inversions are carried out
with diagonal or triangular matrices, which are usually very accurate (cf. section 6.1).

Analogously to the single right-hand side case, BBICG may break down if, at
any iteration i, R̃Ti Ri or P̃Ti APi is singular with Ri, R̃i, P̃i, APi full rank (serious
breakdown). The new algorithm inherits this problem, returning a division by zero
if Ωi or Πi is singular. For s = 1 breakdown in Lanczos methods was analyzed by
Gutknecht [16, 15]; the first work focusing on a look-ahead approach for Lanczos
methods was that of Parlett, Taylor, and Liu [25], while further developments can
be found in [11, 10, 3, 4, 2]. Determining a look-ahead strategy for the general
case s ≥ 1 would be very important for the robustness of QMR-MBCG. Although
we will not address the general look-ahead problem, in section 5.1 we will describe a
technique that improves the conditioning of Ωi,Πi by simply permuting some columns
of the A-biorthogonalized matrices, thus exploiting the block form of the algorithm
for recapturing the correct obliqueness between the spaces generated by the blocks.
We will be referring to this modification of the code as in-block safeguard strategy.

Another source of failure is the loss of rank of the iteration matrices. In [23],
O’Leary briefly suggested deflating the redundant columns while continuing to update
the corresponding systems using the remaining iterates. A more detailed discussion
on loss of rank was presented by Nikishin and Yeremin in [22]; see also the more
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recent contribution [28]. In the symmetric case [22], it was observed that loss of
rank is due to the exact solution of some of the systems of the modified problem
AX̂ = B̂, where X̂ = Xδ, B̂ = Bδ for some nonsingular matrix δ. This idea can
be generalized to the nonsymmetric case, observing that rank deficiency can occur
in QMR-MBCG for any of the iterates Qi and Q̃i or, equivalently, for Si and S̃i.
Suppose first that σ ≡ rank(Qi) < s and rank(Q̃i) = s. The condition σ < s implies
that span{Q0, . . . , Qi} contains the exact solution of s−σ systems of AX̂ = B̂, where
here δ is such that Qiδ = [Q∗, 0n,s−σ]. Matrix δ can be determined, for instance, by
using a modification of the Gram–Schmidt procedure. It follows that AX∗ = B∗ with
Xiδ = [X∗, X

∗], Bδ = [B∗, B
∗] [22]. Thus matrix X∗ can be deflated and the process

restarted for the remaining recurrence vectors with the smaller blocks X∗, B∗ until
convergence or the occurrence of a new loss of rank. Since we are interested in solving
AX = B, we need to save all the δ’s for recovering the final approximate solution of
X.

If rank(Q̃i) < s and rank(Qi) = s, an exact solution of a modification of AT X̃ = B̃
has been detected, where B̃, X̃0 are such that R̃0 = B̃ − AT X̃0. Unfortunately, in
general this is not a welcome event, since no exact solutions for AX = B have been
found. One can either restart the algorithm with a different choice of R̃0 or eliminate
the corresponding columns in all blocks, for which a better approximate solution
can be determined separately. We also note that, in the single right-hand side case,
restarting has been used to cure stagnation in the approximation process; see, for
instance, [17].

5.1. Near-breakdown and safeguard strategy. We next analyze the prob-
lems of breakdown and near-breakdown in the Gram–Schmidt procedures MGS and
MGS.A.

Let Q = [q1, . . . , qs] and Q̃ = [q̃1, . . . , q̃s] and assume that the biorthogonalization
is done in place, that is, at step k the first k columns of Q, Q̃ are biorthonormal.
Consider the case where the process fails at step k; that is, [q̃1, . . . , q̃k−1]T [q1, . . . , qk−1]
is nonsingular and diagonal and [q̃1, . . . , q̃k]T [q1, . . . , qk] is singular. This is equivalent
to a zero diagonal element in matrix Ω of MGS.2 In particular, this means that

qk ⊥ span{q̃1, . . . , q̃k} or q̃k ⊥ span{q1, . . . , qk}.(5.1)

Without loss of generality, we can suppose that qk ⊥ span{q̃1, . . . , q̃k}. It was
shown in [25] that if s = n and Q, Q̃ have full rank, there exists k̄ ∈ {k + 1, . . . , s}
such that

qk 6⊥ span{q̃1, . . . , q̃k, q̃k̄}.(5.2)

In our application we assume s � n; therefore, such k̄ is not assured to exist. If,
however, we succeed in finding k̄, we can permute columns k and k̄ in Q, Q̃ and
continue the process with the new vectors qk̄, q̃k̄ at position k. This allows us to
avoid breakdown with vectors qk, q̃k. Note that the idea of permuting the columns
stems from the look-ahead technique introduced in [25] for the single right-hand side
Lanczos algorithm, although here it is used in the Gram–Schmidt biorthogonalization
procedure.

In practice, k̄ is found using a linear search starting at position k+1. This means
that we anticipate the orthogonalization of all successive columns of Q, Q̃ with respect

2 We restrict our discussion to MGS; however, it remains valid when applied to MGS.A.
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to the first k − 1 vectors until we find the first k̄ satisfying (5.2). However, this work
is not wasted, and the intermediate quantities can be saved for later use. Therefore,
the computed vectors replace the original vectors at position k + 1, . . . , k̄, while the
new biorthogonality coefficients can be allocated at the corresponding position of the
triangular matrices ξ, ξ̃. At the following steps, the orthogonalization of each column
ql, for l > k, will be done only with respect to vectors q̃k, . . . , q̃l−1.

At the end of the process we need to resume the original order of the columns of
the biorthogonalized matrices. If E is the resulting permutation matrix and X is the
original right block of vectors, XE = (QET )(Eξ). Thus it is sufficient to set

Q← QET , ξ ← EξET , and Ω← EΩET .

Matrices Q̃ and ξ̃ are set analogously. We note that the permutation could also
be carried out in an unsymmetric order, that is, by permuting only one of the two
matrices Q, Q̃. This technique would allow us to address either of the two conditions
in (5.1).

In finite arithmetic, the case when Ω is almost singular (near-breakdown) is of
interest and corresponds to

Ωk,k ≡ q̃Tk qk < ε(5.3)

for some k ∈ {1, . . . , s} with ε a chosen threshold. The test (5.3) replaces (5.1) in the
practical implementation. If the linear search is unsuccessful and all subsequent pairs
of vectors satisfy (5.3), the permutation is carried out with those vectors whose inner
product gives the closest value to the threshold. However, since k̄ 6∈ {k + 1, . . . , s},
the next iterations may suffer from ill conditioning if ε is small. We remark that the
selection of the threshold is crucial for achieving the best performance of the method
since ‖Ω−1‖ affects the magnitude of the recurrence coefficients. This suggests that a
strict value of ε could be advantageous in several cases (cf. section 6.1).

We finally remark that an equivalent procedure can be applied if one allows Ω to be
block diagonal instead of diagonal. This was called by Parlett the “extended” Gram–
Schmidt procedure [24]. If near-breakdown is detected at step k, biorthogonality
with respect to vectors qk, qk+1, . . . and q̃k, q̃k+1, . . . is relaxed until an index k̄ ∈
{k + 1, . . . , s} is found such that the matrix [q̃k, q̃k+1, . . . , q̃k̄]T [qk, qk+1, . . . , qk̄] has
smallest singular value greater than the threshold. In our experiments, however,
we have used the symmetric permutation approach, which showed the best overall
performance.

6. Numerical results. The aim of this section is to compare the new method
QMR-MBCG with the original BBICG method and the single right-hand side solver
coupled two-term QMR (CQMR) proposed in [12].

Memory requirements strongly depend on s for all algorithms. In particular,
for QMR-MBCG 8ns locations are needed for the recurrence iterates; parameters
ξi, ξ̃i, τi, τ̃i, and ηi, η̃i+1 are all triangular matrices and thus require 3s(s+1) locations;
finally, 3s locations are needed for Ωi,Ωi+1, and Πi, for a total of 8ns + 3s2 + 6s of
minimum memory allocation, compared to the 5ns + 9

2s
2 + 1

2s of BBICG and 6n
of CQMR for each system. Additional memory may be needed depending on the
particular implementation. Note that the requirements of QMR-MBCG for n × s
matrices could drop to 6 by not storing matrices Li, L̃i; however, this would yield a
slightly higher computation cost per iteration.

The major computational cost per iteration of each method is shown in Table 6.1
in floating point operations; all methods also require 2s multiplications with A and
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Table 6.1

Major computational cost per iteration with s right-hand sides and n = dim(A). All methods
also require 2s multiplications with A and AT per step.

method CQMR BBICG QMR-MBCG

flops 22ns 16ns2 + 8ns+ 44
3
s3 23ns2 + 23ns+ 6s3

AT per step. We have considered that block DAXPY’s correspond to 2ns2 + ns flops
and that the solution of triangular systems with s right-hand sides corresponds to s3

flops. Standard MGS for orthogonalizing a matrix costs 2ns2 + 3ns flops [14]. The
cost of CQMR is computed for all systems. The cost of evaluating the norm of the true
residual at each step has not been included in the table. The large number of flops
for QMR-MBCG is due to the double biorthogonalization and the quasi minimization
performed at each step. On the other hand, computation with s×s matrices decreases
considerably.

In general, block methods show a very high computational cost per iteration.
However, they are expected to converge in fewer iterations than using the single right-
hand side solver; see [29] for a quantitative analysis of the global cost of short-term
recurrence block methods.

6.1. Tests. The first set of experiments is devoted to the analysis of the robust-
ness of QMR-MBCG, whereas in the second set we will deal with timings performance.
BBICG was implemented as described in [23] with orthogonalization of the direction
matrices Pi, P̃i. QMR-MBCG was applied with in-block safeguard strategy on both
routines MGS and MGS.A. In all tests we used a zero starting guess, so that R0 = B.
Unless otherwise stated, we set R̃0 = R0. Other selections are possible [17]; however,
the chosen R̃0 did not cause failure of the process since the new version of the algo-
rithm converges in all cases. A system was considered sufficiently well approximated
when the norm of the true relative residual of each system was less than ε = 10−6.

Set 1. The following experiments were run with Matlab [21] on an SGI Work-
station with round-off unit eps ≈ 2.22 · 10−16. We considered the matrix A resulting
from the discretization by central finite differences of the elliptic operator [12]

L(u) = −
(
e−xyux

)
x
− (exyuy)y + 20(x+ y)ux + 20((x+ y)u)x +

1

1 + x+ y
u(6.1)

on the unit square grid with Dirichlet boundary conditions. The number of grid
points was chosen so that the final dimension of A was n = 2500. We considered B
with random values and s = 4. Unless otherwise specified, we used near-breakdown
threshold ε = eps.

Let S = [S0, S1, . . .], P = [P0, P1, . . .], and S̃, P̃ accordingly defined. In Figure
6.1 the sparsity pattern of P̃TAP and S̃TAS after the first 20 iterations3 is reported,
where the dots correspond to elements with absolute value larger than 10−9. In
exact arithmetic, S̃TAS and P̃TAP are diagonal and block diagonal matrices, respec-
tively, whereas Figure 6.1 shows that this property is not preserved in finite precision
arithmetic. The loss of orthogonality is not surprising, although we observe better
orthogonality properties of the new iterates {Si}, {S̃i}. It was already pointed out for
the symmetric block Lanczos algorithm that loss of orthogonality is strictly related to
the growth of the coefficients norm [20]. This is indeed true in the nonsymmetric case,

3 The small number of iterations is only due to printer constraints; the sparsity pattern remains
consistent for a higher number of iterations.
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Fig. 6.1. Test for A-biorthogonality for matrix A from (6.1) after 20 iterations. n = 2500 and
four right-hand sides. (a): |P̃TAP| > 10−9 for BBICG; (b): |S̃TAS| > 10−9 for QMR-MBCG.
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Fig. 6.2. Norm of coefficients αi (“o”) and σi (“+”) of BBICG and QMR-MBCG, respectively.

and the same phenomenon can be observed in the BBICG algorithm. However, the
coefficients of the new version of the algorithm are characterized by smaller norms.
Figure 6.2 reports the values of ‖αi‖ from formula (2.4) for BBICG (“o”) and the
values of ‖σi‖ from formula (4.3) for QMR-MBCG (“+”) for 160 iterations. It can
be easily shown from the derivation of the recurrence terms of QMR-MBCG that the
two sets of coefficients are linked by the relation αi = (ξi . . . ξ0)−1σi(ξi . . . ξ0), which
indicates that αi may be affected by the condition number of the biorthogonalization
factors ξi . . . ξ0. A similar relation holds for α̃i and σ̃i.

In Figure 6.3(a), the convergence history of all the algorithms is shown. The
plateau during the first phase of QMR-MBCG corresponds to a diverging portion of
the BBICG residual curve, and it seems to be a pattern of the QMR procedure [6].
It also appears that BBICG is not able to recover from an early divergence state.
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Fig. 6.3. (a): Performance of methods in number of iterations with matrix from (6.1), n =
2500, s = 4; (b): influence of the near-breakdown threshold on QMR-MBCG with ε = eps and
ε ≡ eps1 = eps1/5.

Note, however, that a possibly erratic convergence curve does not in general prevent
the method from converging [6]. For this experiment, the lack of convergence of
BBICG is due to the loss of biorthogonality of the basis iterates. CQMR applied on
each system converges in more iterations than QMR-MBCG, although the cost is not
comparable (cf. Table 6.1).

Figure 6.3(b) shows the behavior of QMR-MBCG applied on A with s = 10 for

ε = eps and ε = eps1 with eps1 = eps
1
5 . We note that the selection of a different

threshold considerably improves the convergence history. The first permutation is
done after four iterations. Note that if ε is taken to be large, the safeguard procedure
in practice determines matrices Ωi,Πi with largest smallest singular values, benefiting
the magnitude of the recurrence coefficients.

Set 2. These experiments were performed with matrices from the Harwell–Boeing
collection [8]. The density of the matrix or the cost of preconditioning is such that
block methods become of interest. BBICG was implemented so as to eliminate the
converged systems while continuing the recurrence with the systems that necessitate
additional iterations for convergence. No restarting was applied in order to test the
performance of the original method. For a fair comparison with BBICG, deflation of
converged systems for QMR-MBCG was not implemented for these examples. Indeed,
due to the quasi-minimization process, elimination of systems would be carried out by
restarting the algorithm with the remaining columns of the residual matrix and thus
including new parameters in the computation. The safeguard threshold was ε = eps,
and a maximum of 200 iterations was allowed.

All tests were carried out on an Alliant FX/2800 (running Concentrix 2.2) using
one processor. The s ≤ 20 right-hand sides were chosen as random numbers with
uniform distribution in [0, 1] (fortran function drand). Computation was done in real
double precision arithmetic and A was stored in sparse row format [27].

In Table 6.2 the total CPU time (fortran function dtime) for the convergence of
each method is shown. For each matrix the dimension (n) and the number of nonzero
elements (nnz) are listed. When used, the ILU preconditioner is also marked, where
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Table 6.2

Total CPU time, in seconds, for methods to convergence with matrices from the Harwell–Boeing
collection. “*” stands for convergence affected by round-off ; “-” stands for stagnation.

s 4 8 12 16 20
matrix method
PSMIGR3 CQMR 243 490 731 962 1210
n = 3140 BBICG 269 - - - -
nnz = 543162 QMR-MBCG 277 371 308 373 433
ORSREG1(ILU(0)) CQMR 28 56 83 112 141
n = 2205 BBICG - - - - -
nnz = 14133 QMR-MBCG 44 77 81 102 121
SAYLR4(ILU(5)) CQMR 103 206 342 478 583
n = 3564 BBICG - - - - -
nnz = 22316 QMR-MBCG 105 193 245 336 417
SHERMAN3(ILU(3)) CQMR 60 121 160 254 310
n = 5005 BBICG 61* - - - 152*
nnz = 20033 QMR-MBCG 48 67 91 117 142
SHERMAN5(ILU(0)) CQMR 26 49 74 96 124
n = 3312 BBICG 23 - 40 53 82
nnz = 20793 QMR-MBCG 27 45 51 68 94

ILU(θ) carries out an incomplete (with θ additional fill-in elements) LU decomposition
of A.

We first note the disappointing behavior of BBICG, which stagnates (symbol
“-” in Table 6.2) for several choices of s. Note also that for SHERMAN3 the method
converges, but round-off delays the convergence. We need to add that for this test
matrix B was set to the principal part of the identity matrix and R̃0 was chosen
to have random components. In successful runs, however, BBICG is less expensive
than QMR-MBCG. We also remark that loss of rank of the iteration matrices was
never encountered in these examples, whereas matrix βi was found to be numerically
singular (σmin(βi) < 10−13) in all failures. This was detected, in later runs, by
computing both the singular value decomposition of βi and the QR decomposition of
Ri, R̃i at each iteration. The new block version stabilizes the recurrence, yielding an
overall good performance, compared to the single right-hand side solver. We would
also like to point out the improvement in CPU time per right-hand side as s increases;
this shows that, for the examples reported, sharing of information does lead to a good
performance of block methods.

6.2. Some applications. Both methods BBICG and QMR-MBCG generate the
block Krylov subspaces span{R0, AR0, A

2R0, . . .} and span{R̃0, A
T R̃0, (A

T )2R̃0, . . .}.
If R̃0 corresponds to the residual of AT X̃ = B̃, for given X̃0, B̃, both algorithms can
determine an approximate solution of AT X̃ = B̃ at a very low additional cost.

The dependence on an auxiliary system is usually considered a disadvantage [17].
However, in some application problems where both A and AT can be exploited the
biorthogonal formulation is a successful alternative, as is shown in the examples be-
low. The reliability of QMR-MBCG over the original block algorithm makes such an
approach even more attractive.

The first case concerns the computation of the product σ = CTA−1B ∈ Rs×s, of
importance, for instance, in system control theory and domain decomposition meth-
ods; see, for instance, [13]. Note that σ can also be computed as σ = (BTA−TC)T .
Thus, it may be convenient to compute both approximants Xm and X̃m of A−1B
and A−TC, respectively, and stop when any of the residuals R̃m = C − AT X̃m,
Rm = B −AXm is sufficiently small.
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The second case corresponds to the computation of an s× s section of the inverse
of a nonsingular matrix A. Let A = A−1 and A = (Ai,j). For instance, A1,1 can be
approximated by the first s rows of the solution of AX = In,s or, equivalently, by the

transpose of the first s rows of the solution of AT X̃ = In,s, since X1:s,1:s = A1,1 =

X̃T
1:s,1:s. The procedure can be stopped as soon as one of the approximate solutions

reaches the requested tolerance. As an example of such eventuality, consider matrix
A, arising in the discretization by finite differences of the operator

L(u) = −∆u+ 50 (xux)x + 50 (yuy)y

with n = 2500 and s = 6; here we used ε = eps. In Figure 6.4(a) we have plotted the
behavior of the true relative residual norm (with Matlab) for both systems AX = In,s
(symbol “–”) and AT X̃ = In,s (symbol “:”) using BBICG. Analogously, Figure 6.4(b)
shows the convergence history of the residuals of the two systems with A and AT using
QMR-MBCG. Using both algorithms, the transpose system converges faster than the
system with A so that a rough approximation to A1,1 could be obtained in an efficient
manner.
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Fig. 6.4. Convergence history with matrix A from (6.1) and B = In,s with n = 2500 and s = 6.
(a): BBICG; (b): QMR-MBCG. In both cases, “–” refers to the norm of Rm = B −AXm and “:”
refers to that of R̃m = B −AT X̃m.

On the other hand, this example indicates that the recurrence on the transpose
system influences the computation. The residuals Rm, R̃m are directly involved in
the recurrence of BBICG (2.2); this means that the magnitude of their elements may
affect the precision of the computation itself. This may justify the deterioration of
convergence in BBICG, whereas QMR-MBCG can successfully terminate since the
elements of the new sets of iterates maintain the same order of magnitude.

7. Conclusions. We summarize our conclusions as follows.
(i) The vectorwise A-biorthogonalization of the iterates yields a more robust

method than BBICG.
(ii) Recurrences that do not involve the residuals are less sensitive to the insta-

bility due to the magnitude of the elements.
(iii) The in-block safeguard strategy procedure introduced may improve the con-

vergence behavior of the algorithm.
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(iv) QMR-MBCG can be very useful in some application problems involving both
A and AT , since it outperforms the single right-hand side solver CQMR in
several cases.

The new version of block BICG considerably ameliorates the original method.
However, we feel that a global look-ahead procedure accompanied by a simple defla-
tion strategy would be very desirable for the implementation of a robust, short-term
recurrence algorithm for solving systems with multiple right-hand sides.
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multiprocesseur, Ph.D. thesis, Université de Rennes I, Rennes, 1990.
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Abstract. Residual norm estimates are derived for a general class of methods based on pro-
jection techniques on subspaces of the form Km + W, where Km is the standard Krylov subspace
associated with the original linear system and W is some other subspace. These “augmented Krylov
subspace methods” include eigenvalue deflation techniques as well as block-Krylov methods. Resid-
ual bounds are established which suggest a convergence rate similar to one obtained by removing the
components of the initial residual vector associated with the eigenvalues closest to zero. Both the
symmetric and nonsymmetric cases are analyzed.
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1. Introduction. It has recently been observed that significant improvements in
convergence rates can be achieved from Krylov subspace methods by enriching these
subspaces in a number of different ways; see, e.g., [2, 4, 8, 9]. One of the simplest
ideas employed is to add to the Krylov subspace some approximation to an invariant
subspace associated with a few of the lowest eigenvalues. A projection process on
this augmented subspace is then carried out. An older technique is to augment the
original subspace with other Krylov subspaces, typically with the same matrix and
randomly generated right-hand sides. This gives rise to the class of block-Krylov and
successive right-hand side methods which have recently seen a resurgence of interest
[14, 11, 1, 6, 5]. Results of experiments obtained from these alternatives indicate
that the improvement in convergence over standard Krylov subspaces of the same
dimension can sometimes be substantial. This is especially true when the convergence
of the original scheme is hampered by a small number of eigenvalues near zero; see
e.g., [2, 9].

In this paper we take a theoretical look at this general class of “augmented Krylov
methods.” In short, an augmented Krylov method for solving the linear system

Ax = b(1.1)

is any projection method in which the subspace of projection is of the form

K = Km +W,

where Km is the standard Krylov subspace

Km = span{r0, Ar0, . . . , Am−1r0}

with r0 = b − Ax0, the vector x0 being an arbitrary initial guess to the above linear
system. Thus, the usual Krylov subspace Km, which we sometimes call the primary
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subspace, is augmented by another subspace W. The intuitive rationale for these
methods is that Km cannot always capture all the “frequencies” of A, so it may
become necessary to include explicitly those components which cause the method
to slow down. There are many possible ways in which to choose the subspace W
following this intuitive idea. In deflation techniques [9, 2], W is an approximate
invariant subspace typically associated with the smallest eigenvalues and obtained as
a by-product of earlier projection steps. In block-Krylov techniques, W consists of
the sum (in the linear algebra sense) of a few other Krylov subspaces generated with
the same matrix A, but different initial residuals.

We now give a brief background and define some terminology. In what follows, P k

denotes the space of polynomials of degree not exceeding k, while P ∗k is the space of
polynomials p of degree ≤ k normalized so that p(0) = 1. An invariant subspace is any
subspace X of C n such that AX is included in X. If W = [w1, . . . , wp] is a basis of X
then X is invariant iff there is a p× p matrix G such that AW = WG. In this paper
we often use projections of vectors onto invariant subspaces. This can be done in
several ways. Two important options are to use either orthogonal projectors onto the
invariant subspace or spectral projectors. A spectral projector is best defined through
the Jordan canonical form. The Jordan canonical form decomposes the subspace C n

into the direct sum

C n = X1 ⊕X2 ⊕ · · · ⊕Xl,

in which each Xi is the invariant subspace associated with a distinct eigenvalue. This
direct sum defines canonically a set of l projectors. Each of these projectors maps
an arbitrary vector x into its component xi in the above decomposition. A spectral
projector is the sum of any number of these canonical projectors.

Two types of methods are often used to compute an approximate solution from
a given subspace. An orthogonal projection method, or orthogonal residual (orth-
res) method, extracts an approximation solution of the form x = x0 + δ, where δ
is in K, by imposing the orthogonality constraint b − Ax ⊥ K. A minimal residual
(min-res) approach computes an approximation of the same form but extracts the
approximation by imposing the optimality condition that ‖b−Ax‖2 be minimal. This
second condition is mathematically equivalent to the orthogonality condition that
b−Ax ⊥ AK.

2. Augmented Krylov methods and flexible GMRES (fGMRES). To
obtain an orthogonal basis of an augmented Krylov subspace, a slight modification of
the standard Arnoldi algorithm is needed. Assume that we have a subspace spanned
by m+p vectors. Specifically, the first m of these vectors are standard Krylov vectors
v1, . . . , vm, and the last ones, denoted by w1, . . . , wp, form a basis of the additional
subspaceW. Then at step m+1 we introduce the first basis vector w1 ofW, multiply
it by A as in the Arnoldi process, and orthogonalize the result against all previous
vectors. We then similarly introduce the next basis vector to the subspace and repeat
this process. The algorithm is as follows.

Algorithm 2.1 (augmented Arnoldi-modified Gram–Schmidt).
1. Choose a vector v1 of norm 1.
2. For j = 1, 2, . . . ,m+ p Do:
3. If j ≤ m then w := Avj, Else w := Awj−m
4. For i = 1, . . . , j do:
5. hij = (w, vi)
6. w := w − hijvi
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7. EndDo
9. hj+1,j = ‖w‖2. If hj+1,j = 0 then Stop.
10. vj+1 = w/hj+1,j

11. EndDo
We can think of many possible variations to the above basic scheme. For example,

the input vectors wi can themselves be the Krylov vectors of some iterative procedure
for solving Aw = vm+1. We can also generate another Krylov sequence starting with
an arbitrary vector w1 and append the resulting vectors w2, . . . , wp to the subspace.
Some of these variations are explored in [2].

The above algorithm is a trivial extension of the modified Arnoldi process used
in the fGMRES algorithm [12]. Its result is that the vectors v1, . . . , vm+p+1 form an
orthonormal set of vectors. A number of immediate properties can be established.
First, the vectors produced by the algorithm satisfy the relation

AZm+p = Vm+p+1H̄m,

in which

Zm+p = [v1, v2, . . . , vm, w1, w2, . . . , wp], Vm+p+1 = [v1, v2, . . . , vm+p+1],

and H̄m is the (m+p+1)× (m+p) upper Hessenberg matrix whose nonzero elements
hij are defined in the algorithm. To solve a linear system with an fGMRES-like
approach, we only need to exploit the above relation and the orthogonality of the
vi’s. Thus, if β := ‖r0‖2 and we start the Arnoldi process with v1 := r0/β, then an
approximate solution x from the affine space x0 + span{Zm+p} can be written in the
form x0 + Zm+py and its residual vector is given by

b−Ax = r0 −AZm+py = Vm+p+1[βe1 − H̄my].

Because of the orthogonality of the column vectors of Vm+p+1, the 2-norm of this
residual vector can be minimized by solving the least-squares problem miny ‖βe1 −
H̄my‖2.

Another important property is that if any vector w in W is the solution of an
equation Aw = vi for any of the vi’s, i ≤ m + 1, then, in general, the exact solution
can be extracted from the whole subspace by an fGMRES procedure.

Proposition 2.1. If there exists a vector w in W such that Aw = vi+1 for some
i, 1 ≤ i ≤ m, and if the matrix Hi is nonsingular then the affine space x0 +Km +W
contains an exact solution to the linear system Ax = b.

Proof. Assume that w is a vector inW such that Aw = vi+1. Recall the standard
relation [13]

AVi = ViHi + hi+1,ivi+1e
T
i .(2.1)

A solution among vectors of the form

x = x0 + Viy + αw

will be constructed. For such vectors the residual b−Ax is given by

r0 −AViy − αAw = Vi (βe1 −Hiy)− (hi+1,ie
T
i y + α)vi+1.

If Hi is nonsingular, then y can be chosen so that the first term in the right-hand side
vanishes. The scalar α can then be selected to be equal to −hi+1,ie

T
i y to make the

second term equal to zero.
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In the situation of the proposition, fGMRES will compute the exact solution.
This is because fGMRES extracts the (unique) approximate solution with minimum
residual. In fact, any projection procedure onto the subspace x0 + Km + W will
extract this exact solution because a solution with zero residual can be obtained from
the subspace, and therefore the Galerkin condition will always be satisfied for this
(exact) solution. Note that the proposition is also trivially true for i = 0, with the
exception that we no longer need the assumption on Hi which does not exist. In
addition, it can also be generalized to the situation where there is a vector w in W
such that Aw = v for some vector v in Km+1.

Proposition 2.1 suggests that a good way to enrich the subspace Km is to add
to it vectors w1, . . . , wp that are approximate solutions of the linear system Aw = vi
for i ≤ m+ 1. These linear systems can be solved with a different preconditioner, for
example, one which complements the initial one used for the primary linear system
being solved. In effect, we can view this as a multirate approach. The Krylov subspace
Km is often unable to resolve components of the residual vector that are located in
some subspace. Roughly speaking, much of the work in solving the linear system is
already accomplished by the subspace Km. The additional subspace will then fine-
tune the current solution in the areas of the spectrum which are not well represented
by Km. In the simplest case, one can add solutions of linear systems Aw = vm+1

by another iteration method such as a multistep SOR. An interesting idea which has
been quite successful is to takeW to be an approximate invariant subspace associated
with small eigenvalues.

3. Augmenting with nearly invariant subspaces. In what follows we denote
by x0 the initial guess used in the augmented GMRES process for solving the linear
system (1.1), by r0 the associated initial residual b − Ax0, and by Km the Krylov
subspace

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}.

We make the assumption that there exists an invariant subspace which is close to
W and analyze the behavior of the resulting augmented Krylov subspace algorithm.
Our goal is to show a residual bound indicating faster convergence when the invariant
subspace is very close to W.

3.1. Basic results. We recall the following definition of the “gap” between sub-
spaces. For details of this definition and some properties, see Kato [7] and Chatelin
[3].

Definition 3.1. For any pair of subspaces of C n define

δ(X,Y ) = max
x∈X, x 6=0

min
y∈Y

‖x− y‖2
‖x‖2

.(3.1)

Then the gap between the subspaces X and Y is

Θ(X,Y ) = max [δ(X,Y ), δ(Y,X)] .(3.2)

Thus, δ(X,Y ) represents the sine of the largest possible angle between vectors in
X and their projections in Y . It is worth pointing out that δ(X,Y ) = ‖(I−PY )PX‖2,
in which PX (resp., PY ) is an orthogonal projector onto X (resp., Y ). In fact, when
the two subspaces X and Y are of the same dimension then [3, 7]

Θ(X,Y ) = δ(X,Y ) = δ(Y,X) = ‖PX − PY ‖2.
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In this case, Θ(X,Y ) can be viewed as the sine of the angle between the two subspaces
X and Y .

Theorem 3.2. Assume that a min-res projection method is applied to A using
the augmented Krylov subspace

K = Km +W,

in which the subspace AW is at a gap of ε from a certain invariant subspace U ; i.e.,
there exists an invariant subspace U such that

Θ(U,AW) = ε.

Let PU be any projector onto U . Then the residual r̃ obtained from the min-res
projection process onto the augmented Krylov subspace K satisfies the inequality

‖r̃‖2 ≤ min
q∈P ∗m

{‖q(A)(I − PU )r0‖2 + ε ‖q(A)PUr0‖2} .

Proof. By definition, we have

‖r̃‖2 = min
z∈Km+W

‖r0 −Az‖2(3.3)

= min
v∈Km,w∈W

‖(r0 −Av)−Aw‖2.(3.4)

Each vector v in Km is of the form v = s(A)r0, where s is a polynomial of degree
≤ m− 1. Consequently, the vector r0 −Av is of the form q(A)r0, where q belongs to
the space of polynomials in P which satisfy the constraint q(0) = 1. Hence,

‖r̃‖2 = min
q∈P ∗m,w∈W

‖q(A)r0 −Aw‖2

= min
q∈P ∗m,w∈W

‖q(A)(I − PU )r0 + q(A)PUr0 −Aw‖2(3.5)

≤ min
q∈P ∗m,w∈W

‖q(A)(I − PU )r0‖2 + ‖q(A)PUr0 −Aw‖2.(3.6)

Observing that q(A)PUr0 belongs to the subspace U , the second term on the right-
hand side of (3.6) is bounded from above by ε‖q(A)PUr0‖2, and this completes the
proof.

The above theorem can be exploited in many different ways. In particular, we
may obtain different bounds depending on which type of projector PU is used. For
example, assume that PU is the spectral projector associated with a set of eigenvalues
λ1, . . . , λs with s ≤ p. Let q∗m be the optimal GMRES polynomial obtained for the
deflated initial residual rd = (I − PU )r0:

‖q∗m(A)rd‖2 = min
q∈P ∗m

‖q(A)rd‖2.

Denote by r̃d = q∗m(A)rd the GMRES residual vector achieved on this linear system.
Then, applying the theorem, we immediately get

‖r̃‖2 ≤ ‖q∗m(A)rd‖2 + ε ‖q∗m(A)PUr0‖2
= ‖r̃d‖2 + ε ‖q∗m(A)PUr0‖2.

The first term in the right-hand side is the result of m steps of a GMRES iteration
used to solve the deflated linear system

Ax = (I − PU )r0
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starting with a zero initial guess. If A is diagonalizable and the initial residual has
the expansion

∑
αiui, the second term q∗m(A)PUr0 will have components q∗m(λi)uiαi

in the eigenbasis. For those eigenvalues close to zero, q∗m(λi) should be close to one
since q∗m(0) = 1. If U is associated with eigenvalues close to zero and ε is small we
can expect the method to behave essentially like a deflated GMRES procedure, i.e.,
a procedure in which the initial residual is stripped of all the components associated
with the subspace U . In fact, if W is exactly invariant then ε = 0 and ‖r̃‖2 ≤ ‖rd‖2,
so we should expect the method to behave like a deflated GMRES procedure in this
case. We remark that the result of Theorem 3.2 can be slightly improved by replacing
the subspace W in the minimum (3.5) by the whole subspace K. This can be easily
seen from Equation (3.4).

An immediate corollary of the theorem is the following.
Corollary 3.3. Let PU be a projector onto the invariant subspace U and let the

assumption of Theorem 3.2 be satisfied. Also, assume that there is a polynomial q in
P ∗m such that

‖q(A)(I − PU )r0‖2 ≤ sm‖(I − PU )r0‖2,(3.7)

‖q(A)PUr0‖2 ≤ cm‖PUr0‖2.(3.8)

Then the residual r̃ obtained from the min-res projection process onto the augmented
Krylov subspace K satisfies the inequality

‖r̃‖2 ≤ sm‖(I − PU )r0‖2 + εcm‖PUr0‖2,(3.9)

and in the case when PU is an orthogonal projector,

‖r̃‖2 ≤
√
s2m + ε2c2m ‖r0‖2.(3.10)

The second part of the corollary follows by applying the Cauchy–Schwarz inequal-
ity to (3.9).

At this point we might provide error bounds using an eigenvector expansion of
the initial residual and exploiting standard approximation theory results based on
Chebyshev polynomials. These would give upper bounds for sm and cm from some
knowledge of the spectrum of the matrix. However, these bounds would utilize in
one way or another the condition number of the matrix of eigenvectors, which can
be very large in case A is highly nonnormal. Therefore, this is considered only for
the Hermitian case, which will be seen shortly. For the non-Hermitian case, we will
consider the problem from a different angle and attempt to compare the result of the
process with that of a GMRES iteration, which is expected to converge faster. This
is taken up in the next section.

3.2. Comparison results. A desirable result would be that the augmented
Krylov subspace method converges similarly to the GMRES algorithm applied to the
deflated linear system Aδ = rd. Here, the deflated residual rd is obtained from the
residual vector r0 by removing all components in the subspace W. In the case when
W is an exact invariant space this turns out to be true, as was indicated above. If it
is only close to an invariant subspace then an intermediate result is to be expected.

Corollary 3.4. Let r̄ be the residual obtained from m steps of GMRES applied
to the 2n× 2n linear system(

A O
O A

)(
δ1
δ2

)
=

(
εPUr0

(I − PU )r0

)
(3.11)
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starting with a zero initial guess. Then the residual r̃ obtained from the min-res
projection process onto the augmented Krylov subspace K satisfies the inequality

‖r̃‖2 ≤
√

2 ‖r̄‖2.

Proof. Denote by B and r̄0 the matrix and right-hand side of the linear system
(3.11). As is well known, the GMRES algorithm applied to system (3.11) with a zero
initial guess minimizes the 2-norm ‖q(B)r̄0‖2 over all polynomials in P ∗m. Let q̄ be
the polynomial which achieves this minimum. We then have

‖r̄‖2 = ‖q̄(B)r̄0‖2
=
(
‖q̄(A)(I − PU )r0‖22 + ‖q̄(A)(εPUr0)‖22

)1/2
=
(
‖q̄(A)(I − PU )r0‖22 + ε2‖q̄(A)PUr0‖22

)1/2
.(3.12)

From Theorem 3.2 we can state that

‖r̃‖2 ≤ ‖q̄(A)(I − PU )r0‖2 + ε ‖q̄(A)PUr0‖2,

which gives the result in view of (3.12) and the inequality |a|+ |b| ≤
√

2
√
a2 + b2.

In the above result we had to use a linear system of size twice that of the original
matrix in order to obtain an inequality using any projector PU . It is possible to obtain
a similar comparison result using a related linear system of size n only by being more
specific about the projector PU . However, in this case, the inequality is weakened by
the presence of the angle between the invariant subspace U and its complement. The
following lemma will be needed.

Lemma 3.5. Let U and V be any two subspaces and let θ be the acute angle
between them as defined by

cos θ = max
u∈U, v∈V

|(u, v)|
‖u‖2‖v‖2

.

Then the following inequality holds for any pair of vectors u, v with u in U and v in
V :

‖u+ v‖2 ≥
√

2 sin
θ

2

(
‖u‖22 + ‖v‖22

)1/2
.(3.13)

The proof of the lemma is straightforward and thus is omitted. If PU is a spectral
projector then it commutes with A and with any polynomial of A. In addition, I−PU
is also a spectral projector which commutes with A as well as with any polynomial
q(A). We now show a result similar to that of Corollary 3.4.

Corollary 3.6. Let PU be the spectral projector associated with the invariant
subspace U and θ the acute angle between PU C n and (I−PU )C n. Let r̄ be the residual
obtained from m steps of GMRES applied to the linear system

Aδ = εPUr0 + (I − PU )r0(3.14)

starting with a zero initial guess. Then the residual r̃ obtained from the min-res
projection process onto the augmented Krylov subspace K satisfies the inequality

‖r̃‖2 ≤
‖r̄‖2
sin θ

2

.
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Proof. The GMRES algorithm applied to system (3.14) with a zero initial guess
minimizes the 2-norm ‖q(A) (εPUr0 + (I − PU )r0) ‖2 over all polynomials q in P ∗m.
Let q̄ be the polynomial which achieves this minimum. Since q̄(A)PUr0 belongs to
PU C n and q̄(A)(I − PU )r0 belongs to (I − PU )C n we have by the previous lemma
that

‖r̄‖2 = ‖q̄(A)(I − PU )r0 + q̄(A)(εPUr0)‖

≥
√

2 sin
θ

2

(
‖q̄(A)(I − PU )r0‖22 + ε2‖q̄(A)PUr0‖22

)1/2
.(3.15)

Theorem 3.2 implies that

‖r̃‖2 ≤ ‖q̄(A)(I − PU )r0‖2 + ε ‖q̄(A)PUr0‖2,

which gives the result in view of (3.15) and the inequality |a|+ |b| ≤
√

2
√
a2 + b2.

The angle θ is related to the conditioning of the invariant subspace U . In the
ideal case when θ = π/2, we obtain the same result as that of Corollary 3.4; namely,
‖r̃‖2 ≤

√
2 ‖r̄‖2.

3.3. Hermitian case. The results of the previous sections can be made more
explicit in the particular case when the matrix is symmetric positive definite.

Corollary 3.7. Assume that A is symmetric positive definite with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn,

and let the assumptions of Theorem 3.2 be satisfied, with U being the s-dimensional
eigenspace associated with the eigenvalues λ1, . . . , λs, where s ≤ p. Then the residual
r̃ obtained from the min-res projection process onto the augmented Krylov subspace K
satisfies the inequality

‖r̃‖2 ≤ ‖r0‖2

√
1

T 2
m(γ)

+ ε2,(3.16)

in which

γ ≡ λn + λs+1

λn − λs+1

and Tm is the Chebyshev polynomial of degree m of the first kind.
Proof. Define

α =
2

λn − λs+1
, qm(t) =

Tm(γ − αt)
Tm(γ)

.

Referring to the result of Corollary 3.3, we will obtain upper bounds for the numbers
sm and cm in the corollary for the above polynomial q. Assuming that the residual
r0 is expanded in the (orthonormal) eigenbasis as

r0 =
n∑
i=1

αiui,

we have

‖q(A)(I − PU )r0‖22 =
1

Tm(γ)2

∑
i>s

Tm(γ − αλi)2α2
i .



ANALYSIS OF AUGMENTED KRYLOV SUBSPACE METHODS 443

By the definition of α we have |γ−αλi| ≤ 1 for i > s, and as a result |Tm(γ−αλi)| ≤ 1.
Thus, the above expression is upper bounded by

‖q(A)(I − PU )r0‖22 ≤
1

Tm(γ)2

∑
i>s

α2
i =
‖(I − PU )r0‖22

Tm(γ)2
,

and so we can define sm ≡ 1/Tm(γ). Similarly, the term ‖q(A)PUr0‖2 of Corollary
3.3 can be expanded as

‖q(A)PUr0‖22 =
∑
i≤s

(q(λi)αi)
2
.

In the interval [0, λs+1] the function q(λ) is a decreasing function and is therefore
upper bounded by q(0) = 1. This yields

‖q(A)PUr0‖22 ≤
∑
i≤s

α2
i = ‖PUr0‖22.

As a result we can define cm = 1. The result follows immediately from Corollary
3.3.

4. Case of block-Krylov methods. Results of a slightly different type can be
derived for block-Krylov methods. In these methods the subspace of projection is

K = K(1)
m +W

with

W = K(2)
m +K(3)

m + · · ·+K(s)
m ,

where K
(i)
m = span[v

(i)
1 , Av

(i)
1 , . . . , Am−1v

(i)
1 ]. The starting vector v

(1)
1 of the first

Krylov subspace is the normalized residual r0/‖r0‖2. A number of results for ana-
lyzing block methods have already been established in the literature [10, 14]. The
approach presented here shows similar results which are somewhat simpler by intro-
ducing systematically a subsidiary approximate solution obtained by a projection step
onto the subspace spanned by the initial block. Results using Chebyshev polynomials
are again omitted, except in the Hermitian case.

4.1. General results. An important factor in the convergence of block methods
is the subspace S spanned by the initial block, i.e., the subspace

S = span{v(1)
1 , v

(2)
1 , . . . , v

(s)
1 }.

Consider any subspace U of dimension s. Typically, U will be an invariant subspace
associated with the s lowest eigenvalues, but this is not required in the analysis which
follows. As background, recall that any projector can be defined with the given of
two subspaces, its range M , and its null space N . It is common to define N via its
orthogonal complement L, which has the same dimension s as M . Thus,

Range(P ) = M, Null(P ) = L⊥.

With P is associated the decomposition of C n into the direct sum

C n = M ⊕ L⊥.(4.1)
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We say that P is a projector onto M and orthogonal to L. Given two subspaces M
and L, each of dimension s, a projector onto M and orthogonal to L can be defined
whenever

M ∩ L⊥ = {0},

which is the condition under which C n is the direct sum of the two subspaces M and
L⊥. Recall also that the projection u of an arbitrary vector x onto M and orthogonal
to L is defined by the requirements

u ∈M, x− u ⊥ L.

The first requirement defines the s degrees of freedom and the second defines the s
constraints that allow us to extract u = Px given these degrees of freedom. We now
establish the following lemma.

Lemma 4.1. Let PU be a projector onto a subspace U and orthogonal to a subspace
L, and assume that the subspace S satisfies the condition

AS ∩ L⊥ = {0}.(4.2)

Then for any vector r in C n there exists a unique vector w in S such that

PU (r −Aw) = 0.(4.3)

The vector Aw is the projection of r onto the subspace AS and orthogonal to L. The
vector w is the result of a projection process onto S orthogonally to L for solving the
linear system Aδ = r starting with a zero initial guess.

Proof. Under condition (4.2) the projector PAS onto AS and orthogonal to L
exists, and therefore, for any r there exists a unique Aw in AS, obtained by projecting
r onto AS and orthogonally to L. This Aw satisfies the condition r − Aw ⊥ L,
which implies that the vector r − Aw belongs to Null(PU ) = L⊥ or, equivalently,
PU (r −Aw) = 0. The rest of the proof follows from the definitions of projectors and
projection methods for linear systems.

Condition (4.3) can be rewritten as

Aw = PUr + (I − PU )Aw(4.4)

because Aw = PUAw+ (I −PU )Aw and (4.3) implies that PUAw = PUr. The above
equation means that the vector Aw has the same U -component as r in the direct sum
decomposition (4.1) associated with the projector PU . Consider the basis

V1 = [v
(1)
1 , v

(2)
1 , . . . , v

(s)
1 ]

of S. If A is nonsingular then AV1 is a basis of AS. Let Z = [z1, . . . , zs] be a basis of
L. Then it can easily be seen that condition (4.2) is equivalent to the nonsingularity
of the s× s matrix ZHAS. Condition (4.3) immediately yields

w = V1(ZHAV1)−1ZHr.

Theorem 4.2. Let PU be a projector onto a subspace U of dimension s such
that condition (4.2) is satisfied for L = Null(PU )⊥. Let w0 be the vector w defined
by Lemma 4.1 for the case when r ≡ r0 and denote by r̂0 the associated residual
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r̂0 = r0−Aw0. Then the residual r̃ obtained from the min-res projection process onto
the augmented Krylov subspace K satisfies the inequality

‖r̃‖2 ≤ min
p∈P ∗m

‖q(A)(I − PU ) r̂0‖2.(4.5)

Proof. We start similarly to the proof of Theorem 3.2:

‖r̃‖2 = min
z∈K=Km+W

‖r0 −Az‖2

= min
v∈Km, w∈K

‖(r0 −Av)−Aw‖2.

As was seen before, a generic vector r0 − Av is of the form q(A)r0, where q is a
polynomial of degree ≤ m such that q(0) = 1, and therefore

‖r̃‖2 = min
q∈P ∗m, w∈K

‖q(A)r0 −Aw‖2

= min
q∈P ∗m, w∈K

‖q(A)(I − PU )r0 + q(A)PUr0 −Aw‖2.

For any polynomial q in P ∗m and for any vector w in K we have

‖r̃‖2 ≤ ‖q(A)(I − PU )r0 + q(A)PUr0 −Aw‖2.(4.6)

Now consider the particular vector w = q(A)w0, where the vector w0 is defined by
the theorem. Using the result of Lemma 4.1 and equality (4.4) we obtain

q(A)PUr0 −Aw = q(A)PUr0 −Aq(A)w0

= q(A)PUr0 − q(A)Aw0

= q(A)PUr0 − q(A)[PUr0 + (I − PU )Aw0]

= −q(A)(I − PU )Aw0.

Substituting this in Equation (4.6) for any polynomial q results in

‖r̃‖2 ≤ ‖q(A)(I − PU )(r0 −Aw0)‖2.(4.7)

Taking the minimum of the right-hand side over all polynomials in P ∗m yields the
desired result.

This simple theorem states that a block-GMRES method will do at least as well
as a GMRES method on the linear system whose initial residual has been stripped of
the components in the subspace U by a projection process on the initial subspace S.
The removal of these undesired components is achieved by a projection process onto
S orthogonally to L = Null(PU )⊥, as expressed by the Galerkin conditions

w0 ∈ S, r0 −Aw0 ⊥ Null(PU )⊥.

Note again that PU is any projector onto the subspace U .
The projector I − PU in Equation (4.5) is not really needed since r̂0 has no

components in the subspace U , and so (I − PU )r̂0 = r̂0. However, its presence is
helpful when PU is a spectral projector, since in this situation

q(A)(I − PU ) = q((I − PU )A(I − PU )),

showing that the GMRES iteration associated with the minimum in (4.5) is equivalent
to a GMRES iteration for solving a linear system restricted to the spectral complement
of U .
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4.2. Block-Krylov methods in the symmetric positive definite (SPD)
case. We assume throughout this section that A is SPD with the eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Here, the subspace U is chosen to be the invariant subspace associated with the
eigenvalues λ1, . . . , λp and PU is the spectral projector associated with U . In this
case, PU is the orthogonal projector onto U and the subspace L, which was defined
as the orthogonal complement of the null space of P , becomes equal to U itself.

By selecting the polynomial in Theorem 4.2 carefully a rather simple result can
be obtained.

Theorem 4.3. Let PU be the orthogonal projector onto the invariant subspace
associated with the eigenvalues λ1, . . . , λp and assume condition (4.2) is satisfied. Let
w0 be the vector w defined by Lemma 4.1 for the case when r ≡ r0 and r̂0 = r0−Aw0.
Then the residual r̃ obtained from the min-res projection process onto the augmented
Krylov subspace K satisfies the inequality

‖r̃‖2 ≤
‖r̂0‖2
Tm(γ)

(4.8)

with

γ ≡ λn + λp+1

λn − λp+1
.

Proof. According to Theorem 4.2, for any polynomial q in P ∗m we have

‖r̃‖2 ≤ ‖q(A)(I − PU ) r̂0‖2 ≤ ‖q(A)(I − PU )‖2 ‖r̂0‖2.(4.9)

Since I − PU is a spectral projector of A we have

q(A)(I − PU ) = (I − PU )q(A) = (I − PU )q(A)(I − PU ).

The only nonzero eigenvalues of the Hermitian operator (I − PU )q(A)(I − PU ) are
q(λi) for i > p. Thus,

‖(I − PU )q(A)(I − PU )‖2 = max
i=p+1,...,n

|q(λi)|.(4.10)

Consider the polynomial qm(t) defined by

qm(t) =
Tm(γ − αt)
Tm(γ)

,

where γ is defined above and

α ≡ 2

λn − λp+1
.

Clearly, qm belongs to P ∗m. In addition, for t in the closed interval [λp+1, λn] we have
|γ−αt| ≤ 1 so that |Tm(γ−αt)| ≤ 1. For this polynomial the norm of the Hermitian
operator (I − PU )q(A)(I − PU ) in (4.10) becomes

‖q(A)(I − PU )‖2 = ‖(I − PU )q(A)(I − PU )‖2 = max
i=p+1,...,n

|qm(λi)| ≤
1

Tm(γ)
.(4.11)

Substituting this inequality in (4.9) yields the desired result.
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5. Numerical experiment. The behaviors of the deflated algorithms and the
block-GMRES algorithms are now illustrated by a simple example. Consider a diag-
onal matrix of size n = 200 whose diagonal entries are given by

di =

{
i
n when i > 4,
0.05× i

n when i ≤ 4.

This distribution is chosen to have a small cluster of eigenvalues around the origin.
In all tests, the right-hand side b of the linear system is made of (the same) pseudo-
random values and the initial guess taken is the zero vector. Though the matrix is
symmetric, nonsymmetric iterative solvers such as GMRES and block-GMRES are
used in this experiment. The following runs were made.

1. Standard GMRES without restarts and restarted GMRES, with a Krylov
dimension of 40.

2. Block-GMRES without restarts. The block size chosen is four, which is the
size of the cluster.

3. A deflated GMRES algorithm as described in [9] and [2]. This consists of
adding approximate eigenvectors obtained from the previous Arnoldi step to
the Krylov subspace. The test uses a subspace dimension of 40, the last four
of which are approximate eigenvectors (except in the first outer iteration).
This is denoted by dGMRES(40, 4).

4. For comparison, a run of (nonrestarted) GMRES is shown on the deflated
system. This system of dimension 196 has a diagonal coefficient matrix with
entries d5, d6, . . . , d200 and the right-hand side b with components b5, . . . , b200.
A zero initial guess was also used.

In the block-GMRES case, four linear systems are actually solved simultaneously,
the first of which is the desired linear system. The right-hand sides of the other three
linear systems are chosen randomly and the associated initial guesses are again zero
vectors.

The convergence history for these runs is plotted in Figure 5.1. As observed,
all curves, except the restarted GMRES curve, have similar convergence slopes to-
ward the final phase of the iteration. The first 40 steps of GMRES, GMRES(40),
and dGMRES(40, 4) (deflated GMRES) are identical. Differences appear at around
step 60, halfway into the second outer loop between full GMRES and the other two
methods. GMRES(40) and dGMRES(40, 4) are still identical until step 76. Indeed,
in the first outer loop there is no eigenspace information to be fed into dGMRES,
so a plain restarted GMRES is used. The last four vectors entered into dGMRES
are eigenvectors obtained from the first Krylov subspace. Then the behavior of the
iteration from that point on is very close to that of the full GMRES and GMRES on
the deflated system.

It is interesting to note that in this case the full GMRES algorithm performs
best. We must keep in mind that after step 40 the full GMRES iteration uses a
subspace which includes the same eigenvectors as dGMRES(40, 4). It is therefore
able to capture those eigenmodes in the same way as the deflated GMRES, as shown
by the curves. Also interesting is the observation that the block-GMRES algorithm
seems to take longer to capture the cluster and reach the final convergence phase. If
we had to solve four simultaneous linear systems, the block-GMRES algorithm would
be competitive since it would take an average of 45 steps for each linear system to
converge (assuming they converge at roughly equal speed on average). If we had only
one linear system to solve, the results of the plot indicate that a plain or a deflated
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Fig. 5.1. Behavior of GMRES and block-GMRES on a matrix whose spectrum has a cluster
around the origin.

GMRES run may achieve far better performance. This is confirmed by experiments
elsewhere; see, e.g., [2].
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Abstract. An n×n matrix with nonnegative entries is said to be balanced if for each i = 1, . . . , n
the sum of the entries of its ith row is equal to the sum of the entries of its ith column. An n × n
matrix A with nonnegative entries is said to be balancable via diagonal similarity scaling if there
exists a diagonal matrix X with positive diagonal entries such that XAX−1 is balanced. We give
upper and lower bounds on the entries of X and prove the necessary sensitivity analysis in the
required accuracy of the minimization of an associated convex programming problem. These results
are used to prove the polynomial-time solvability of computing X to any prescribed accuracy.
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1. Introduction. An n × n matrix A with nonnegative entries is said to be
balanced if for each i = 1, . . . , n the sum of the entries of its ith row is equal to the
sum of the entries of its ith column:

(1.1) A1 = AT1,

where 1 is the n-vector of all ones. A is said to be balancable via diagonal similarity
scaling (or simply balancable) if there exists a diagonal matrix X with positive diag-
onal entries such that XAX−1 is balanced; i.e.,

(1.2) XAX−11 = X−1ATX1.

The matrix balancing problem can be defined more generally: An n × n matrix
B = (bij) with arbitrary real entries is said to be balanced in the lp-norm (p > 0) if for
each i = 1, . . . , n its ith row and column have the same lp-norm. An invertible diagonal
matrix Y = diag(y1, . . . , yn) balances B in the lp-norm if for each i = 1, . . . , n the
lp-norm of the ith row and column of Y BY −1 are identical; i.e.,

(1.3)
n∑
j=1

∣∣∣∣bij yiyj
∣∣∣∣p =

n∑
j=1

∣∣∣∣bji yjyi
∣∣∣∣p , i = 1, . . . , n.

Clearly, an invertible diagonal matrix Y = diag(y1, . . . , yn) balances B in the lp-norm
if and only if the positive diagonal matrix X = diag(|y1|p, . . . , |yn|p) balances the
nonnegative matrix A = (|bij |p) in the l1-norm. The general matrix balancing problem
in the lp-norm can thus be reduced to the case of nonnegative matrix balancing via a
positive diagonal matrix (see, e.g., [8]).

Osborne [7] considered the case of p = 2 and its application in preconditioning a
given matrix B in order to increase the accuracy of the computation of its eigenvalues
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(B and Y BY −1 have the same set of eigenvalues). Through an iterative process,
Osborne showed that if Y ∗ = diag(y∗1 , . . . , y

∗
n) satisfies (1.3), then the vector y∗ =

(y∗1 , . . . , y
∗
n) is the minimizer of the function

φB(y) =

( n∑
i,j=1

∣∣∣∣bij yiyj
∣∣∣∣2 )1/2

,

where the minimization ranges over all invertible Y = diag(y1, . . . , yn). Conversely,
the minimizer of φB(y), if it exists, satisfies (1.3). Note that φB(y) is the Frobenius
norm of the matrix Y BY −1 satisfying

1√
n
φB(y) ≤ ‖Y BY −1‖ ≤ φB(y).

Henceforth, ‖ · ‖ denotes the l2-norm. In view of the above inequality and Osborne’s
result, the balancing of the nonnegative matrix A = (|bij |2) also bounds the quantity

ν(B) = inf{‖Y BY −1‖ : y ∈ <n, Y = diag(y1, . . . , yn), Πn
i=1yi 6= 0}.

For a description of ν(B) as a generalized eigenvalue problem see Boyd et al. [1].
The problem of nonnegative matrix balancing has been examined by several re-

searchers. Balancability has been called line-sum-symmetric scaling (see Eaves et
al. [2]) and balancing (see Grad [3], Rothblum and Schneider [8], and Schneider and
Zenios [9]). Characterization theorems on nonnegative balancable matrices have been
given by Osborne [7] and Eaves et al. [2]. Other results on matrix balancing, includ-
ing applications and iterative algorithms, have been given by Osborne [7], Grad [3],
and Schneider and Zenios [9].

From now on we shall consider nonnegative matrices, and we shall say a nonneg-
ative matrix is balanced to mean that it is balanced in the sense of (1.1) and (1.2).
In this paper we prove the polynomial-time solvability of the problem of balancing a
nonnegative matrix to any prescribed accuracy.

Clearly, without loss of generality we may assume that a given n×n nonnegative
matrix A = (aij) satisfies aii = 0 for all i = 1, . . . , n. Corresponding to such a
matrix A there exists a directed graph GA = (V,E), where V = {1, . . . , n} and where
E = {(i, j) : aij > 0}. Without loss of generality we may also assume that GA,
when viewed as an undirected graph, is connected. Otherwise, after a permutation of
V = {1, . . . , n} the given matrix A can be replaced by diag(A1, . . . , Ar), where each of
A1, . . . , Ar is a square matrix whose corresponding directed graph is connected. Thus
A is balancable if and only if A1, . . . , Ar are balancable. Moreover, it can be shown
that for each i = 1, . . . , r Ai is balancable if and only if the corresponding graph GAi
is strongly connected (Theorem 1).

Definition 1. Given a positive tolerance ε, a nonnegative n × n matrix A is
said to be balanced to the absolute error of ε if ‖A1−AT1‖ ≤ ε. A positive diagonal
matrix X is said to balance A to the absolute error of ε if the matrix XAX−1 is
balanced to the absolute error of ε:

(1.4) ‖XAX−11−X−1ATX1‖ ≤ ε.

Definition 2. Given a positive tolerance ε, a nonnegative n × n matrix A is
said to be balanced to the relative error of ε if ‖A1 − AT1‖/1TA1 ≤ ε. A positive
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diagonal matrix X is said to balance A to the relative error of ε if the matrix XAX−1

is balanced to the relative error of ε:

(1.5)
‖XAX−11−X−1ATX1‖

1TXAX−11
≤ ε.

Let

f(x) =

n∑
i,j=1

aij
xi
xj
.

Then any stationary point x > 0 of f yields an exact balancing, X = diag(x). Since
the optimization of f(x) is a standard geometric programming problem, applying the
change of variable

x = (ew1 , . . . , ewn)T ∈ <n,

we obtain the convex function

F (w) =
n∑

i,j=1

aije
wi−wj ,

each exact minimizer w∗ = (w∗1 , . . . , w
∗
n) ∈ <n of which yields an exact balancing

X(w∗) = diag(ew
∗
1 , . . . , ew

∗
n) of A. It is easy to see that if ‖∇F (w)‖ ≤ ε, then

X(w) satisfies (1.4), and vice versa. Moreover, letting G(w) = lnF (w), we see that
‖∇G(w)‖ ≤ ε if and only if X(w) satisfies (1.5).

In this paper we show the polynomial-time solvability of the balancing problem.
Specifically, we prove the following complexity result (Theorem 5):

Let A be an n × n nonnegative matrix, aii = 0, for all i = 1, . . . , n. Suppose
that GA = (V,E) is strongly connected. Let amin = min{aij : (i, j) ∈ E}, σ =∑

(i,j)∈E aij, and v = amin/σ. For any given accuracy ε ∈ (0, 1), in O(n4 ln(nε ln 1
v ))

arithmetic operations over O(ln( nεv ))-bit numbers, we can compute a positive diagonal
matrix X = diag(ew1 , . . . , ewn) so that XAX−1 is balanced to the relative error of ε
and the absolute error of eσε.

In order to obtain the above result we first state a characterization on balancable
matrices, Theorem 1. In particular, this theorem implies that an arbitrary nonnega-
tive matrix is balancable if and only if its corresponding graph is the union of strongly
connected graphs.

In Theorem 2 we prove the following:
An n×n nonnegative matrix A with aii = 0, for all i = 1, . . . , n, and GA strongly

connected can be balanced by a diagonal matrix X∗ = diag(ew
∗
1 , . . . , ew

∗
n) such that

|w∗i | ≤
n− 1

2
ln

e

(n− 1)v
, i = 1, . . . , n.

We give an example of ill-behaved balancable matrices for which the above bound
on balancing factors is sharp up to a constant factor.

To obtain the necessary bound on the accuracy of the minimization of G(w) we
prove the following in Theorem 3 and Corollary 2:

For any given ε ∈ (0, 1), the minimization of G(w) to an absolute accuracy
of δ = ε2/16 gives a point (w1, . . . , wn) so that (1.5) is satisfied with X(w) =
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diag(ew1 , . . . , ewn); i.e., if w∗ is an exact minimizer of G(w) in <n, G(w)−G(w∗) ≤ δ
implies that X(w) balances A to a relative error of ε.

Again, we give a simple example for which the above bound is optimal up to a
constant factor. In Theorem 4 we prove the following:

For any given ε ∈ (0, 1), ‖w − w∗‖ ≤ ε2/(16
√

2) implies G(w) − G(w∗) ≤ δ =
ε2/16.

The above results will imply the polynomial-time solvability of the problem of
balancing to any prescribed relative or absolute error via the ellipsoid algorithm or
interior-point Newton methods; see, e.g., Nesterov and Nemirovskii [6].

The remainder of the paper is organized as follows. In section 2 we state a
characterization result on balancable matrices. In section 3 we derive our bounds
on balancing matrices. In section 4 we bound the required absolute accuracy of the
minimization of G(w). Finally, in section 5 we prove the polynomial-time solvability
of the balancing problem.

2. Characterization of nonnegative balancable matrices. The following
characterization of balancable matrices is due to Eaves et al. [2]. The equivalence of
conditions (ii) and (iii) is essentially due to Osborne [7]. For the sake of completeness
we provide a proof of this theorem. The proof can be viewed as an alternative proof
to that of [2].

Theorem 1. Let A be an n× n nonnegative matrix, aii = 0, for all i = 1, . . . , n,
whose graph GA = (V,E) when viewed as an undirected graph is connected. The
following statements are equivalent.

(i): GA is strongly connected.
(ii): f(x) =

∑
(i,j)∈E aij

xi
xj

attains its infimum over Ω = {x ∈ <n :
∑n
i=1 xi =

1, xi > 0, i = 1, . . . , n}.
(iii): A is balancable.
(iv): There exist n× n circuit matrices C1, . . . , Cq (i.e., each Ck is a matrix with

0-1 entries whose graph Gk is a simple cycle through nk ≤ n vertices) and a
positive diagonal matrix X∗ = diag(x∗1, . . . , x

∗
n) such that

X∗AX∗
−1

=

q∑
k=1

αkCk

with some positive weights α1, . . . , αq.
Proof. (i)⇒(ii): Let x̄ be a boundary point of Ω. Then x̄i > 0 and x̄j = 0

for some i, j ∈ {1, . . . , n}. Since GA is strongly connected, there exist edges (i1 =
i, i2), (i2, i3), . . . , (ik−1, ik = j) ∈ E, where i1, . . . , ik are distinct. Then

f(x) ≥
k−1∑
l=1

ailil+1

xil
xil+1

.

As x ∈ Ω approaches x̄, the right-hand side of the above approaches +∞. From this,
the fact that Ω is bounded, and since f is continuous and positive on Ω, it follows
that f attains its infimum.

(ii) ⇒ (iii): Let x∗ ∈ Ω be a minimizer of f over Ω. Since f is homogeneous of
degree zero, x∗ minimizes f over {x : x > 0}. Hence ∇f(x∗) = 0, which gives

n∑
j=1

aij
x∗i
x∗j

=
n∑
j=1

aji
x∗j
x∗i
.
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(iii)⇒(iv): Let A∗ = X∗AX∗
−1

. Since A∗ is balanced, A∗ ∈ K, where

K =

Y = (yij) ≥ 0 :
n∑
j=1

yij −
n∑
j=1

yji = 0, i = 1, . . . , n, yij = 0 for (i, j) 6∈ E

 .

So A∗ is a positive combination of generators of the cone K. But the graph corre-
sponding to any generator of K is a simple cycle, proving (iv).

(iv)⇒(i): From (iv), GA can be decomposed as the union of directed cycles. Given
this and the fact that GA is connected, it is easy to argue the reachability from any
vertex i to any other vertex j.

Corollary 1. Letting Ak = X∗
−1

CkX
∗, we have

A =

q∑
k=1

αkAk,

where X∗ simultaneously balances each of the Ak’s.
Remark 1. Theorem 1 implies that the balancability of A can be tested in O(|E|)

time.
Remark 2. It can be shown that under the assumption of Theorem 1 the balancing

matrix X∗ is unique up to a scalar factor (see Osborne [7] and Eaves et al. [2]).

3. Bounds on balancing matrix.
Theorem 2. Let A be an n× n nonnegative matrix, aii = 0, for all i = 1, . . . , n,

and GA strongly connected. There exists a positive diagonal X∗ = diag(x∗1, . . . , x
∗
n)

balancing A such that

(3.1)

[
e

(n− 1)v

] 1−n
2

< x∗i <

[
e

(n− 1)v

]n−1
2

, i = 1, . . . , n,

where

(3.2) v =
amin

σ
, amin = min{aij : (i, j) ∈ E}, σ =

∑
(i,j)∈E

aij .

Proof. From Theorem 1, the minimizer x∗ of f(x) over {x : x > 0} exists. Let
X∗ = diag(x∗). From (3.2) and the optimality of x∗ we have

(3.3) amin

∑
(i,j)∈E

x∗i
x∗j
≤

∑
(i,j)∈E

aij
x∗i
x∗j

= f(x∗1, . . . , x
∗
n) ≤ f(1, . . . , 1) = σ.

Suppose without loss of generality that

max{x∗1, . . . , x∗n}
min{x∗1, . . . , x∗n}

=
x∗1
x∗2
.

Since GA is strongly connected, there exists a simple directed path from 1 to 2, say
P = (i1, i2), . . . , (it−1, it), where i1 = 1, it = 2, and t ≤ n. From (3.3) and the
arithmetic–geometric mean inequality we get

x∗1
x∗2

=
∏

(i,j)∈P

x∗i
x∗j
≤

 1

(t− 1)

∑
(i,j)∈P

x∗i
x∗j

t−1

≤
[

1

(t− 1)v

]t−1

<

[
e

(t− 1)v

]t−1

≤
[

e

(n− 1)v

]n−1

,
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where the last inequality follows from t ≤ n and v ≤ 1/n. Replacing X∗ by tX∗ with
t = 1/

√
x∗1x

∗
2, (3.1) follows.

We now give an example of nonnegative balancable matrices which are ill behaved.
Consider n = 2k + 1 and ε ∈ (0, 1). Let A be an n × n nonnegative matrix with the
following positive entries:

(3.4) ai,i+1 = a2k+2−i,2k+1−i = 1,

(3.5) ai+1,i = a2k+1−i,2k+2−i = ε,

for i = 1, . . . , k, and

(3.6) an1 = a1n = 1.

Observe that the graph GA of matrix A can be decomposed into two cycles through
its n vertices. Next, define the diagonal matrix X∗ = diag(x∗1, . . . , x

∗
n) as follows:

(3.7) x∗2k+2−i = x∗i = ε
k+2−2i

4 , i = 1, . . . , k + 1.

To illustrate (3.4)–(3.7), consider the case k = 3:

A =



0 1 0 0 0 0 1
ε 0 1 0 0 0 0
0 ε 0 1 0 0 0
0 0 ε 0 ε 0 0
0 0 0 1 0 ε 0
0 0 0 0 1 0 ε
1 0 0 0 0 1 0


,

X∗ = diag(ε
3
4 , ε

1
4 , ε−

1
4 , ε−

3
4 , ε−

1
4 , ε

1
4 , ε

3
4 ).

It is easy to check that the positive entries of X∗AX∗
−1

are given by

a∗i,i−1 = a∗i−1,i =
√
ε, i = 2, . . . , n,

a∗1n = a∗n1 = 1.

From this it follows that

n∑
j=1

a∗ij =
n∑
j=1

a∗ji = 2
√
ε, i = 2, . . . , n− 1

and

n∑
j=1

a∗ij =
n∑
j=1

a∗ji = 1 +
√
ε, i = 1, n.

Thus X∗ balances A and

max{x∗1, . . . , x∗n}
min{x∗1, . . . , x∗n}

=

(
1

ε

)(n−1)/4

.
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Since X∗ is unique up to scalar multiplication, the above bound holds for any balanc-
ing of A. In comparison, Theorem 1 gives

max{x∗1, . . . , x∗n}
min{x∗1, . . . , x∗n}

<

[
e

n− 1
· (n− 1)ε+ n+ 1

ε

]n−1

∼
[e
ε

]n−1

.

Remark 3. It follows from the proof of Theorem 2 that (3.1) can be strengthened
as follows: [ e

dv

]−d
2

< x∗i <
[ e
dv

] d
2

, i = 1, . . . , n,

where d is the longest (directed) shortest path between a pair of vertices in GA.

4. A sensitivity theorem for the convex program. For a given n× n non-
negative matrix A, consider the function

G(w) = lnF (w),

where

F (w) = f(ew1 , . . . , ewn) =
∑

(i,j)∈E
aije

wi−wj .

Theorem 3. Let A be an n× n nonnegative matrix, aii = 0, for all i = 1, . . . , n,
and GA strongly connected. Let w∗ ∈ <n be an exact minimizer of G(w). Suppose
that for a given δ > 0 we have w ∈ <n satisfying

G(w)−G(w∗) ≤ δ.

Then

‖∇G(w)‖ ≤ 2
√
e2δ − 1.

Before proving the theorem we state the following corollary, which gives the re-
quired accuracy of the optimization of G(w). From Theorem 3 and the fact that
x/2 < ln(1 + x) for all x ∈ (0, 1) we get the following corollary.

Corollary 2. Given ε ∈ (0, 1), let

δ =
ε2

16
.

If w ∈ <n satisfies G(w) − G(w∗) ≤ δ, then ‖∇G(w)‖ ≤ ε (and hence the diagonal
matrix X(w) = diag(ew1 , . . . , ewn) balances A to the relative error of ε).

Observe that the bound of Corollary 2 is optimal up to a constant factor: the
identity matrix balances A to the relative error of ε, where

A =

(
0 1

2 + ε
2
√

2
1
2 −

ε
2
√

2
0

)

and

δ = G(0)−G(w∗) = −1

2
ln

(
1− ε2

2

)
∼ ε2

4
.
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In order to prove Theorem 3 we need some auxiliary lemmas.
Lemma 1. For any given number a ≥ 1 and x ∈ <n define

σ(x, a) =

√∑n
i=1(xi − a)2

n(n− 1)
.

Let

B(n, a) = max

{
σ(x, a) :

1

n

n∑
i=1

xi = a,
n∏
i=1

xi = 1, x > 0

}
.

The above optimization problem has an optimal solution (x1, . . . , xn) such that x1 =
· · · = xn−1 ≤ xn.

Proof. For n = 1, 2 there is nothing to prove. We first prove the lemma for n = 3.
Consider

max

{
3∑
i=1

(xi − a)2 :
1

3

3∑
i=1

xi = a,

3∏
i=1

xi = 1, xi > 0, i = 1, 2, 3

}
.

Since a ≥ 1, from the relationship between arithmetic–geometric means the feasible
region is nonempty. The optimality condition gives

2(xi − a) = λ1 +
λ2

xi
, i = 1, 2, 3,

where λ1 and λ2 are Lagrange multipliers. Since the xi’s are a solution to the quadratic
equation 2x(x − a) = λ1x + λ2, it follows that two of the xi’s have the same value.
This implies that there exists either an optimal solution of the form x1 = x2 = a−R,
x3 = a+ 2R, where R is a positive number satisfying

(4.1) (a+ 2R)(a−R)2 = 1,

or an optimal solution with x1 = a−2r, x2 = x3 = a+r, where r is a positive number
satisfying

(4.2) (a− 2r)(a+ r)2 = 1.

The corresponding values for (x1− a)2 + (x2− a)2 + (x3− a)2 are 6R2 and 6r2. From
(4.1) and (4.2) we get

(4.3) (a+ 2R)(a−R)2 − (a− 2r)(a+ r)2 = 0.

Equivalently, (4.3) can be written as

(4.4) 3(r2 −R2) + 2(r3 +R3) = 0.

But (4.4) implies that r < R. Hence we have the proof of the lemma for n = 3.
Next we prove the lemma for n > 3. Let x = (x1, x2, . . . , xn) be an optimal

solution for B(n, a), where n > 3. Since for any permutation π of the set {1, . . . , n}
xπ = (xπ(1), . . . , xπ(n)) is also an optimal solution, without loss of generality we
may assume that x1 ≤ x2 ≤ · · · ≤ xn. Suppose there exists i, j, and k such that
xi < xj ≤ xk. Consider the three-dimensional minimization problem that results
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when all the variables except the ith, jth, and kth stay fixed at the value of the
corresponding component of x. Note that from the homogeneity of the constraint
set this three-dimensional minimization can be reduced to the problem of computing
B(3, a′) for some a′ ≥ 1 having an optimal solution which is a scalar multiple of
(xi, xj , xk). But this contradicts the correctness of the lemma for n = 3.

Corollary 3. B(n, a) = aξ, where ξ = ξ(n) ∈ [0, 1) satisfies

(4.5) an(1− ξ)n−1(1 + (n− 1)ξ) = 1.

Proof. From Lemma 1 there exists an optimal solution satisfying

x1 = · · · = xn−1 = a(1− ξ)

for some ξ ∈ [0, 1). Since the average value of the xi’s is a, we get xn = a(1+(n−1)ξ).
Also, the product of the xi’s is 1. Hence, (4.5) holds.

Lemma 2. B(n, a) ≤ B(n− 1, a) ≤ · · · ≤ B(2, a) =
√
a2 − 1.

Proof. The fact that B(2, a) =
√
a2 − 1 is immediate from Corollary 2. Next we

prove the monotonicity of B(n, a) in n. From (4.5) we have

(4.6) n ln a+ (n− 1) ln(1− ξ) + ln(1 + (n− 1)ξ) = 0.

Treating n as a continuous variable, and upon the implicit differentiation of (4.6), we
obtain

dξ

dn
B +A = 0,

where

B =
−nξ

(1 + (n− 1)ξ)(1− ξ) ,

and

A = ln(a(1− ξ)) +
ξ

(1 + (n− 1)ξ)
.

Since B < 0, it suffices to show that A ≤ 0. By (4.6),

(4.7) ln(a(1− ξ)) =
1

n
(ln(1− ξ)− ln(1 + (n− 1)ξ)) =

1

n
ln

(
(1− ξ)

(1 + (n− 1)ξ)

)
.

From (4.7) we have

(4.8) A =
1

n
ln

(
1− nξ

(1 + (n− 1)ξ)

)
− ξ

(1 + (n− 1)ξ)
=

1

n
ln(1− nu) + u,

where u = nξ/[1 + (n − 1)ξ]. Using the fact that ex ≥ 1 + x for all x, from (4.8) it
follows that A ≤ 0, and hence we have the proof of monotonicity of B(n, a).

Lemma 3. Suppose that A = X∗
−1

CX∗, where C is a circuit matrix with t equal
to the size of the circuit, and F (w) =

∑
(i,j)∈E aije

wi−wj . Then

1

t
‖∇F (w)‖ ≤ 2B

(
t,

1

t
F (w)

)
.
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Proof. Without loss of generality assume that the corresponding circuit in GA is
{(1, 2), . . . , (t− 1, t)}. Thus

(4.9) F (w) = e∆w1−∆w2 + e∆w2−∆w3 + · · ·+ e∆wt−∆w1 ,

where w∗i = lnx∗i and where ∆wi = wi −w∗i for all i = 1, . . . , n. From (4.9) it follows
that

(4.10) ∇F (w) = (e∆w1−∆w2 − e∆wn−∆w1 , . . . , e∆wt−∆w1 − e∆wt−1−∆wt)T .

Let z = (z1, . . . , zt)
T , where

z1 = e∆w1−∆w2 , z2 = e∆w2−∆w3 , . . . , zt = e∆wt−∆w1 ,

and let z′ = (z2, z3, . . . , zt, z1)T . Then

(4.11) ‖∇F (w)‖ = ‖z − z′‖.

Let

a =
1

t
F (w), â = (a, a, . . . , a)T ∈ <t.

From (4.11) and the triangle inequality we get

(4.12) ‖∇F (w)‖ ≤ ‖z − â‖+ ‖z′ − â‖ = 2‖z − â‖.

Now from (4.12) and Lemma 1 we obtain

1

t
‖∇F (w)‖ ≤ 2

t
‖z − â‖ ≤ 2

t

√
t

t− 1
‖z − â‖ = 2σ(z, â) ≤ 2B

(
t,

1

t
F (w)

)
.

Lemma 4. Let βk, k = 1, . . . , q be a set of positive numbers satisfying
∑q
k=1 βk =

1. Let γ ≥ 1 be any given number. For x ∈ <q, let H(x) =
∑q
k=1 βk

√
x2
k − 1. Then

max

{
H(x) :

q∑
k=1

βkxk ≤ γ, xk ≥ 1, k = 1, . . . , q

}
=
√
γ2 − 1.

Proof. Note that H(x) is concave and the feasible region is convex. Thus, to prove
the lemma it suffices to check that x = (γ, . . . , γ) ∈ <q is a constrained stationary
point. This can easily be established.

Proof of Theorem 3. Let A =
∑q
k=1 αkAk, where the Ak = X∗

−1

CkX
∗’s are the

decomposition components ensured by Theorem 1 (iv). For each k = 1, . . . , q, let Ek
be the simple cycle in GA corresponding to Ak, and let nk be the size of the cycle. In
particular, the positive entries of Ak are given by

a
(k)
ij = αk

x∗j
x∗i
, (i, j) ∈ Ek.

Let w∗ = (lnx∗1, . . . , lnx
∗
n) and ∆wi = wi − w∗i , i = 1, . . . , n. For each k = 1, . . . , q,

define

(4.13) Fk(w) =
∑

(i,j)∈Ek

e∆wi−∆wj .
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Then we have

(4.14) F (w) =

q∑
k=1

αkFk(w)

and

(4.15) F (w∗) =

q∑
k=1

αknk.

Suppose

G(w)−G(w∗) ≤ δ,

where G(w) = lnF (w). Equivalently, suppose that

(4.16)
F (w)

F (w∗)
≤ eδ.

From (4.14) and (4.15) we obtain

(4.17)
F (w)

F (w∗)
=

∑q
k=1 αknk

Fk(w)
nk∑q

k=1 αknk
.

Define

(4.18) βk =
αknk∑q
k=1 αknk

, k = 1, . . . , q.

With this notation (4.16) can be written as

(4.19)

q∑
k=1

βk
Fk(w)

nk
≤ eδ.

Since X∗ simultaneously balances each Ak (see Corollary 1) we have

(4.20) Fk(w) ≥ nk, k = 1, . . . , q.

From (4.17) it follows that

(4.21) ∇G(w) =
∇F (w)

F (w)
=

∑q
k=1 αk∇Fk(w)∑q
k=1 αkFk(w)

.

By (4.18), (4.20), and (4.21)

‖∇G(w)‖ ≤
∑q
k=1 αk‖∇Fk(w)‖∑q

k=1 αknk
=

q∑
k=1

βk
‖∇Fk(w)‖

nk
.

Hence from Lemma 3 we obtain

(4.22) ‖∇G(w)‖ ≤ 2

q∑
k=1

βkB

(
nk,

1

nk
Fk(w)

)
.
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Let

(4.23) ak =
Fk(w)

nk
, k = 1, . . . , q.

Note that from (4.20) ak ≥ 1. From this, (4.22), and Lemma 2 we have

(4.24) ‖∇G(w)‖ ≤ 2

q∑
k=1

βkB(2, ak) = 2

q∑
k=1

βk

√
a2
k − 1.

Since
∑q
k=1 βkak ≤ eδ and

∑q
k=1 βk = 1, from (4.24) and Lemma 4 we conclude that

‖∇G(w)‖ ≤ 2
√
e2δ − 1.

Hence, we have the proof of Theorem 3.

5. Polynomial-time solvability of the matrix balancing problem. To com-
plete the proof of polynomial-time solvability we also need the following result.

Theorem 4. Let A be an n×n nonnegative matrix, aii = 0, for all i = 1, . . . , n,
and GA strongly connected. Let w∗ be an exact minimizer of G(w) in <n. Given
ε ∈ (0, 1), define

(5.1) r =
ε2

16
√

2
.

The condition

(5.2) ‖w − w∗‖ ≤ r

implies

(5.3) G(w)−G(w∗) ≤ δ =
ε2

16
.

Proof. From (5.2) it follows that

(5.4) |∆wi −∆wj | ≤
√

2r,

where, as before, we use the notation ∆wi = wi − w∗i , i = 1, . . . , n. Recall from the
proof of Theorem 3 that

(5.5)
F (w)

F (w∗)
=

q∑
k=1

βk
Fk(w)

nk
,

where
∑q
k=1 βk = 1; see (4.17) and (4.18). Also recall that for each k = 1, . . . , q we

have

(5.6) Fk(w) = e∆wt1−∆wt2 + e∆wt2−∆wt3 + · · ·+ e
∆wtnk−1

−∆wtnk ,

where {t1, . . . , tnk} is a subset of {1, . . . , n}. Using (5.4) and (5.6) we get

Fk(w) ≤ nke
√

2r,
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which in view of (5.5) yields

F (w)

F (w∗)
≤

q∑
k=1

βke
√

2r = e
√

2r.

Substituting (5.1) into the above inequality, we obtain (5.3).

From Theorem 2, Theorem 3, and Corollary 2 it follows that in order to balance
a given nonnegative n×n matrix A, whose diagonal entries are zero and GA strongly
connected, to the relative error of ε, it suffices to solve the convex program

(5.7) min

{
G(w) = ln

n∑
i,j=1

aije
wi−wj : ‖w‖ ≤ R =

√
n(n− 1)

2
ln

e

(n− 1)v

}

with the absolute accuracy δ = ε2/16. But the number of iterations of the ellipsoid
method for solving any convex optimization problem of the form min{G(w) : ‖w‖ ≤
R} is bounded by 2n(n + 1) ln (R/r), provided that the set of ε solutions contains a
ball of radius r (see, e.g., [4]). Hence by Theorem 4 (5.7) can be solved in

(5.8) 2n(n+ 1) ln
R

r
= O

(
n2 ln

(
n

ε
ln

1

v

))
iterations. Each iteration of the ellipsoid method requires O(n2) operations plus
the overhead for evaluation of the function and its gradient. In our case the total
complexity remains as O(n2) operations. These operations are to be performed over
the numbers ωi’s having at most O(ln( nεv )) digits before and after the decimal point.
From Theorem 4, Theorem 3, and Corollary 2 we conclude that if ‖w−w∗‖ ≤ r, then
F (w)/F (w∗) ≤ eδ. Thus, ‖w − w∗‖ ≤ r implies that

‖∇F (w)‖
eδF (w∗)

≤ ‖∇F (w)‖
F (w)

= ‖∇G(w)‖ ≤ ε.

Hence,

‖∇F (w)‖ ≤ eδF (w∗)ε ≤ eF (0)ε = eσε.

We thus have the following theorem.

Theorem 5. Let A be an n× n nonnegative matrix, aii = 0, for all i = 1, . . . , n.
Suppose that GA = (V,E) is strongly connected. Let amin = min{aij : (i, j) ∈ E}, σ =∑

(i,j)∈E aij, and v = amin/σ. For any given accuracy ε ∈ (0, 1), in O
(
n4 ln

(
n
ε ln 1

v

))
arithmetic operations over O(ln( nεv ))-bit numbers, we can compute a positive diagonal
matrix X = diag(ew1 , . . . , ewn) so that XAX−1 is balanced to the relative error of ε
and the absolute error of eσε.

The convex programming problem (5.7) can also be solved via interior-point New-
ton methods in O(m3.5

√
m ln(n/ε ln(1/v))) arithmetic operations (see [6]), where m

is the number of positive entries of the input matrix A. However, for matrices with
m > n8/7 this complexity is inferior to the one stated in Theorem 5. It should be
mentioned that these complexity bounds also apply to the doubly stochastic diagonal
scaling of nonnegative matrices; see [5].
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CIRCULANT PRECONDITIONERS FOR MARKOV-MODULATED
POISSON PROCESSES AND THEIR APPLICATIONS TO

MANUFACTURING SYSTEMS∗
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Abstract. The Markov-modulated Poisson process (MMPP) is a generalization of the Poisson
process and is commonly used in modeling the input process of communication systems such as
data traffic systems and ATM networks. In this paper, we give fast algorithms for solving queueing
systems and manufacturing systems with MMPP inputs. We consider queueing systems where the
input of the queues is a superposition of the MMPP which is still an MMPP. The generator matrices
of these processes are tridiagonal block matrices with each diagonal block being a sum of tensor
products of matrices. We are interested in finding the steady state probability distributions of
these processes which are the normalized null vectors of their generator matrices. Classical iterative
methods, such as the block Gauss–Seidel method, are usually employed to solve for the steady
state probability distributions. They are easy to implement, but their convergence rates are slow in
general. The number of iterations required for convergence increases like O(m), where m is the size
of the waiting spaces in the queues. Here, we propose to use the preconditioned conjugate gradient
method. We construct our preconditioners by taking circulant approximations of the tensor blocks
of the generator matrices. We show that the number of iterations required for convergence increases
at most like O(log2 m) for large m. Numerical results are given to illustrate the fast convergence.

As an application, we apply the MMPP to model unreliable manufacturing systems. The pro-
duction process consists of multiple parallel machines which produce one type of product. Each
machine has exponentially distributed up time, down time, and processing time for one unit of prod-
uct. The interarrival of a demand is exponentially distributed and finite backlog is allowed. We
consider hedging point policy as the production control. The average running cost of the system can
be written in terms of the steady state probability distribution. Our numerical algorithm developed
for the queueing systems can be applied to obtain the steady state distribution for the system and
hence the optimal hedging point. Furthermore, our method can be generalized to handle the case
when the machines have a more general type of repairing process distribution such as the Erlangian
distribution.

Key words. Markov-modulated Poisson process, preconditioned conjugate gradient squared
method, manufacturing systems, hedging point policy

AMS subject classifications. 65C20, 65F10

PII. S0895479895293442

1. Introduction. The Markov-modulated Poisson process (MMPP) is a gener-
alization of the Poisson process and is widely used as the input model of communica-
tion systems such as data traffic systems [8] and ATM networks [23]. An MMPP is a
Poisson process whose instantaneous rate is itself a stationary random process which
varies according to an irreducible n-state Markov chain. If n is 1, then the process is
just a Poisson process. We say that the MMPP is in phase k, 1 ≤ k ≤ n, when the
underlying Markov process is in state k, and in this case the arrivals occur according
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to a Poisson process of rate λk. The process is characterized by the generator matrix
Q of the underlying Markov process and the rates λ1, λ2, . . . , λn.

In this paper, we first discuss a numerical algorithm for solving the steady state
probability distributions of queueing systems with MMPP inputs. We then relate
queueing systems with MMPP inputs to the production process in unreliable man-
ufacturing systems under the hedging point production control. Our algorithm can
be applied to solve for the steady state probability distribution of these systems and
hence their optimal hedging points.

We consider a queueing system with (q+1) trunks, where each trunk hasm waiting
spaces and s multiple exponential servers. The analysis of these queueing systems can
be used to determine call congestions in teletraffic networks with alternate routing; see
Meier-Hellstern [13]. A call will overflow to other trunks if its first destination trunk is
full and will be blocked from the system if all the trunks are full. The analysis of these
queueing systems can be decomposed into the study of each trunk independently; see
Meier-Hellstern [13]. For each trunk, the overflow from other trunks is modeled by a
2q-state MMPP which is a superposition of q independent 2-state MMPPs; i.e., each
trunk is an (MMPP/M/s/s + m) queue. The generator matrices of these processes
are (s+m+ 1)2q × (s+m+ 1)2q tridiagonal block matrices with each diagonal block
being a sum of tensor products of matrices. We are interested in finding the steady
state probability distributions of the queues which are the normalized null vectors of
the generator matrices.

Usually classical iterative methods, such as the block Gauss–Seidel method, are
used to solve for the steady state probability distribution. They are easy to implement,
but their convergence rates are slow in general; see the numerical results in section
7. Here, we propose to use the preconditioned conjugate gradient (PCG) method.
Our preconditioners are constructed by taking circulant approximations of the tensor
blocks of the generator matrix. We prove that the preconditioned system has singular
values clustered around 1 independent of the size of the waiting spaces m. Hence
the conjugate gradient method will converge very fast when employed to solve the
preconditioned system for large m. In fact, we prove that the number of iterations
required for convergence grows at most like O(log2m). Numerical examples are given
in section 7 to illustrate the fast convergence. For the case of a single server (s = 1),
our generator matrix corresponds to a class of quasi-birth–death (QBD) processes
which can be solved efficiently by the folding algorithm; see Ye and Li [22]. We will
compare the complexity of our PCG method with that of the folding algorithm in
section 7. The cost of our PCG method increases more slowly than that of the folding
algorithm when the problem size increases. In fact, for large values of q (q ≥ 6), the
PCG-type method is more efficient than the folding algorithm.

The analysis of the MMPP queueing systems can be applied to the production
planning of manufacturing systems. We consider manufacturing systems of multiple
parallel machines producing one type of product. Usually positive inventory is stored
to hedge against uncertain situations such as the breakdown of machines and the
shortfall of products; see Akella and Kumar [1]. It is well known that the hedging point
policy is optimal for one-machine manufacturing systems in some simple situations;
see [1, 3, 10, 11]. For two-machine flowshops, hedging policies are no longer optimal
but near optimal; see [16, 15]. A hedging point policy is characterized by a number h:
the machines keep producing the product at the maximum possible production rate
if the inventory level is less than h, maintain the inventory level h as far as they can
if the inventory level reaches h, and stop producing if the inventory level exceeds h.
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When the optimal policy is a zero-inventory policy (i.e., the hedging point is zero),
then the policy matches with the just-in-time (JIT) policy. The JIT policies have
strongly been favored in real-life production systems for process discipline reasons
even when they are not optimal. By using the JIT policy, the Toyota company has
managed to reduce work-in-process and cycle time in the presence of the stochastic
situations mentioned above; see Monden [14]. We focus on finding optimal hedging
point policies for the manufacturing systems.

We note that in [1, 3, 10, 11] only one-machine systems are considered, and,
in addition, the repairing process of the machine is assumed to be exponentially
distributed. Ching and Zhou [6] consider one-machine manufacturing systems with
the repairing process being Erlangian distributed. The algorithm proposed here can
deal with the more general case of multiple machines. Each machine is unreliable
and has exponential up time and down time, and the demand is a Poisson process.
The production process of the machines can be modeled as an MMPP. The generator
matrix for the machine-inventory system is a particular case of the queueing systems
discussed above, with the queue size m being the size of the inventory which in practice
can easily go up to the thousands. Our numerical method developed for the queueing
networks above is well suited for solving the steady state probability distribution for
these processes. Given a hedging point, the average running cost of the machine-
inventory system can be written in terms of the steady state probability distribution.
Hence the optimal hedging point can also be obtained. Moreover, our algorithm can
also handle the case when the repair time has a more general distribution, e.g., the
Erlangian distribution.

The outline of the paper is as follows. In section 2, we present the generator
matrix for the queueing system (MMPP/M/s/s+m). In section 3, we construct pre-
conditioners by taking circulant approximations of the tensor blocks of the generator
matrices. In section 4, we prove that the preconditioned systems have singular values
clustered around 1. The cost count of our method is given in section 5. In section
6, we apply our method to the production planning of manufacturing systems with
multiple parallel machines. Numerical examples are given in section 7 to illustrate the
fast convergence rate of our method. Finally, concluding remarks are given in section
8.

2. The queueing system. In this section, we present the queueing system
(MMPP/M/s/s+m) arising in telecommunication networks; see, for instance, Meier-
Hellstern [13]. In order to construct the generator matrix of the queueing process, we
first define the following queueing parameters:

(i) 1/λ, the mean arrival time of the exogenously originating calls,
(ii) 1/µ, the mean service time of each server,

(iii) s, the number of servers,
(iv) m, the number of waiting spaces in the queue,
(v) q, the number of overflow queues, and

(vi) (Qj ,Λj), 1 ≤ j ≤ q, the parameters of the MMPP’s modeling overflow
parcels, where

Qj =

(
σj1 −σj2
−σj1 σj2

)
and Λj =

(
λj 0
0 0

)
.(1)

Here σj1, σj2, and λj , 1 ≤ j ≤ q, are positive MMPP parameters. Conventionally,
an infinitesimal generator Q has nonnegative off-diagonal entries and zero row sums.
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For ease of presentation, in our discussion all the infinitesimal generators are of the
form −Qt, which has nonpositive off-diagonal entries and zero column sums.

The input of the queue comes from the superposition of several independent
MMPPs, which is still an MMPP and is parametrized by two 2q× 2q matrices (Q,Γ).
Here

Q = (Q1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗Q2 ⊗ I2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ I2 ⊗Qq),(2)

Λ = (Λ1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗ Λ2 ⊗ I2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ I2 ⊗ Λq),(3)

and

Γ = Λ + λI2q ,

where I2 and I2q are the 2 × 2 and 2q × 2q identity matrices, respectively, and ⊗
denotes the Kronecker tensor product. In the following, we will drop the subscript of
the identity matrix I if the dimension of the matrix is clear from the context.

We can regard our (MMPP/M/s/s+m) queue as a Markov process on the state
space

{(i, j) | 0 ≤ i ≤ s+m, 1 ≤ j ≤ 2q}.

The number i corresponds to the number of calls at the destination, while j corre-
sponds to the state of the Markov process with generator matrix Q. Hence the genera-
tor matrix of the queueing process is given by the following (s+m+1)2q×(s+m+1)2q

tridiagonal block matrix A:

A =



Q+ Γ −µI 0
−Γ Q+ Γ + µI −2µI

. . .
. . .

. . .

−Γ Q+ Γ + sµI −sµI
. . .

. . .
. . .

−Γ Q+ Γ + sµI −sµI
0 −Γ Q+ sµI


.

(4)

For simplicity, let us write n = (s + m + 1)2q. The steady state probability
distribution vector p = (p1, p2, . . . , pn)t is the solution to the matrix equation Ap = 0
with constraints

n∑
i=1

pi = 1

and

pi ≥ 0 for all 1 ≤ i ≤ n.

Note that the matrix A is irreducible and has zero column sums, positive diagonal en-
tries, and nonpositive off-diagonal entries. From Perron–Frobenius theory, the matrix
A has a one-dimensional null space with a positive null vector; see Varga [20, p. 30].
Therefore, the steady state probability distribution vector p exists.



468 WAI KI CHING, RAYMOND H. CHAN, AND XUN YU ZHOU

Many useful quantities such as the steady state distribution of the number of calls
at the destination, the blocking probability, and the waiting time distribution can be
obtained from the vector p; see Meier-Hellstern [13]. We note that p can be obtained
by normalizing the solution x of the nonsingular system

Gx ≡ (A+ ene
t
n)x = en.(5)

Here en = (0, . . . , 0, 1)t is an n-vector. The matrix G is nonsingular because it is
irreducible diagonally dominant with the last column being strictly diagonally domi-
nant. We will solve the linear system (5) by conjugate gradient (CG)-type methods;
see [2, 18]. The convergence rate of CG-type methods depends on the distribution of
the singular values of the matrix G. The more clustered the singular values of G are,
the faster the convergence rate will be; see Axelsson and Barker [2].

However, this is not the case for our matrix G, and we will see in the numerical
results in section 7 that the convergence for system (5) is very slow. To speed up
the convergence, a preconditioner is used. In essence, we solve instead of (5) the
preconditioned system

GC−1w = en(6)

for w by CG-type methods. Obviously, the solution x to (5) is given by C−1w.
A good preconditioner C is an easy-to-construct matrix, the preconditioned matrix
GC−1 has singular values clustered around 1, and the preconditioned system Cy = r
can be solved easily for any vector r; see Axelsson and Barker [2]. We will show that
our preconditioner satisfies these three criteria in the next three sections.

3. Construction of our preconditioners. In this section, we discuss the con-
struction of preconditioners for the linear system (6). Our preconditioner C is con-
structed by exploiting the block structure of the generator matrix A in (4). Notice
that the generator A can be written as the sum of tensor products:

A = I ⊗Q+B ⊗ I +R⊗ Λ,(7)

where B and R are (s+m+ 1)× (s+m+ 1) matrices given by

B =



λ −µ 0
−λ λ+ µ −2µ

. . .
. . .

. . .

−λ λ+ sµ −sµ
. . .

. . .
. . .

−λ λ+ sµ −sµ
0 −λ sµ


and

R =



1 0
−1 1

−1
. . .

. . . 1
0 −1 0

 .
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For small s, we observe that B and R are close to the tridiagonal Toeplitz matrices

tridiag[−λ, λ+ sµ,−sµ] and tridiag[−1, 1, 0],

respectively. Our preconditioner is then obtained by taking the “circulant approxi-
mation” of the matrices B and R, which are defined by c(B) and c(R) as follows:

c(B) =


λ+ sµ −sµ −λ
−λ λ+ sµ −sµ

. . .
. . .

. . .

−λ λ+ sµ −sµ
−sµ −λ λ+ sµ

(8)

and

c(R) =



1 −1
−1 1

−1
. . .

. . . 1
0 −1 1

 .(9)

We note that c(B) and c(R) are Strang’s circulant approximations of the Toeplitz ma-
trices tridiag[−λ, λ+sµ,−sµ] and tridiag[−1, 1, 0], respectively; see Chan [5]. Clearly,
we have the following lemma.

Lemma 1. rank(B − c(B)) = s+ 1 and rank(R− c(R)) = 1.
Using the theory of circulant matrices (see Davis [7]) we also have the following.
Lemma 2. The matrices c(B) and c(R) can be diagonalized by the discrete Fourier

transform matrix F ; i.e.,

F ∗(c(B))F = Φ and F ∗(c(R))F = Ψ,

where both Φ and Ψ are diagonal matrices. The eigenvalues of c(B) and c(R) are
given by

φj = λ(1− e
−2πi(j−1)
s+m+1 ) + sµ(1− e

−2πi(j−1)(s+m)
s+m+1 ), j = 1, . . . , s+m+ 1(10)

and

ψj = 1− e
−2πi(j−1)
s+m+1 , j = 1, . . . , s+m+ 1.(11)

Thus, the matrices c(B) and c(R) can be inverted easily by using fast Fourier
transforms.

We first approximate our matrix A in (7) (and hence G in (5)) by

D = I ⊗Q+ c(B)⊗ I + c(R)⊗ Λ.(12)

We observe that D is irreducible and has zero column sums, positive diagonal entries,
and nonpositive off-diagonal entries. Hence D is singular and has a null space of
dimension one. Moreover, D is unitarily similar to a diagonal block matrix:

(F ∗ ⊗ I)D(F ⊗ I) = I ⊗Q+ Φ⊗ I + Ψ⊗ Λ = diag(D1, C2, C3, . . . , Cs+m+1).(13)
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Here the blocks are

Ci = Q+ φiI + ψiΛ, i = 2, . . . , s+m+ 1,(14)

and D1 = Q with D1 being the only singular block.
Let

C1 = Q+ e2qe
t
2q ,(15)

where e2q = (0, . . . , 0, 1)t is a 2q-vector. Since C1 is irreducible diagonally domi-
nant with the last column being strictly diagonally dominant, it is nonsingular. Our
preconditioner C for the matrix G in (5) is defined as

C = (F ⊗ I)diag(C1, C2, . . . , Cs+m+1)(F ∗ ⊗ I),(16)

which is clearly nonsingular.

4. Convergence analysis. In this section, we study the convergence rate of our
algorithm when m, the number of waiting spaces, is large. In the queueing systems
considered in Meier-Hellstern [13], the number of waiting spaces m in each queue is
much larger than the number of overflow queues q. In section 6, we apply the MMPP
to model manufacturing systems of q parallel machines and m possible inventory
states. In practice, the number of possible inventory states is much larger than the
number of machines in the manufacturing systems and can easily go up to thousands.

We prove that if the queueing parameters λ, µ, s, q, and σij are fixed independent
of m, then the preconditioned systemGC−1 in (6) has singular values clustered around
1 as m tends to infinity. Hence when CG-type methods are applied to solve the
preconditioned system (6), we expect fast convergence. Numerical examples are given
in section 7 to demonstrate our claim. We start the proof by the following lemma.

Lemma 3. We have rank(G− C) ≤ (s+ 2)2q + 2.
Proof. We note that by (5) we have rank(G−A) = 1. From (7), (12), and Lemma

1, we see that rank(A−D) = (s+ 2)2q. From (13), (15), and (16), we see that D and
C differ by a rank-one matrix. Therefore, we have

rank(G− C) ≤ rank(G−A) + rank(A−D) + rank(D − C) = (s+ 2)2q + 2.

Hence the inequality is proved.
Theorem 1. The preconditioned matrix GC−1 has at most 2((s + 2)2q + 2)

singular values not equal to 1.
Proof. We first note that

GC−1 = I + (G− C)C−1 ≡ I + L1,

where rank(L1) ≤ (s+ 2)2q + 2 by Lemma 3. Therefore,

C−∗G∗GC−1 − I = L∗1(I + L1) + L1

is a matrix of rank at most 2((s+ 2)2q + 2).
Thus the number of singular values of GC−1 that are distinct from 1 is a constant

independent of m. In order to show fast convergence of PCG-type methods with
preconditioner C, one still needs an estimate of σmin(GC−1), the smallest singular
value of GC−1. If σmin(GC−1) is uniformly bounded away from zero independent
of m, then the method converges in O(1) iterations; if σmin(GC−1) decreases like
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O(m−α) for some α > 0, then the method converges in at most O(log2m) steps; see
Van der Vorst [19] or Chan [4, Lemma 3.8.1].

In the remainder of this section, we show that even in the worst case in which
σmin(GC−1) decreases in an order faster than O(m−α) for any α > 0 (e.g., like
O(e−m)), we can still have a fast convergence rate. Note that in this case the matrix
equation (6) is very ill conditioned. Our trick is to consider a regularized equation of
(6) as follows:

C−∗(G∗G+m−4−βI)C−1w = C−∗G∗en,(17)

where β is any positive constant.
In the following, we prove that the regularized preconditioned matrix

C−∗(G∗G+m−4−βI)C−1

has eigenvalues clustered around 1 and its smallest eigenvalues decrease at a rate no
faster than O(m−4−β). Hence PCG-type methods will converge in at most O(log2m)
steps when applied to solve the preconditioned linear system (17). Moreover, we prove
that the 2-norm of the error introduced by the regularization tends to zero at a rate of
O(m−β). To prove our claim, we must get an estimate of the upper and lower bounds
for ||C−1||2. We begin our proof by the following lemma.

Lemma 4. Given any matrix W , if the smallest eigenvalue of W +W ∗, denoted
by λmin(W +W ∗), satisfies λmin(W +W ∗) ≥ δ > 0, then ||W−1||2 ≤ 2/δ.

Proof. For any arbitrary x, using the Cauchy–Schwarz inequality, we have

δ||x||22 ≤ λmin(W +W ∗)||x||22 ≤ x∗(W +W ∗)x = 2x∗Wx ≤ 2||x||2||Wx||2.

Since Wx is arbitrary, this implies ||W−1||2 ≤ 2/δ.
Now we are ready to estimate ||C−1||2.
Lemma 5. Let the queueing parameters λ, µ, s, q, and σij be independent of m.

Then there exist positive constants τ1 and τ2 independent of m such that

τ1 ≤ ||C−1||2 ≤ τ2m2.

Proof. We first prove the left-hand side of the inequality. From (16), we see that
C is unitarily similar to a diagonal block matrix. We therefore have

||C||2 = max {||C1||2, ||C2||2, . . . , ||Cs+m+1||2} .

Using (14), (10), and (11), it is straightforward to check that ||Ci||1 and ||Ci||∞,
1 ≤ i ≤ s+m+ 1, are all bounded above by

1

τ1
≡ q

(
max
j
{σj1}+ max

j
{σj2}

)
+ 2(λ+ sµ+ 1).

Using the inequality

|| · ||2 ≤
√
|| · ||1|| · ||∞,

we see that ||Ci||2, i = 1, . . . , s + m + 1, are all bounded above by 1/τ1. Thus
||C||2 ≤ 1/τ1 and hence τ1 ≤ ||C−1||2.

Next we prove the right-hand side of the inequality. We note again by (16) that

||C−1||2 = max
{
||C−1

1 ||2, ||C−1
2 ||2, . . . , ||C−1

s+m+1||2
}
.
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From (15), we can see that C1 is a 2q×2q nonsingular matrix with entries independent
of m. Thus ||C−1

1 ||2 is bounded independent of m. To obtain bounds for ||C−1
i ||2,

i = 2, . . . , s + m + 1, we first symmetrize the matrices. Define Σ = Σ1 ⊗ · · · ⊗ Σq,
where

Σj =

(
1 0
0

σj1
σj2

)
, j = 1, . . . , q.

We see that ||Σ||2 and ||Σ−1||2 are bounded independent of m. By (1) and (2), we
see that QΣ is a symmetric semidefinite matrix. Thus

CiΣ = QΣ + φiΣ + ψiΛΣ, i = 2, . . . , s+m+ 1,

are symmetric matrices too. By (11), we see that (ψiΛΣ + (ψiΛΣ)∗), i = 2, . . . , s +
m+ 1, are diagonal positive semidefinite matrices. Therefore,

λmin(CiΣ + (CiΣ)∗) ≥ λmin(φiΣ + (φiΣ)∗), i = 2, . . . , s+m+ 1.(18)

From (10), we have

λmin(φiΣ + (φiΣ)∗) ≥ λ||Σ−1||−1
2 sin2

(
(i− 1)π

s+m+ 1

)
, i = 2, . . . , s+m+ 1.

Since

sin θ ≥ min

{
2θ

π
, 2

(
1− θ

π

)}
∀θ ∈ [0, π],

we have

λmin(φiΣ + (φiΣ)∗) ≥ λ||Σ−1||−1
2 min

{
4(i− 1)2

(s+m+ 1)2
, 4

(
1− i− 1

s+m+ 1

)2
}

≥ 4λ

m2
||Σ−1||−1

2 , i = 2, . . . , s+m+ 1.

By Weyl’s theorem [9, p. 181], we then have

λmin(φiΣ + (φiΣ)∗) ≥ τ

m2
, i = 2, . . . , s+m+ 1,

where τ = 4λ||Σ−1||−1
2 is a positive constant independent of m.

Thus by (18) we get

λmin(CiΣ + (CiΣ)∗) ≥ τ

m2
, i = 2, . . . , s+m+ 1.

Hence by Lemma 4 we have

||Σ−1C−1
i ||2 ≤

2

τ
m2, i = 2, . . . , s+m+ 1.

Therefore,

||C−1
i ||2 ≤ ||Σ||2||Σ−1C−1

i ||2 ≤
2m2

τ
||Σ||2, i = 2, . . . , s+m+ 1.
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Since ||C−1
1 ||2 is bounded above independent of m, we have

||C−1||2 ≤ max

{
||C−1

1 ||2,
2m2

τ
||Σ||2

}
≡ τ2m2,

where τ2 is a positive constant independent of m. Hence we have proved the
lemma.

Theorem 2. Let the queueing parameters λ, µ, s, q, and σij be independent of m.
Then for any positive β the regularized preconditioned matrix

C−∗(G∗G+m−4−βI)C−1(19)

has eigenvalues clustered around 1 and the smallest eigenvalue decreases at a rate no
faster than O(m−4−β). Furthermore, the error introduced by the regularization is of
the order O(m−β).

Proof. We note by Theorem 1 that

C−∗(G∗G+m−4−βI)C−1 = I + L2 +m−4−βC−∗C−1,

where L2 is a Hermitian matrix with rank(L2) ≤ 2((s + 2)2q + 2). By Lemma 5, we
have

lim
m→∞

m−4−β ||C−∗C−1||2 ≤ lim
m→∞

m−β = 0.

Thus by Cauchy’s interlace theorem [9, p. 184] the regularized preconditioned matrix
in (19) has eigenvalues clustered around 1 as m tends to infinity. The error introduced
by the regularization is given by m−4−β ||C−∗C−1||2, which by Lemma 5 tends to zero
like O(m−β).

As for the smallest eigenvalue of the regularized preconditioned matrix in (19),
we note that

min
||x||2=1

x∗(G∗G+m−4−β)x

x∗C∗Cx
≥

min||x||2=1 x∗(G∗G+m−4−β)x

max||x||2=1 x∗C∗Cx
≥ τ1
m4+β

,(20)

where the rightmost inequality follows from Lemma 5. We recall that τ1 and β are
positive constants independent of m. Hence the smallest eigenvalue of the regularized
preconditioned matrix in (19) decreases no faster than O(m−4−β).

Thus we conclude that PCG-type methods applied to (17) with β > 0 will con-
verge in at most O(log2m) steps; see Van der Vorst [19] or Chan [4, Lemma 3.8.1]. To
minimize the error introduced by the regularization, one can choose a large β. Recall
that regularization is required only when the smallest singular value of the matrix
GC−1 in (6) tends to zero faster than O(m−α) for any α > 0. In view of Lemma 5 (or
cf. (20)), this can happen only when the smallest singular value of G has the same
decaying rate. This will imply that the matrix G is very ill conditioned. We note,
however, that in all our numerical tests in section 7 we found that there is no need to
add the regularization.

5. Cost analysis. In this section, we derive the computational cost of the PCG-
type method. We compare our PCG method with the block Gauss–Seidel (BGS)
method used in Meier-Hellstern [13] and the folding algorithm of Ye and Li [22].
We show that the cost for PCG-type algorithms is O(2q(s + m + 1) log2(s + m +
1) + q(s + m + 1)2q). The computational cost per iteration of the BGS method is
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O((s+m+1)22q); see Meier-Hellstern [13]. Thus PCG-type methods require an extra
O(log2(s+m+ 1)) of work per iteration compared with the BGS method. However,
as we will soon see in the numerical examples of section 7, the fast convergence of our
method can more than compensate for this minor overhead in each iteration.

When the queue has a single server, i.e., s = 1, our generator matrix A corre-
sponds to a class of QBD processes which can be solved efficiently by the folding
algorithm of Ye and Li [22]. The complexity of the folding algorithm is approximately
26α

3 23q log2(s+m+1)+3(s+m+1)22q operations, where 1 ≤ α < 2. We will compare
the computational cost of our PCG method with the folding algorithm in section 7.
Our PCG method is more efficient than the folding algorithm for large problems.

In PCG-type algorithms for (6), the main cost per iteration is to compute the
matrix-vector multiplication of the form GC−1y twice for some vector y. By using
the block tensor structure of A in (7), the multiplication of Gz requires (s+m+1)q2q

operations for any vector z. By (16), we see that C−1y is given by

(F ⊗ I)diag(C−1
1 , C−1

2 , . . . , C−1
s+m+1)(F ∗ ⊗ I)y.

It involves the matrix-vector multiplications of the form

(F ∗ ⊗ I)z and (F ⊗ I)z.

By using fast Fourier transforms, they can be obtained in 6(s+m+1)2q log2(s+m+1)
operations. The vector

diag(C−1
1 , C−1

2 , . . . , C−1
s+m+1)z

can be obtained by solving (s + m + 1) linear systems involving the matrices Ci,
i = 1, . . . , s+m+1. Since each matrix is of size 2q×2q, if GE is used, O((s+m+1)23q)
operations will be required. We now show that it can be reduced to O((s+m+1)q2q)
operations.

First we recall from the definitions of Ci, Q, and Λ in (14), (2), and (3) that

Ci = ((Q1 + φiI + ψiΛ1)⊗ I ⊗ · · · ⊗ I) + (I ⊗ (Q2 + φiI + ψiΛ2)⊗ I ⊗ · · · ⊗ I)

+ · · ·+ (I ⊗ I ⊗ · · · ⊗ (Qq + φiI + ψiΛq)),(21)

where Qj and Λj , j = 1, . . . , q, are given in (1). By using Schur’s triangularization
theorem [9, p. 79], we can find 2×2 unitary matrices Uij and lower triangular matrices
Lij such that

U∗ij(Qj + φiI + ψiΛj)Uij = Lij , 1 ≤ i ≤ s+m+ 1, 1 ≤ j ≤ q.(22)

For i = 1, . . . , s+m+ 1, define

Ui ≡ Ui1 ⊗ · · · ⊗ Uiq

and

Li ≡ (Li1 ⊗ I ⊗ · · · ⊗ I) + (I ⊗ Li2 ⊗ I ⊗ · · · ⊗ I) + · · ·+ (I ⊗ I ⊗ · · · ⊗ I ⊗ Liq).

We see from (21) and (22) that

U∗i CiUi = Li, 1 ≤ i ≤ s+m+ 1.
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Hence the vector C−1
i w can be computed as UiL

−1
i U∗i w.

The matrix-vector multiplication of the form Ujw and U∗j w can be done in 2(q2q)
operations by making use of the formula

Ujw = (U1j ⊗ I ⊗ · · · ⊗ I)(I ⊗ U2j ⊗ I ⊗ · · · ⊗ I) · · · (I ⊗ I ⊗ · · · ⊗ I ⊗ Uqj)w.

We note that the matrix Li is a lower triangular matrix and each row of it has at
most q nonzero entries. Hence L−1

i w can be obtained in q2q operations. Thus for any
vector w the vector C−1

i w can be obtained in 3(q2q) operations. Hence we conclude
that the vector

diag(C−1
1 , C−1

2 , . . . , C−1
s+m+1)r

can be computed in approximately 3(s+m+ 1)q2q operations.
In summary, each iteration of PCG-type methods needs 2(6(s+m+ 1)2q log2(s+

m+1)+4(s+m+1)q2q) ≈ O(m log2m) operations, as compared to O((s+m+1)22q) ≈
O(m) operations required by the BGS method. As we proved in section 4, PCG-type
methods will converge in at most O(log2m) steps (see also the numerical results in
section 7); therefore, the total complexity of our methods will be O(m log2

2m). As
a comparison, the numerical results in section 7 show that the number of iterations
required for convergence for the BGS method increases linearly like O(m). Therefore,
the total complexity of the BGS method is about O(m2) operations.

As for storage, PCG-type methods, the folding algorithm, and the BGS method
require O(2q(s + m + 1)) memory. Clearly, at least O(2q(s + m + 1)) memory is
required to store the approximated solution in each iteration.

6. The failure-prone manufacturing systems. In this section, we study a
general kind of failure-prone manufacturing system. These systems consist of q mul-
tiple parallel machines producing one type of product. Each machine is subject to
random breakdowns and repairs. The processing time for one unit of product, the up
time, and the down time of each machine are exponentially distributed. The interar-
rival time of a demand is exponentially distributed. The systems allow finite backlog
and a penalty cost is associated with the rejection of a demand. Moreover, there is
an inventory cost for holding each unit of product and a shortfall cost for each unit
of backlog.

The hedging point policy has been shown to be optimal for one-machine one-
product manufacturing systems with repair time exponentially distributed; see [1, 3,
10, 11]. In those works, the discrete inventory levels of the product are approximated
by a continuous fluid flow model. Analytic optimal control is found to be threshold
(hedging point)-type by solving a pair of Hamilton–Jacobi–Bellman equations. The
control is optimal in the sense that it minimizes the average (or discounted) running
cost of the manufacturing systems. In this paper, we focus on finding the optimal
hedging point for the manufacturing systems under consideration.

It should be noted that in [1, 3, 10, 11, 21, 17] only one machine is considered and
the machine has only two states—up and down. Here we consider q parallel unreliable
machines. The production process of the machines is then an MMPP. The states of
the machines and the inventory level can be modeled as an irreducible continuous time
Markov chain. For different values of the hedging point h, the average running cost
C(h) can be written in terms of the steady state distribution of the Markov chain.
Therefore, the optimal hedging point can be obtained by varying different values of h.
Let us first define the following parameters for the manufacturing systems as follows
(see Ching and Zhou [6]):
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(i) q, the number of machines,
(ii) 1/σj1, the mean up time of the machine j, j = 1, . . . , q,

(iii) 1/σj2, the mean repair time for the machine j, j = 1, . . . , q,
(iv) 1/λj , the mean processing time for one unit of product on machine j, j =

1, . . . , q,
(v) 1/µ, the mean interarrival time of demand,
(vi) h, the hedging point, and

(vii) g, the maximum allowable backlog.
For each machine j, j = 1, . . . , q, let Qj be the generator matrix of the machine

states and Λj be the corresponding production rate matrix. Here

Qj =

(
σj1 −σj2
−σj1 σj2

)
and Λj =

(
λj 0
0 0

)
(cf. (1)). Each machine has two states—either “up” or “down.” Since there are
q machines, there are 2q states for the system of machine. We denote the set of
machine states by Ω. The superposition of the q machines forms an MMPP and is
characterized by the following 2q × 2q generator matrix:

Q = (Q1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗Q2 ⊗ I2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ I2 ⊗Qq)

(cf. (2)). The corresponding production rate matrix is given by

Λ = (Λ1 ⊗ I2 ⊗ · · · ⊗ I2) + (I2 ⊗ Λ2 ⊗ I2 ⊗ · · · ⊗ I2) + · · ·+ (I2 ⊗ · · · ⊗ I2 ⊗ Λq)

(cf. (3)).
We let α(t) be the state of the system of machines at time t. Therefore, α(t) has

2q possible states. The inventory level takes integer value in [−g, h] because we allow
maximum backlog of g and the hedging point is h. Here negative inventory means
backlog. We let x(t) be the inventory level at time t. The machine-inventory process
{(α(t), x(t)), t ≥ 0} forms an irreducible continuous time Markov chain in the state
space

{(α, x) | α ∈ Ω, x = −g, . . . , 0, . . . , h}.

Each time it visits a state the process stays there for a random period of time that
has an exponential distribution and is independent of the past behavior of the process.
If we order the state spaces of the machine-inventory process lexicographically, we get
the following (h+g+1)2q×(h+g+1)2q generator matrix H for the machine-inventory
system:

H =



Q+ Λ −µI 0
−Λ Q+ Λ + µI −µI

. . .
. . .

. . .

−Λ Q+ Λ + µI −µI
. . .

. . .
. . .

−Λ Q+ Λ + µI −µI
0 −Λ Q+ µI


,

where I is the 2m × 2m identity matrix. Clearly, the matrix H has the same tensor
block structure as that of the generator matrix A in (4). In fact, H is a particular case
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of A with s = 1, λ = 0, and m = h+ g− 1. Therefore, the techniques and algorithms
developed in the previous sections can be used to obtain the steady state distribution
of the process efficiently. Numerical results are given in section 7 to illustrate the fast
convergence.

Important quantities such as the average running cost of the machine-inventory
system can be written in terms of its steady state distribution. Let

p(α, x) = lim
t→∞

Prob {α(t) = α, x(t) = x}

be the steady state probability distribution, and let

pj =
∑
k∈Ω

p(k, j), j = −g,−(g − 1), . . . , 0, . . . , h

be the steady state distribution of the inventory level of the system. The average
running cost for the machine-inventory system is then given by

C(h) = cI

h∑
j=1

jpj − cB
−1∑
j=−g

jpj + cPµp−g, 0 ≤ h ≤ b,(23)

where cI is the inventory cost per unit of product, cB is the backlog cost per unit of
product, cP is the penalty cost for rejecting an arrival demand, and b is the maximum
inventory capacity; see Ching and Zhou [6]. Hence once pj are given, we can easily
find h∗ which minimizes the average running cost function C(h) by evaluating C(h)
for all 0 ≤ h ≤ b.

We remark that our method can be generalized to handle the case in which each
machine has the Erlangian distribution of l phases. Suppose the mean times of repair
for machine j, j = 1, . . . , q, are the same in each phase and are equal to 1/σj2. In
this case, the generator matrix for the machine-inventory system can be obtained by
replacing the generator matrix of the machine state and its corresponding production
rate matrix by Q̄j and Λ̄j , respectively, where

Q̄j =


σj1 −σj2
−σj1 σj2

−σj2 σj2
. . .

. . .

0 −σj2 σj2

 and Λ̄j =


λi 0

0
0

. . .

0 0

 .

Hence we see that the techniques and algorithms developed previously can be applied
to this case too.

7. Numerical results. In this section, we illustrate the fast convergence rate
of our method by examples in queueing systems and manufacturing systems. The
conjugate gradient squared (CGS) method (see Sonneveld [18]) is used to solve the
preconditioned system (6). The method does not require the transpose of the iteration
matrixGC−1. Using the folding algorithm, one can obtain the steady state probability
vector with a residual error of order 10−13 to 10−16; see Ye and Li [22]. In order to
compare our method with the folding algorithm, the stopping criterion for the CGS
and BGS methods is set to be

||Apk||2 ≤ 10−12,
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where pk is the computed steady state probability distribution at the kth iteration
and

||(y1, y2, . . . , yn)t||2 ≡

√√√√ n∑
i=1

y2
i .

In all our numerical examples, the residual errors lie between 10−13 to 10−16, which
is comparable to the folding algorithm; see Ye and Li [22]. The initial guess for both
methods is the vector of all ones normalized such that its l2-norm is equal to 1. All
the computations were done on an HP 712/80 workstation with MATLAB.

Let us first give the numerical results for the queueing networks. We compare
the numerical results of the CGS, preconditioned CGS, and BGS methods for the
number of overflow queues q = 1, 2, 3, 4 and the number of servers s = 2. The MMPP
parameters are arbitrarily chosen to be σj1 = 2/3, σj2 = 1/3, j = 1, . . . , q. The other
queueing parameters are given by µ = 2, λ = 1, and λj = 1/q, j = 1, . . . , q. We recall
that the size of the matrix is (s+m+ 1)2q × (s+m+ 1)2q. The number of iterations
required for convergence is given in Table 1. The symbols I, C, and BGS represent
the methods used, namely, CGS without preconditioner, CGS with our preconditioner
C in (16), and the block Gauss–Seidel method, respectively. Numbers of iterations
greater than 2000 are signified by “∗∗.”

Table 1

Number of iterations for convergence.

s = 2 q = 1 q = 2 q = 3 q = 4
m I C BGS I C BGS I C BGS I C BGS
16 36 7 130 36 9 112 38 12 107 40 13 110
32 155 8 171 154 9 143 158 12 145 161 13 137
64 ∗∗ 7 242 ∗∗ 9 207 ∗∗ 12 213 ∗∗ 13 199
128 ∗∗ 8 366 ∗∗ 10 325 ∗∗ 12 340 ∗∗ 14 317
256 ∗∗ 8 601 ∗∗ 10 549 ∗∗ 12 582 ∗∗ 14 530
512 ∗∗ 8 1051 ∗∗ 10 988 ∗∗ 12 1046 ∗∗ 14 958
1024 ∗∗ 8 ∗∗ ∗∗ 10 ∗∗ ∗∗ 12 ∗∗ ∗∗ 14 ∗∗

We see that the numbers are roughly constant independent of m for the CGS
method with our preconditioner C. For the BGS method, the convergence rate is
approximately linear in m. Recall from section 5 that the costs per iteration of the
CGS method with preconditioning and of the BGS method are, respectively, O(2q(s+
m+ 1) log2(s+m+ 1)) and O(22q(s+m+ 1)) operations. We conclude that the total
cost of obtaining the steady state probability distribution vector for the CGS method
with preconditioning is approximately O(2q(s + m + 1) log2(s + m + 1)) operations
while for the BGS method it is approximately O(22qm(s+m+ 1)) operations.

We next compare the flop counts between our PCG method and the folding
algorithm for the single server case (s = 1). For simplicity, we set (s + m + 1) = 2q

and we consider q = 1, 2, . . . , 7. Our PCG method converges within 25 iterations for
all the numerical examples tested. We recall that the number of operations in each
iteration of PCG is

2{6(s+m+ 1)2q log2(s+m+ 1) + 4(s+m+ 1)q2q}.

Therefore, the total number of operations is at most

50{6(s+m+ 1)2q log2(s+m+ 1) + 4(s+m+ 1)q2q}.
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Fig. 1. Computational flops of the PCG method and the folding algorithm for the single server
case.

The minimum cost of the folding algorithm is given by

26

3
23q log2(s+m+ 1) + 3(s+m+ 1)22q;

see Ye and Li [22]. In Figure 1, we depict the computational costs of our PCG method
and the folding algorithm for different values of q. We see that the computational
cost of our PCG method increases at a slower rate than that of the folding algorithm.
The crossover point is at q = 6.

Next we test our algorithm for the failure-prone manufacturing systems. We
assume that all q machines are identical, and in each month (four weeks) each machine
breaks down once on average. The mean repairing time for a machine is one week.
Therefore, we have σj1 = 1/3, σj2 = 1, j = 1, . . . , q. The mean time for the arrival of
demand is 1/5 week and the mean time for the machine system to produce one unit
of product is one day; therefore, we have µ = 5 and λj = 7/q, j = 1, . . . , q.

In Table 2, we give the number of iterations required for convergence for all three
methods. As in the queueing systems case, we see also that the numbers are roughly
constant independent of (g + h) for the CGS method with our preconditioner C. For
the BGS method, the convergence rate is again approximately linear in (g + h).

Finally, we consider examples of finding the optimal hedging point h∗. We keep
the values of the machine parameters the same as in the manufacturing system ex-
ample above, except that we set q = 4 and g = 50. Moreover, the inventory cost cI
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Table 2

Number of iterations for convergence.

q = 1 q = 2 q = 3 q = 4
g + h I C BGS I C BGS I C BGS I C BGS

16 52 6 565 54 7 603 60 8 601 63 9 685
32 173 6 1491 177 8 1682 231 8 1443 180 10 1904
64 ∗∗ 6 ∗∗ ∗∗ 8 ∗∗ ∗∗ 9 ∗∗ ∗∗ 10 ∗∗
128 ∗∗ 8 ∗∗ ∗∗ 8 ∗∗ ∗∗ 9 ∗∗ ∗∗ 10 ∗∗
256 ∗∗ 8 ∗∗ ∗∗ 9 ∗∗ ∗∗ 9 ∗∗ ∗∗ 10 ∗∗
512 ∗∗ 8 ∗∗ ∗∗ 9 ∗∗ ∗∗ 9 ∗∗ ∗∗ 11 ∗∗
1024 ∗∗ 8 ∗∗ ∗∗ 9 ∗∗ ∗∗ 9 ∗∗ ∗∗ 11 ∗∗

Table 3

The optimal (h∗, C(h∗)) for different λi and µ.

µ = 1 µ = 2 µ = 3
λi = 1 (3,181) (10,533) (200,14549)
λi = 1.5 (2,128) (5,270) (11,576)

and backlog cost cB per unit of product are 50 and 2000, respectively; the maximum
inventory capacity b is 200; and the penalty cost cP for rejecting a demand is 20000
(see (23)). In Table 3, we give the optimal pair of values (h∗, C(h∗)), the optimal
hedging point h∗, and its corresponding average running cost per week C(h∗) for
different values of λi and µ.

8. Concluding remarks. In this paper, we proposed a fast algorithm for solving
the steady state probability distribution for queueing systems with MMPP inputs.
The MMPP is commonly used in modeling the inputs of many physical systems;
see Heffes and Lucantoni [8] and Meier-Hellstern [13], for instance. Here we related
the MMPP to the production process of unreliable manufacturing systems under the
hedging point production control. Our algorithm derived for the queueing systems can
be applied to obtain the optimal hedging point. Numerical examples were reported
to illustrate the fast convergence rate of our algorithm.

For the manufacturing systems, there are two possible generalizations of the
model. The maximum allowable backlog g and the number of machines q (with an
associated cost) can be considered as decision variables for the optimization problem.
We can also consider the machine failure rate σj1 to be dependent on the produc-
tion rate λj . Note that in this case it has been shown that the optimal policy is
still of hedging point type if σj1 is a linear function of the production rate λj in the
one-machine case; see Hu, Vakili, and Yu [12]. It would be interesting to extend our
method to these two cases.
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Abstract. In this paper, it is shown that nearly completely decomposable (NCD) Markov
chains are quasi-lumpable. The state space partition is the natural one, and the technique may
be used to compute lower and upper bounds on the stationary probability of each NCD block. In
doing so, a lower-bounding nonnegative coupling matrix is employed. The nature of the stationary
probability bounds is closely related to the structure of this lower-bounding matrix. Irreducible
lower-bounding matrices give tighter bounds compared with bounds obtained using reducible lower-
bounding matrices. It is also noticed that the quasi-lumped chain of an NCD Markov chain is an
ill-conditioned matrix and the bounds obtained generally will not be tight. However, under some
circumstances, it is possible to compute the stationary probabilities of some NCD blocks exactly.
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1. Introduction. Markovian modeling and analysis are extensively used in many
disciplines in evaluating the performance of existing systems and in analyzing and de-
signing systems to be developed. The long-run behavior of Markovian systems is
revealed through the solution of the problem

(1.1) πP = π, ‖π‖1 = 1,

where P is the one-step stochastic transition probability matrix (i.e., discrete-time
Markov chain—DTMC) and π is the unknown stationary probability distribution of
the system under consideration. By definition, rows of P and elements of π both sum
up to 1.

In what follows, boldface capital letters denote matrices, boldface lowercase let-
ters denote column vectors, italic lowercase and uppercase letters denote scalars, and
calligraphic letters denote sets. e represents a column vector of all ones and  repre-
sents a row or column vector of all zeros depending on the context. The convention
of representing probability distributions by row vectors is adopted.

Solving (1.1) is crucial in computing performance measures for Markovian sys-
tems. For queueing systems, these measures may be the average number of customers,
the mean waiting time, or the blocking probability for a specific queue. In communi-
cation systems, they may be the total packet loss rate, the probability of an empty
system, or any other relevant measure. In any case, these measures may be computed
exactly if π is available.
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NCD Markov chains [3], [10], [16] are irreducible stochastic matrices that can be
ordered so that the matrix of transition probabilities has a block structure in which
the nonzero elements of the off-diagonal blocks are small compared with those of the
diagonal blocks. Such matrices often arise in queueing network analysis, large-scale
economic modeling, and computer systems performance evaluation, and they can be
represented in the form

n1 n2 · · · nN

(1.2) Pn×n =


P1,1 P1,2 · · · P1,N

P2,1 P2,2 · · · P2,N

...
...

. . .
...

PN,1 PN,2 · · · PN,N


n1

n2

...
nN

.

The subblocks Pi,i are square, of order ni, with n =
∑N
i=1 ni. Let π be partitioned

conformally with P such that π = (π1,π2, . . . ,πN ). Each πi, i = 1, 2, . . . , N is a row
vector having ni elements. Let P = diag(P1,1,P2,2, . . . ,PN,N ) + E. The quantity
‖E‖∞ is referred to as the degree of coupling, and it is taken to be a measure of the
decomposability of the matrix (see [6]). If it were zero, then P would be reducible.

Consider the following questions. Is it possible to obtain lower and upper bounds
on the stationary probability of being in each NCD block of an NCD Markov chain
in an inexpensive way? Furthermore, if the answer to the preceding question is yes,
can one improve these bounds by exploiting the structure and symmetries of the
chain? The motivation behind seeking answers to such questions is that in many
cases performance measures of interest of systems undergoing analysis depend on the
probability of being in certain groups of states. That is, probabilities need to be
computed at a coarser level; each and every stationary probability is not needed. If
the problem at hand is one in which the stationary probabilities of interest are those
of the coupling matrix [10] corresponding to the underlying NCD Markov chain, then
the technique discussed in this paper may be used to obtain answers to the above
questions. Whereas if all stationary probabilities of the NCD Markov chain are to be
computed, iterative aggregation–disaggregation (IAD) should be the method of choice
(see [8], [2], [12], [15], [14], [16]).

In the sections to come, it is shown that NCD Markov chains are quasi-lumpable.
The state space partition coincides with the NCD block partition, and the technique
may be used to compute lower and upper bounds on the probability of being in each
NCD block. The procedure amounts to solving linear systems of order equal to the
number of NCD blocks in the chain. Thereafter, quasi lumpability is related to the
polyhedra theory of Courtois and Semal for stochastic matrices [4], and it is shown
that under certain circumstances the quasi-lumped chain (as defined in [5]) is a lower-
bounding matrix for the coupling matrix of the NCD chain. Additionally, another
substochastic matrix guaranteed to be a lower-bounding coupling matrix is given.
Following this, the effects of the nonzero structure of a lower-bounding nonnegative
coupling matrix on the bounds of the stationary probability of each NCD block is
investigated; the results are based on the nonzero structure of a lower-bounding sub-
stochastic matrix in general, and, therefore, they may also be used in forecasting the
quality of lower and upper bounds on the stationary distribution of Markov chains
when Courtois and Semal’s theory is at work.

The next section provides the definitions of lumpability (see [7, section 6.3]) and
quasi lumpability (see [5]), and section 3 shows how quasi lumpability applies to NCD



484 TUĞRUL DAYAR AND WILLIAM J. STEWART

Markov chains. The effects of quasi lumpability on the 8× 8 Courtois matrix are il-
lustrated in section 4. The relation between the quasi-lumped chain and the coupling
matrix of an NCD Markov chain is investigated in section 5. Section 6 provides infor-
mation enabling one to forecast the nature of the bounds on the stationary probability
of each NCD block; the idea is communicated through an illustrative example. The
last section summarizes the results.

2. Lumpability vs. quasi lumpability. Lumpability is a property of some
Markov chains which, if conditions are met, may be used to reduce a large state space
to a smaller one. The idea is to find a partition of the original state space such that,
when the states in each partition are combined to form a single state, the resulting
Markov chain described by the combined states has equivalent behavior to the original
chain, only at a coarser level of detail. Given that the conditions for lumpability are
satisfied, it is mostly useful in systems which require the computation of performance
measures dependent on the coarser analysis specified by the lumped chain (see [7,
p. 123]).

Definition 2.1. A DTMC is said to be lumpable with respect to a given state
space partition S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability matrix

P satisfies the lumpability condition

(2.1) ∀Si,Sj ⊂ S ∀s ∈ Si :
∑
s′∈Sj

ps,s′ = ki,j ∀i, j,

where ki,j is a constant value that depends only on i and j and ps,s′ is the one-step
transition probability of going from state s to state s′. The lumped chain K has
ki,j as its i, jth entry. A similar definition applies to a continuous-time Markov chain
(CTMC), where the probability matrix P is substituted with the infinitesimal generator
Q.

To put it in another way, the lumpability condition requires the transition prob-
ability from each state in a given partition to another partition to be the same. For a
given state, the probability of making a transition to a partition is the sum of the tran-
sition probabilities from the given state to each state in that partition. At this point
we should stress that not all Markov chains are lumpable. In fact, only a small per-
centage of Markov chains arising in real-life applications is expected to be lumpable.
However, in section 3 it is shown that NCD Markov chains are quasi-lumpable, that
is, almost lumpable [5]. The following informative example demonstrates the concept
of lumpability.

Example 2.2. Let

P =


1 2 3 4

1 0.2 0.3 0.4 0.1
2 0.3 0.1 0.4 0.2
3 0.5 0.1 0.1 0.3
4 0.5 0.3 0.2 0

.
We take partition S = {1, 3}

⋃
{2, 4}. For this partition the lumpability condition is

satisfied with k1,1 = 0.6, k1,2 = 0.4, k2,1 = 0.7, k2,2 = 0.3, where S1 = {1, 3},S2 =
{2, 4}. The lumped chain is given by

K =

( S1 S2

S1 0.6 0.4
S2 0.7 0.3

)
.
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Definition 2.3. A DTMC is said to be ε quasi-lumpable with respect to a given
state space partition S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition probability

matrix P can be written as P = P−+Pε. Here P− is a (componentwise) lower bound
for P that satisfies the lumpability condition

(2.2) ∀Si,Sj ⊂ S ∀s ∈ Si :
∑
s′∈Sj

p−s,s′ = ki,j ∀i 6= j

under the following constraints. No element in Pε is greater than ε (a small number);
‖Pε‖∞ assumes the minimum value among all possible alternatives (since P− and Pε

may not be unique); ki,j is a constant value that depends only on i and j; and p−s,s′ is

the one-step transition probability of going from state s to state s′ in the matrix P−

(see [5, p. 224]). The computation of the quasi-lumped chain is discussed in the next
section. A similar definition applies to a CTMC as in Definition 2.1.

The concept of ε quasi lumpability is illustrated in the following 6× 6 example.
Example 2.4. Let

1 2 3 4 5 6

P =

1
2
3
4
5
6


0.2 0.28 0.1 0.21 0.11 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.18 0.2 0.3 0.31 0.01 0
0 0.25 0.43 0.07 0.08 0.17

 .

P− and Pε given by

P− =


0.2 0.28 0.1 0.2 0.11 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.18 0.2 0.29 0.31 0.01 0
0 0.24 0.43 0.07 0.08 0.17

 ,

Pε =


0 0 0 0.01 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.01 0 0 0
0 0.01 0 0 0 0


with ε = 0.01 and state space partition S = {1, 2, 3}

⋃
{4, 5, 6} satisfy the quasi-

lumpability condition in (2.2). This time S1 = {1, 2, 3},S2 = {4, 5, 6}, and k1,2 =
0.41, k2,1 = 0.67. Observe that for ε = 0.01 the given (P−, Pε) pair is not the only
one that satisfies the quasi-lumpability condition. For instance, the following pair also
satisfies (2.2):

P− =


0.2 0.28 0.1 0.21 0.1 0.1
0.29 0.1 0.2 0.05 0.31 0.05
0.15 0.2 0.24 0.12 0.2 0.09
0.27 0.18 0.22 0.18 0.01 0.14
0.17 0.2 0.3 0.31 0.01 0
0 0.25 0.42 0.07 0.08 0.17

 ,
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Pε =


0 0 0 0 0.01 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.01 0 0 0 0 0
0 0 0.01 0 0 0

 .

The next section provides a proof by construction for the ε quasi lumpability of
NCD Markov chains.

3. Construction.
1. For an NCD Markov chain, let the state space be partitioned as

S = {S1,S2, . . . ,SN},

where Si is the set of states forming the ith block and #(Si) = ni with n =
∑N
i=1 ni.

Form the matrix

n1 n2 · · · nN

(3.1) P− =


P1,1 P−1,2 · · · P−1,N
P−2,1 P2,2 · · · P−2,N

...
...

. . .
...

P−N,1 P−N,2 · · · PN,N


n1

n2

...
nN

,

where

(3.2) P−i,j =

{
Pi,j if Pi,je = ki,je
Pi,j −Pε

i,j otherwise
∀i 6= j.

Diagonal blocks of P− are the same as those of P. When Pi,je 6= ki,je, Pε
i,j is chosen

so that (Pi,j − Pε
i,j)e = ki,je. Here, ki,j = min (Pi,je) (i.e., the minimum-valued

element of the vector Pi,je). As pointed out in Example 2.4, Pε may not be unique,
and the discussion on how to choose among the alternatives available is left to after
the construction. Furthermore, Pε has nonzero blocks (in which there is at least one
nonzero element) in locations corresponding to the nonzero blocks of P which do not
have equal row sums. On the other hand, the number of zero blocks in P− may be
more than the number of zero blocks in P. In other words, there may be nonzero
blocks in P for which ki,j = 0, implying P−i,j = 0. Note that, if Pε is the null matrix,
then P will be exactly lumpable, and the remaining steps in the construction should
be skipped.

2. Once P is written as the sum of P− and Pε, form yet another matrix

(3.3) Ps =

(
P− y
xT 0

)
,

where

(3.4) y =


ȳ1

ȳ2
...
ȳN

 = Pεe
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and ȳi has ni elements. The unknown vector x should be partitioned in the same
way. The significance and role of x in the computation of lower and upper bounds
for the quasi-lumped chain is discussed in section 4. Recall the definition of an NCD
Markov chain in section 1 and observe that ‖y‖∞ ≤ ‖E‖∞ (the degree of coupling of
P). Since ‖E‖∞ is a small number generally less than 0.1, one has ε quasi lumpability
(see Definition 2.3). The small mass in the off-diagonal blocks, which prevents lumping
P exactly, is accumulated in an extra state.

3. Given that P is not exactly lumpable (i.e., y 6= ), Ps will not be lumpable.
However, the lumpability condition for the ith row of blocks may be enforced by in-
creasing some elements in ȳi so as to make each element equal to ‖ȳi‖∞ and decreas-
ing the corresponding diagonal elements. If it is possible for any diagonal element to
become negative, the diagonal of Ps may be scaled by performing the transformation

(3.5) αPs + (1− α)I,

where 0 < α < 1, on Ps as suggested in [5]. Denote the matrix obtained in the end
P̃s.

4. P̃s is lumpable, and it may be lumped to form the following quasi-lumped
chain that corresponds to P:

(3.6) Ks =


‖P̃s

1,1‖∞ ‖P̃s
1,2‖∞ · · · ‖P̃s

1,N‖∞ ‖ȳ1‖∞
‖P̃s

2,1‖∞ ‖P̃s
2,2‖∞ · · · ‖P̃s

2,N‖∞ ‖ȳ2‖∞
...

...
. . .

...
...

‖P̃s
N,1‖∞ ‖P̃s

N,2‖∞ · · · ‖P̃s
N,N‖∞ ‖ȳN‖∞

‖x̄1‖1 ‖x̄2‖1 · · · ‖x̄N‖1 0

 .

5. Bounds on the stationary probability of each NCD block may be obtained
using Courtois and Semal’s method [4], [13] if the N ×N principal submatrix of Ks

is a lower-bounding coupling matrix for P.

When constructing Pε, the nonzero elements in blocks should be arranged, if at
all possible, so that there is a minimum number of nonzero columns in Pε. If all
columns corresponding to states in Si are zero in Pε, then x̄i = , and the stationary
probability of the ith block may be determined exactly to working precision. An
intuitive explanation for this fact is the following. The transitions in Pε are the
transitions into and out of the extra state (in Ps). Therefore, if it is not possible
to make a transition to state s, say, in the matrix Pε (i.e., the column of Pε that
corresponds to state s is ), then it will not be possible to return to state s from
the extra state. This being so, the corresponding element in xT must be zero. If all
states in an NCD block possess this property, then the element in the last row of the
quasi-lumped chain Ks corresponding to that NCD block should be zero. A side-note
is that, even though there may be multiple ways in which the nonzero entries of Pε

can be arranged for fixed ε, this does not make a difference when lower and upper
bounds on the stationary probability of each NCD block are computed.

The next section illustrates the construction steps on a small example and shows
how to compute the corresponding quasi-lumped chain with lower and upper bounds
for its stationary vector.
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4. An illustrative example. Consider the 8× 8 Courtois matrix [3]

P =



0.85 0 0.149 0.0009 0 0.00005 0 0.00005
0.1 0.65 0.249 0 0.0009 0.00005 0 0.00005
0.1 0.8 0.0996 0.0003 0 0 0.0001 0
0 0.0004 0 0.7 0.2995 0 0.0001 0
0.0005 0 0.0004 0.399 0.6 0.0001 0 0
0 0.00005 0 0 0.00005 0.6 0.2499 0.15
0.00003 0 0.00003 0.00004 0 0.1 0.8 0.0999
0 0.00005 0 0 0.00005 0.1999 0.25 0.55


.

The degree of coupling for this matrix is 0.001. From the first step of the construction,
one obtains

P− =



0.85 0 0.149 0.0003 0 0.00005 0 0.00005
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005
0.1 0.8 0.0996 0.0003 0 0 0.0001 0
0 0.0004 0 0.7 0.2995 0 0.0001 0
0 0 0.0004 0.399 0.6 0.0001 0 0
0 0.00005 0 0 0.00004 0.6 0.2499 0.15
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999
0 0.00005 0 0 0.00004 0.1999 0.25 0.55


,

Pε =



0 0 0 0.0006 0 0 0 0
0 0 0 0 0.0006 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.0005 0 0 0 0 0 0 0
0 0 0 0 0.00001 0 0 0
0.00001 0 0 0 0 0 0 0
0 0 0 0 0.00001 0 0 0


.

P = P− + Pε (with ε = 0.0006), as required, and the second step of the construction
gives

Ps =

0.85 0 0.149 0.0003 0 0.00005 0 0.00005 0.0006
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005 0.0006
0.1 0.8 0.0996 0.0003 0 0 0.0001 0 0
0 0.0004 0 0.7 0.2995 0 0.0001 0 0
0 0 0.0004 0.399 0.6 0.0001 0 0 0.0005
0 0.00005 0 0 0.00004 0.6 0.2499 0.15 0.00001
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999 0.00001
0 0.00005 0 0 0.00004 0.1999 0.25 0.55 0.00001
x1 x2 x3 x4 x5 x6 x7 x8 0


.

Note that there are no transitions to states 2, 3, 6, 7, and 8 in Pε. Hence, x2, x3, x6, x7,
and x8 in Ps must be zero. Observe that Ps is still not lumpable. For it to be
lumpable, the last column should be modified. Following the third step of the con-
struction, diagonal elements ps3,3 and ps4,4 are adjusted and one obtains

P̃s =

0.85 0 0.149 0.0003 0 0.00005 0 0.00005 0.0006
0.1 0.65 0.249 0 0.0003 0.00005 0 0.00005 0.0006
0.1 0.8 0.099 0.0003 0 0 0.0001 0 0.0006
0 0.0004 0 0.6995 0.2995 0 0.0001 0 0.0005
0 0 0.0004 0.399 0.6 0.0001 0 0 0.0005
0 0.00005 0 0 0.00004 0.6 0.2499 0.15 0.00001
0.00002 0 0.00003 0.00004 0 0.1 0.8 0.0999 0.00001
0 0.00005 0 0 0.00004 0.1999 0.25 0.55 0.00001
x1 0 x3 x4 x5 0 0 0 0


.
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Notice that x3 in P̃s is different than zero, as opposed to what has been said before.
The reason is that ps3,3 has been adjusted, thus making pε3,3 effectively a nonzero
entry of value 0.0006. Therefore, the third column in Pε intrinsically has a nonzero
entry in the diagonal position, implying a transition from the extra state to state 3.
Likewise, ps4,4 has been adjusted, making pε4,4 equal to 0.0005. However, x4 is already
nonzero and need not be altered. This issue will be revisited at the end of the section.
Resuming the construction, the quasi-lumped chain in step four is computed as

Ks =


0.999 0.0003 0.0001 0.0006
0.0004 0.999 0.0001 0.0005
0.00005 0.00004 0.9999 0.00001
‖x̄1‖1 ‖x̄2‖1 0 0

 .

As suggested in the fifth step of the construction, lower and upper bounds on the
stationary probability of each NCD block may be obtained by successively substituting
a one for each (unknown) ‖x̄i‖1 in the last row of Ks (denote this matrix by Ks

i ) and
solving the corresponding system

(4.1) ziK
s
i = zi,

N∑
j=1

zi,j = 1.

Here, zi is a probability vector of N elements. If ξj is the stationary probability of
the jth NCD block, then lower and upper bounds on the stationary probability of
block j may be computed from

(4.2) ξinf
j = max

min
i

(zi,j); 1−
∑
k 6=j

max
i

(zi,k)

 ,

(4.3) ξsupj = min

max
i

(zi,j); 1−
∑
k 6=j

min
i

(zi,k)


(see [4, (3.26), p. 810]).

For the Courtois matrix

‖x̄1‖1 = 1, ‖x̄2‖1 = 0 ⇒ z1 = [0.36923, 0.13077, 0.50000],

‖x̄1‖1 = 0, ‖x̄2‖1 = 1 ⇒ z2 = [0.16071, 0.33929, 0.50000],

0.16071 ≤ ξ1 ≤0.36923,
0.13077 ≤ ξ2 ≤0.33929,
0.50000 ≤ ξ3 ≤0.50000 ⇒ ξ3 = 0.50000,

and ξ1 + ξ2 + ξ3 = 1 in five decimal digits of accuracy.
We obtained the stationary probability of each NCD block by solving for the

stationary vector of the original 8×8 chain. The probabilities accurate to five decimal
digits are

ξ1 = 0.22253, ξ2 = 0.27747, ξ3 = 0.50000.
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The next thing to do is to show how a distribution xT that gives the stationary
probability of each NCD block may be obtained. In fact, the procedure amounts
to computing x1, x3, x4, and x5 values only, for the rest of the elements in x are
necessarily zero. Let π denote the stationary vector of P (i.e., πP = π, ‖π‖1 = 1).
Then

x1 = (0.0005π5 + 0.00001π7)/t,
x3 = 0.0006π3/t,
x4 = (0.0006π1 + 0.0005π4)/t,
x5 = (0.0006π2 + 0.00001π6 + 0.00001π8)/t,

where t = 0.0006(π1 + π2 + π3) + 0.0005(π4 + π5) + 0.00001(π6 + π7 + π8). The last
condition ensures that xT is a probability vector. As can be seen, the computation
of x requires full knowledge of π (which, of course, is unknown). For the Courtois
matrix, the unknown entries in the last row of Ks are given by

‖x̄1‖1 = (0.0006π3 + 0.0005π5 + 0.00001π7)/t,
‖x̄2‖1 = (0.0006(π1 + π2) + 0.0005π4 + 0.00001(π6 + π8))/t.

Using π, one computes ‖x̄1‖1 = 0.31213, ‖x̄2‖1 = 0.68787 in five decimal digits of
accuracy as the combination that gives ξ.

The next section relates the quasi-lumped chain to the coupling matrix of the
original NCD Markov chain.

5. Quasi-lumped chain and the coupling matrix. Let Cs denote the N×N
principal submatrix of the quasi-lumped chain Ks. For the Courtois matrix,

Cs =

 0.99900
0.00040
0.00005

0.00030
0.99900
0.00004

0.00010
0.00010
0.99990

 .

On the other hand, the entries of the coupling matrix of an NCD Markov chain are
given by [11]

ci,j =
πi
‖πi‖1

Pi,je ∀i, j.

For the same example, the coupling matrix in five decimal digits of accuracy is then

C =

 0.99911
0.00061
0.00006

0.00079
0.99929
0.00004

0.00010
0.00010
0.99990

 .

In this example, Cs is a lower bound for the exact coupling matrix C. That is,
Cs ≤ C. Is this always true? Before answering this question, two lemmas should be
stated. In the following, u� v means each element of u is considerably smaller than
the corresponding element of v. The symbol� may also be used between two scalars
(i.e., two vectors of one element each).

Lemma 5.1. Let P be an NCD Markov chain with N blocks that is not exactly
lumpable. Let Cs be the the N ×N principal submatrix of the quasi-lumped chain Ks

corresponding to P in (3.6). Then Cs has entries that satisfy

(5.1) 0 ≤ csi,j ≤ min (Pi,je)� 1 ∀i 6= j,
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(5.2) 0� min (Pi,ie) ≤ csi,i < 1 ∀i.

Proof. Once again introduce ki,j = min (Pi,je). Now observe that

0 ≤ ki,j � 1 ∀i 6= j,

0� ki,i < 1 ∀i

are direct consequences of the following properties of NCD Markov chains [10].
• For off-diagonal blocks,

 ≤ Pi,je� e ∀i 6= j.

• For diagonal blocks,

� Pi,ie ≤ e ∀i

with the condition that Pi,ie 6= e (since P is irreducible by definition).
Now inspect the off-diagonal blocks in P− (see (3.1)) given by (3.2). If Pi,j has

equal row sums (i.e., Pi,je = ki,je), then P−i,j = Pi,j . Otherwise, P−i,j = Pi,j −Pε
i,j ,

where (Pi,j −Pε
i,j)e = ki,je. In all cases, P−i,je = ki,je. As for the diagonal blocks in

P−, each diagonal block is equal to its counterpart in P. Using (3.3), a new matrix Ps

is formed. The only blocks (possibly) prohibiting lumpability in Ps are those diagonal
blocks with unequal row sums. In other words, for Ps to be lumpable, each diagonal
block i for which min (Pi,ie) 6= max (Pi,ie) (i.e., max (ȳi) 6= min (ȳi)) needs to be
adjusted. The adjustment in Ps

i,i may be performed by increasing some elements in ȳi
so as to make each element in ȳi equal to max (ȳi) and decreasing the corresponding
diagonal element in Ps

i,i. The intended effect is to have Ps
i,ie = ki,ie. As a result of

this diagonal adjustment, one obtains a new Ps which may or may not have negative
elements along the diagonal. These two cases should be analyzed in turn.

(i) There are no negative elements along the diagonal of Ps. Hence, the scaling
in (3.5) need not be performed. In this case, P̃s = Ps (i.e., α = 1 in (3.5)) and P̃s

may be quasi-lumped to form Ks. The effect of quasi-lumping P̃s is to have

(5.3) ksi,j = ki,j ∀i, j ∈ {1, 2, . . . , N}.

(ii) There are one or more negative elements along the diagonal of Ps. The
scaling in (3.5) is performed. In this case, P̃s = αPs + (1 − α)I, where 0 < α < 1.
The scalar α may be chosen so that the largest negative element in magnitude along
the diagonal of Ps becomes zero after the scaling operation and
P̃s
i,i ≥ 0 ∀i.

(5.4) P̃s
i,je = αPs

i,je ⇒ ksi,j = αki,j ⇒ 0 ≤ ksi,j ≤ ki,j ∀i 6= j,

(5.5)

P̃s
i,ie = αPs

i,ie+ (1− α)e ⇒ ksi,i = αki,i + (1− α) =

{
ki,i + (1− α)(1− ki,i)
1− α(1− ki,i)

⇒ ki,i < ksi,i < 1 ∀i.
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Combining the above two cases with the properties of NCD chains and noticing that
Cs is the N ×N principal submatrix of Ks, one obtains the statement in the lemma.
Once again it must be remarked that if (3.5) is not performed, then case (i) applies
and csi,j = min (Pi,je) ∀i, j.

Lemma 5.2. Let P be an NCD Markov chain with N blocks that is not exactly
lumpable. Let Cs be the N × N principal submatrix of the quasi-lumped chain Ks

corresponding to P in (3.6). Then Cs has entries that satisfy

(5.6)
∑
j

csi,j ≤ 1 ∀i

with strict inequality for at least one i.
Proof. For the case in which scaling is not performed, the proof is straightforward

and follows from (5.3):∑
j

csi,j =
∑
j

ksi,j =
∑
j

ki,j =
∑
j

min (Pi,je) ≤ 1 ∀i.

The fact that there is strict inequality for at least one row of blocks is a consequence
of P not being exactly lumpable. That is, there is at least one row of blocks in P
in which one of the blocks has unequal row sums; otherwise, P would be exactly
lumpable. When scaling is performed, one obtains∑

j

csi,j = ksi,i +
∑
j 6=i

ksi,j = 1− α(1− ki,i) + α
∑
j 6=i

ki,j = 1− α+ α
∑
j

ki,j

= 1− α+ α
∑
j

min (Pi,je) ≤ 1 ∀i

from (5.4) and (5.5). The strict inequality for at least one i stems from the same
reason.

The following theorem summarizes the properties of Cs.
Theorem 5.3. Let P be an NCD Markov chain with N blocks and coupling

matrix C. Assume that P is not exactly lumpable. Let Cs be the N × N principal
submatrix of the quasi-lumped chain Ks corresponding to P in (3.6). Then

(i) Cs is nonnegative;
(ii) Cs is row diagonally dominant ;

(iii) Cs may be reducible (although C is irreducible);
(iv) if Cs is irreducible or each row of blocks in P is not exactly lumpable,

then I−Cs is a nonsingular M-matrix ;
(v) if the scaling in (3.5) is not performed, Cs ≤ C;
(vi) if the scaling in (3.5) is not performed and for some i, j Pi,j has equal row

sums, then ci,j = csi,j .
Proof. Parts (i) and (ii) follow directly from Lemma 5.1. Although the coupling

matrix of an NCD Markov chain is irreducible, Cs may very well be a reducible
matrix. The reason for this is implicit in equation (5.1). For a given diagonal element
of Cs, all off-diagonal elements in the same row may be zero. This is a sufficient
condition and happens, for instance, if min (Pi,je) = 0 ∀i 6= j for a given i, and part
(iii) follows. Note that it is also possible for Cs to be an irreducible matrix. For part
(iv), let A = I − Cs. To prove that A is a nonsingular M-matrix [1], the following
properties need to be shown (see [9, pp. 531–532]):

1. ai,i > 0 ∀i and ai,j ≤ 0 ∀i 6= j.
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2. A is irreducible and ai,i ≥
∑
j 6=i |ai,j | ∀i with strict inequality for at least

one i, or ai,i >
∑
j 6=i |ai,j | ∀i.

Now,

0 < ai,i � 1 ∀i and − 1� ai,j ≤ 0 ∀i 6= j

follow directly from Lemma 5.1; hence, the first property is verified. The second
property amounts to showing that

∑
j c
s
i,j < 1 ∀i. As indicated in Lemma 5.2, this

is not true in general. However, if Cs is irreducible, then so is A, and the second
property is also satisfied due to Lemma 5.2. On the other hand, if strict inequality
holds for each row of Cs in Lemma 5.2 (i.e., A is strictly row diagonally dominant),
the irreducibility assumption for Cs may be relaxed and the second property is once
again satisfied. Note that this is the case if each row of blocks in P possesses at least
one block with unequal row sums, and therefore it is quite likely to happen. Finally,
the nonsingularity is a direct consequence of condition (I29) on p. 136 of [1]. Part (v)
follows from Lemma 5.1. A sufficient condition for Cs ≤ C to be true is for P to
be diagonally dominant or for P to have diagonal elements larger than the degree of
coupling. Part (vi) may be shown by noticing that csi,j = min (Pi,je) if Pi,j has equal
row sums and scaling is not performed. Hence,

ci,j =
πi
‖πi‖1

Pi,je =
πi
‖πi‖1

csi,je = csi,j
πie

‖πi‖1
= csi,j ∀i, j.

Corollary 5.4. Let P be an NCD Markov chain with N blocks and coupling
matrix C. Then Cl with entries

(5.7) cli,j = min (Pi,je) ∀i, j

is a nonnegative, lower-bounding matrix for C and Cu with entries

(5.8) cui,j = max (Pi,je) = ‖Pi,j‖∞ ∀i, j

is a nonnegative, upper-bounding matrix for C.

That C ≤ Cu follows from

ci,j =
πi
‖πi‖1

Pi,je ≤ max (Pi,je) ∀i, j,

where πi/‖πi‖1 is a probability vector. Also note that Cu is irreducible because P is
irreducible, whereas an analogous statement is not valid for Cl.

Returning to the question posed at the beginning of this section, the answer is
no, Cs is not necessarily a lower-bounding matrix for C, but Cl is. Nevertheless,
for the Courtois example Cs = Cl, and Cs turns out to be a lower-bounding matrix
for C. Note that it is possible to subtract a slack probability mass from some other
element (rather than the diagonal element) in the diagonal block and avoid the scaling
in equation (3.5) (see the third step of construction in section 3) to have Cs = Cl.
We use the definition of quasi lumpability in [5] to be consistent in terminology. The
next section investigates the relation between the nonzero structure of a substochastic
lower-bounding matrix for a given Markov chain and the nature of lower and upper
bounds obtained on the chain’s stationary probabilities.
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6. Significance of the structure of lower-bounding matrices. Given an
irreducible Markov chain P and a substochastic lower-bounding matrix P∗ (i.e., 0 ≤
P∗ ≤ P, P∗ 6= 0), one can use Courtois and Semal’s technique and compute lower
and upper bounds on the stationary probabilities of P. The question of interest is
the following. What, if any, is the relation between the nonzero structure of P∗ and
the bounds obtained? Analogously, the same question may be posed for the coupling
matrix of an NCD Markov chain that is not exactly lumpable and a nonnegative
lower-bounding coupling matrix C∗ (such as Cl of (5.7)) (i.e., 0 ≤ C∗ ≤ C, C∗ 6= 0).
In order to avoid introducing new symbols and complicating the terminology further,
the equivalent second question is considered. That Cl and the like have weighty
diagonals is immaterial in the theory developed.

Observe that C∗ ≥ 0, c∗i,i 6= 0 ∀i, and C∗e 6= e for the matrices of interest by
definition. The principles that govern the solution of the systems

(6.1) ziK
∗
i = zi

N∑
j=1

zi,j = 1 ∀si ∈ S∗ = {s1, s2, . . . , sN},

where

(6.2) K∗i =

(
C∗ e−C∗e
eTi 0

)
,

are established next. Here K∗i is a stochastic matrix (i.e., K∗i e = e), zi is a probability
vector (i.e., the ith row of the stochastic matrix Z), S∗ represents the states of the
lower-bounding nonnegative (coupling) matrix, and ei denotes the ith column of the
identity matrix.

The discussion that follows refers to essential and nonessential (i.e., transient)
states and to the concept of reducibility in nonnegative square matrices, as presented
in pages 25–26 of [16]. Furthermore, for simplicity it is assumed that C∗ is already
in the normal form of a reducible (i.e., decomposable) nonnegative matrix. However,
that C∗ is in reducible normal form should not be understood to mean C∗ is reducible.

Following the terminology in [16], let K denote the number of mutually disjoint ir-
reducible subsets of states in C∗. Let these subsets be represented by Sir1 ,Sir2 , . . . ,SirK .
Note that Siri

⋂
Sirj = ∅ ∀i 6= j. In any case, the states in Sir (=

⋃
i Siri ) are referred

to as essential states. If Sir = S∗, there would be no transient states in C∗. More-
over, if K = 1, C∗ would be irreducible; else it could be decomposed into K mutually
disjoint irreducible subsets of states. Hereafter, the possibility of having a stochas-
tic transition probability submatrix (as part of C∗) corresponding to any irreducible
subset of states is overruled. That is, for each irreducible subset of states, the ex-
tra column in K∗i has at least one nonzero element. If not, the irreducible subset of
states for which this property does not hold may be extracted from C∗ and analyzed
separately. On the other hand, if Sir 6= S∗, there would be transient states in C∗.
Similarly, let Str1 ,Str2 , . . . ,StrM represent the transient subsets of states, where M is the
number of transient subsets of states in C∗ subject to the constraints Stri

⋂
Strj = ∅

∀i 6= j. Moreover, the mutually disjoint transient subsets of states should be ordered
so that there are no transitions from Stri to Strj in Str(=

⋃
i Stri ) ∀i < j. However,

there must be a transition from a given Stri to at least one Strk for 1 ≤ k < i ≤M or
to at least one Sirl for 1 ≤ l ≤ K.

The following 9× 9 lower-bounding nonnegative (coupling) matrix for an (NCD)
Markov chain demonstrates the concepts introduced in this section.
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Example 6.1. Let

C∗ =



0.999 0 0 0 0 0 0 0 0
0 0.995 0.005 0 0 0 0 0 0
0 0.002 0.997 0 0 0 0 0 0
0 0 0 0.998 0.001 0 0 0 0
0 0 0 0 0.997 0.003 0 0 0
0 0 0 0.002 0 0.998 0 0 0
0 0.001 0 0 0 0 0.997 0.002 0
0 0.002 0.002 0 0 0 0.001 0.995 0
0.001 0 0 0 0 0.001 0 0.001 0.996


.

For this matrix, Sir = {s1, s2, . . . , s6} and Str = {s7, s8, s9} with K = 3, M = 2,
Sir1 = {s1}, Sir2 = {s2, s3}, Sir3 = {s4, s5, s6}, Str1 = {s7, s8}, Str2 = {s9}. Since C∗

is in reducible normal form, each diagonal block in C∗ is (and should be) irreducible.
By the same token, the first transient subset of states, Str1 , always has a transition to
an irreducible subset of states from which the extra state is accessible. Therefore, by
induction all transient subsets of states can access the extra state. For this example,
the nonzero structure of Z in (6.1), (6.2) is given by the following matrix in which an
X represents a nonzero entry:

X 0 0 0 0 0 0 0 0
0 X X 0 0 0 0 0 0
0 X X 0 0 0 0 0 0
0 0 0 X X X 0 0 0
0 0 0 X X X 0 0 0
0 0 0 X X X 0 0 0
0 X X 0 0 0 X X 0
0 X X 0 0 0 X X 0
X X X X X X X X X


.

The following theorems summarize these observations, enabling one to forecast
the nonzero structure of Z for a given C∗. It should be emphasized once more that
each irreducible subset of states in the lower-bounding nonnegative matrices of inter-
est should have a transition to the extra state and that the original Markov chain
should not be exactly lumpable. Under these conditions, one may state the following
theorems, which are valid a fortiori for an NCD Markov chain with coupling matrix
C such that C∗ ≤ C and C∗ is substochastic.

Theorem 6.2. Let C∗ be a substochastic matrix. If C∗ is irreducible, then Z
given by (6.1), (6.2) is positive.

Proof. Since C∗e 6= e, there is at least one row in C∗, say k, for which (e−C∗e)k >
0. All states in C∗ form a single communicating class and the extra state in K∗i (see
(6.2)) is accessible from at least one of the states in C∗. Hence, K∗i is irreducible for
each i, and the theorem follows. 2

Note that when C∗ is irreducible, Sir = S∗, K = 1, and there are no transient
states in S∗. Furthermore, under the stated conditions I − C∗ is a nonsingular M-
matrix.

In the statement of the following theorem, a substochastic state means a state for
which the corresponding row sum is less than one.

Theorem 6.3. Let C∗ be a substochastic matrix, and let S∗ = Sir
⋃
Str, Sir =⋃K

i=1 Siri , Str =
⋃M
i=1 Stri be the state space partition of C∗, where K is the number of
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disjoint irreducible subsets of states and M is the number of disjoint transient subsets
of states. If C∗ is reducible and each irreducible subset of states in C∗ has at least
one substochastic state, then

(i) if si is an essential state and si ∈ Sirk for some k, then zi,j > 0 for all
sj ∈ Sirk and zi,j = 0 for all sj 6∈ Sirk ;

(ii) if si is a transient state and si ∈ Strk for some k, then zi,j > 0 for all
sj ∈ (Strk and states accessible from Strk ); otherwise zi,j = 0.

Proof. Part (i) follows from the fact that the extra state is accessible from Sirk ,
of which si is a member, and the last row of K∗i has a one at the ith column position
in (6.2), thereby making Sirk with the extra state an irreducible stochastic submatrix
in K∗i . Hence, zi in (6.1) has nonzero entries only in locations corresponding to the
members of Sirk . Part (ii) follows from the fact that the extra state is accessible
from Strk (of which si is a member) and all other subsets of states accessible from
Strk . Hence, states in Strk and states accessible from Strk together with the extra state
form an irreducible stochastic submatrix in K∗i . Again, zi has nonzero entries only
in locations corresponding to the members of Strk and other states they access.

Corollary 6. 4. If the substochastic matrix C∗ is reducible and the kth ir-
reducible subset of states Sirk is a singleton with a substochastic state (i.e., Sirk =
{si}, si ∈ Sir), then zi,j = δi,j.

Corollary 6.4 helps to identify those states for which the lower and upper bounds
obtained by Courtois and Semal’s technique will be 0 and 1, respectively. Such states
do not contribute to the tightening of the bounds of other states. Hence, if these states
are identified in advance, they may be extracted from the lower-bounding matrix,
thereby reducing the size of the systems to be solved in (6.1) and (6.2).

Before stating the next corollary, we recall the definition of a reachability (or
accessibility) matrix. The reachability matrix of a square matrix is constructed as
follows. First, the given square matrix is represented as a directed graph. The graph
must have a directed arc for each nonzero entry in the original matrix. Then a new
matrix is formed whose i, jth entry is a one (zero) if and only if state j is accessible
(inaccessible) from state i on the directed graph. The newly formed matrix is the
reachability matrix corresponding to the original square matrix.

Corollary 6.5. If each irreducible subset of states in the substochastic matrix
C∗ has at least one substochastic state, then the nonzero structure of Z in (6.1), (6.2)
is identical to the nonzero structure of the reachability matrix of C∗.

Corollary 6.5 helps one to forecast the nonzero structure of Z by inspecting the
nonzero structure of the lower-bounding matrix; that is, one does not need to solve
N systems to find out what the nonzero structure of Z looks like.

A result of Theorem 6.3 and Corollaries 6.4 and 6.5 (with (4.2) and (4.3)) is
that a reducible lower-bounding nonnegative matrix gives lower (upper) bounds of
zero (one) for various stationary probabilities of the coupling matrix and therefore
indirectly causes other stationary probabilities to be loosely bounded. In conclusion,
reducible lower-bounding nonnegative matrices should be avoided whenever possible.

7. Conclusion. This paper shows that NCD Markov chains are quasi-lumpable
(if not lumpable). In most cases, Cs, the N × N principal submatrix of the quasi-
lumped chain turns out to be a lower-bounding coupling matrix for an NCD chain
with N NCD blocks. When Cs is a lower-bounding coupling matrix, it may used
to compute lower and upper bounds for the stationary probabilities of the NCD
blocks. If Cs is not a lower-bounding coupling matrix, Cl, which is guaranteed to
be a lower-bounding coupling matrix, may be used instead. Bounding the station-
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ary probabilities of NCD blocks from below and from above amounts to solving at
most N , (N + 1) × (N + 1), systems. These linear systems differ only in the last
row. Therefore, only one LU decomposition needs to be performed. Assuming that
the transposed systems of equations are solved, the upper-triangular matrices will be
different in the last columns only. Hence, the last column in each of these systems
needs to be treated separately during the triangularization phase. Thereafter, all
back substitutions may be performed in parallel. Consequently, a solution method
such as Gaussian elimination has a time complexity of O(N3) in the computation of
the bounds.

If the NCD Markov chain is sparse with symmetries in its nonzero structure, it is
quite likely that some elements of the unknown vector x in the quasi-lumped chain
will turn out to be zero, thus tightening the bounds further as in the Courtois matrix.
The more information one has regarding the distribution of the probability mass in
xT , the tighter the lower and upper bounds become. In fact, there is a distribution
xT which gives the stationary probability of being in each NCD block exactly to
working precision. However, although ε is always less than or equal to the degree of
coupling of the NCD Markov chain, the lower-bounding nonnegative coupling matrix
will have diagonal elements close to one, and it seems that the bounds obtained by
the procedure generally will not be tight. The ill-conditioned nature of NCD Markov
chains is once again noticed, but this time from a different perspective.

Furthermore, when choosing lower-bounding nonnegative matrices for Markov
chains, one should be on the lookout for irreducible matrices. Reducible matrices
should be avoided whenever possible because they provide lower (upper) bounds of
zero (one) for various stationary probabilities, thereby indirectly causing other sta-
tionary probabilities to be loosely bounded.
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Abstract. The numerical instability of Gaussian elimination is proportional to the size of the
L and U factors that it produces. The worst-case bounds are well known. For the case without
pivoting, breakdowns can occur and it is not possible to provide a priori bounds for L and U . For
the partial pivoting case, the worst-case bound is O(2m), where m is the size of the system. Yet these
worst-case bounds are seldom achieved, and in particular Gaussian elimination with partial pivoting
is extremely stable in practice. Surprisingly, there has been relatively little theoretical study of the
“average” case behavior. The purpose of our paper is to provide a probabilistic analysis of the case
without pivoting. The distribution we use for the entries of A is the normal distribution with mean 0
and unit variance. We first derive the distributions of the entries of L and U . Based on this, we prove
that the probability of the occurrence of a pivot less than ε in magnitude is O(ε). We also prove that
the probabilities Prob(||U ||∞/||A||∞ > m2.5) and Prob(||L||∞ > m3) decay algebraically to zero as
m tends to infinity. Numerical experiments are presented to support the theoretical results.
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1. Introduction. Gaussian elimination (GE) is the most common general
method for solving an m × m, square, dense, unstructured linear system Ax = b.
Together with partial pivoting, the method is extremely stable in practice. However,
this stability cannot be guaranteed. The worst-case examples are well known: without
pivoting breakdowns can occur and even with partial pivoting the “growth factor” can
be as large as O(2m) (and can occur in practical applications [6]). This has motivated
the “average-case” analysis [11] of GE in order to explain its practical numerical sta-
bility. Surprisingly, there has been relatively few other studies on this topic in the
literature. The purpose of our paper is to provide a rather complete analysis for the
case without pivoting.

Theoretical studies about the numerical stability of GE have been made since
the 1940s by a great number of authors, for example, Turing [13], von Neumann and
Goldstine [14], [15], Wilkinson [16], [17], and so on. Recently, Trefethen and Schreiber
[11] considered the average-case analysis. Among their many results, they observed
that for many distributions of matrices the matrix elements after the first few steps of
GE with (partial or complete) pivoting are approximately normally distributed. They
also found that, for m ≤ 1024, the average growth factor (normalized by the standard
deviation of the initial matrix elements) is within a few percent of m2/3 for the partial
pivoting case and approximately m1/2 for the complete pivoting case. After having
performed more extensive experiments, Edelman and Mascarenhas [4] suggested that
the growth factor in the partial pivoting case may grow more like m1/2 than m2/3.

Following Trefethen and Schreiber, we study the probability of small pivots and
large growth factors in this paper. However, we will consider only the case without
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pivoting. We are doing so for three reasons. The first is quite obvious: the nonpivoting
case is far easier to analyze than the pivoting case. In particular, we are able to derive
in close form the density functions of the elements of the LU factors and probabilistic
bounds for the occurrence of small pivots and the growth factors. The second reason
is that with the advent of parallel computing there is more incentive to trade off the
stability of partial pivoting for the higher performance of simpler but possibly less
stable forms of GE, including no pivoting; see, for instance, [8, 9]. Finally, we are
hoping that our results for GE without pivoting will be useful in the analysis of, as
well as provide a basis of comparison for, the partial pivoting case.

Throughout the paper, we suppose X ∈ Rm×m is a random matrix with indepen-
dent and identically distributed elements which are N(0, 1), the normal distribution
with mean 0 and variance 1. This choice is motivated by the empirical results of Tre-
fethen and Schreiber mentioned earlier. Matrices of this type have also been studied
by Edelman [2], [3], who derived the expected singular values.

In sections 2 and 3, we derive the density functions of the entries of L and U ,
respectively, where X = LU , the LU factorization of X. In section 4, we prove that
the probability of the occurrence of a pivot less than ε in magnitude is O(ε).1 In
section 5, we derive bounds on the probabilities of large growth factors. In particular,
we prove that the probabilities Prob(||U ||∞/||A||∞ > m2.5) and Prob(||L||∞ > m3)
decay algebraically to zero as m tends to infinity. Finally, we present experimental
results in section 6. We observe that the probabilities Prob(m ≤ ||L||∞ < m1.5) and
Prob(m ≤ ||U ||∞/||A||∞ < m1.5) tend to one as m goes to infinity. This indicates
that our theoretical bounds are not the tightest possible, but not too loose either.

2. Density function of upq. Let X be an m×m real matrix with independent
and identically distributed elements from N(0, 1), to which we simply refer as “X ∼
Nm(O, I).” Let X = LU , where L is a unit lower triangular matrix and U is an upper
triangular matrix, be the LU factorization of X.2 The (p, q)th (p ≤ q) entry upq of U
and the entries of X have the following relation.

Lemma 1. Let X = LU be the LU factorization of X. Then

upq =xpq − xTp∗X−1
p−1x∗q,

where

xp∗= (xp1, . . . , xpp−1)
T
,

x∗q = (x1q, . . . , xp−1q)
T
,

and Xp−1 is the (p− 1)× (p− 1) leading principal submatrix of X.
Proof. Permuting the pth and qth columns of X and U simultaneously on both

sides of X = LU and then comparing the corresponding blocks, we find that[
Xp−1 x∗q
xTp∗ xpq

]
=

[
Lp−1 0
lTp∗ 1

] [
Up−1 u∗q

0 upq

]
,

where

lp∗ = (lp1, . . . , lpp−1)
T
,

u∗q = (u1q, . . . , up−1q)
T
,

1 We note that Foster [5] has studied the probability of large diagonal elements in the QR factor-
ization of a rectangular matrix A.

2 Since they just form a set of measure 0, we ignore matrices for which GE fails.
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and where Lp−1 and Up−1 are the (p − 1) × (p − 1) leading principal submatrices of
L and U , respectively. It follows that

Xp−1 = Lp−1Up−1, lTp∗ = xTp∗U
−1
p−1,

u∗q = L−1
p−1x∗q, upq = xpq − lTp∗u∗q,

and these imply the desired equation.

Let H be a (p− 1)× (p− 1) orthogonal matrix, e.g., a Householder matrix, such
that

xTp∗H = (0, . . . , 0, s) ≡ ηT

with s ≥ 0. Then

upq =xpq − ηT (Xp−1H)
−1
x∗q

≡xpq − ηTY −1x∗q.

It can be shown that the entries s, xpq, xiq, and yij , i, j = 1, . . . , p− 1, are mutually
independent and all xpq, xiq, and yij , i, j = 1, . . . , p− 1, are N(0, 1) while s2 is χ2

p−1.
The proof basically follows the approach in [10] and [12]. We now decompose Y as

Y = QR,

where Q is a (p − 1) × (p − 1) orthogonal matrix and R a (p − 1) × (p − 1) upper
triangular matrix with positive diagonal elements. We then further have

upq =xpq − ηTR−1QTx∗q

≡xpq − ηTR−1ω

=xpq −
swp−1

rp−1p−1
.

(1)

Again, the variables s, xpq, wi, and rij , i ≤ j, i, j = 1, . . . , p−1, are independent. s2

is χ2
p−1 and r2

ii is χ2
p−i, i = 1, . . . , p−1 and all others are N(0, 1). The proof basically

follows the approach in [10] and [12].

Since the variables in the right-hand side of (1) are independent and their density
functions are known, it is straightforward to determine the density function of upq.

Theorem 1. Suppose X ∼ Nm(O, I) and let X = LU be the LU factorization
of X. Then the density function of the (p, q)th entry of U is

fupq (t) =

√
2

π

Γ(p/2)

Γ((p− 1)/2)

b p−3
2 c∑
i=0

ξi,p t
−2i−2 + (−1)

b p−1
2 c ζp t

−p+1 exp

(
−1

2
t2
)
φp(t)

 ,

(2)
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where

ξi,p =


(−1)

i
i−1∏
j=0

(p− 2j − 3), i > 0,

1, i = 0,

ζp =

 (p− 3)!!, p > 3,

1, p = 2, 3,

φp(t) =

(∫ t

0

exp

(
1

2
x2

)
dx

)p−1−2b(p−1)/2c

,

and where −∞ < t <∞, 2 ≤ p ≤ q.

Proof. Since the variables r2
p−1p−1 (rp−1p−1 ≥ 0), s2 (s ≥ 0), wp−1, and xpq in

(1) are χ2
1, χ2

p−1, N(0, 1), and N(0, 1), respectively, the density functions of rp−1p−1,
s, wp−1, and xpq are given as follows:

frp−1p−1
(t) =


√

2

π
exp

(
−t2/2

)
, t > 0,

0, t ≤ 0,

fs(t) =


1

2(p−3)/2Γ((p− 1)/2)
tp−2 exp

(
−t2/2

)
, t > 0,

0, t ≤ 0,

fwp−1
(t) =

1√
2π

exp
(
−t2/2

)
,

and

fxpq (t) =
1√
2π

exp
(
−t2/2

)
.

Since rp−1p−1, s, wp−1, and xpq are independent, their joint density function is given
by

f(r, s, w, x) = frp−1p−1
(r) fs(s) fwp−1

(w) fxpq (x)

=


c̃ sp−2 exp

(
−1

2
(s2 + r2 + w2 + x2)

)
, r, s > 0,

0 otherwise,
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where c̃ = 1
π3/22(p−2)/2Γ((p−1)/2)

. Thus, the distribution function Fupq (α) of upq is

Fupq (α) = c̃

∫ ∫ ∫ ∫
upq≤α

sp−2 exp

(
−1

2
(s2 + r2

p−1p−1 + w2
p−1 + x2

pq)

)
ds drp−1p−1dwp−1dxpq

= c̃

∫ ∫ ∫ ∫
xpq−

swp−1
rp−1p−1

≤α
sp−2 exp

(
−1

2
(s2 + r2

p−1p−1 + w2
p−1 + x2

pq)

)

×ds drp−1p−1dwp−1dxpq .

Using Lemma 3 in the Appendix, we can show that

fupq (t) = c̃

∫ ∞
0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2

(
x2 + (y + t)

2
))

dy,(3)

which can be further reduced to (2) by Lemma 4 in the Appendix.

3. Density function of lpq. Similar to the derivation of the density function of
upq, we first establish a relation between lpq and the entries of X and then simplify

it. Let X = LU and XT = L̃Ũ be the LU factorizations of X and XT , respectively.

Set D̃ = diag(ũ11, . . . , ũmm). Thus, XT = L̃D̃D̃−1Ũ . So X = (D̃−1Ũ)
T

(L̃D̃)
T

.

Note that (D̃−1Ũ)
T

is unit lower triangular and (L̃D̃)
T

upper triangular. By the
uniqueness of the LU factorization of X, we have

L =
(
D̃−1Ũ

)T
.

Hence

lpq = ũqp/ũqq

for 1 ≤ q < p ≤ m. By Lemma 1,

ũqp =xpq − xT∗qX−Tq−1xp∗

and

ũqq =xqq − xT∗qX−Tq−1xq∗,

where

xp∗= (xp1, . . . , xpq−1)
T
,

xq∗= (xq1, . . . , xqq−1)
T
,

x∗q = (x1q, . . . , xq−1q)
T
,

and Xq−1 is the (q− 1)× (q− 1) leading principal submatrix of X. We now let H be
a (q − 1)× (q − 1) orthogonal matrix such that

xT∗qH = (0, . . . , 0, s) ≡ ηT

with s ≥ 0. Then

lpq =
xpq − ηT

(
XT
q−1H

)−1
xp∗

xqq − ηT
(
XT
q−1H

)−1
xq∗

≡ xpq − ηTY −1xp∗
xqq − ηTY −1xq∗

.
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As in the case of upq in section 2, all the entries in the above expression are mutually
independent and s2 is χ2

q−1 while others are N(0, 1). Let

Y = QR

be the QR factorization of Y where R has positive diagonal elements. Then the
expression can be reduced to

lpq =
xpq − ηTR−1QTxp∗
xqq − ηTR−1QTxq∗

≡ xpq − ηTR−1ω

xqq − ηTR−1µ

=
rq−1q−1xpq − sωq−1

rq−1q−1xqq − sµq−1
.

(4)

The entries xpq, xqq, ωi, µi, and rij(i < j) are N(0, 1) while s2 is χ2
q−1 and r2

ii is χ2
q−i,

where i = 1, . . . , q − 1, j = 2, . . . , q − 1. They are all independent.

Theorem 2. Suppose X ∼ Nm(O, I) and let X = LU be the LU factorization
of X. Then the density function of the (p, q)th entry of L is

flpq (t) =
1

π

1

1 + t2
,(5)

where −∞ < t <∞ and 1 ≤ q < p ≤ m.

Proof. Suppose q > 1 and let Flpq (α) be the distribution function of lpq. Since
the joint density function of rq−1q−1, xpq, xqq, ωq−1, µq−1, and s is

f(rq−1q−1, xpq, xqq, ωq−1, µq−1, s)

=



1

2q/2π5/2Γ((q − 1)/2)
sq−2

×exp

(
−1

2
(r2
q−1q−1 + x2

pq + x2
qq + ω2

q−1 + µ2
q−1 + s2)

)
, rq−1q−1, s > 0,

0 otherwise,

and since

Flpq (α) =

∫
· · ·
∫
lpq≤α

f(rq−1q−1, xpq, xqq, ωq−1, µq−1, s)drq−1q−1dxpqdxqqdωq−1dµq−1ds,

(5) holds from (4) and Lemmas 5 and 6 in the Appendix. The case in which q =
1 is quite trivial if we notice that lp1 is the division of two N(0, 1) variables xp1
and x11.

Remark. In our private communications with him, Alan Edelman of MIT in-
dicated to us that the proof of Theorem 2 can be greatly simplified by observing that
every element of L is a ratio of two quantities x and y such that (x, y) is circularly
symmetric and such a ratio has Cauchy distribution.
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4. Probability of small pivot. In practice, if one of the pivot elements upp is
zero or smaller in magnitude than a preset tolerance ε, GE will fail. In this section,
we describe the probability of the occurrence of such a situation. First, we give a
bound on the density function fupq (t) of upq.

Lemma 2.

1

π
√

2

Γ(p/2)

Γ((p+ 1)/2)
exp

(
− t

2

2

)
≤ fupq (t) ≤

1

π

Γ(p/2)

Γ((p+ 1)/2)
exp

(
t2

2

)
for −∞ < t <∞ and p ≥ 2.

Proof. From (3), we have

fupq (t) = c̃

∫ ∞
0

dx

∫ ∞
0

xp−1

x2 + y2

(
exp

(
−1

2

(
x2 + (y + t)

2
))

+ exp

(
−1

2

(
x2 + (y − t)2

)))
dy.

Letting y = xz, this can be written as

fupq (t) = c̃

∫ ∞
0

dx

∫ ∞
0

xp−2

1 + z2

(
exp

(
−1

2

(
x2 + (xz + t)

2
))

+ exp

(
−1

2

(
x2 + (xz − t)2

)))
dz

= c̃

∫ ∞
0

dx

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2

(
(1 + z2)x2 + t2

))
× (exp (−xzt) + exp (xzt)) dz.

(6)

Since exp (ξ) + exp (−ξ) ≥ 2, we have

fupq (t)≥ 2c̃

∫ ∞
0

dx

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2

(
(1 + z2)x2 + t2

))
dz

= 2c̃ exp

(
−1

2
t2
)∫ ∞

0

dz

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2
(1 + z2)x2

)
dx.

Let w = 1
2 (1 + z2)x2. Then

fupq (t) ≥
√

2

π3/2Γ((p− 1)/2)

× exp

(
−1

2
t2
)∫ ∞

0

dz

∫ ∞
0

(1 + z2)
−(p+1)/2

w(p−3)/2 exp (−w) dw

=
1

π
√

2

Γ(p/2)

Γ((p+ 1)/2)
exp

(
−1

2
t2
)
.
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Moreover, from (6) we have

fupq (t)≤ 2c̃

∫ ∞
0

dx

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2

(
(1 + z2)x2 + t2

))
exp (xz|t|) dz

≤ 2c̃

∫ ∞
0

dx

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2

(
(1 + z2)x2 + t2

))
exp

(
1

2

(
1

2
(xz)

2
+ 2t2

))
dz

= 2c̃ exp

(
1

2
t2
)∫ ∞

0

dz

∫ ∞
0

xp−2

1 + z2
exp

(
−1

2

(
1 +

1

2
z2

)
x2

)
dx.

Letting u = 1
2 (1 + 1

2z
2)x2, we finally have

fupq (t)≤
√

2

π3/2Γ((p− 1)/2)
exp

(
1

2
t2
)∫ ∞

0

dz

∫ ∞
0

(1 + z2)
−1
(

1 +
1

2
z2

)−(p−1)/2

×u(p−3)/2 exp (−u) du

=

√
2

π3/2
exp

(
1

2
t2
)∫ ∞

0

(1 + z2)
−1
(

1 +
1

2
z2

)−(p−1)/2

dz

≤
√

2

π3/2
exp

(
1

2
t2
)∫ ∞

0

(
1 +

1

2
z2

)−(p+1)/2

dz

=
2

π3/2
exp

(
1

2
t2
)∫ ∞

0

(1 + z2)
−(p+1)/2

dz

=
1

π

Γ(p/2)

Γ((p+ 1)/2)
exp

(
1

2
t2
)
.

To make the statements below neatly, we use a shorthand notation. For given
ε > 0 and 1 ≤ p ≤ m, we define

Ep,ε = {X ∈ Rm×m| |upp| < ε}.

Then the event that at least one upp has |upp| < ε is naturally denoted by
⋃m
p=1Ep,ε.

Corollary 1. Suppose X ∼ Nm(O, I) and let X = LU be the LU factorization
of X. Given ε > 0 and 1 ≤ p ≤ m,

Prob(Ep,ε) = αp,ε
Γ(p/2)

Γ((p+ 1)/2)
,

where
√

2
π

∫ ε
0

exp(− 1
2 t

2)dt ≤ αp,ε ≤ 2
π

∫ ε
0

exp( 1
2 t

2)dt.

Proof. For the case in which p = 1, it is sufficient to note that

Prob(E1,ε) = Prob(|x11| < ε) =
1√
2π

∫ ε

−ε
exp

(
−1

2
t2
)
dt.

Other cases are just the direct results of Lemma 2.
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Theorem 3. Suppose X ∼ Nm(O, I) and let X = LU be the LU factorization
of X. Then

Prob

(
m⋃
p=1

Ep,ε

)
≤ c(m) ε exp

(
1

2
ε2
)
,(7)

where c(m) = 2
π

∑m
p=1

Γ(p/2)
Γ((p+1)/2) .

Proof. Since Prob(
⋃m
p=1Ep,ε) ≤

∑m
p=1 Prob(Ep,ε), (7) follows by Corollary

1.
The coefficient c(m) of ε exp

(
1
2ε

2
)

is a rather slow-growing function of m. In
fact, it is about 1800 even when m = 106. So, if ε is small enough, (7) will certainly
give a satisfying bound for the desirable probability. Moreover, the right-hand side of
(7) is approximately linear with ε for small ε.

5. Probability of large growth factor. When GE is performed on an m×m
matrix A in floating point arithmetic, the computed LU factors L̂ and Û are produced.
Then, by solving two corresponding triangular systems, we obtain the solution x̂ to
Ax = b. The computed solution x̂ satisfies

(A+ E) x̂ = b

with

|E| ≤ mu
(

3 |A|+ 5 |L̂| |Û |
)

+O(u2),

where u is the unit roundoff and where, for any matrix M , we use |M | to denote the
matrix obtained by taking the absolute value of the elements of M ; see, for instance,
[7, Theorem 3.3.2]. From this, it follows that

‖E‖∞ ≤ mu‖A‖∞

(
3 + 5‖L̂‖∞

‖Û‖∞
‖A‖∞

)
+O(u2).

We define the growth factors ρL and ρU to be

ρL = ‖L‖∞, ρU = ‖U‖∞/‖A‖∞.

It is possible that ρL and ρU can be very large because small pivots can appear. The
following theorem gives probabilistic bounds on the sizes of ρL and ρU .

Theorem 4. Suppose X ∼ Nm(O, I) and let X = LU be the LU factorization
of X. Then there exist numbers 1 > b > 0 and c > 0, independent of m, such that

Prob(ρU > r)≤ c

r
m5/2 + min

(
c

r
m7/2 ,

1

m

)
+ bm

and

Prob(ρL > r)≤ c

r
m3

for any r ≥ 1.
Proof. We first claim that there exists a c1 > 0, independent of m, such that

Prob(‖U‖∞ > r)≤ c1
r
m7/2 .(8)
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In fact, by (3) we have

fupq (t) = c̃

∫ ∞
0

dx

∫
|y+t|≥|t|/2

xp−1

x2 + y2
exp

(
−1

2

(
x2 + (y + t)

2
))

dy

+c̃

∫ ∞
0

dx

∫
|y+t|<|t|/2

xp−1

x2 + y2
exp

(
−1

2

(
x2 + (y + t)

2
))

dy

≤ c̃
∫ ∞

0

dx

∫
|y+t|≥|t|/2

xp−1

x2 + y2
exp

(
−1

2

(
x2 +

1

4
t2
))

dy

+c̃

∫ ∞
0

dx

∫
|y+t|<|t|/2

xp−1

x2 + t2/4
exp

(
−1

2

(
x2 + (y + t)

2
))

dy

≤ c̃ exp

(
−1

8
t2
)∫ ∞

0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2
x2

)
dy

+
4c̃

t2

∫ ∞
0

dx

∫ ∞
−∞

xp−1 exp

(
−1

2

(
x2 + (y + t)

2
))

dy

=
1√
2π

exp

(
−1

8
t2
)

+
4
√

2

π

Γ(p/2)

Γ((p− 1)/2)

1

t2

≤
(

4
√
p

+
4
√

2

π
√
p

Γ(p/2)

Γ((p− 1)/2)

) √
p

t2
.

Since

lim
k→+∞

(
4√
k

+
4
√

2

π
√
k

Γ(k/2)

Γ((k − 1)/2)

)

exists by Stirling’s formula

lim
x→+∞

Γ(x+ 1)

xx exp (−x)
√

2πx
= 1 ,

we can find a c2 such that

4√
k

+
4
√

2

π
√
k

Γ(k/2)

Γ((k − 1)/2)
≤ c2

for all k. Hence

fupq (t)≤ c2
√
p/t2.



PROBABILISTIC ANALYSIS OF GE WITHOUT PIVOTING 509

Therefore,

Prob(‖U‖∞ > r)≤
m∑
p=1

m∑
q=p

P (|upq| > r/m)

=
m∑
p=1

m∑
q=p

∫
|t|>r/m

fpq(t) dt

≤
m∑
p=1

m∑
q=p

∫
|t|>r/m

c2
√
p

t2
dt

≤ c2c3
r
m7/2

for some c3 > 0, independent of m. The existence of c3 is due to the existence of the
limit

lim
k→+∞

1

k5/2

k∑
p=1

(k − p+ 1)
√
p=

∫ 1

0

(1− t)
√
t dt.

We set c1 = c2c3 and then (8) is proven. To prove the first inequality in the theorem,
we note that the expected value µ and the variance σ2 of the variable x1 ≡

∑m
q=1 |x1q|

are

µ = m

√
2

π
, σ2 =

(
1− 2

π

)
m.

Setting ε = m
√

1− 2
π in Chebyshev’s inequality [1, p. 183]

Prob (|x1 − µ| ≥ ε) ≤
σ2

ε2
,

we have

Prob (x1 < mc4) ≤ 1

m
,(9)

where c4 =
√

2
π −

√
1− 2

π . Combining (8) and (9), we find

Prob (ρU > r) = Prob (‖U‖∞ > r‖A‖∞)

≤Prob (‖U‖∞ > rx1)

= Prob (‖U‖∞ > rx1, x1 ≥ mc4) + Prob (‖U‖∞ > rx1, mc4 > x1 > 1)

+ Prob (‖U‖∞ > rx1, x1 ≤ 1)

≤Prob (‖U‖∞ > mrc4) + min (Prob (‖U‖∞ > r) , Prob (x1 < mc4))

+ Prob (|x1q| ≤ 1 ∀ 1 ≤ q ≤ m)

≤ c1
c4r

m5/2 + min

(
c1
r
m7/2,

1

m

)
+

(
1√
2π

∫ 1

−1

exp

(
−1

2
t2
)
dt

)m
.
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Finally,

Prob (ρL > r)≤
m∑
p=2

p−1∑
q=1

Prob

(
|lpq| >

r − 1

m− 1

)

=
1

π

m∑
p=2

p−1∑
q=1

∫
|t|> r−1

m−1

1

1 + t2
dt

≤ c5
r
m3

for some c5.

6. Numerical experiments. In this section, we present numerical results to
support Theorems 1–4. All our calculations have been carried out in MATLAB 4.2c
on SUN workstations.

In our first experiment, 595, 000 matrices of dimension m = 31 were selected
at random from the class N31(O, I). Then GE was applied to each of the matrices
and then statistics on the elements l13,12, l30,29, u12,12, and u31,31 were accumulated.
The data are plotted in Figures 1 and 2 together with the corresponding functions
indicated in Theorems 1 and 2. In order to make clearer the difference between Figures
1(a) and 1(b), we present them together in Figure 3(a).
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(a) (b)

Fig. 1. (a) Distribution of u12,12: observed (+), predicted (-). (b) Distribution of u31,31:
observed (+), predicted (-).

The purpose of our second experiment was to test formula (7). Matrices of several
dimensions m were selected at random from Nm(O, I), with the sample size varying.
A few tolerances ε were used. The results are outlined in Table 1. The frequency
column of the table provides the numbers of matrices which, in their LU factors,
have at least one upp less than ε in magnitude. By comparing with the empirical
probabilities, we conclude that the bound given in (7) is a fairly tight one.

Finally, if we set r = mα, α > 2.5 for ρU and α > 3 for ρL, in Theorem 4, then
we can see that the probabilities Prob(ρL > mα) and Prob(ρU > mα) decrease with
m increasing. In fact, empirically this is true even for smaller α, say, α > 1.5 for both
ρL and ρU , as illustrated in Figures 3(b) and 4. In this experiment, we chose sample
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Fig. 2. (a) Distribution of l13,12: observed (+), predicted (-). (b) Distribution of l30,29: ob-
served (+), predicted (-).
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Fig. 3. (a) Overlap of Figures 1(a) and 1(b). (b) Percentage frequency distributions of ρL
(dashed) and ρU (solid). m = 25.
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Fig. 4. Percentage frequency distributions of ρL (dashed) and ρU (solid). (a) m = 50. (b)
m = 100.
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Table 1

Probabilities of small pivot.

m ε Sample size Frequency Empirical probability Theoretical bound

25 10−5 105 5 5× 10−5 8.2853× 10−5

50 10−3 104 90 0.009 0.012

50 10−4 104 8 8× 10−4 0.0012

50 10−5 104 0 0 1.2014× 10−4

50 10−5 105 9 9× 10−5 1.2014× 10−4

75 10−3 104 89 0.0089 0.0149

75 10−4 104 8 8× 10−4 0.0015

75 10−5 104 0 0 1.4876× 10−4

100 10−3 104 115 0.0115 0.0173

sizes to be 968,500, 365,500, and 98,000 for m = 25, 50, and 100, respectively. In each
sample, we calculated ρL and ρU for each matrix X. Then the data of ρL and ρU were
grouped into ten classes, respectively. In the case of ρL, for example, the first class
consists of matrices X with m0 ≤ ρL < m0.5, the second class with m0.5 ≤ ρL < m1,
the third one with m1 ≤ ρL < m1.5, and so on. The number of matrices in each class
was then divided by the corresponding sample size to get the percentage frequency to
the class. The distributions have been plotted in the form of histograms. Empirically,
there is a tendency that Prob(m ≤ ρL < m1.5) and Prob(m ≤ ρU < m1.5) tend to
one as m goes to infinity.

7. Appendix.
Lemma 3.∫ ∫ ∫ ∫

Ω

wp−1 exp

(
−1

2

(
x2 + y2 + z2 + w2

))
dx dy dz dw

=

∫ α

−∞
dt

∫ ∞
−∞

dx

∫ ∞
0

wp

w2 + x2
exp

(
−1

2

(
(x+ t)

2
+ w2

))
dw,

where Ω = {(x, y, z, w) | x− yw/z ≤ α,w > 0, z > 0} and 1 ≤ p.
Proof.

F (α)≡
∫ ∫ ∫ ∫

Ω

wp−1 exp

(
−1

2

(
x2 + y2 + z2 + w2

))
dx dy dz dw

=

∫ ∞
−∞

dx

∫ ∞
0

dw

∫ ∞
0

dz

∫ ∞
(x−α)z/w

wp−1 exp

(
−1

2

(
x2 + y2 + z2 + w2

))
dy.

Letting y = uz, we find

F (α) =

∫ ∞
−∞

dx

∫ ∞
0

dw

∫ ∞
0

dz

∫ ∞
(x−α)/w

zwp−1 exp

(
−1

2

(
x2 + u2z2 + z2 + w2

))
du

=

∫ ∞
−∞

dx

∫ ∞
0

dw

∫ ∞
(x−α)/w

du

∫ ∞
0

zwp−1 exp

(
−1

2

(
x2 + u2z2 + z2 + w2

))
dz

=

∫ ∞
−∞

dx

∫ ∞
0

dw

∫ ∞
(x−α)/w

wp−1

1 + u2
exp

(
−1

2
(x2 + w2)

)
du.
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Letting u = v/w, this can then be written as

F (α) =

∫ ∞
−∞

dx

∫ ∞
0

dw

∫ ∞
x−α

wp

w2 + v2
exp

(
−1

2
(x2 + w2)

)
dv

=

∫ ∞
−∞

dx

∫ ∞
x−α

dv

∫ ∞
0

wp

w2 + v2
exp

(
−1

2
(x2 + w2)

)
dw.

Finally, letting v = x− t, we have

F (α) =

∫ ∞
−∞

dx

∫ α

−∞
dt

∫ ∞
0

wp

w2 + (x− t)2 exp

(
−1

2
(x2 + w2)

)
dw

=

∫ α

−∞
dt

∫ ∞
−∞

dx

∫ ∞
0

wp

w2 + (x− t)2 exp

(
−1

2
(x2 + w2)

)
dw

=

∫ α

−∞
dt

∫ ∞
−∞

dx

∫ ∞
0

wp

w2 + x2
exp

(
−1

2

(
(x+ t)

2
+ w2

))
dw.

Lemma 4.

∫ ∞
0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2

(
x2 + (y + t)

2
))

dy

= 2(p−1)/2
√
π Γ
(p

2

)b p−3
2 c∑
i=0

ξi,p t
−2i−2 + (−1)

b(p−1)/2c
ζp t
−p+1 exp

(
−1

2
t2
)
φp(t)

 ,

where

ξi,p =


(−1)

i
i−1∏
j=0

(p− 2j − 3), i > 0,

1, i = 0,

ζp =

 (p− 3)!!, p > 3,

1, p = 2, 3,

φp(t) =

(∫ t

0

exp

(
1

2
x2

)
dx

)p−1−2b(p−1)/2c

,

and where −∞ < t <∞, 2 ≤ p.
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Proof.

f(t)≡
∫ ∞

0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2

(
x2 + (y + t)

2
))

dy

= exp

(
−1

2
t2
)∫ ∞

0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2

(
x2 + y2

))
exp (−yt) dy

= exp

(
−1

2
t2
)∫ ∞

0

dx

∫ ∞
−∞

xp−1

x2 + y2
exp

(
−1

2

(
x2 + y2

)) ∞∑
n=0

(−yt)n

n!
dy

= exp

(
−1

2
t2
) ∞∑
n=0

(−t)n

n!

∫ ∞
0

dx

∫ ∞
−∞

xp−1yn

x2 + y2
exp

(
−1

2

(
x2 + y2

))
dy

= 2 exp

(
−1

2
t2
) ∞∑
n=0

t2n

(2n)!

∫ ∞
0

dx

∫ ∞
0

xp−1y2n

x2 + y2
exp

(
−1

2

(
x2 + y2

))
dy

= 2 exp

(
−1

2
t2
) ∞∑
n=0

t2n

(2n)!

∫ ∞
0

dz

∫ ∞
0

z2n

1 + z2
x2n+p−2 exp

(
−1

2
x2
(
1 + z2

))
dx,

where y = xz. Let w = x2
(
1 + z2

)
/2. Then, with B(m,n) denoting the beta

function, we have

f(t) = 2(p−1)/2 exp

(
−1

2
t2
) ∞∑
n=0

2nt2n

(2n)!

×
∫ ∞

0

dz

∫ ∞
0

z2n

(1 + z2)
n+(p+1)/2

wn+(p−3)/2 exp (−w) dw

= 2(p−3)/2 exp

(
−1

2
t2
) ∞∑
n=0

2nt2n

(2n)!
Γ

(
n+

p− 1

2

)
B

(
p

2
, n+

1

2

)

= 2(p−3)/2 exp

(
−1

2
t2
) ∞∑
n=0

2nt2n

(2n)!
Γ

(
n+

p− 1

2

)
Γ
(
p
2

)
Γ
(
n+ 1

2

)
Γ
(
n+ p+1

2

)
= 2(p−1)/2

√
π Γ
(p

2

)
exp

(
−1

2
t2
) ∞∑
n=0

1

2n+ p− 1

(2n− 1)!!

(2n)!
t2n

= 2(p−1)/2
√
π Γ
(p

2

)
exp

(
−1

2
t2
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1

n! 2n
1

2n+ p− 1
t2n

= 2(p−1)/2
√
π Γ
(p

2

)
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(
−1

2
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1

n! 2n
1

2n+ p− 1
t2n+p−1

≡ 2(p−1)/2
√
π Γ
(p

2

)
exp

(
−1

2
t2
)
t−p+1g(t),

where here and below we define 0! = 0!! = (−1)!! = 1. Since

d

dt
g(t) =

∞∑
n=0

1

n! 2n
t2n+p−2 = tp−2 exp

(
1

2
t2
)
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we find

g(t) =

∫ t

0

xp−2 exp

(
1

2
x2

)
dx

= exp

(
1

2
t2
) b p−3

2 c∑
i=0

(−1)
i
i−1∏
j=0

(p− 2j − 3) tp−2i−3

+ (−1)
b(p−1)/2c

(p− 3)!!

(∫ t

0

exp

(
1

2
x2

)
dx

)p−1−2b(p−1)/2c

by integration by parts, and then the desired result follows.
Lemma 5.∫
· · ·
∫

Ω

xq−2
1 exp

(
−1

2

6∑
i=1

x2
i

)
6∏
i=1

dxi

= π1/22(q−2)/2Γ((q + 1)/2)

∫ α

−∞
dy1

∫ ∞
−∞

dy2

∫ ∞
−∞

dy3

∫ ∞
−∞

|y3|
(1 + y2

2 + y2
4)

(q+1)/2

× 1(
1 + (y1y3 + y2)

2
+ (y3 + y4)

2
)3/2

dy4,

where q ≥ 2 and Ω = {(x1, . . . , x6) | (x1x3 − x2x4)/(x1x5 − x2x6) ≤ α, x1 > 0, x2 > 0}.

Proof. Let

x3 = (y1 + y2)x2, x4 = x1y2,

x5 = (y3 + y4)x2, x6 = x1y4.

Then

F (α) ≡
∫
· · ·
∫
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xq−2
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2
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i
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2
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× dx1 dx2
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i=1

dyi

=

∫ ∫ ∫ ∫
y1/y3≤α
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xq1 exp
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2
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= π1/22(q−2)/2Γ((q + 1)/2)

∫ ∫
y1/y3≤α

dy1 dy3

∫ ∞
−∞

dy2

∫ ∞
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1

(1 + y2
2 + y2

4)
(q+1)/2

× 1(
1 + (y1 + y2)

2
+ (y3 + y4)

2
)3/2

dy4.

Since ∫ ∫
x/y≤α

f(x, y) dx dy =

∫ α

−∞
dx

∫ ∞
−∞

f(xy, y)|y| dy

we have

F (α) = π1/22(q−2)/2Γ((q + 1)/2)

∫ α

−∞
dy1

∫ ∞
−∞

dy3

∫ ∞
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dy2
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|y3|
(1 + y2

2 + y2
4)

(q+1)/2

× 1(
1 + (y1y3 + y2)

2
+ (y3 + y4)

2
)3/2

dy4.

Lemma 6. Let

f(t) =
q − 1

4π2

∫ ∞
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dx1

∫ ∞
−∞

dx2

∫ ∞
−∞

|x1|(
1 + (x2 + x1t)

2
+ (x3 + x1)

2
)3/2

× 1

(1 + x2
2 + x2

3)
(q+1)/2

dx3,

where 2 ≤ q and −∞ < t <∞. Then

f(t) =
1

π

1

1 + t2
.

Proof. We rewrite the expression of f(t) as

f(t) =
q − 1

4π2

1

1 + t2

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

∫ ∞
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1 + (x2 + cx1)

2
+ (x3 + sx1)

2
)3/2

× 1

(1 + x2
2 + x2

3)
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dx3,

where c = t/
√

1 + t2 and s = 1/
√

1 + t2. Let

x1 = y1, x2 = y1(cy2 − sy3), x3 = y1(sy2 + cy3).

Then

f(t) =
q − 1

4π2

1

1 + t2

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2

∫ ∞
−∞

y2
1 |y1|(

1 + y2
1

(
(1 + y2)

2
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3

))3/2
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π
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Since ∫ ∞
−∞

f(t)dt =
1

π

∫ ∞
−∞

1

1 + t2
dt = 1,

we have ξ = 1, and therefore the lemma follows.
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In [1], the authors refer to [2] as the paper that gave an incentive to their work.
Here we point out that the problem considered in [1] was also solved in the Russian
literature. This was not known to the authors and might be of interest to readers of
this journal. In the introduction of [1], the authors say,

In [2] Ikramov has shown that a normal Toeplitz matrix (of order at most 4)
over the real field must be of one of four types: symmetric Toeplitz, skew-symmetric
Toeplitz (up to the principal diagonal), circulant, or skew-circulant.

It would be correct to add that the main contribution of [2] was to prove, for
arbitrary n, the necessity of some equalities for the entries of a normal Toeplitz matrix
of order n. These equalities are in fact equivalent to the authors’ equations (1) in the
real case.

The full solution of the problem (of describing normal Toeplitz matrices) for
the real case was given in [3]. The same year another and very elegant solution of
the real problem was published in [4]. The paper [5] in the February 1996 issue of
Computational Mathematics and Mathematical Physics solves the complex version
of the problem, i.e., the version the authors of [1] are dealing with. A different and,
again, quite ingenious proof is to appear this year in the November issue of the journal
mentioned above [6].
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E. Tyrtyshnikov
F. Uhlig
L. Vandenberghe
H. A. van der Vorst
P. Van Dooren
S. Van Huffel

C. Van Loan

S. Vavasis

K. Veselic

U. Von Matt

P. Vu

B. Waldén

H. F. Walker

G. Wang

G. Wasilkowski

D. S. Watkins

L. Watson

J. R. Weaver

M. Weiss

H. J. Werner

H. K. Wimmer

F. Wirth

H. Woerdeman

H. Wolkowicz

P. Wortelboer

H. Wosniakowski

M. Wright

S. Wright

S.-P. Wu

Q. Ye

P. Zagalak

Z. Zeng

H. Zha



THE MINIMUM EIGENVALUE OF A SYMMETRIC
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Abstract. A novel method for computing the minimal eigenvalue of a symmetric positive-
definite Toeplitz matrix is presented. Similar to the algorithm of Cybenko and Van Loan, it is
a combination of bisection and a root finding method. Both phases of the method are accelerated
considerably by rational Hermitian interpolation of the secular equation. For randomly generated test
problems of dimension 800 the average number of linear systems which must be solved to determine
the smallest eigenvalue is 6.6, which reduces the computational cost of the method of Cybenko and
Van Loan to approximately 35%. The method includes a rigorous error bound.

Key words. Toeplitz matrix, eigenvalue problem, rational Hermitian interpolation

AMS subject classification. 65F15

PII. S0895479895288851

1. Introduction. In this paper we consider a method for computing the smallest
eigenvalue λ1 of a symmetric and positive-definite Toeplitz matrix T . This problem
is of considerable interest in signal processing. Given the covariance sequence of the
observed data, Pisarenko [13] suggested a method which determines the sinusoidal
frequencies from the eigenvector of the covariance matrix associated with the minimum
eigenvalue of T .

Cybenko and Van Loan [3] introduced an algorithm which takes advantage of
the Levinson–Durbin method for shifted matrices combining a bisection method and
Newton’s method for the secular equation. Hu and Kung [9] considered a safeguarded
inverse iteration with shifts and Huckle [10], [11] studied the spectral transformation
Lanczos method. Trench [14] and Noor and Morgera [12] generalized the method of
Cybenko and Van Loan to the computation of the complete spectrum.

Our method generalizes the approach of Cybenko and Van Loan. The form of
the secular equation suggests basing a root finding procedure on rational Hermi-
tian interpolation. Similar to Newton’s method, the originating algorithm converges
monotonely decreasing and quadratically to λ1. The local convergence is guaranteed
to be faster than Newton’s method and its global behavior is much better. More-
over, the bisection phase of the procedure can be accelerated by rational Hermitian
interpolation.

Our paper is organized as follows. In section 2 we briefly sketch the method of
Cybenko and Van Loan. Section 3 describes the connection of the secular equation to
condensation methods. It introduces the rational Hermitian interpolation, which is the
basis of various enhancements of the algorithm of Cybenko and Van Loan. Moreover,
it contains a lower bound of the smallest eigenvalue based on Hermitian quadratic
interpolation of the secular equation. In section 4 we give a MATLAB program of the
originating procedure and in section 5 we discuss its numerical behavior.

∗Received by the editors July 7, 1995; accepted for publication by G. Cybenko June 14, 1996.
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†Hamburg University of Technology, Arbeitsbereich Mathematik, Kasernenstrasse 12, 2017H3

Hamburg, Federal Republic of Germany (mackens@tu-harburg.de, voss@tu-harburg.de).
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2. The method of Cybenko and Van Loan. In this section we briefly sketch
the approach of Cybenko and Van Loan to the computation of the smallest eigenvalue
of a real symmetric positive-definite Toeplitz matrix and discuss two improvements
of that method.

Let T ∈ R(n,n) be a symmetric positive-definite Toeplitz matrix. Without re-
striction of generality we assume that its diagonal is normalized, and we consider the
following partition:

T =

(
1 tT

t G

)
.

Then it is well known that the eigenvalues of T and G are real and positive and satisfy
an interlacing property

λ1 ≤ ω1 ≤ λ2 ≤ · · · ≤ ωn−1 ≤ λn,

where λj and ωj are the jth smallest eigenvalues of T and G, respectively.
Eliminating the variables x2, . . . , xn from the system of equations(

1− λ tT

t G− λI

)
x = 0

that characterizes the eigenvalues of T , one obtains(
1− λ− tT (G− λI)−1t

)
x1 = 0.

If an eigenvalue λj of T is not an eigenvalue of G and x is a corresponding eigenvector,
then its first component x1 is different from zero. Hence, λj is a root of the secular
equation

f(λ) := −1 + λ+ tT (G− λI)−1t = 0.(2.1)

We assume that

λ1 < ω1.

Then λ1 is the smallest root of f . In the interval (0, ω1) it holds that

f ′(λ) = 1 + ‖(G− λI)−1t‖22 > 1,(2.2)

f ′′(λ) = 2tT (G− λI)−3t > 0.(2.3)

Therefore, f is strictly monotonely increasing and strictly convex there, and it is
well known that for every initial value µ0 ∈ (λ1, ω1) Newton’s method converges
monotonely decreasing and quadratically to λ1.

Equations (2.1) and (2.2) show that a Newton step can be performed in the
following way:

Solve (G− µkI)w = −t for w

and set µk+1 := µk −
−1 + µk − wT t

1 + ‖w‖22
,

where the Yule–Walker system

(G− µI)w = −t(2.4)
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can be solved by Durbin’s algorithm (cf. [7, p. 184 ff]) requiring 2n2 flops.
An initial value µ0 for Newton’s method can be obtained by a bisection process.

If µ is not in the spectrum of any of the principal submatrices of T −µI then Durbin’s
algorithm applied to (T − µI)/(1− µ) determines a lower triangular matrix

L =


1 0 . . . 0
`21 1 . . . 0
. . . . . . . . . . . .
`n1 `n2 . . . 1


such that

1

1− µL(T − µI)LT = D := diag{1, E1, . . . , En−1}.(2.5)

If L̃ is obtained from L by dropping the last row and last column then obviously

1

1− µL̃(G− µI)L̃T = D̃ := diag{1, E1, . . . , En−2}.

Hence, Sylvester’s law of inertia yields the following method to determine the position
of a parameter µ ∈ (0, 1):

(i) if Ej > 0 for j = 1, . . . , n− 1, then µ < λ1,
(ii) if Ej > 0 for j = 1, . . . , n− 2 and En−1 ≤ 0, then µ ∈ [λ1, ω1),

(iii) if Ej < 0 for some j ∈ {1, . . . , n− 2}, then µ > ω1.
For the determination of an upper bound of λ1 to start the bisection process Cybenko
and Van Loan suggested four methods. They recommended using the following one.
Determine ε > 0 such that

T̃ := T + ε(e1(en)T + en(e1)T )

is singular and positive semidefinite, where e1 and en are the unit vectors containing
a 1 in their first and last components, respectively. Then it follows from Rayleigh’s
principle that λ1 ≤ ε:

0 = min
x 6=0

1

‖x‖22

(
xTTx+ εxT (e1(en)T + en(e1)T )x

)
= min

x 6=0

1

‖x‖22

(
xTTx+ 2εx1xn

)
≥ min

x 6=0

xTTx

‖x‖22
+ 2 min

x 6=0

εx1xn
‖x‖22

= λ1 − ε.

ε can easily be determined from the data in Durbin’s algorithm for the system Gw =
−t.

At nearly the same cost one can get a much better bound. Let w := −G−1t be
the solution of the Yule–Walker system. Then

y :=
1

1 + tTw

(
1
w

)
= T−1e1

is the first iterate of the inverse iteration with shift parameter 0 starting with the
unit vector e1 which can be expected to be a decent approximation of the eigenvector
corresponding to the smallest eigenvalue λ1. The Rayleigh quotient

R(y) :=
yTTy

yT y
=

1 + tTw

1 + ‖w‖22
(2.6)
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Table 1

Eigenvalues, subeigenvalues, and initial guesses, n = 800.

Expl. λ1 ω1 R(y) ε
1 2.652607 E − 5 2.735377 E − 5 2.90 E − 4 1.73 E − 1
2 3.477361 E − 6 3.479143 E − 6 7.01 E − 5 1.44 E − 1
3 3.314204 E − 5 3.466962 E − 5 2.54 E − 4 1.57 E − 1
4 4.349535 E − 5 4.382751 E − 4 4.48 E − 4 1.29 E − 1
5 2.615966 E − 4 2.712415 E − 4 4.34 E − 3 1.90 E − 1
6 2.918829 E − 5 3.045659 E − 5 6.06 E − 4 1.84 E − 1
7 1.976995 E − 6 2.029093 E − 6 2.30 E − 5 1.03 E − 1
8 8.864895 E − 4 9.179502 E − 4 6.95 E − 3 1.36 E − 1
9 2.377467 E − 6 2.485892 E − 6 3.84 E − 5 1.17 E − 1

10 1.485040 E − 4 1.533171 E − 4 2.38 E − 3 1.66 E − 1

is an upper bound of λ1 which should not be too bad. Bound (2.6) was already given
by Dembo [5]. Using the power series representation of the secular equation, he also
proved a tighter bound. However, to evaluate this one we would have to solve the
linear system Gz = w for z. Using Levinson’s algorithm, this requires 2n2 additional
flops, i.e., the cost of one step of the bisection process. This normally does not pay.

We have not been able to prove that R(y) is always a smaller bound than ε.
However, in all the examples that we considered it was better by orders of magnitude.

Example 1. Table 1 contains λ1, ω1 as well as the bounds R(y) and ε for ten
examples of dimension n = 800 of the form

T = m

n∑
k=1

ηkT2πθk ,(2.7)

where m is chosen such that T has a normalized diagonal,

Tθ = (tij) = (cos(θ(i− j))),

and ηk and θk are uniformly distributed random numbers taken from [0, 1] (cf. Cy-
benko and Van Loan [3]).

A second improvement of the approach of Cybenko and Van Loan is at hand. If
in the bisection process a parameter µ ∈ (0, λ1) is tested then the only advantage that
is taken from the Durbin algorithm is the information that µ is in (0, λ1). The vector
w := −(G − µI)−1t is not used to enhance the interval that contains λ1. However,
with two additional inner products one can evaluate the Newton iterate

µ̃ :=
1 + tTw + µ‖w‖22

1 + ‖w‖22

for f(λ) = 0 with initial guess µ. By the monotonicity and convexity of f this iterate
is an upper bound of λ1, and it should be chosen as the new upper bound in the
bisection process if it is smaller than the current upper bound.

Notice that µ̃ can be expected to be a good approximation of λ1 since it can be

interpreted as the Rayleigh quotient of T at y :=
(

1
w

)
. From

(G− µI)w = −t
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Table 2

Number of flops for 100 test examples.

dimension Cybenko improved initial improved subsequent
–Van Loan upper bound upper bounds

50 6.37 E6 5.19 E6 (81.6%) 4.55 E6 (71.4%)
100 2.71 E7 2.23 E7 (82.1%) 1.92 E7 (70.9%)
200 1.22 E8 9.52 E7 (77.8%) 8.31 E7 (67.9%)
400 5.40 E8 4.18 E8 (77.4%) 3.70 E8 (68.6%)
800 2.41 E9 1.85 E9 (76.8%) 1.68 E9 (69.4%)

one gets

R(y) =
yTTy

‖y‖22
=

1

1 + ‖w‖22
(1, wT )

(
1 tT

t G

)(
1
w

)
=

1

1 + ‖w‖22
(
1 + 2tTw + wT (G− µI + µI)w

)
=

1 + tTw + µ‖w‖22
1 + ‖w‖22

.

This connection between Newton’s method for the secular equation and the Rayleigh
quotient was already pointed out by Trench [14].

Example 2. For each of the dimensions n = 50, 100, 200, 400, and 800 we
treated 100 examples of the type described in Example 1. The Newton iteration was
terminated when the relative increment |f(λ)/(λ ·f ′(λ))| was less than 10−6. Column
2 of Table 2 contains the number of flops that was needed by the method of Cybenko
and Van Loan. Columns 3 and 4 contain the improvements gained with the enhanced
upper bound (2.6) at the start of the method and the improved upper bound by the
Rayleigh quotient in subsequent steps, respectively.

3. Improvement by rational Hermitian interpolation. Although Newton’s
method for the secular equation f(λ) = 0 converges for any initial guess µ0 ∈ (λ1, ω1)
and the convergence is quadratic, the global convergence behavior usually is not sat-
isfactory. This is because f is a rational function where the root λ1 we are looking
for and the pole ω1 can be very close to each other (cf. Table 1, Example 2). If µ0 is
close to ω1 then the first steps of Newton’s method can be extremely slow.

The convergence can be improved considerably if an iteration method is based on
a better model of the rational function f than its tangent in Newton’s method. The
derivation of f by the elimination of the unknowns x2, . . . , xn is nothing else but the
exact condensation of the eigenvalue problem Tx = λx, where x2, . . . , xn are chosen
to be slaves and x1 is the only master. Using spectral information of the slave problem
(G− µI)v = 0, the function f can be written as (cf. [8])

f(λ) = a0 + a1λ+ λ2
n−1∑
j=1

α2
j

ωj − λ
,

where

a0 := f(0) = tTG−1t− 1, a1 := f ′(0) = 1 + ‖G−1t‖22,

and αj , j = 1, . . . , n− 1, are real numbers depending on the eigenvectors of G.
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If we are given an approximation µ ∈ (0, ω1) we base a root finding method on
the following rational substitute of f :

g(λ;µ) := a0 + a1λ+ λ2 b

c− λ

with b and c determined by the Hermitian interpolation conditions

g(µ;µ) = f(µ) and g′(µ;µ) = f ′(µ).

Rational approximations of the secular equation were already used by Dongarra and
Sorensen [6] to compute eigenvalues in intermediate intervals (ωj , ωj+1) in a divide-
and-conquer method.

Theorem 3.1 contains the basic properties of g(·;µ).
Theorem 3.1. Let µ ∈ (0, ω1) and let

g(λ;µ) := a0 + a1λ+ λ2 b

c− λ,

where

a0 := tTG−1t− 1, a1 := 1 + ‖G−1t‖22,

and b and c are determined such that the interpolation conditions

g(µ;µ) = f(µ), g′(µ;µ) = f ′(µ)

are satisfied.
Then it holds that
(i)

b > 0 and c > µ,

whence g(·;µ) is strictly monotonely increasing and strictly convex in (0, c).
(ii)

g(λ1;µ) < 0 for µ 6= λ1.

Proof. (i): Let

f(λ) = a0 + a1λ+ λ2φ(λ), φ(λ) :=
n−1∑
j=1

α2
j

ωj − λ
.

From the interpolation conditions one gets

φ(µ) =
b

c− µ, φ′(µ) =
b

(c− µ)2
.(3.1)

Since µ < ωj for every j

φ(µ) > 0, φ′(µ) =
n−1∑
j=1

α2
j

(ωj − µ)2
> 0,
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and thus

b

c− µ > 0,
b

(c− µ)2
> 0,

yielding

b > 0 and c > µ.

Differentiating g, one obtains for every λ ∈ (0, µ)

g′(λ;µ) = a1 + 2λ
b

c− λ + λ2 b

(c− λ)2
> 0,

g′′(λ;µ) =
2bc2

(c− λ)3
> 0.

Hence g is strictly monotonely increasing and strictly convex.
(ii): From

f(λ1) = a0 + a1λ1 + λ2
1φ(λ1) = 0

we obtain

g(λ1;µ) = a0 + a1λ1 + λ2
1

b

c− λ1
= λ2

1

( b

c− λ1
− φ(λ1)

)
.

From (3.1) it follows that

b =
φ2(µ)

φ′(µ)
, c− µ =

φ(µ)

φ′(µ)
.

Therefore,

b

c− λ1
=

b

c− µ+ (µ− λ1)
=

φ2(µ)

φ(µ) + (µ− λ1)φ′(µ)
.

Since for µ ∈ (0, ω1)

φ(µ) + φ′(µ)(µ− λ1) =

n−1∑
j=1

α2
j

ωj − µ
+
n−1∑
j=1

α2
j (µ− λ1)

(ωj − µ)2

=
n−1∑
j=1

α2
j (ωj − λ1)

(ωj − µ)2
> 0,

the inequality g(λ1;µ) < 0 is equivalent to

φ2(µ) < φ(λ1)
(
φ(µ) + φ′(µ)(µ− λ1)

)
.

Hence, from

φ(λ1)
(
φ(µ) + φ′(µ)(µ− λ1)

)
=
n−1∑
k=1

α2
k

ωk − λ1
·
( n−1∑
j=1

α2
j

ωj − µ
+ (µ− λ1)

n−1∑
j=1

α2
j

(ωj − µ)2

)

=

n−1∑
k=1

α2
k

ωk − λ1
·
n−1∑
j=1

α2
j (ωj − λ1)

(ωj − µ)2
=

n−1∑
j,k=1

α2
jα

2
k(ωj − λ1)

(ωk − λ1)(ωj − µ)2
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we obtain the following sequence of equivalent inequalities:

g(λ1;µ) < 0⇔
n−1∑
j,k=1

( α2
jα

2
k(ωj − λ1)

(ωk − λ1)(ωj − µ)2
−

α2
jα

2
k

(ωj − µ)(ωk − µ)

)
> 0

⇔
n−1∑
j,k=1

α2
jα

2
k

ωj − µ
·
( ωj − λ1

(ωk − λ1)(ωj − µ)
− 1

ωk − µ

)
> 0

⇔
n−1∑
j,k=1

α2
jα

2
k

ωj − µ
· (ωj − λ1)(ωk − µ)− (ωk − λ1)(ωj − µ)

(ωk − λ1)(ωj − µ)(ωk − µ)
> 0

⇔
n−1∑
j,k=1

α2
jα

2
k(ωk − ωj)(µ− λ1)

(ωj − µ)2(ωk − µ)(ωk − λ1)
> 0

⇔
∑

1≤j<k<n

α2
jα

2
k(µ− λ1)

(ωj − µ)(ωk − µ)
·
( ωk − ωj

(ωk − λ1)(ωj − µ)
+

ωj − ωk
(ωj − λ1)(ωk − µ)

)
> 0

⇔
∑

1≤j<k<n

α2
jα

2
k(µ− λ1)2(ωk − ωj)2

(ωj − µ)2(ωk − µ)2(ωk − λ1)(ωj − λ1)
> 0.

The last inequality is true since µ < ωj for j = 1, . . . , n− 1 and µ 6= λ1.
From Theorem 3.1 we deduce the following improvements of the method of Cy-

benko and Van Loan.
1. Let µn ∈ (λ1, ω1) be a given approximation to λ1. Then the function g(·;µn)

is strictly convex in the interval (0, µn). Since

g(λ1;µn) < 0 = f(λ1) < f(µn) = g(µn;µn),

g(µ;µn) has exactly one solution: µn+1 ∈ (λ1, µn).
From the convexity of g(·;µn) we obtain

g(µ;µn) > g(µn;µn) + g′(µn;µn)(µ− µn)

= f(µn) + f ′(µn)(µ− µn) for every µ ∈ (λ1, µn),

and thus µn+1 is always a better approximation to λ1 than the Newton iterate with
initial guess µn. Hence, for µ0 ∈ (λ1, ω1) the method which defines µn+1 as the unique
root of the rational Hermitian interpolation g(µ;µn) in (0, µn) converges monotonely
decreasing to λ1, and it is guaranteed to be faster than Newton’s method (cf. Fig. 1(a)

for the function f(λ) = −4 + λ+ λ2
∑5
j=1 1/(j ∗ (2 + j − λ)) and µn = 2.7).

Notice that the costs of Newton’s method and the method defined above are
nearly identical. One must solve one Yule–Walker system (2n2 flops) and evaluate
two inner products to obtain f(µn) and f ′(µn). The determination of b and c and
the solution of a quadratic equation to obtain µn+1 need only O(1) flops and can be
neglected.

2. If in the bisection process a test parameter µn is contained in the interval
(0, λ1) then it follows from g(λ1;µn) < 0 that the unique root µ̃ ∈ (µn, c) of g(·;µn)
is an upper bound of λ1. Since g(·;µn) is strictly convex we obtain in the same way
as in the case µ ∈ (λ1, ω1) that

λ1 < µ̃ < µn −
f(µn)

f ′(µn)
=: µ̂.
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Fig. 1.

Hence, we replace the current upper bound of λ1 by µ̃ whenever this improves
the inclusion of λ1 (cf. Fig. 1(b) for f as above and µn = 0.5).

If the test parameter µn is close to λ1 then by the quadratic convergence µ̃ will be
an excellent approximation to λ1. Therefore, it is reasonable to choose µ̃ as the next
test parameter if µ̃ replaces the current upper bound. However, if the gap between
λ1 and ω1 is very small, then it may happen that the method bounces between good
upper bounds µn+1 of λ1 which are produced as roots of rational interpolates g(·;µn)
and are contained in (ω1,∞) and lower bounds ωn+2 := 0.5(ωn + ωn+1) which are
obtained in the bisection process. For instance, in the second problem of Example 1
one obtains the following sequence of test parameters:

µ6 = 2.1901E − 6 < λ1 < < ω1 < µ7 = 3.4895E − 6
µ8 = 2.8398E − 6 < λ1 < < ω1 < µ9 = 3.4892E − 6
µ10 = 3.1645E − 6 < λ1 < < ω1 < µ11 = 3.4890E − 6
µ12 = 3.3268E − 6 < λ1 < < ω1 < µ13 = 3.4888E − 6
µ14 = 3.4078E − 6 < λ1 < < ω1 < µ15 = 3.4885E − 6
µ16 = 3.4481E − 6 < λ1 < < ω1 < µ17 = 3.4875E − 6
µ18 = 3.4678E − 6 < λ1 < < ω1 < µ19 = 3.4843E − 6
µ20 = 3.4761E − 6 < λ1 < µ21 = 3.4780E − 6 < ω1

To break a tie like this we introduced the following modification: determining the
coefficients b and c of the rational function, we have already evaluated f(µn) and
f ′(µn). Hence, along with the root µ̃ of g(·;µn) we can obtain the Newton iterate µ̂
at a negligible cost. Since for a sufficiently good approximation µn to λ1 both µ̃ and
µ̂ are approximations to λ1 with error

µ̃− λ1 = O(|λ1 − µn|2), µ̂− λ1 = O(|λ1 − µn|2)

the relative difference (µ̂− µ̃)/µ̃ is an indicator whether µn is close to λ1 or not. For

µ̂− µ̃
µ̃

< 0.01

we continued the bisection process with the test parameter µn+1 = µ̃; otherwise we
chose µn+1 := 0.1µ+ 0.9µ̃.
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In problem 2 of Example 1 we obtained with this modification

µ6 = 2.190116E − 6 < λ1 < < ω1

µ7 = 3.359595E − 6 < λ1 < < ω1

µ8 = 3.475845E − 6 < λ1 < µ9 = 3.478148E − 6 < ω1

3. If µn ∈ (0, λ1) for some n ∈ N then the matrix Tn := T − µnI is a symmetric
and positive-definite Toeplitz matrix. Hence, the method described above applies to
Tn. The secular equation of Tn is

fn(λ) := f(µn) + f ′(µn)(λ− µn) + (λ− µn)2
n−1∑
j=1

α̃2
j

ωj − λ
.

It is easily seen that the root of the rational interpolation of fn for any test parameter
µ ∈ (µn, ω1) is a better approximation to λ1 than the root of g(·;µ).

4. The considerations above indicate that the benefit of a small test parameter
µ is much bigger than that of a large parameter µ. All that is gained from Durbin’s
algorithm for a parameter µ > ω1 is the fact that µ > ω1. For µ ∈ (0, λ1), however,
we obtain a potential new upper bound µ̃ as well as a shift in the sense of item 3. For
µ ∈ (λ1, ω1) one can even start the quadratically convergent phase of the algorithm.

Hence, it is not reasonable to start the algorithm with the initial upper bound
R(y), y = T−1e1 as the first test parameter, but with a suitable reduction of this
value instead.

Figure 2 contains the graph of the mean value of the quotients of R(y) and λ1 for
the 100 problems considered in Example 2 for the dimensions n = 50, 100, 200, 400, 800.
It indicates that these quotients grow linearly with the dimension of the problem. A
least squares fit yielded

R(y) ≈ (2.0911 + 0.0169n) · λ1.

Cybenko and Van Loan terminated Newton’s iteration for f if the relative in-
crement (µn+1 − µn)/µn was less than a prescribed tolerance δ (and so did we in
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Example 2). By the quadratic convergence of Newton’s method this term is usually
a reasonable estimate of the relative error of µn+1.

Since f ′′′(λ) ≥ 0 for every λ ∈ (0, ω1) it offers no problems, however, to obtain
an exact and realistic error bound of µn+1 by Hermitian interpolation.

Lemma 3.2. Let µn ∈ (λ1, ω1) be given and let µ̂ ∈ [0, λ1) be a lower bound of
λ1 (which was obtained in a previous step). Let p be the unique quadratic polynomial
satisfying the interpolation conditions

p(µ̂) = f(µ̂), p′(µ̂) = f ′(µ̂), p(µn) = f(µn).

Then p has a unique root κ in the interval [µ̂, µn] and

κ ≤ λ1.

Proof. It is easily seen that Green’s function g of the boundary value problem

L[u] := u′′′, u(µ̂) = 0, u′(µ̂) = 0, u(µn) = 0

is negative on (µ̂, µn)× (µ̂, µn).
Let v(x) := p(x) − f(x). Then v satisfies the boundary conditions v(µ̂) = 0,

v′(µ̂) = 0, and v(µn) = 0. Hence, from f ′′′(x) > 0 on [µ̂, µn] we get

v(x) =

µn∫
µ̂

g(x, t)v′′′(t) dt = −
µn∫
µ̂

g(x, t)f ′′′(t) dt > 0, x ∈ (µ̂, µn),

i.e., p(x) > f(x) on (µ̂, µn), and therefore the unique root κ of p in [µ̂, µn] is a lower
bound of the unique root λ1 of f .

4. A MATLAB program. In the following we give a MATLAB program for the
determination of the smallest eigenvalue of a symmetric and positive-definite Toeplitz
matrix based on the considerations above.

Let [w,where] = durbin(µ) denote a function which for a given test parameter µ
returns the integer variable

where =

 0 if µ ∈ (0, λ1),
1 if µ ∈ [λ1, ω1),
2 if µ ∈ (ω1,∞),

and for µ ∈ (0, ω1) additionally the solution w of the Yule–Walker system (G−µI)w =
−t. Notice that in the case µ > ω1 the Durbin algorithm is terminated as soon as
a negative diagonal element Ej is detected. Hence, for µ ∈ (0, ω1) a call of Durbin
needs 2n2 flops; for µ > ω1 it needs less than 2n2 flops.

Let µ̃ = fracroot(µ;α, a0, a1) return the unique root in (α, µ) of the rational
function

g(λ) = a0 + a1(λ− α) + (λ− α)2 b

c− λ,

which satisfies the Hermitian interpolation conditions

g(α) = f(α) =: a0, g
′(α) = f ′(α) =: a1, g(µ) = f(µ), g′(µ) = f ′(µ),
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and let κ = quadroot(µ;α, a0, a1) return the unique root in (α, µ) of the quadratic
polynomial p satisfying the Hermitian interpolation conditions

p(α) = f(α) =: a0, p
′(α) = f ′(α) =: a1, p(µ) = f(µ).

Then the final algorithm reads as follows.

[w,where]=durbin(0);

a0=-(1+w’*t);

a1=1+w’*w;

beta=-a0/a1;

alpha=0;

mu=beta/(2.0911+0.0169*n)

h=1;

while abs(h) > mu*(1.e-6)

[w,where]=durbin(mu);

if where == 2

beta=mu;

mu=0.5*(alpha+beta);

h=beta-mu;

elseif where == 0

f=mu-1-w’*t;

f_prime=1+w’*w;

lambda_1=mu-f/f_prime;

lambda_2=fracroot(mu;alpha;a0,a1);

alpha=mu;

a0=f;

a1=f_prime;

if lambda_2 < beta

beta=lambda_2;

if (lambda_1-lambda_2)/lambda_2 < 0.01

mu=lambda_2;

else

mu=0.1*alpha+0.9*beta;

end;

else

mu=0.5*(alpha+beta);

end;

h=beta-alpha;

else

f=mu-1-w’*t;

f_prime=1+w’*w;

kappa=quadroot(mu;alpha;a0,a1);

mu=fracroot(mu;alpha;a0,a1);

h=mu-kappa;

end;

5. Numerical experiments. With the algorithm of the preceding section we
solved the test problems of Example 2. We terminated the iteration if according to
the error bound of Lemma 3.2 the relative error was less than 10−6. Column 2 of
Table 3 contains the numbers of flops needed with the method of Cybenko and Van
Loan (which are a little smaller than the numbers in Table 2 since we used the error
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Table 3

Number of flops for 100 test examples.

dimension Cybenko– rational initial guess from modified
Van Loan approximation least squares fit initial guess

50 6.33 E6 3.21 E6 (50.7%) 2.58 E6 (40.8%) 2.62 E6 (41.4%)
100 2.68 E7 1.35 E7 (50.2%) 1.04 E7 (38.8%) 1.06 E6 (39.4%)
200 1.20 E8 5.77 E7 (48.2%) 4.26 E7 (35.6%) 4.31 E7 (36.0%)
400 5.34 E8 2.58 E8 (48.4%) 1.82 E8 (34.0%) 1.84 E8 (34.6%)
800 2.37 E9 1.22 E9 (51.5%) 8.42 E8 (35.6%) 8.34 E8 (35.2%)

Table 4

Average number of linear systems for 100 test examples.

dimension rational app. Lanczos method
50 4.77 6.59
100 5.01 6.91
200 5.13 7.37
400 5.64 7.61
800 6.57 7.44

bound from Lemma 3.2). Columns 3, 4, and 5 contain the numbers of flops for the
method given above where we chose as initial test parameter the initial upper bound
R(y) where y := T−1e1, the approximation µ̃0 := R(y)/(2.0911 + 0.0169n) to λ1

suggested by the least squares fit, and the lower bound µ̂0 := R(y)/(4+0.02n) of that
value. It turns out that the rough underestimation µ̂0 of the approximation µ̃0 does
not influence the performance of the algorithm very much.

We compared our method to Lanczos’s method applied to T−1. Since for this
method the error bound of Lemma 3.2 does not apply we terminated the iteration if
the eigenvalue approximation was less than µ ∗ (1 + 1.E − 6), where µ denotes the
approximate value with relative error less than 10−6 obtained with our method.

For the same test problems as before Table 4 shows the average number of lin-
ear systems that must be solved in each step in the new method (with initial guess
R(y)/(2.0911 + 0.0169n)) and the Lanczos method.

Notice that the accuracy requirements for the Lanczos method are weaker than
those for the rational Hermitian interpolation. Moreover, we only have to solve Yule–
Walker systems, whereas in the Lanczos method in every step one must solve a general
linear system Tu = v. This requires 2n2 flops in each step to solve two triangular
systems and additionally 2n2 flops to compute the decomposition corresponding to
(2.5) and n2 storage locations.

6. Concluding remarks. We have presented an algorithm for the computation
of the minimum eigenvalue of a symmetric and positive-definite Toeplitz matrix which
improves the method of Cybenko and Van Loan considerably and which is superior
to the Lanczos method. Realistic error bounds are obtained at a negligible cost.
In our numerical tests we used Durbin’s algorithm to solve Yule–Walker systems
and to determine the diagonal matrix in the decomposition (2.5). This information
can be gained from superfast Toeplitz solvers (cf. [1], [2], [4]) as well. Hence, the
computational complexity can be reduced to O(n log2 n) operations.
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Abstract. Many conjugate gradient-like methods for solving linear systems Ax = b use recur-
sion formulas for updating residual vectors instead of computing the residuals directly. For such
methods it is shown that the difference between the actual residuals and the updated approximate
residual vectors generated in finite precision arithmetic depends on the machine precision ε and on
the maximum norm of an iterate divided by the norm of the true solution. It is often observed nu-
merically, and can sometimes be proved, that the norms of the updated approximate residual vectors
converge to zero or, at least, become orders of magnitude smaller than the machine precision. In
such cases, the actual residual norm reaches the level ε‖A‖‖x‖ times the maximum ratio of the norm
of an iterate to that of the true solution. Using exact arithmetic theory to bound the size of the
iterates, we give a priori estimates of the size of the final residual for a number of algorithms.
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1. Introduction. Many iterative methods for solving a linear system Ax = b
start with an initial guess x0 for the solution, compute the initial residual r0 = b−Ax0,
and then generate updated approximations xk and residuals rk, k = 1, 2, . . ., according
to the following formulas:

xk = xk−1 + ak−1p
k−1, rk = rk−1 − ak−1Ap

k−1.(1)

Here pk−1 is some direction vector and ak−1 some coefficient. The vector rk is updated
instead of computed directly as b − Axk. We are particularly interested in methods
in which the coefficients and direction vectors are computed in terms of the updated
vectors rk.

Often a preconditioner M , which approximates A but is easier to invert than A,
is used to accelerate convergence. In this case a vector zk is computed by solving
Mzk = rk. The solution zk may be used in determining the new coefficient and
direction vector, but it does not alter the general formulas in (1). It is these formulas
that we will analyze in finite precision arithmetic.

Examples of algorithms that are usually implemented in the form (1) include the
following.
• The steepest descent method for symmetric positive definite problems. Here

the vector pk−1 is equal to zk−1, and the coefficient ak−1 is chosen to minimize the
A−1-norm of rk, ‖rk‖A−1 ≡ 〈rk, A−1rk〉1/2, in the direction pk−1.
• The conjugate gradient (CG) method for symmetric positive definite problems

[16, 5]. Here the coefficient ak−1 is chosen to minimize the A−1-norm of rk in the
direction pk−1, and the direction vectors form an A-orthogonal basis for the Krylov
space [z0,M−1Az0, . . . , (M−1A)k−1z0].
• BCG and CGS for general nonsymmetric problems [9, 18]. These methods use

two sets of recurrences, one involving A, like formulas (1), and another involving
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AT . They may break down, even in exact arithmetic, due to the breakdown of the
underlying two-sided Lanczos recurrence or the nonexistence of the BCG iterate at
certain steps. In either case look-ahead steps may be used to avoid the steps at
which the Lanczos vectors or BCG iterates are undefined [11]. We will consider only
problems in which look-ahead steps are not required and xk and rk are updated as in
(1).
• CGNR and CGNE for nonsymmetric problems [16, 6]. These methods are like

the CG method for the normal equations ATAx = AT b or AAT y = b, x = AT y. In
CGNR, the coefficient ak−1 is chosen to minimize the 2-norm of rk, while in CGNE it
minimizes the (ATA)−1-norm of rk, 〈A−1rk, A−1rk〉1/2. While the Krylov space over
which the minimization is performed is the same as that used by CG applied to the
normal equations, one does not actually form the normal equations, and approximate
solutions and residual vectors are still computed by formulas (1).

A number of other methods are not usually implemented in the form (1), but,
with some modifications, they could be. These include the following.
• Stationary iterative methods, such as Jacobi, Gauss–Seidel, SOR, etc. For these

methods, residuals are usually computed directly. They could be updated as in (1),
but there appears to be no particular advantage in doing so.
• ORTHOMIN and ORTHODIR for nonsymmetric problems [20, 23]. In standard

implementations, xk is computed as in (1), but rk is set to rk−1 − ak−1q
k−1, where

qk−1 is a vector that is equal to Apk−1 in exact arithmetic but might differ from this
in finite precision arithmetic. The vector qk−1 could be explicitly set to Apk−1, but
this would require an extra matrix–vector multiplication at each iteration.
• QMR for nonsymmetric problems [11]. Like BCG, this method uses two sets of

recurrences, one involving A and another involving AT , and like BCG, it can break
down if the underlying two-sided Lanczos process breaks down. Such breakdowns can
be avoided by using look-ahead steps. A number of different QMR implementations
have been proposed [11, 12]. The one given in [2] updates xk as xk = xk−1 + dk−1,
but sets rk = rk−1 − sk−1, where sk−1 is a vector that would be equal to Adk−1 in
exact arithmetic but might differ from this in finite precision arithmetic.
• Bi-CGSTAB for nonsymmetric problems [19]. This is another modification of

BCG designed to smooth the erratic convergence behavior of BCG. The implemen-
tation given in [2] updates xk from xk−1 and two different vectors, while setting rk

to rk−1 minus A times the appropriate linear combination of these two vectors. The
analysis of recurrences of this form should be very similar to that of (1).

In section 2 we consider the implementation of formulas (1) in finite precision
arithmetic. A bound is given on the difference between the true residuals b−Axk and
the updated vectors rk. Specifically, it is shown that

‖b−Axk − rk‖
‖A‖ ‖x‖ ≤ ε O(k) (1 + max

j≤k
‖xj‖/‖x‖),(2)

where ε is the machine precision. It is argued that the last term on the right-hand side
of (2)—the maximum norm of an iterate divided by the norm of the true solution—
plays an important role in determining the size of the quantity on the left-hand side
of (2).

It is often observed numerically, and in some cases can be proved, that the updated
vectors rk converge to zero as k → ∞ or, at least, that their norms become many
orders of magnitude smaller than the machine precision. For certain algorithms, such
as the steepest descent method and some implementations of the CG method, this can
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be proved under reasonable assumptions about the condition number of the matrix
just by considering the effect of individual steps [3, 21, 22]. Roughly, this is because the
coefficients are chosen to minimize some norm of rk at each step. We will not attempt
to prove this here but will demonstrate numerically that the updated approximate
residual vectors often become much smaller than the machine precision. In such cases,
the right-hand side of (2) gives a reasonable estimate of the best attainable actual
residual. Note that this analysis does not deal with the rate of convergence of iterative
methods in finite precision arithmetic but only with the level of accuracy attainable if
the iteration is carried out for sufficiently many steps and assuming that the vectors
rk become tiny.

The size of the maximum iterate divided by the norm of the true solution in
(2) can be estimated for various algorithms, assuming exact arithmetic, and these
estimates often hold in finite precision arithmetic as well. Using this combination
of rigorous finite precision analysis of formulas (1) and exact arithmetic estimates of
the size of the iterates, we consider specific algorithms and give numerical examples
in section 3. For methods in which the 2-norm of the error decreases monotonically,
such as the (unpreconditioned) steepest descent method and the (unpreconditioned)
CG method for symmetric positive definite problems and the CGNE and (unprecon-
ditioned) CGNR methods for nonsymmetric problems, the last term in (2) is bounded
by 2 + ‖x0‖/‖x‖. Hence, if the number of steps required to reduce the norm of rk

below O(ε)‖A‖‖x‖ is not too large, then these algorithms will return an approximate
solution for which the relative residual is of order ε. The relative error, ‖x−xk‖/‖x‖,
is bounded by κ(A)ε, where κ(·) is the condition number. For methods in which the
2-norm of the error may grow, but some other norm, say, the B-norm of the error,
decreases monotonically, we can show only that the last factor in (2) is bounded by
1 + κ1/2(B)(1 + ‖x0‖/‖x‖), suggesting a relative residual of order κ1/2(B)ε and a rel-
ative error of order κ(A)κ1/2(B)ε. For BCG and CGS and other methods that do not
necessarily reduce any standard error norm, the last factor in (2) cannot be bounded
a priori. Such methods may occasionally fail to generate an accurate approximate
solution for even a well-conditioned problem, although the updated vectors rk may
become tiny. An example of this is given.

Several of the previously listed algorithms have been analyzed by others. Higham
and Knight [15] analyzed the effects of finite precision arithmetic on stationary iter-
ative methods when the residuals are computed directly instead of updated. Wozni-
akowski [22] considered the steepest descent method and a special version of the CG
algorithm, again with directly computed residuals, and gave bounds on the ultimately
attainable accuracy in finite precision arithmetic. We will argue later that for the CG
algorithm it is better (in terms of rate of convergence) to use the update formula in (1)
than to compute residuals directly. The work most closely related to our own is that
of Bollen [3], who also analyzed the effects of finite precision arithmetic on iterative
methods having a form similar to (1). Bollen showed, under certain assumptions, that
the vectors rk converge at least linearly to a small value. Finally, results similar to (2)
have been observed numerically by van der Vorst [19]. Van der Vorst noted that an
increase in the 2-norm of the residual at intermediate steps leads to a corresponding
increase in the size of the final residual. Inequality (2) shows that it is not really the
size of intermediate residuals that is of importance but the size of the iterates. We
give an example in which the residual remains small but intermediate iterates grow,
causing a loss of accuracy in the final solution.

It should also be noted that the quantity ‖b−Axk‖/‖b‖, which is often the value
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actually monitored, may be much larger than ‖b−Axk‖/(‖A‖ ‖x‖) if ‖b‖ << ‖A‖ ‖x‖.
Our results deal only with the latter expression, which we refer to as the relative
residual norm. While the relative residual norm may be small even though the size
of an iterate is large, the reverse cannot occur:

‖b−Axk‖
‖A‖ ‖x‖ ≤

‖b‖+ ‖A‖ ‖xk‖
‖A‖ ‖x‖ ≤ 1 +

‖xk‖
‖x‖ .

2. Finite precision implementation of formulas (1). We assume the fol-
lowing model of floating point arithmetic on a machine with unit roundoff ε:

fl(a± b) = a(1 + ε1)± b(1 + ε2), |ε1|, |ε2| ≤ ε,(3)

fl(a op b) = (a op b)(1 + ε3), |ε3| ≤ ε, op = ∗, /.(4)

This model is valid even for machines that do not use a guard digit in addition and
subtraction.

Under this model, we have the following standard results for operations involving
n-vectors v and w and a number a:

‖av − fl(av)‖ ≤ ε ‖av‖,(5)

‖v + w − fl(v + w)‖ ≤ ε (‖v‖+ ‖w‖),(6)

|〈v, w〉 − fl(〈v, w〉)| ≤ n (ε+O(ε2)) ‖v‖ ‖w‖.(7)

With these rules, we now consider the implementation of formulas (1) in finite
precision arithmetic. Throughout this section, xk, rk, ak−1, and pk−1 will always
denote the quantities actually computed. This should cause no confusion since we will
never have occasion to refer to the quantities that would be generated in exact arith-
metic. To keep the exposition as simple as possible, we will express terms involving ε2

or higher powers of ε as O(ε2) when there are similar terms of order ε present. When
formulas (1) are implemented in finite precision arithmetic, the computed iterates
satisfy

xk = xk−1 + ak−1p
k−1 + ξk,(8)

rk = rk−1 − ak−1Ap
k−1 + ηk,(9)

where

‖ξk‖ ≤ ε ‖xk−1‖+ (2ε+ ε2) ‖ak−1p
k−1‖(10)

and

‖ηk‖ ≤ ε ‖rk−1‖+ (2ε+ ε2) ‖ak−1Ap
k−1‖+ (1 + ε)2 ‖ak−1d

k−1‖,(11)
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where fl(Apk−1) = Apk−1 +dk−1. Inequalities (10)–(11) follow from a straightforward
application of rules (5)–(6). The size of the term dk−1 depends on the accuracy of
the matrix–vector multiplication routine, and we will assume that dk−1 satisfies

‖dk−1‖ ≤ c ε ‖A‖ ‖pk−1‖.(12)

It can be shown from estimate (7) that if A is an n by n matrix with at most m
nonzeros in any row and if the matrix–vector product is computed in the standard
way, then c = mn1/2. We will not make this assumption here, however, because
sometimes the matrix A is not stored explicitly and different procedures are used to
compute the matrix–vector product.

Multiplying equation (8) by A and subtracting from b gives a recurrence for the
true residual b−Axk. Subtracting from this the recurrence (9) for rk, we find

b−Axk − rk = (b−Axk−1 − rk−1)−Aξk − ηk

= (b−Ax0 − r0)−
k∑
j=1

(Aξj + ηj).

Taking norms on both sides and dividing by ‖A‖ ‖x‖ gives

‖b−Axk − rk‖
‖A‖ ‖x‖ ≤ ‖b−Ax

0 − r0‖
‖A‖ ‖x‖ +

k∑
j=1

(
‖ξj‖
‖x‖ +

‖ηj‖
‖A‖ ‖x‖

)
.(13)

Equality can hold in (13) for certain vectors ξj and ηj whose norms satisfy (10)–(11).
Since the initial vector r0 is computed directly, the first term on the right-hand

side of (13) is easily bounded using rule (6) and expression (12) for the accuracy of
the matrix–vector multiplication routine:

‖b−Ax0 − r0‖ ≤ ε ((1 + c) ‖A‖ ‖x0‖+ ‖b‖) + c ε2 ‖A‖ ‖x0‖,

and since ‖b‖ ≤ ‖A‖ ‖x‖, we can write

‖b−Ax0 − r0‖
‖A‖ ‖x‖ ≤ ε(1 + c)

‖x0‖
‖x‖ + ε+ cε2

‖x0‖
‖x‖ .(14)

The following lemma bounds the other terms in (13).
Lemma 2.1. Define

Θk ≡ max
j≤k
‖xj‖/‖x‖.(15)

Assume that 1− 2ε− ε2 > 0. Then the terms on the right-hand side of (13) satisfy

k∑
j=1

‖ξj‖
‖x‖ ≤ (5 ε+O(ε2)) k Θk,(16)

k∑
j=1

‖ηj‖
‖A‖ ‖x‖ ≤ (ε+O(ε2)) k (1 + (5 + 2c) Θk).(17)
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Proof. From (8), we can write

aj−1p
j−1 = xj − xj−1 − ξj ,(18)

and substituting this expression into (10) gives

‖ξj‖ ≤ ε‖xj−1‖+ (2ε+ ε2)(‖xj‖+ ‖xj−1‖+ ‖ξj‖).

Using the assumption 1− 2ε− ε2 > 0, this can be written in the form

‖ξj‖ ≤ ε (3‖xj−1‖+ 2‖xj‖) +O(ε2) (‖xj−1‖+ ‖xj‖).(19)

From this, (16) follows by bounding the sum on the left in (16) by k times the
maximum term.

Using (12), the third term in expression (11) for ηj can be bounded by

(1 + ε)2 ‖aj−1d
j−1‖ ≤ c ε (1 + ε)2 ‖A‖ ‖aj−1p

j−1‖,

and expressing aj−1p
j−1 as in (18) and using the bound (19) for ‖ξj‖, this becomes

(1 + ε)2 ‖aj−1d
j−1‖ ≤ c (ε+O(ε2)) ‖A‖ (‖xj‖+ ‖xj−1‖).(20)

It also follows from (8) that

aj−1Ap
j−1 = A(xj − xj−1 − ξj),

and substituting this expression into the second term in (11) and using the bound
(19) for ‖ξj‖, we have

(2ε+ ε2) ‖aj−1Ap
j−1‖ ≤ (2ε+O(ε2)) ‖A‖ (‖xj‖+ ‖xj−1‖).(21)

Finally, assume that each term ‖ηi‖, i = 1, . . . , j − 1 is bounded by O(ε)‖A‖(‖x‖ +
max`≤i ‖x`‖). It is clear that η1 satisfies this bound. Since rj−1 satisfies

rj−1 = b−Axj−1 − (b−Ax0 − r0) +

j−1∑
i=1

(Aξi + ηi),

we have, using (14), (16), and the induction hypothesis,

‖rj−1‖ ≤ ‖A‖ ‖x− xj−1‖+O(ε) ‖A‖ (‖x‖+ max
i≤j−1

‖xi‖).(22)

Substituting (20)–(22) into the bound (11) for ‖ηj‖, we have

‖ηj‖ ≤ ε ‖A‖ ‖x− xj−1‖+ (2 + c) ε ‖A‖ (‖xj‖+ ‖xj−1‖)
+O(ε2) ‖A‖ (‖x‖+ max

i≤j
‖xi‖)

≤ (ε+O(ε2)) ‖A‖ (‖x‖+ (5 + 2c) max
i≤j
‖xi‖).(23)
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This shows that ‖ηj‖ is also bounded by O(ε)‖A‖(‖x‖+maxi≤j ‖xi‖), so the induction
is complete and (23) is proved. Substituting the bound (23) into (17) and replacing
the sum by k times the maximum term gives the desired result.

Substituting the bounds (14)–(17) into (13) gives the following theorem.
Theorem 2.2. The difference between the true residual b−Axk and the computed

vector rk satisfies

‖b−Axk − rk‖
‖A‖ ‖x‖ ≤ (ε+O(ε2)) [k + 1 + (1 + c+ k (10 + 2c)) Θk],(24)

where c is defined by (12) and Θk is defined by (15).
Note that Theorem 2.2 follows from a simple rounding error analysis of formulas

(1). No assumptions are made about the coefficients ak−1 or the direction vectors
pk−1 or about whether the algorithm even converges.

The bounds in Lemma 2.1 are not sharp. In particular, if an algorithm is near
convergence, then one can expect the norm of rj−1 to be much smaller than ‖A‖(‖x‖+
‖xj−1‖), so the bound on ‖ηj‖ in Lemma 2.1 may be a large overestimate. Still, this
bound is roughly the same size as the bound on ‖ξj‖, so if the bound (16) is realistic,
then the bound in Theorem 2.2 will be of the right order of magnitude. Based on
formula (8) and the rules for floating point arithmetic, one can expect that

‖ξj‖ ∼ ε ‖xj−1‖,

so the most significant roundoff error will occur at the step where ‖xj−1‖ is largest.
We can then expect

‖b−Axk − rk‖
‖A‖ ‖x‖ ≥ ε Θk.

Thus, while the constant terms and the dependence on k in (24) may be overestimates,
one can expect the factor Θk to play an important role in the size of the difference
between the true and computed residuals.

We will demonstrate later that several of the algorithms listed in section 1 generate
vectors rk that approach zero (or at least something much smaller than the machine
precision) as k → ∞. It should be noted that once rk−1 has been reduced below
a certain level, the approximate solution xk remains essentially unchanged. This is
because the norm of the update term ak−1p

k−1 in (8) is closely related to the size of
rk−1, as can be seen from (9),

ak−1p
k−1 = A−1(rk−1 − rk + ηk).

It follows that if the vectors rk, and hence ak−1p
k−1, are converging to zero and if

one runs well past the point where ‖A−1rk−1‖ reaches O(ε)‖xk−1‖, the true residual
b−Axk will not grow like k, as suggested by the bound (24), but will remain almost
constant. Denoting by S the number of steps necessary to reach this steady state, the
bound (24) can be replaced by

‖b−Axk − rk‖
‖A‖ ‖x‖ ≤ (ε+O(ε2)) [S + 1 + (1 + c+ S (10 + 2c)) Θ],(25)



542 ANNE GREENBAUM

where

Θ = max
j
‖xj‖/‖x‖.(26)

Note that if the iteration is started with an extremely large initial guess x0, say,
‖x0‖ = ε−1 when ‖x‖ = 1, the factor Θk in (24) will be large for all k and, in fact,
no method of the form (1) will be likely to find a good approximate solution. This is
because even the initial residual cannot be computed accurately, and the coefficients
and direction vectors are defined in terms of the updated vectors rk. We will assume
from here on that the initial guess is of reasonable size compared to the true solution
and that the term Θk becomes large only if the algorithm generates an iterate at some
step that is much larger than either the true solution or the initial guess.

3. Specific algorithms. In this section we consider the specific algorithms listed
in section 1 and give numerical examples illustrating Theorem 2.2. The numerical
tests were performed using MATLAB on a Sparc workstation with machine precision
ε ≈ 1.1e − 16. The algorithms were implemented using the formulas given in this
section, and no preconditioners were used.

Solid lines in the figures represent actual relative residual norms,

‖b−Axk‖
‖A‖ ‖x‖ ,

while dashed lines show the updated relative residual norms,

‖rk‖
‖A‖ ‖x‖ .

The value of Θ in (26) is indicated with an asterisk at the step at which the maximum
ratio ‖xj‖/‖x‖ occurred. In each of the examples the vectors rk approach zero or
something orders of magnitude less than the machine precision as k → ∞. It is
therefore expression (25) that determines the ultimately attainable accuracy.

Using exact arithmetic theory, we also derive a priori bounds on the quantity Θ
in (26) and argue or demonstrate numerically that the bounds on Θ usually hold in
finite precision arithmetic as well. While the result of Theorem 2.2 is independent of
any preconditioner, our bounds on Θ may be different when a preconditioner is used,
and such differences are noted.

If an algorithm reduces the 2-norm of the error at each step or, more generally, if
the iterates satisfy

‖x− xk‖ ≤ ‖x− x0‖ ∀k,

then we have

‖xk‖ ≤ 2‖x‖+ ‖x0‖, Θ ≤ 2 + Θ0.(27)

If the 2-norm of the error can grow, but, say, the B-norm of the error, ‖x − xk‖B ≡
‖B1/2(x− xk)‖, is reduced at each step, then

‖x− xk‖B ≤ ‖x− x0‖B =⇒ ‖x− xk‖ ≤ κ1/2(B)‖x− x0‖

=⇒ ‖xk‖ ≤ ‖x‖+ κ1/2(B)(‖x‖+ ‖x0‖),
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and so we have

Θ ≤ 1 + κ1/2(B)(1 + Θ0).(28)

To obtain the best a priori bound on the actual residual, we therefore need to deter-
mine an error norm that is always reduced over its initial value in the algorithm and
that is as close as possible to the 2-norm of the error.

3.1. Steepest descent and the CG method. The steepest descent and CG
algorithms for symmetric positive definite problems are as follows.

Steepest descent and CG.

Given an initial guess x0, compute r0 = b−Ax0, and set p0 = r0.
For k = 1, 2, . . .,

Compute xk = xk−1 + ak−1p
k−1, where ak−1 = 〈rk−1,rk−1〉

〈pk−1,Apk−1〉 .

Set rk = rk−1 − ak−1Ap
k−1.

Set pk = rk + bk−1p
k−1, where

bk−1 = 0 for steepest descent, bk−1 = 〈rk,rk〉
〈rk−1,rk−1〉 for CG.

It is well known that, in exact arithmetic, each step of these algorithms reduces
the A-norm of the error. The steepest descent method minimizes the A-norm of the
error at step k in the direction of the residual rk, while CG minimizes the A-norm of
the error over all vectors of the form Pk(A)e0, where e0 is the initial error and Pk is a
kth degree polynomial with value 1 at the origin. It therefore follows from (28) that

Θ ≤ 1 + κ1/2(A)(1 + Θ0),(29)

but one can say more. It was shown in [3] for the steepest descent algorithm and in
[16] for the CG method that the 2-norm of the error also decreases monotonically. It
therefore follows from (27) that

Θ ≤ 2 + Θ0.(30)

Unfortunately, the orthogonality properties used to establish the reduction in 2-
norm of the error in CG may fail completely in finite precision arithmetic. An analogy
developed in [13] and [14], however, enables one to reach a similar conclusion for finite
precision computations. There it was shown that the error in the approximate solution
xk generated by a finite precision CG computation for Ax = b is approximately equal
to the error in an approximate solution x̄k generated by the exact algorithm applied
to a larger problem Āx̄ = b̄, with initial guess x̄0 satisfying ‖x̄− x̄0‖ ≈ ‖x− x0‖. The
arguments used to establish monotone convergence of the 2-norm of the error can be
applied to the corresponding exact CG iterates x̄k to obtain

‖x− xk‖ ≈ ‖x̄− x̄k‖ < ‖x̄− x̄0‖ ≈ ‖x− x0‖.

It follows that in finite precision arithmetic, under appropriate assumptions about
κ(A), one can also expect that (30) will hold.
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Actual and Updated Residual for CG

Fig. 1. Actual residual norm (solid), updated residual norm (dashed), and actual residual norm
when residuals are computed directly (dotted).

We therefore estimate, for both algorithms, that

min
k

‖b−Axk‖
‖A‖ ‖x‖ ≤ O(ε) S(31)

independent of κ. The number of steps S required to reach the steady state for an
ill-conditioned problem may be quite large, especially for the steepest descent method,
but, as noted previously, the factor S in (25) and, therefore, in (31), is usually an
overestimate.

Figure 1 shows the convergence of CG for a problem of size n = 40 with eigenvalues
geometrically distributed between 1 and 104:

λi = κ(i−1)/(n−1), i = 1, . . . , n, κ = 104.(32)

The matrix A was taken to be of the form QΛQT , where Λ = diag(λ1, . . . , λn) and Q
is a random orthogonal matrix. A random solution was chosen and the initial guess
was set to zero.

The solid curve shows the actual relative residual norm, while the dashed curve
shows the updated relative residual norm. The two curves coincide until they both
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reach the level of machine ε, at which point the dashed curve continues to decrease
while the solid curve levels off. The asterisk in the figure shows the maximum ratio
‖xk‖/‖x‖, plotted at the step at which it occurred. In exact arithmetic, this ratio
is bounded by 1 when a zero initial guess is used, and its value in finite precision
arithmetic is just slightly larger than 1 for this example. It is clear that rounding
errors have a great effect on the rate of convergence of CG for this problem since,
in exact arithmetic, the exact solution would be obtained after n = 40 steps. Still,
the ultimately attainable accuracy is as high as one might expect, with the relative
residual reaching the level ε and the relative error of size approximately κ(A)ε. The
behavior of the steepest descent method for this problem is not shown, simply because
it was so slow to converge. For other less badly conditioned problems, the steepest
descent method also attained a final relative residual of size ε.

To demonstrate the claim made in section 1—that it is better (in terms of rate
of convergence) to update the vectors rk in the CG algorithm than to compute them
directly—we also ran the above algorithm with the formula for rk replaced by rk =
b−Axk. The dotted line in the figure shows the residual norm ‖b−Axk‖/(‖A‖ ‖x‖) for
this modified algorithm. This phenomenon of slower convergence was observed before
[22], and it has to do with the fact that the normalized residual vectors (−1)krk/‖rk‖
no longer approximately satisfy a three-term recurrence. That is, all of the known
proofs of fast convergence for the CG method (convergence at least about as fast as
the exact Chebyshev algorithm) [8, 13] rely on the fact that the recurrence can be
written in the form

AQk = QkTk + βkqk+1e
T
k + Fk,(33)

where the columns of the n by k matrix Qk are the normalized residual vectors
r0/‖r0‖,−r1/‖r1‖, . . . , (−1)k−1rk−1/‖rk−1‖, Tk is a k by k tridiagonal matrix qk+1 =
(−1)krk/‖rk‖, and Fk is a tiny perturbation term; e.g., ‖Fk‖ ∼ ε‖A‖. If resid-
uals are computed directly, then the roundoff term Fk is roughly on the order of
ε‖A‖(‖xk‖/‖rk‖), so when the residual becomes much smaller than the approximate
solution, this term is no longer tiny. Of course this does not prove that CG will con-
verge slowly if the residuals are computed directly, but it does explain why the known
proofs of fast convergence are not applicable.

When a symmetric positive definite preconditioner M is used with either of these
algorithms, it is equivalent to applying the unpreconditioned algorithm to the problem
M−1/2AM−1/2y = M−1/2b, x = M−1/2y. The M−1/2AM−1/2-norm of y− yk, which
is the A-norm of the error, is still minimized at each step, so the bound (29) on Θ still
holds. It is possible, however, that the 2-norm of the error x−xk may grow. We know
only that the 2-norm of y−yk, which is the M -norm of x−xk, decreases monotonically.
For a preconditioned problem, estimate (31) must therefore be replaced by

min
k

‖b−Axk‖
‖A‖‖x‖ ≤ O(ε) min{κ1/2(A), κ1/2(M)} S.(34)

3.2. The BCG and CGS methods. The BCG algorithm (without look-ahead)
for general nonsymmetric problems is as follows.
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BCG (without look-ahead).

Given an initial guess x0, compute r0 = b−Ax0, and set p0 = r0.
Choose r̂0 such that 〈r0, r̂0〉 6= 0, and set p̂0 = r̂0. For k = 1, 2, . . .,

Compute xk = xk−1 + ak−1p
k−1, where ak−1 = 〈rk−1,r̂k−1〉

〈Apk−1,p̂k−1〉 .

Set rk = rk−1 − ak−1Ap
k−1, r̂k = r̂k−1 − ak−1A

T p̂k−1.

Compute pk = rk + bk−1p
k−1, p̂k = r̂k + bk−1p̂

k−1, where bk−1 = 〈rk,r̂k〉
〈rk−1,r̂k−1〉 .

The BCG algorithm is closely related to the two-sided Lanczos process. For
details of this relationship see, for example, [10]. The BCG algorithm breaks down if
either

〈Apk−1, p̂k−1〉 = 0 or 〈rk−1, r̂k−1〉 = 0

before an acceptable approximate solution has been obtained. The second condition
corresponds to the breakdown of the two-sided Lanczos process, while the first indi-
cates the nonexistence of the BCG iterate. Of course, if either of these quantities is
pathologically small, then roundoff is likely to spoil the convergence of the algorithm.
In such cases, look-ahead steps can be used to avoid some of the difficulties, at the
price of extra work and storage. Even if we assume that these quantities do not be-
come extremely small, however, the norm of the iterate xk can become arbitrarily
large. For this reason, we cannot give an a priori bound on Θ in (26), and, indeed,
the algorithm might fail to obtain a small residual even if ‖rk‖ → 0.

The CGS algorithm (without look-ahead) for general nonsymmetric problems is
as follows.

CGS (without look-ahead).

Given an initial guess x0, compute r0 = b−Ax0, and set u0 = r0,
p0 = r0, q0 = 0, and v0 = Ap0. Choose r̂0 such that 〈r0, r̂0〉 6= 0.
For k = 1, 2, . . .,

Compute qk = uk−1 − ak−1v
k−1, where ak−1 = 〈rk−1,r̂0〉

〈vk−1,r̂0〉 .

Compute xk = xk−1 + ak−1(uk−1 + qk).

Set rk = rk−1 − ak−1A(uk−1 + qk).

Compute uk = rk + bkq
k, where bk = 〈rk,r̂0〉

〈rk−1,r̂0〉 .

Set pk = uk + bk(qk + bkp
k−1) and vk = Apk.

The CGS algorithm requires two matrix–vector multiplications at each step, but
no multiplications by the transpose as in BCG. In exact arithmetic, the BCG residual
at step k can be written in the form rkB = φk(A)r0, where φk(A) is a certain kth
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Fig. 2. Actual residual norm (solid) and updated residual norm (dashed). Top curves are for
CGS, bottom ones for BCG. The dotted line shows the actual residual norm for QMR.

degree polynomial with φk(0) = 1. The CGS residual at step k is rkS = φ2
k(A)r0. If

the BCG method is converging well, one would expect the polynomial φk(A) to be
small and its square to be even smaller. If the norm of φk(A) is large, however, then
that of φ2

k(A) will be even larger. Again, the norms of the iterates xk can become
arbitrarily large and we cannot give an a priori bound on Θ in (26).

An example is shown in Figure 2. Here A was taken to be a discretization of the
convection diffusion operator

−4u+ 40(xux + yuy)− 100u(35)

on the unit square with Dirichlet boundary conditions, using centered differences on
a 32 × 32 mesh. Similar problems were considered in [11] and [4]. The solution was
taken to be u(x, y) = x(x − 1)2y2(y − 1)2 and the initial guess was set to zero. The
initial vector r̂0 was set equal to r0.

The lower solid line in the figure represents the true BCG residual norm, while
the lower dashed line shows the updated residual norm. The lower asterisk indicates
that the maximum ratio ‖xk‖/‖x‖ was approximately 103 for BCG. The final actual
residual is of size 1.e− 13 ≈ 103ε, as predicted. Note that in this example the relative
residual norm for BCG grows only to about 101, so the size of the final residual
cannot be predicted from the size of intermediate residuals, but only from the size of
intermediate iterates.
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The upper solid and dashed lines in Figure 2 show the true and updated residual
norms for CGS. The higher asterisk indicates that for CGS the norm of an intermediate
iterate grew to approximately 4 · 1010 times the norm of the true solution, and so, as
predicted, the final actual residual reaches the level 6.e− 6, which is roughly 4 · 1010ε,
instead of ε. Note that the example presented here was chosen specifically to illustrate
the possibility of large growth in iterates and the corresponding loss of accuracy. It
should not necessarily be interpreted as showing the typical behavior of the CGS
algorithm.

For comparison with BCG, the dotted line in the figure shows the true QMR
residual norm for the same problem when the implementation of [2] is used. The QMR
convergence curve looks very much like the lower envelope of the BCG convergence
curve (as shown in [7] for exact arithmetic), and QMR achieves about the same size
final residual as BCG. This cannot be explained using the analysis of this paper,
however, because QMR is not of the form (1) and the updated QMR residual vector
(not shown) does not converge to zero but levels out at a slightly smaller value than
the true QMR residual norm.

3.3. CGNE and CGNR. The CGNE and CGNR algorithms for general non-
symmetric problems are as follows.

CGNE and CGNR.

Given an initial guess x0, compute r0 = b−Ax0, and set p0 = AT r0.
For k = 1, 2, . . .,

Compute xk = xk−1 + ak−1p
k−1, where

ak−1 = 〈rk−1,rk−1〉
〈pk−1,pk−1〉 for CGNE, ak−1 = 〈AT rk−1,AT rk−1〉

〈Apk−1,Apk−1〉 for CGNR.

Set rk = rk−1 − ak−1Ap
k−1.

Compute pk = AT rk + bk−1p
k−1, where

bk−1 = 〈rk,rk〉
〈rk−1,rk−1〉 for CGNE, bk−1 = 〈AT rk,AT rk〉

〈AT rk−1,AT rk−1〉 for CGNR.

In exact arithmetic, CGNE is equivalent to the CG algorithm for the linear system
AAT y = b, x = AT y. If yk and p̂k are the iterate and direction vector at step
k of the CG algorithm for this problem, then xk = AT yk and pk = AT p̂k. Since
CG applied to AAT y = b minimizes the AAT -norm of y − yk, CGNE minimizes the
equivalent quantity, the 2-norm of the error x−xk. It follows that, in exact arithmetic,
Θ ≤ 2 + Θ0, and since this estimate does not require the orthogonality of previous
residual vectors, it can be expected to hold in finite precision arithmetic as well.

In exact arithmetic, CGNR is equivalent to the CG algorithm for the linear system
ATAx = AT b. The iterates and direction vectors are the same as for the CG algorithm
applied to the normal equations, but the vectors rk are the residuals of the original
linear system b−Axk. Since CG applied to ATAx = AT b minimizes the ATA-norm of
x−xk, CGNR minimizes the equivalent quantity, the 2-norm of the residual b−Axk.
Since the 2-norm of the residual is reduced at each step, it follows from (28) that
Θ ≤ 1 + κ(A)(1 + Θ0). Since the 2-norm of the error is also reduced at each step by
the CG algorithm applied to ATAx = AT b, however, it follows that the same holds
for CGNR. As argued previously, the CG method can really be expected to reduce
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Fig. 3. Actual residual norm (solid), updated residual norm (dashed), and actual error norm
(dash–dot).

the 2-norm of the error in finite precision arithmetic, based on the analogy developed
in [13] and [14]. It therefore follows from (27) that Θ ≤ 2 + Θ0.

For both algorithms, we therefore estimate that

min
k

‖b−Axk‖
‖A‖ ‖x‖ ≤ O(ε) S(36)

independent of κ. Since this implies that the relative error, mink ‖x − xk‖/‖x‖, is
bounded by κ(A) O(ε) S, there is no loss of accuracy associated with the squared
condition number of the normal equations (except for what might result from a pos-
sibly larger value of S). There may be tighter restrictions on κ, necessary to ensure
the convergence of the vectors rk to zero, but if these restrictions are met, then the
accuracy attainable from CGNE and CGNR is as great as that attainable from CG.

Figure 3 shows the actual and updated residual norms as well as the actual error
norm, ‖x−xk‖/‖x‖, for CGNE applied to a problem with singular values geometrically
distributed between 1 and 104. The matrix A was taken to be of the form A = UΣV T ,
where Σ = diag(λ1, . . . , λn), with λ1, . . . , λn defined by (32), and U and V random
orthogonal matrices. The initial guess was zero and the solution was random. As
can be seen from the figure, the relative residual norm reaches the level ε, while the
relative error norm reaches the level κ(A)ε. The maximum ratio Θ is approximately
1, as indicated by the asterisk in the figure. Note that the jumps in the residual norm
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do not cause any loss of accuracy since the iterate norms remain bounded by 1. The
actual and updated residual norm curves for CGNR applied to the same problem (not
shown) look like smoothed-out versions of those for CGNE. The CGNR algorithm also
obtained a final relative residual of size ε and a final relative error of size κ(A)ε.

Similar tests were performed for matrices with singular values geometrically dis-
tributed between 1 and 101, 102, . . . , 108. Although some of these problems required
many thousands of steps to reach the steady state, in all cases the actual relative
residual norm for both algorithms leveled out at a value less than 10ε.

Since preconditioned CGNE is equivalent to CG applied to the normal equations
AAT y = b, with a preconditioner MMT , the algorithm still minimizes the AAT -
norm of y − yk, which is the 2-norm of x− xk. Estimate (36) therefore holds for the
preconditioned algorithm as well.

When CGNR is preconditioned with a matrix M , it is equivalent to applying CG
to the normal equations ATAx = AT b using the preconditioner MTM . This is equiv-
alent to applying unpreconditioned CG to the system M−TATAM−1y = M−TAT b,
x = M−1y. The M−TATAM−1-norm of y− yk, which is the ATA-norm of x− xk, is
minimized over a Krylov space, and so it follows from (28) that Θ ≤ 1+κ(A)(1+Θ0).
Since the 2-norm of y− yk, which is the MTM -norm of x− xk, also decreases mono-
tonically, it also follows from (28) that Θ ≤ 1 + κ(M)(1 + Θ0). The bound (36) must
therefore be replaced by

min
k

‖b−Axk‖
‖A‖‖x‖ ≤ O(ε) min{κ(A), κ(M)} S(37)

for preconditioned CGNR.

4. Alternate implementations. From the preceding discussion it is clear that
if one wishes to use an iterative method in which the norms of intermediate iterates
can grow without bound, then one should avoid the use of the update formulas in (1)
if the iterate norms become too large. A number of algorithms have been developed
to do this. For symmetric indefinite problems, the SYMMLQ method of Paige and
Saunders [17] accomplishes this goal by updating certain well-determined intermediate
quantities instead of the possibly ill-determined iterates xk. The composite step
biconjugate gradient method of Bank and Chan [1] avoids large iterates by skipping
steps at which they appear.

The other possibility for avoiding large iterates is to use methods of the form
(1) that reduce some error norm that is not too different from the 2-norm. The
ORTHOMIN and ORTHODIR methods, for example, minimize the 2-norm of the
residual at each step, so that if they were implemented in the form (1) (which would
require an extra matrix–vector multiplication at each step) then one would expect to
obtain a final relative residual of size κ(A) O(ε) S in cases where the updated vectors
rk converge to zero. The QMR method minimizes the norm of a quantity that differs
from that of the residual by no more than a factor

√
k + 1 at step k, so that if QMR

were implemented in the form (1) and assuming that the updated vectors rk became
much smaller than the machine precision, one would obtain a final residual of size less
than κ(A) O(ε) S3/2.

Finally, while it is important to be aware of the ultimately attainable accuracy of
an iterative method, this is often less important in practice than the convergence rate
of the method before the ultimately attainable accuracy is achieved. Unfortunately,
the analysis of convergence rates in finite precision arithmetic (and sometimes even
in exact arithmetic) may be a much more difficult problem.
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Abstract. We present a randomized O(n log logn) time algorithm for constructing a recursive
separator decomposition for well-shaped meshes in two and three dimensions. Our algorithm takes
O(n log logn) time while previous algorithms require Θ(n logn) time. It uses techniques from prob-
ability theory, computational geometry, and graph theory. The new algorithm has an application in
the solution of sparse linear systems that arise in finite element calculations. In particular, it can be
used to design O(n log logn) time algorithms for finding a provably good nested-dissection ordering
for 3D finite element systems. It can also be used to improve the construction of 3D point location
structures, which are useful in hierarchical methods such as the multigrid and multilevel domain
decompositions.
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1. Introduction. Large sparse linear systems arise in many areas of scientific
applications. The solution to these linear systems is a key step in commonly used
methods such as finite element and finite difference methods [33]. Many practical
applications, such as circuit design, require an exact solution to a linear system and
hence a direct method that uses Gaussian elimination is desired. Direct methods are
also used as a subroutine in preconditioning-based iterative methods.

Gaussian elimination may introduce fill in solving sparse linear systems. The
amount of fill depends on the ordering of the rows and columns of the sparse matrix.
Such an ordering is called an elimination ordering. The problem of finding an optimal
ordering is known to be NP-hard. Nested dissection [1, 12, 13, 16, 26] is one of the
provably good methods for finding an elimination ordering for sparse matrices. The
nested-dissection algorithm divides the graph of a linear system by first finding a
small separator, that is, a set of vertices whose removal divides the rest of the graph
into two disjoint subgraphs of approximately equal size, and then recursively divides
the two subgraphs. The vertices in the two subgraphs are ordered recursively and
are placed ahead of those in the separator. In this procedure, we do not require the
two subgraphs to be connected themselves, for if one of the subgraphs has several
connected components, then we can order each component independently. For 3D
applications, the geometric separator algorithm of Miller et al. [30, 31] can be used
to perform nested dissection [17]. However, the geometric separator algorithm or
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any other separator algorithm takes at least linear time to find a small separator;
nested-dissection methods1 use at least Ω(n logn) time. The application of Miller et
al.’s geometric separator algorithm in three dimensions achieves the O(n logn) time
bound. In this paper, we give a randomized O(n log log n) time algorithm.

The solution to a sparse linear system usually involves four steps:
1. find a good elimination ordering,
2. perform a symbolic factorization to predict the amount of fill and create a data

structure with the proper amount of space for the numerical factorization,
3. compute the numerical factorization which expresses the reordered sparse

matrix as a product of two triangular systems,
4. solve the resulting triangular linear systems.

Our result improves the time needed for the ordering by a factor of O(logn/ log log n).
Algorithmically, we show how to construct a recursive separator decomposition

for well-shaped 3D meshes in O(n log log n) time. Our construction uses sampling to
reduce the time needed for finding good separators. It then applies a geometric data
structure to assist a graph connectivity algorithm to speed up the recursive separator
decomposition. Our algorithm also improves the 3D point-location algorithm of [32,
36], which has potential applications to hierarchical computing.

In section 2, we review the graph partitioning problem and well-shaped finite el-
ement meshes. In section 3, we review the geometric separator algorithm of Miller et
al. In section 4, we present and analyze our O(n log log n) time recursive separator
decomposition algorithm. In section 5, we discuss its applications in nested dissection
and 3D point location for finite element meshes. In section 6, we discuss some issues in
the potential implementation of techniques developed in this paper. We give a high-
level outline of a geometric sampling-based multilevel algorithm for partitioning and
ordering. The proofs presented in section 4 can be extended to show that this mul-
tilevel algorithm generates provably good multiway partitions and nested-dissection
orderings.

2. Separators and well-shaped meshes. In this paper, we will use the fol-
lowing definition of vertex separators.

Definition 2.1 (separators). A subset of vertices C of a graph G with n vertices
is an f(n)-separator that δ-splits if |C| ≤ f(n) and the vertices of G − C can be
partitioned into two sets A and B such that there are no edges from A to B and |A|,
|B| ≤ δn, where f is a function and 0 < δ < 1.

In this definition and for the rest of the paper, |A| denotes the cardinality of finite
set A. The type of separator defined here is sometimes called a “vertex separator,”
that is, a subset C of vertices of G whose removal disconnects the graph into two or
more graphs of smaller size. A related concept is an “edge separator,” that is, a set
of edges whose removal disconnects the graph.

A separator tree is a tree structure generated by the recursive applications of
a separator algorithm. The root of the tree corresponds to the top-level separator.
The root has two children for the two subgraphs induced by the top-level separator,
respectively. Notice again that we do not require the two subgraphs to be connected
themselves. If one of them has more than one component, we still keep all of its
components together. Therefore, the “subgraph” that we use may not be connected.
So the input graph to our graph partitioning algorithm and in Definition 2.1 need not

1 Recently, Goodrich [19] gave a linear time algorithm for finding a recursive separator decom-
position of a planar graph. However, instead of using O(n0.5)-separators, Goodrich used O(n0.5+ε)-
separators.
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be connected.

The subtrees of the root are recursively generated for the two subgraphs. Asso-
ciated with each internal node of the separator tree is a subgraph that is induced by
the set of separators used in the path from the root to the internal node. Clearly,
the graph associated with the root is the original graph. We call a separator tree an
f(n)-separator tree if it is generated by applying an f(m)-separator to each internal
node of the tree whose subgraph has size m.

In this paper we consider the graph associated with a well-shaped unstructured
mesh that arises from finite element calculations.

Finite Element Mesh

Fig. 1. A well-shaped mesh in two dimensions (courtesy of David Eppstein).

A mesh is a decomposition of a domain into a collection of simple elements (see
Fig. 1 for a 2D example). A common choice for an element in the finite element
method is a d-dimensional simplex, e.g., a triangle in two dimensions and a tetrahedron
in three dimensions. A d-dimensional simplicial complex is defined to be a collection
of d-dimensional simplices that meet only at shared faces [4, 5]. So a 2D simplicial
complex is a collection of triangles that intersect only at shared edges and vertices.
The “corners” of the simplices of a mesh are called the vertices of the mesh. Associated
with each mesh is a natural graph, its 1-skeleton, which is a graph defined on the
vertices of the mesh where there is an edge between two vertices iff they are both
contained in a simplex of the mesh. The finite element formulation on a mesh defines
a sparse matrix, called the stiffness matrix of the mesh (see the paragraph below).
The nonzero pattern of the stiffness matrix is the 1-skeleton of the mesh.

A mesh is given as a list of its elements, where each element is given by the infor-
mation describing the hierarchical structure of the element, i.e., its lower-dimensional
structures that include its faces, edges, and vertices. Moreover, each vertex has geo-
metric coordinates in two or three dimensions. In the finite element method, a linear
system is defined over a mesh, with variables representing physical quantities at the
nodes. To properly approximate a continuous function, in addition to the conditions
that a mesh must conform to the boundary of the region and be fine enough, each
individual element of the mesh must be well shaped. A common shape criterion for
elements is the condition that the angles of each element are not too small or the
aspect ratio of each element is bounded [5, 10, 33]. We refer the reader to [30] for
a detailed discussion of these geometric conditions. We call meshes that have these
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geometric conditions well-shaped meshes. We now summarize some useful properties
of well-shaped meshes.

• The degree of each vertex of a well-shaped mesh is bounded by a constant,
where the degree of a vertex is the number of edges in the 1-skeleton incident
to the vertex. Hence, the mesh has a linear number of edges.
• Each well-shaped mesh of n vertices has an O(n1−1/d)-separator and satisfies

Theorem 3.1 in the next section.

We will use the following geometric characterization of a well-shaped mesh. Sup-
pose M = (A, xyz) is the input mesh, where A describes the combinatorial structure
of the mesh: its nodes V , edges E, and elements F . For each point p ∈ xyz, let Bp be
the ball centered at p with a radius that is equal to the distance from p to the nearest
point q in xyz such that (p, q) is an edge of M . We call Γ = {Bp : p ∈ xyz} the
nearest neighborhood system of xyz. Because the mesh has a linear number of edges,
we can construct its nearest neighborhood system in linear time.

Theorem 2.2 (see [31]). Let M = (A, xyz) be a well-shaped mesh in IRd. Then
there exists a constant α > 1, depending only on d and the aspect ratio of elements in
M , such that for each edge (u, v) of M , Bu intersects α ·Bv and α ·Bu intersects Bv,
where α · Bv is the ball with the same center as Bv but with a radius that is α times
the radius of Bv.

3. Geometry mesh partitioning: A review. Miller et al. [30] showed that
the geometric structure of a well-shaped mesh can be used to develop a quality guar-
anteed separator algorithm. Their geometric separator algorithm divides a mesh using
a sphere. Suppose (A, xyz) is the input mesh. Recall that A describes the combinato-
rial structure of the mesh: its nodes V , edges E, and elements F . The set xyz ∈ IRd

gives the geometric coordinates of the mesh (in d dimensions). The geometric separa-
tor algorithm finds a (d− 1)-sphere S in IRd that divides nodes, edges, and elements
of the mesh into three subsets: those nodes VI , edges EI , and elements FI that are
in the interior of S; those VE , EE , and FE that are in the exterior of S; and those
VO, EO, and FO that form a vertex-, edge-, and element-separator, respectively, in-
duced by S. In the notation above, the subscripts I and E stand for “interior” and
“exterior,” respectively, and the subscript O stands for “overlap with the sphere.” In
this paper, a (d − 1)-sphere is the boundary of a d-dimensional ball. The details of
the theory and implementation of the geometric separator algorithm can be found in
[18, 30]. We now give a high-level description of the algorithm, which is necessary for
our discussions in the remainder of the paper.

Algorithm (geometric partition).
Input A well-shaped mesh (A, xyz) in IRd.
Output A (d− 1)-sphere S in IRd.

1. Choose a set P of random samples (of about 1000 points) from
xyz;

2. Compute the stereo graphic image Q on Ud of P , where Ud is a
unit d-sphere in IRd+1;

3. Find an approximate centerpoint c of Q;
4. Conformally map c to the sphere center of Ud (see [30] for the

formula). The mapping can be represented as a (d+1)× (d+1)
matrix and can be found in O(d) time.

5. Choose a random great circle C of Ud;
6. Transform C back to IRd to obtain S and compute the vertex

quality of S.
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The vertex quality of a separating sphere S is the size of vertex-separator VO
induced by S. There are several ways to derive a vertex-separator VO from S [30]. We
will use the following approach. Let Γ = {Bp : p ∈ xyz} be the nearest neighborhood
system of xyz as defined in section 2. Let VO be the set of the vertices whose balls
either (i) intersect S or (ii) are smaller than S and would intersect S if magnified by
a factor of α, where α is the constant given in Theorem 2.2. Therefore, VE will be the
set of vertices not in VO that are located in the exterior of S, and VI will be the set of
vertices not in VO that are located in the interior of S. We now show that no vertex
in VI is connected with any vertex in VE in M . For each pair of points u ∈ VE and
v ∈ VI , because neither u nor v is in VO, we conclude that Bu and Bv do not intersect
S. Because v is in the interior of S, Bv must be smaller than S (for otherwise Bv
would intersect S). Because v does not belong to VO, α · Bv does not intersect S
either. Thus, Bu does not intersect α · Bv. It then follows from Theorem 2.2 that
(u, v) cannot be an edge of M . Therefore, VO is a vertex-separator that divides VE
from VI .

Computationally, there are two major steps in the geometric separator algorithm:
(1) centerpoint computation and the selection of S and (2) testing the quality of the
returned sphere. Step 1 takes constant time. Given the nearest neighborhood system
Γ, we can determine in constant time whether a vertex is in VO. The time to construct
VO is thus linear in n. Step 2 takes linear time. We will repeat the above procedure
until the returned separator is in the order of O(n1−1/d). The following theorem
summarizes the properties of the geometric separator algorithm that will be used in
the next section.

Theorem 3.1 (see [31]). For each well-shaped mesh M = (A, xyz), there exists
a constant δ in the range of (d+1)/(d+2) ≤ δ < 1, such that the geometric separator
algorithm finds a (d−1)-sphere S such that (1) |VI |, |VE | ≤ δ|V | and |FI |, |FE | ≤ δ|F |,
(2) |VO| = O(n1−1/d), |EO| = O(n1−1/d), and |FO| = O(n1−1/d). Moreover, with
probability at least 1/2, the returned sphere S satisfies these quality conditions.

4. Fast separator tree decomposition. Even though the algorithm given in
section 3 finds a sphere S in constant time and the probability that S is good (namely,
|VO| = O(n1−1/d)) is at least 1/2, we still need Θ(n) additional time to compute the
vertex quality of S to make sure that we can use S as the root-separator of the tree.
Thus, the naive recursion of the geometric separator algorithm requires Ω(n logn) time
to build a separator tree. In this section, we will reduce the time to O(n log log n).

4.1. Representation of a separator tree. In the context of this paper, a
vertex-separator of a mesh is derived from a sphere. Every sphere is given by its center
and radius, so we only need a constant amount of space to store the information of a
sphere.

Given a mesh M = (A, xyz), the recursive applications of the geometric sepa-
rator algorithm generate a tree of spheres. The root of the tree corresponds to the
top-level sphere S, which induces a vertex-separator VO that divides the mesh into
two submeshes ME and MI , where ME and MI are submeshes defined by VE and
VI , respectively. The root has two subtrees which are generated for MI and ME ,
respectively: its left subtree is for MI and its right subtree is for ME . In this “tree
of spheres” representation, we do not store vertex-separators; we only store spheres.
The separator tree defined in section 2 stores a vertex-separator at each internal node.

In our algorithm below, we will first construct a tree of spheres representation
of an O(n1−1/d)-separator tree. We will then compute the vertex-separator of each
internal node. Note that it takes constant time for the geometric separator algorithm
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to return a sphere, but linear time to compute the vertex-separator induced by the
sphere. Our objective is to use this fact to build the tree of spheres representation
faster than O(n logn) time. However, to guarantee the quality of the separator tree,
we need to estimate the size of the vertex-separator induced by the sphere. We need
to perform this estimation faster than linear time. We will estimate the size of the
vertex-separator by sampling.

4.2. A high-level discussion. The use of sampling is to reduce the time needed
at each level of the separator tree. This idea can be depicted by the following high-
level construction: choose a sample Γ1 of O(n/ logn) balls uniformly at random from
the nearest neighborhood system Γ = {Bp : p ∈ xyz} of the input mesh. Construct
a separator tree T1 for Γ1. We will stop the recursion when the number of balls is
O((logn)h) for a constant h to be specified later. At each internal node of T1, we
compute the vertex-separator of the sphere based on Γ1 (instead of Γ). Since we deal
only with O(n/ logn) balls, the total complexity is at most O(n) for the construction
of the tree of spheres representation of T1. In the next subsection, we will show that
with high probability T1 is the initial fraction of an O(n1−1/d)-separator tree for the
input mesh. Moreover, the size of the submesh associated with each leaf of T1 is
Θ((logn)h).

Our next step is to “identify” the vertex-separator of the input mesh induced
by the sphere at each internal node of T1 and the submesh associated with every
leaf of T1. Because the size of the submesh at each leaf of T1 is Θ((logn)h), T1 has
Θ(n/(logn)h) leaves. We can then apply the standard nested-dissection method to
all leaves of T1 to complete the separator tree construction. For each leaf, we need
O((logn)h log log n) time. Therefore, we can complete the separator tree from T1 in
O(n log log n) time.

However, the identification problem is nontrivial. We will present a solution that
uses a geometric search structure to simulate a graph connectivity algorithm to obtain
the following algorithmic result.

Theorem 4.1 (main). Given a well-shaped mesh M = (A, xyz), we can find
an O(n1−1/d)-separator tree decomposition of (A, xyz) in random O(n log log n) time
with high probability.

4.3. Sampling for the construction of a partial separator tree. Notice
that the geometric separator algorithm takes only constant time to find a top-level
sphere separator (because finding an approximate centerpoint uses only constant time
[8, 35]). But to build an O(n1−1/d)-separator tree, we need to test the quality of the
sphere. It takes O(n) time to do so deterministically. Our idea to reduce the quality-
testing time is to use sampling to approximate the separator size: To approximately
count the size of the vertex-separator, we choose a sample of n/ logn vertices and
count how many of them are in the separator. The quality-testing time is reduced
to O(n/ logn). The following classical result from probability theory guarantees the
quality and correctness of our sampling method.

Lemma 4.2 (Chernoff–Hoeffding). There is a constant c > 1 such that the fol-
lowing is true: Suppose there are L red balls in a set of n balls. Then for all s(n), if
we take a sample of s(n) random balls from the set and observe r red balls,

Prob[r/(2s(n)) ≤ L/n ≤ 2r/s(n)] ≥ 1− e−cs(n)L/n.

Proof. This lemma is a special case of Chernoff–Hoeffding bounds, which bound
the probability that a sum of independent random 0-1 variables differs significantly
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from its mean [2, 20, 22]. Suppose S =
∑m
i=1Xi, where Xi is a random 0-1 variable

from an appropriate distribution. The most commonly used form of the Hoeffding
bounds states that for any 0 ≤ ε ≤ 1 the following holds:

Prob[S ≤ (1− ε)E[S]] ≤ e−ε2E[S]/3,(1)

Prob[S ≥ (1 + ε)E[S]] ≤ e−ε2E[S]/2,(2)

where E[S] is the mean of S. In our case, m = s(n). Xi = 1 if the ith ball of the
sample is red; otherwise Xi = 0. Note that E(S) = s(n) · L/n because we have s(n)
balls in the sample, and each ball is red with a probability equal to L/n.

It follows from inequality (1), letting ε = 1/2, that

Prob[r ≤ s(n)L/(2n)] ≤ e−s(n)L/(12n).

Thus,

Prob[L/n ≤ 2r/s(n)] ≥ 1− e−s(n)L/(12n).

It follows from inequality (2), letting ε = 1, that

Prob[r > 2s(n)L/n] ≤ e−s(n)L/(2n).

Thus,

Prob[L/n ≥ r/(2s(n))] ≥ 1− e−s(n)L/(2n).

Thus, in our lemma, we should choose c = 1/12.
In our case, red balls correspond to vertices in the separator, and we want to

make sure that L = O(n1−1/d). Thus as long as we sample more than Ω(n1/d logn)
vertices, we can approximate the size of the separator to within a constant factor with
very high probability (e.g., 1 − 1/n2). Once we can test the quality of a sphere, we
can recursively build the initial fraction T1 of an O(n1−1/d)-separator tree using the
following procedure. Suppose M = (A, xyz) is the given well-shaped mesh and Γ is
its nearest neighborhood system. Let Γ′ be a set of n/ logn balls chosen uniformly at
random from Γ, where n is the number of vertices of M .

Algorithm (initial tree(Γ′)).
1. Let found = 0;
2. While (found == 0) do

(a) Find a sphere separator S using the geometric separator
algorithm.

(b) Let ΓI = ΓE = ΓO = ∅.
(c) For each ball B ∈ Γ′

• if B is in the vertex-separator of S then add B to ΓO,
• else if B is in the interior of S, then add B to ΓI ,
• else add B to ΓE .

(d) We use Lemma 4.2 and |ΓO| to estimate the size of the
vertex-separator induced by S. If the estimation shows
that the size of the separator of S is small enough, then
let found = 1.

3. Store S in the root of the tree.
4. If ΓI has more than O(logh n) balls, then call initial tree(ΓI) to

generate the left subtree.
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5. If ΓE has more than O(logh n) balls, then call initial tree(ΓE)
to generate the right subtree.

Clearly, the above procedure takes expected O(n) time. By Lemma 4.2, it finds
a separator tree, denoted by T1, which is the initial fraction of an (n1−1/d)-separator
tree of the input mesh.

Remark 4.3. Another approach to construct an initial separator tree is to build
the tree level by level. We choose independently a set of random balls for the con-
struction of each level. This approach will takes O(n) time if we choose no more
than O(n/ log2 n) random balls for each level. Mathematically, the independence of
each level makes it easier to apply Lemma 4.2. We will relate this approach with the
multilevel partitioning scheme in section 6.

4.4. The identification problem if we know the separators. To complete
the construction of the separator tree, we need to identify the submesh associated
with each leaf of T1. Notice that if we simply “push the input mesh down T1” by
comparing its elements with the sphere separators of T1, then we will use Ω(n logn)
time; we need O(logn) time to identify each element or vertex.

The union of the vertex-separators used at the internal nodes of T1 induces a
multiway partition—a decomposition of the input mesh M into |T1|-submeshes, one
for each leaf of T1; notice that there may be some leaves in T1 whose submeshes are
not connected. We will call this union the multisector associated with T1. We now
give an upper bound on the cardinality of the multisector associated with T1.

Lemma 4.4. Let h be a positive integer. Let T ′1 be the tree obtained from T1 by
removing all of its leaves. If T1 has the property that the size of the submesh associated
with each leaf of T ′1 is Θ(logh n), then the cardinality of the multisector associated with

T1 is bounded from above by O(n/ log(h/d) n).
Proof. By the assumption of the lemma, T1 has at most O(n/ logh n) leaves. If

the size of the submesh associated with an internal node of T1 is m, then the size of
the separator at the node is at most O(m1−1/d) (by Theorem 3.1). Let H(m) denote
the maximum size of the multisector associated with a separator tree for a well-shaped
mesh of m nodes. We have

H(m) =

{
H(δm) +H((1− δ)m) +O(m1−1/d) if m > logh n,

0 if m ≤ logh n,

where (d+ 1)/(d+ 2) ≤ δ < 1 is the constant given in Theorem 3.1. The solution of

this recurrence, as shown in [32, 35], is O(n/ log(h/d) n).
The following lemma shows that after removing the multisector associated with

T1, the input mesh is decomposed into at most O(n/ log(h/d) n) connected components.
Lemma 4.5. Let G be a connected graph of n vertices whose degree is bounded by

∆. Let s be any integer in the range 0 < s < n/∆. Let S be any subset of s vertices of
G. Then the number of connected components of G after the removal of S is bounded
by (∆− 1)s+ 1.

Proof. We prove this lemma by an induction on s. Because G is connected and
the degree G is bounded by ∆, the removal of any vertex of G can induce at most ∆
connected components. Suppose the lemma is true for s− 1 for s > 1. Without loss
of generality, let S = {v1, . . . , vs}. The removal of {v1, . . . , vs−1} results in at most
(∆−1)(s−1)+1 connected components, say, G1, . . . , Gt, where t ≤ (∆−1)(s−1)+1.
Suppose vs is in Gi for an i in the range 1 ≤ i ≤ t. The removal of vs can induce
at most ∆ connected components from Gi. So the total number of components after
removing S is at most t+ ∆− 1 ≤ (∆− 1)(s− 1) + 1 + ∆− 1 ≤ (∆− 1)s+ 1. 2
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Because a well-shaped mesh has a constant degree and the cardinality of the
multisector of T1 is bounded by O(n/ log(h/d) n), after removing the multisector asso-

ciated with T1 the input mesh is decomposed into at most O(n/ log(h/d) n) connected
components.

Suppose we have an “oracle” (or a “little magic bird”) that always tells us the
multisector T1. Then we can apply a graph connectivity algorithm to identify all
components of the mesh induced by the multisector associated with T1. To identify
the submesh associated with the leaves of T1, we simply push one vertex from each
component down the tree T1 (by comparing its ball with T1). If we choose h > d,
then there are at most O(n/ logn) components, and thus we only need O(n) time.

Unfortunately, the problem of determining the multisector of a separator tree T1

may be as hard as the problem of identifying the submeshes of the leaves of T1!

4.5. Geometric simulation of graph connectivity. Recall from the previous
subsection that the removal of the multisector of T1 only induces O(n/ log(h/d) n)
connected components. Our idea is to use this fact to reduce the number of balls to
be pushed down T1 in the process of identifying the submeshes of the leaves of T1.
For each component, we will push only one of its balls down T1. We will then use a
graph connectivity algorithm to determine the connected component that contains this
vertex. To efficiently support this idea, we will call upon a geometric data structure
due to Chazelle [7].

We first introduce some geometric notation. Suppose we have m hyperplanes
H = {h1, . . . , hm} in IRd. Note that H divides IRd into a collection of convex cells,
called the arrangement of H. In general, there are O(md) cells. For example, a
set of m/2 horizontal lines and m/2 vertical lines in two dimensions divides IR2 into
(m/2 + 1)2 rectangular cells. Let A(H) denote the arrangement of H (see [9] for the
formal definition and properties of arrangements). In 1991, Chazelle2 [7] constructed
a data structure for O(logm) time point location in the arrangement of any set of m
hyperplanes.

Lemma 4.6 (see Chazelle [7]). Let d be a positive constant integer. Let H be
a set of m hyperplanes in IRd. There is a data structure of size O(md) that can be
computed in O(md) time to answer queries of the following type in O(logm) time:
given a pair of points p, q ∈ IRd, do p and q belong to the same cell in A(H)?

We will refer to the data structure in Lemma 4.6 as Chazelle’s structure of A(H).
We now show how to use Chazelle’s structure in our setting.

Let w be a leaf of T1. Let w1 = w, w2, w3,. . . ,wt = r be the path from w to the
root r of T1. Notice that t = O(logn). Let Si, for an i in the range 2 ≤ i ≤ t, be
the separator sphere associated with wi. Then a vertex v of the input mesh belongs
to the submesh associated with w if for each i in the range 1 ≤ i ≤ t− 1, v is in the
interior of Si+1 when wi is the left child of wi+1 and v is in the exterior of Si+1 when
wi is the right child of wi+1.

If we use a stereographic map to send the mesh onto the unit sphere in IRd+1,
then S2, . . . , St are mapped to some hyperplanes h2, . . . , ht in IRd+1 [30]. The interior
and exterior of Si are mapped to the two half spaces of hi, respectively. Therefore,
the stereographic image of the submesh associated with w is mapped to a cell of
the arrangement of h2, . . . , ht. We can use Chazelle’s structure for A(h1, . . . , ht) to
support queries of the following type: does a given vertex v of the input mesh belong
to the submesh associated with leaf w? The query takes O(log t) = O(log log n) time.

2 A randomized version has been given by Clarkson.
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Let Hw = {h1, . . . , ht}. Let Cw be Chazelle’s structure for A(Hw). Suppose we
have already found a vertex v in the submesh associated with w. Then we can simulate
a graph connectivity algorithm, a BFS-based algorithm of Tarjan [34], starting at v.
The graph connectivity algorithm builds a breadth first search tree rooted at v by
visiting v’s neighbors and its neighbors’ neighbors, etc. Suppose u is a neighbor of
v in the original mesh. Then u belongs to the submesh associated with w if the
stereographic images of u and v are contained in the same cell of A(Hw). We can test
this condition in O(log log n) time with the help of Chazelle’s structure for A(Hw). If
the connected component containing v has L vertices, we can determine its vertices
in O(L log log n) time.

Therefore, for each leaf w of T1, we build its Chazelle’s structure Cw. We use
O(|T1| logd+1 n) time for all leaves of T1. If we choose h ≥ d+1, then |T1| ≤ n/ logh n ≤
n/ logd+1 n. Hence, we use not more than linear time.

We now give our algorithm for determining the submeshes associated with the
leaves of T1.

Algorithm (submesh identification).
Input A well-shaped mesh M = (A, xyz) in IRd and a tree of spheres
T1.

1. Build Chazelle’s structure Cw for each leaf w of T1.
2. Label all nodes in M “unidentified.”
3. If there is an unidentified node v, then push the ball of v down
T1. If v is identified to be a member of the multisector associated
with T1, label it “multisector.” Return to the beginning of this
step. Otherwise, v reaches some leaf w of T1 and we label v
“identified with w.”

4. Simulate a graph connectivity algorithm (a BFS-based algo-
rithm [34]) starting from v to identify the component that con-
tains v. A neighbor of v in the mesh is not in the same com-
ponent of v iff its stereographic image does not belong to the
same cell in A(Hw). So the basic step of the connectivity al-
gorithm can be performed in O(log log n) time with the help of
Chazelle’s structure for A(Hw).

5. After identifying the component that contains v, return to the
beginning of Step 3.

It follows from Lemma 4.4 that if h > d + 1 then the procedure above takes
O(n log log n) time. Therefore, we have proved Theorem 4.1.

5. Applications. The separator tree decomposition of a graph has many appli-
cations, especially for the design of efficient divide-and-conquer algorithms. In this
section, we present two applications: (1) sparse matrix ordering and symbolic fac-
torization and (2) point location in a 3D well-shaped mesh. The latter is useful in
hierarchical methods [36].

5.1. Nested dissection. Nested dissection was first proposed by George [12] for
solving linear systems on 2D regular grids. Lipton, Rose, and Tarjan [26] extended the
method to general planar systems using a result of Lipton and Tarjan [27] that every
planar graph has

√
8n separators. The separator result of Miller et al. (Theorem 3.1)

can be used to extend the nested-dissection method to 3D linear systems [17]. As
shown in [31, 35], O(n1−1/d) is the best possible separator bound for d-dimensional
meshes. As a consequence of a result of Agrawal and Klein [1], the application of
Theorem 3.1 to nested-dissection generates a provably good elimination ordering for
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3D linear systems.

A nested-dissection ordering of a symmetric sparse matrix A can be found in
linear time given a separator tree for G(A). We simply traverse the separator tree in
postorder to generate the ordering. Thus, for sparse matrices whose graphs are well-
shaped meshes, our algorithm gives a randomized O(n log log n) time construction of
a provably good nested-dissection ordering. The amount of fill is bounded by O(n4/3)
and the elimination tree height is O(n2/3) for 3D meshes.

The symbolic factorization step is to predict the pattern of fill in the process
of numerical elimination. In doing so, it allocates the necessary amount of space to
accommodate fill in the numerical elimination. Gilbert, Ng, and Peyton [15] showed
that from a separator tree the elimination tree can be found in O(nα(n)) time, where
α(n) is the inverse of the Ackerman function. They also showed that with the elim-
ination tree one can count fill (and get all the vertex degrees in the filled graph) in
another O(nα(n)) time.

For proofs of these statements and many other fascinating facts about elimination
trees and filled graphs consult [14, 15, 16, 28, 29].

Therefore, we have the following corollary.

Corollary 5.1. If the graph of a symmetric sparse matrix A is a well-shaped
mesh, then a provably good nested-dissection ordering of A, its elimination tree, and
its fill information can be found in O(n log log n) time.

5.2. 3D point location. One of the key problems in hierarchical methods is
the problem of point location in a well-shaped mesh; that is, given a point p we
would like to quickly determine which element of the mesh contains it [6, 36]. Point
location is used for interpolation between two neighboring meshes in the multilevel
discretization.

The geometric mesh partitioner generates a sphere S that divides the elements F
of the input mesh (A, xyz) into three subsets FI , FE , FO such that max(|FI |, |FE |) ≤
δ|F | for some constant δ and |FO| = O(|F |1−1/d).

We observe that S can be used to prune the region for point location. If a point p is
in the interior of S, then there is no need to search p in FE ; hence a single comparison
with S eliminates a constant fraction of the region to be searched. Similarly, if p is in
the exterior of S, then there is no need to search p in FI .

We can pursue this idea recursively to design a data structure. We build a binary
tree (as in [32, 35]). The tree is constructed recursively. The root of the tree contains
the information of S, the top-level separating sphere. The root has two subtrees,
one recursively generated for FI ∪ FO and the other generated for FE ∪ FO. The
recursive construction stops when the number of elements is less than some constant.
Because each internal node uses a balanced sphere separator, the tree has O(logn)
levels. Also, because |FO| is sublinear in |F |, as shown in [35], the tree uses only
O(n) space. To locate a point p, we push the point down the tree. The query time
is clearly proportional to the height of the tree, which is O(logn). The same point
location structure works for any fixed dimension as long as the underlying mesh is
well shaped [32, 35].

If we sample the elements of the mesh in the step of testing quality, the same
construction of section 4 can be shown to have random O(n log log n) time complexity.
This improves the previous result by a factor of O(logn/ log log n).

Corollary 5.2. Given a well-shaped mesh M = (A, xyz) in IRd, we can con-
struct an O(logn) query time and linear space point location structure for M in
O(n log log n) time.
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6. Final remarks and open questions. The results of this paper are math-
ematical and algorithmic in nature. However, some techniques developed here may
have potential applications to practical implementations.

In this paper, we have shown that geometric sampling can be used to speed up
nested-dissection and graph partitioning algorithms. At a high level, a good sampling
technique allows us to solve the original problem by first solving a smaller problem and
then projecting the solution of the smaller problem back to the original problem. We
have proved that random sampling can be used to preserve the quality of the separator
decomposition for well-shaped meshes. In practice, we can combine the techniques of
this paper with some other commonly used quality enhancement heuristics.

One-level geometric sampling-based scheme.

1. Use the geometric sample of the input mesh to construct an
initial multiway partition of the mesh.

2. Project the multiway partition back to the original mesh to
obtain an initial nested-dissection ordering; the projection can
be performed by nested dissection (as presented in this paper)
or minimum degree on the submeshes associated with the leaves
of the initial separator tree.

3. Apply iterative techniques such as Kernighan–Lin [24] to en-
hance the quality of the partition and ordering.

We can recursively apply our sampling technique to obtain a geometric sampling-
based multilevel scheme for nested-dissection ordering and multiway partitioning.

Geometric sampling-based multilevel scheme.
Input A well-shaped mesh M = (A, xyz) in IRd and its nearest
neighborhood system Γ.

1. Choose a sequence of random sample Γ1, . . . ,Γt from Γ such
that (1) |Γ1| = Θ(n1/d logn), (2) |Γi| = 2|Γi−1| for each i in the
range 2 ≤ i ≤ t, and (3) |Γt| = n/2. Note that t = O(logn).

2. Construct the initial separator tree and multiway partition for
Γ1.

3. For i = 1 to t−1, project the separator tree from Γi to Γi+1 and
apply Kernighan–Lin or other heuristics to enhance the quality
of the partition.

4. Project the separator tree from Γt to M and apply Kernighan–
Lin or other heuristics to enhance the quality of the partition
and ordering.

The choice of Θ(n1/d logn) is justified by Lemma 4.2. See the paragraph right
after the proof of Lemma 4.2. Associated with each Γi there is a graph, called the
overlap graph, which is implicitly defined in Theorem 2.2. Let α be the constant given
in Theorem 2.2. The α overlap graph Gi of Γi defines an edge between two balls Bu
and Bv in Γi if Bu intersects α · Bv and α · Bu intersects Bv. We can view Gi as a
coarsened graph of M as well as a coarsened graph of Gi+1. In other words, we use
geometric sampling to perform graph coarsening in the multilevel partitioning and
ordering schemes.

Our proofs in this paper (beginning with Lemma 4.2) can be easily extended
to show that our multilevel scheme always generates an O(n1−1/d)-separator tree de-
composition and hence gives a provably good nested-dissection ordering and multiway
partition for well-shaped meshes in d dimensions. See Remark 4.3.

Corollary 6.1. Given a well-shaped mesh M = (A, xyz) in IRd, with high prob-
ability, the geometric sampling-based multilevel scheme finds an O(n1−1/d)-separator
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tree decomposition of M .
It is an interesting project to implement and compare this geometric sampling-

based multilevel scheme with some other multilevel schemes that have been pro-
posed and implemented by Barnard and Simon [3], Hendrickson and Leland [21],
and Karypis and Kumar [23]. These three multilevel schemes (especially the one by
Karypis and Kumar [23]) have produced very good experimental results, although it is
still open whether mathematically they always provide provably good partitions and
orderings. It is also an interesting research direction to understand the connection
between graph sampling and graph coarsening. Graph coarsening is a key problem
for multilevel computations.

Our improved algorithm can be parallelized optimally. Our construction, in con-
junction with the parallel algorithm of Frieze, Miller, and Teng [11], yields a parallel
algorithm that runs in parallel O(logn) time on n log log n/ logn processors.

Recently, Klein et al. [25] presented a linear time algorithm for the single-source
shortest path problem for planar graphs. They used the separator tree decomposi-
tion algorithm of Goodrich [19]. Our result in conjunction with theirs [25] yields a
randomized O(n log log n) time algorithm for a large class of geometric graphs such
as well-shaped meshes and nearest neighbor graphs in any fixed dimension.

Corollary 6.2. The single-source shortest path problem for well-shaped meshes
and nearest neighbor graphs can be solved in random O(n log log n) time.

We conclude this paper with some algorithmic open questions.
1. Can we construct an O(n1−1/d)-separator tree in linear time?
2. Can we construct an O(n1−1/d)-separator tree in deterministic o(n logn)

time?
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Abstract. Lanczos vectors computed in finite precision arithmetic by the three-term recur-
rence tend to lose their mutual biorthogonality. One either accepts this loss and takes more steps
or re-biorthogonalizes the Lanczos vectors at each step. For the symmetric case, there is a compro-
mise approach. This compromise, known as maintaining semiorthogonality, minimizes the cost of
reorthogonalization. This paper extends the compromise to the two-sided Lanczos algorithm and
justifies the new algorithm.

The compromise is called maintaining semiduality. An advantage of maintaining semiduality is
that the computed tridiagonal is a perturbation of a matrix that is exactly similar to the appropriate
projection of the given matrix onto the computed subspaces. Another benefit is that the simple
two-sided Gram–Schmidt procedure is a viable way to correct for loss of duality.

A numerical experiment is included in which our Lanczos code is significantly more efficient than
Arnoldi’s method.

Key words. Lanczos algorithm, breakdown, sparse eigenvalue problems, biorthogonalization
methods
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1. Introduction. For non-Hermitian matrices approximate eigenvalues from the
(two-sided) Lanczos process are much more accurate (for the same elapsed time and
starting vectors) than those from the Arnoldi method. Consequently, it is important
to implement the Lanczos algorithm as well as possible. This paper summarizes the
analysis in [7] and claims to show the best (or nearly best) way to do it.

This article shows that it is not necessary to re-biorthogonalize the Lanczos vec-
tors at every step to approximate the behavior of the algorithm in exact arithmetic.
A property of the computed Lanczos vectors called semiduality may be imposed (de-
fined in section 3) and suffices for keeping close to the exact algorithm at minimal
cost. Semiduality is less expensive to maintain than duality, yet equally effective.
Having stated our contribution, we resume the introduction.

Krylov subspace methods determine a useful basis for the Krylov subspace

Ki(q,B) = span(q,Bq, . . . , Bi−1q).

The eigenvalues of certain projections of B onto Ki(q,B) serve as approximations to
eigenvalues of B. The eigenvalues of projections of B are often called Ritz values.
They are not Raleigh–Ritz approximations, except in the Hermitian case, but we do
not have a better name for them.
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The most popular Krylov subspace method for non-Hermitian matrices is the
Arnoldi algorithm [27]. An orthonormal basis ofKi(q,B) is computed. The orthogonal
projection of B onto Ki(q,B) is represented by an i× i Hessenberg matrix.

The non-Hermitian or two-sided Lanczos algorithm is another Krylov subspace
method. Given two starting vectors p∗ = p∗1 and q = q1, the two-sided Lanczos
algorithm simultaneously computes a basis for the right Krylov subspace Ki(q,B)
and a dual basis for the left Krylov subspace

Ki(p∗, B) = span(p∗, . . . , p∗Bi−1).

The Lanczos algorithm computes the partial reduction of B to tridiagonal form.

In exact arithmetic the Hermitian Lanczos algorithm determines a matrix of or-
thogonal vectors Q, while the two-sided Lanczos algorithm determines two matrices
P and Q such that P ∗Q is diagonal. This relation among the Lanczos vectors is often
called biorthogonality [16].

Lanczos vectors computed in finite precision arithmetic by the three-term recur-
rence tend to lose their mutual biorthogonality. Two ways to compensate for this
phenomenon are known: Lanczos with full re-biorthogonalization (LanFRB) [4] and
an acceptance of the loss of biorthogonality which forces more steps to be taken [6, 10].
For the Hermitian case, a compromise is known [11, 19, 20, 28, 29]. This compromise,
known as maintaining semiorthogonality, minimizes the number of reorthogonaliza-
tions. This article extends the compromise to the two-sided Lanczos algorithm and
justifies the new algorithm.

There are known cases when the simple recurrence takes extreme amounts of time
[10]. On the other hand, LanFRB is expensive for a long run. The compromise we
present in this article is better than either of the two extremes.

Better approximations to eigenvalues of B tend to be computed from a single
Krylov subspace of dimension 100 than from four Krylov subspaces of dimension
25. To take advantage of this property, we want to use large Krylov subspaces.
The amount of data transfer (from memory to the computational unit) required in
Lanczos with full re-biorthogonalization when n is large is significant. In this respect,
the compromise is at least twice as fast as maintaining full biorthogonality. Usually
it is much faster. See section 6.2.

The state-of-the-art in Lanczos methods for eigenvalue problems is to select from
one of four algorithms. For linear solvers there are many more options: two-term
versus three-term, CGS, BiCGStab1/2/e, QMR, TFQRM, and so on. But for eigen-
value problems the user first selects either the three-term recurrence or LanFRB. This
choice is a trade-off between the low cost per step of the three-term recurrence and
the limited number of Lanczos steps taken by LanFRB. Then the user selects an im-
plementation with or without look-ahead [10, 22, 21]. Look-ahead enhances stability
while increasing cost modestly. This article does not consider implementations with
the look-ahead feature.

The word reorthogonalization in the Hermitian case is ugly enough, but the anal-
ogous term re-biorthogonalization goes too far (nine syllables). So we seek a term
with fewer syllables. In functional analysis row vectors represent linear functionals
and the property p∗i qj= δij (Kronecker’s delta) says that the ordered sets {p∗1, . . . , p∗j}
and {q1, . . . , qj} are a pair of dual bases for Ki(q,B) and Ki(p∗, B). So we use the
term dual instead of biorthogonal. Consequently, we speak of maintaining duality,
local duality, and semiduality (introduced in section 3).
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1.1. Summary. Our results extend earlier work done in the Hermitian case [28,
29], but new issues arise in the non-Hermitian case. In exact arithmetic the Lanczos
algorithm determines a tridiagonal–diagonal pencil (T,Ω) such that Ω−1T is similar
to the projection of B onto the spans of the Krylov subspaces. See Definition 2.1.
The diagonal elements of Ω are defined to be the inner products of consecutive pairs
of normalized Lanczos vectors. In exact arithmetic the algorithm breaks down if
Ω = diag(ωi) is singular. In finite precision arithmetic breakdowns are rare, but near
breakdowns are not. It is tempting to require that |ωi| ≥

√
ε, where ε is the round-off

unit, but the rather lengthy analysis of [7] shows that the algorithm is still viable
provided that |ωj | ≥ (n+ 10j)ε. Below that level the accuracy of the Ritz values does
not generally improve if the recurrence continues.

The remainder of this work is organized as follows. Section 2 contains a discus-
sion of what is known about solving eigenvalue problems using the two-sided Lanczos
process. The basic properties of the Lanczos algorithm are reviewed, the implemen-
tation of the three-term recurrence is outlined, convergence theory is discussed, and
our practical experience with implementations of the three-term recurrence is sum-
marized.

With that done, we move on to the tricky issue of when to “re-biorthogonalize”
or correct the Lanczos vectors to restore duality. The candidate Lanczos vectors are
computed by the three-term recurrence, but at certain steps the loss of duality of the
candidate Lanczos vectors to the previous Lanczos vectors is “too large,” and then we
correct them to obtain the final Lanczos vectors. To obtain a competitive algorithm,
correction steps are implemented just like a step of LanFRB. Since the duality of the
Lanczos vectors is not maintained to full precision, this process must be justified. The
viability of the two sided Gram–Schmidt process is established in section 3.

In section 4 the properties of the Lanczos algorithm with correction are developed.
In section 4.4 we show how to monitor the loss of duality among the computed Lanczos
vectors without significantly increasing the cost of the algorithm. For efficiency the
correction steps must be invoked as rarely as possible consistent with maintaining
accuracy in the approximations.

In section 5 we prove that an added advantage of maintaining semiduality is that
the computed pencil (T,Ω) is a perturbation of a pencil that is exactly equivalent
to the projection of the operator onto the computed subspaces. The norm of the
perturbation is as small as the data warrants. Section 6 illustrates some of our results
with some challenging numerical examples.

2. Two-sided Lanczos. The two-sided Lanczos algorithm is based on the par-
tial reduction of a non-Hermitian matrix B to tridiagonal form. The Lanczos algo-
rithm starts from an arbitrary pair of vectors p∗ = p∗1 and q = q1. After j successful
steps, the matrices P ∗j and Qj are produced. The rows of P ∗j span the Krylov sub-

space Kj(p∗, B) and the columns of Qj span Kj(q,B). The matrix Tj = P ∗j BQj is
tridiagonal; Ωj = P ∗j Qj is diagonal. In finite precision arithmetic the latter will no
longer be true, and we will set Ωj =diag(P ∗j Qj).

Certain implementations scale the Lanczos vectors so that Ω = I [1, 37], and
others maintain the unit length of all the Lanczos vectors [4, 10, 22]. Our analysis
of the Lanczos algorithm requires that the unit length of all the Lanczos vectors be
maintained. Normalizing the Lanczos vectors is necessary in this work because for
the resulting more complicated algorithm it is possible to establish certain properties
of the quantities computed in finite precision arithmetic which are required to justify
the Lanczos algorithm with correction (see [7]); this would be impossible based on less
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precise models such as [1]. A useful result of our work is that Ω can become nearly
singular, cond(Ω) = O(1/ε), without spoiling the algorithm.

The eigenvalues of an oblique projection of B are used to approximate the eigen-
values of B.

Definition 2.1. Let Qj = [q1, . . . , qj ] and P ∗j = [p1, . . . , pj ]
∗ have full rank. If

P ∗j Qj is invertible then

Πj = QjΩ
−1
j P ∗j

is a projector (Π2
j = Πj). It is not orthogonal (Π∗j 6= Πj) in general. We say that Πj

is an oblique projector onto Range(Qj). It is also an oblique projector onto the dual
space {u∗Πj : u ∈ Cj} = Range(Pj)

∗. Thus ΠjBΠj is a projection of B onto the pair
Range(Qj) and Range(Pj)

∗.
Assuming that Qn and P ∗n exist (that is, the algorithm does not break down), the

representation of B with respect to the basis {q1, . . . , qn} is Q−1
n BQn and we have

Πn = I, which implies that Q−1
n = Ω−1

n P ∗n and Q−1
n BQn = Ω−1

n Tn. The tridiago-
nal Ω−1

j Tj represents ΠjBΠj in the dual bases {q1, . . . , qj} and {ω−1
1 p∗1, . . . , ω

−1
j p∗j}.

Similarly, the representation corresponding to P ∗j and QjΩ
−1
j is TjΩ

−1
j .

2.1. The three-term recurrences. The Lanczos vectors satisfy a pair of three-
term recurrences

βi+1p
∗
i+1 = p∗iB −

αi
ωi
p∗i −

γiωi
ωi−1

p∗i−1(2.1)

and

qi+1γi+1 = Bqi − qi
αi
ωi
− qi−1

βiωi
ωi−1

.(2.2)

The coefficients αi and ωi are chosen so that the right-hand side of (2.1) annihilates
q1, . . . , qi and the right-hand side of (2.2) is annihilated by p∗1, . . . , p

∗
i . The βs and γs

come from the normalizing convention. The recurrence stops if βj+1ωj+1γj+1 = 0.
With

Tj := tridiag

 β2ω2, · · · , βjωj
α1, · · · , αj

γ2ω2, · · · , γjωj

 ,

equations (2.1) and (2.2) may be written in compact form:

P ∗j B − TjΩ−1
j P ∗j = ejβj+1p

∗
j+1(2.3)

and

BQj −QjΩ−1
j Tj = qj+1γj+1e

∗
j ,(2.4)

where ej = (0, . . . , 0, 1)∗.

2.2. Ritz triplet convergence. The eigenvalues of B are approximated using

the eigenvalues of the pair (Tj ,Ωj) for increasing j. Given an eigentriplet (u
(j)∗
i , θ

(j)
i , v

(j)
i ),

u
(j)∗
i Tj = θ

(j)
i u

(j)∗
i Ωj and Tjv

(j)
i = Ωjv

(j)
i θ

(j)
i ,
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form the Ritz triplet (x
(j)∗
i , θ

(j)
i , y

(j)
i ) where

x
(j)∗
i = u

(j)∗
i P ∗j and y

(j)
i = Qjv

(j)
i .(2.5)

Ritz triplets approximate eigentriplets of B. In discussions of the analysis of the
quantities computed after j Lanczos steps, we omit the superscript (j) for clarity.

The expression x∗i×(2.4)×vi reduces to

x∗iByi = θix
∗
i yi.

In other words, θi is the generalized Rayleigh quotient corresponding to x∗i = u∗iP
∗
j

and yi = Qjvi. See section 11 of [18] for a discussion of generalized Rayleigh quotients.
We now list what is known about the approximations derived from the first j

steps of the algorithm.
Multiply (2.4) by vi from the right and substitute (2.5) to obtain

Byi − yiθi = qj+1γj+1vi(j),(2.6)

where vi(j) is the jth component of vi = v
(j)
i . The remarkable property of (2.6) is that

the right-hand side can be computed without forming yi. Even in exact arithmetic
‖yi‖2 can be smaller than ‖vi‖2. Thus a small value of |vi(j)| is a necessary though
not sufficient indication that θi is close to an eigenvalue of B.

The perturbation theory for the eigenvalue problem is more complicated than in
the Hermitian case. The Lanczos algorithm eventually yields approximate eigentriples
(x̂∗i , θi, ŷi), where ‖x̂∗i ‖2 = 1 = ‖ŷi‖2 such that the corresponding residuals ‖x̂∗(B −
θI)‖2 and ‖(B − θI)ŷ‖2 are small. Such triples exactly solve a nearby eigenvalue
problem [14]. The good thing is that the eigenvalues of Ω−1

j Tj for which the residual

norms are small persist as approximate eigenvalues of Ω−1
k Tk for k > j [14].

The residual norm ‖(B − θiI)ŷi‖2 is a pessimistic estimate of the accuracy of
θi and a good estimate of the accuracy of ŷi. The accuracy of generalized Rayleigh
quotients is proportional to the product of the residual norms. To be precise, if
(x̂∗i , θi, ŷi) approximates an eigentriple of B that is well separated (see Theorem 2.1
in section 5 of [31]), then the accuracy of θi is proportional to

‖x̂∗i (B − θiI)‖2‖(B − θiI)ŷi‖2.

This product divided by

gap(θi, Tj) = min
k 6=i
|θi − θk|

appears to be a realistic backward error estimate for θi [3].
One-sided algorithms, and in particular the Arnoldi algorithm, do not enjoy this

property.
To factor the exact shrinkage ‖x‖2/‖u‖2 and ‖y‖2/‖v‖2 into the error estimates

to obtain asymptotic error bounds, one must first compute the Ritz triplets. For
an n × n real operator B, after j Lanczos steps the number of real floating point
operations (flops) required to compute the matrices of left and right eigenvectors for
m Ritz values is 8nmj. This is often more flops than are required for the Lanczos
run.

Fortunately, a realistic lower bound on the shrinkage is available if the duality of
the computed Lanczos vectors is maintained. In this case y = Qjv satisfies P ∗j y =
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Ωjv. Also, since the Lanczos vectors are normalized to have unit Euclidean length,
‖P ∗j ‖2 ≤

√
j. Combine these two equations to find

‖y‖2 ≥
‖P ∗j ‖2√

j
‖y‖2 ≥

‖P ∗j y‖2√
j

=
‖Ωjv‖2√

j
.

Similarly, if x∗ = u∗P ∗j , then ‖x∗‖2 ≥ ‖u∗Ωj‖2/
√
j.

2.3. Practical experience. Without careful observation, there is no science.
This section discusses surprising behavior that has been consistently observed in large-
scale scientific computations using the non-Hermitian Lanczos algorithm [10]. In the
case p1 = q1,

• the sequence {|ωi|}i>0 tends to be decreasing, sometimes precipitously,
• even when |ωj | has declined to nearly 10nε, approximate eigenvalues, eigen-

vectors, and solutions to linear systems continue to converge,
• even when |ωj | has declined to nearly 10nε, (Tj ,Ωj) is almost always graded

so that the growth factor

Φj = max(‖TjΩ−1
j ‖∞, ‖Ω−1

j Tj‖1)/‖B‖2(2.7)

is of order unity, say less than 10.
As usual, ε denotes the machine precision. The scalar Φj measures the relative

size of the intermediate quantities introduced during the Lanczos algorithm. It is
essential to distinguish

‖Ω−1
j ‖2 = 1/min

i
|ωi|

from Φj . The quantity ‖Ω−1
j ‖2 can be large, nearly ε−1, without necessarily affect-

ing the accuracy of the eigenvalues and eigenvectors. The error in computing the
eigenvalues of Ω−1

j Tj is, among other things, proportional to ‖Ω−1
j Tj‖1. But in the

rare case that Φj is large, the Lanczos algorithm is unstable due to the introduction
of large intermediate quantities. The approximate eigenvalues suffer perturbations
like εΦj‖B‖2. In this case, look-ahead Lanczos is recommended [10, 13, 21]. When
Φj = O(1), we expect our approximations to be as accurate as the data warrants.

3. The viability of the two-sided Gram–Schmidt process. This section
studies the central problem of how to maintain adequate duality between the two
sequences of Lanczos vectors {p∗1, . . . , p∗j} and {q1, . . . , qj} at a reasonable expense. It
will help to recall the corresponding technical problem in the symmetric case when
pi = qi, i = 1, . . . , j. See [23, 20, 28, 29]. Suppose that the three-term recurrence,
in finite precision arithmetic, returns a unit vector q′j+1 that is not orthogonal to
the previous qi; i.e., Q∗jq

′
j+1 is not negligible. The Gram–Schmidt process replaces

q′j+1 by a normalized version of (Ij − QjQ∗j )q′j+1. This procedure is appropriate if
Q∗jQj = Ij , but can actually make things worse if Qj ’s columns are not orthogonal.
The interesting question here is how much ‖Ij − Q∗jQj‖2 can be permitted to grow
and yet guarantee that (Ij −QjQ∗j )q′j+1 is orthogonal to range(Qj) to within working
accuracy.

Our problem is similar but more complicated. The formal two-sided Gram–
Schmidt operator is Ij−QjΩ−1

j P ∗j , where Ωj = diag(P ∗j Qj). How large can we permit

‖Ij − P ∗j QjΩ−1
j ‖2 to grow and yet get what we want by applying Ij − QjΩ−1

j P ∗j to
(p′j+1)∗ and q′j+1?
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The answer in the symmetric case is that semiorthogonality defined in equa-
tion (3.1) suffices: if

‖Q∗i qi+1‖1 ≤
√
ε(3.1)

holds for i = 1, . . . , j − 1 and if ‖Q∗jq′j+1‖1 ≤
√
ε then we may take qj+1 = q′j+1.

We shall give a similar condition in the two-sided case–semiduality suffices. How-
ever, the definition of semiduality is not as simple as in the symmetric case, and we
postpone it until more notation has been developed. An added benefit of maintain-
ing semiduality is that the computed tridiagonal–diagonal pair of Lanczos matrices
(Tj ,Ωj) is equivalent, to within round-off error, to the true “projection” of B, namely,
(P ∗j BQj , P

∗
j Qj). More precisely, we will show that the no-breakdown condition

min
i≤j
|ωi| ≥ (n+ 10j)ε(3.2)

and the semiduality condition

max
i≤j−1

(‖(p′i+1)∗Qi|Ωi|−1/2‖∞, ‖|Ωi|−1/2P ∗i q
′
i+1‖1) ≤

√
ε(3.3)

suffice to ensure the preservation of (Tj ,Ωj) described in the previous sentence (see
Theorem 5.2). It is necessary to strengthen condition (3.3) somewhat to guarantee
the viability of two-sided Gram–Schmidt (GS) when (3.2) is nearly an equality. Note
that in the symmetric case Ωj = Ij and (3.3) reduces to (3.1) as claimed.

The superscript ′ in p′i+1 and q′i+1 indicates that these are the candidate Lanczos
vectors computed by the three-term recurrence, but not necessarily the actual i+ 1th
Lanczos vectors. The vectors p′i+1 and q′i+1 have been normalized.

3.1. Analysis of GS. We are going to derive a sequence of matrices {Mj}j>0

whose norm is the “right” factor by which duality is enhanced in GS. Recall from
section 2.1 that at the end of step j the Lanczos algorithm has computed dual matrices
of Lanczos vectors P ∗j and Qj , candidate Lanczos vectors (p′j+1)∗ and q′j+1, and ωj+1

denotes the computed value of the inner product (p′j+1)∗q′j+1. We assume ωj+1 6= 0.
Due to the loss of duality, P ∗j Qj 6= Ωj ≡ diagP ∗j Qj and off-diagonal entries of P ∗j Qj
could be as large as 1 if the three-term recurrence is not modified.

Suppose that ‖P ∗j q′j+1‖2 and ‖(p′j+1)∗Qj‖2 are too big (criterion to be discussed
later). GS yields new candidates (p̆j+1)∗ and q̆j+1 satisfying

(p̆j+1)∗ = (p′j+1)∗(Ij −QjΩ−1
j P ∗j )

and

q̆j+1 = (Ij −QjΩ−1
j P ∗j )q′j+1.

Now we examine the new duality situation:

(p̆j+1)∗Qj = (p′j+1)∗(Ij −QjΩ−1
j P ∗j )Qj

= (p′j+1)∗Qj(Ij − Ω−1
j P ∗j Qj)

and

P ∗j q̆j+1 = P ∗j (Ij −QjΩ−1
j P ∗j )q′j+1

= (Ij − P ∗j QjΩ−1
j )P ∗j q

′
j+1.
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The factor Ω−1
j in the middle is alarming because we expect some ωi to become quite

small and we fear that off-diagonal entries may rise too close to 1. This feature is
absent in the symmetric case. However, the situation is better than it appears.

We can obtain a more balanced expression for the duality of the new vectors
(p̆j+1)∗ and q̆j+1 by writing

Ωj = |Ωj |1/2sign(Ωj)|Ωj |1/2.
Then modified expressions for the duality, namely,

p̆∗j+1Qj |Ωj |−1/2 = p
′∗
j+1Qj(Ij − Ω−1

j P ∗j Qj)|Ωj |−1/2

(1) = p
′∗
j+1Qj |Ωj |−1/2sign(Ω∗j )(sign(Ωj)− |Ωj |−1/2P ∗j Qj |Ωj |−1/2)

and

|Ωj |−1/2P ∗j q̆j+1

= (sign(Ωj)− |Ωj |−1/2P ∗j Qj |Ωj |−1/2)sign(Ω∗j )|Ωj |−1/2P ∗j q
′
j+1,(3.4)

show that the balanced “reducing factor” after applying GS is ‖Mj‖, where

Mj = sign(Ωj)− |Ωj |−1/2P ∗j Qj |Ωj |−1/2.(3.5)

We get no benefit from the cost of GS unless ‖Mj‖ is much less than 1.
We choose to measure duality using

‖|Ωj |−1/2P ∗j qj+1‖1 and ‖p∗j+1Qj |Ωj |−1/2‖∞
and define the effectiveness of GS using the balanced connection matrix Mj . Note
that ‖x‖1 = ‖x∗‖∞.

To illustrate the advantage of a balanced connection matrix, we applied LanFRB
to the matrix B that arises from the finite difference discretization (five-point stencil)
of the partial differential operator

L[u](x) = −∆u+ 50∇·(ux)− 125u

on a regular 31×31 grid over the unit square with zero boundary values [35]. Though
the eigenvalue problem for B is ill posed (because the coefficients 50 and 125 are
enormous compared to the grid size), this example is relevant because breakdown
occurs at step 56, and at the previous step

|ω55| ≈ 1e− 13 and ‖Ω−1
55 T55‖1 ≈ 11‖B‖1.

Figures 1 and 2 display the absolute values of the entries of the unbalanced connection
matrix I55−Ω−1

55 P
∗
55Q55 and the balanced connection matrix M55 on a semilog scale.

Though ‖I55 − Ω−1
55 P

∗
55Q55‖1 ≈ 1e − 4, the norm of the balanced operator is much

less, ‖M55‖1 ≈ 2e− 11.
Recall that (p̆j+1)∗ and q̆j+1 are obtained from (p′j+1)∗ and q′j+1 by GS. If

‖(p′j+1)∗Qj |Ωj |−1/2‖∞ ≤
ε

‖Mj‖∞
,(3.6)

then, by (3.4), one trivially has

‖(p̆j+1)∗Qj |Ωj |−1/2‖∞ ≤ ε.
Similarly, if

‖|Ωj |−1/2P ∗j q
′
j+1‖1 ≤

ε

‖Mj‖1
,(3.7)
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Fig. 1. I55 − Ω−1
55 P

∗
55Q55 (unbalanced op.); ‖I55 − Ω−1

55 P
∗
55Q55‖1 ≈ 1e− 4.

then, by (3.4),

‖|Ωj |−1/2P ∗j q̆j+1‖1 ≤ ε.

The sequence

(max(‖(p′j+1)∗Qj |Ωj |−1/2‖∞, ‖|Ωj |−1/2P ∗j q
′
j+1‖1))j≥1(3.8)

tends to increase with j gradually until the last term is too big. At that step a
correction step is made (that is, q′j+1 → q̆j+1 and p′j+1 → p̆j+1). This change reduces
the latest term in (3.8) to ε. Hence semilog graphs of (3.8) look sawtoothed.

We use this perspective on GS to find the “right” definition of semiduality. For
overall efficiency we want to minimize the total number of corrections and particularly
avoid unnecessary corrections near the end of a Lanczos run. So we seek the weakest
conditions that give adequate levels of duality. To this end we explicitly ensure that

max(‖(p′j+1)∗Qj |Ωj |−1/2‖∞‖Mj‖∞, ‖Mj‖1‖|Ωj |−1/2P ∗j q
′
j+1‖1) ≤ ε.(3.9)

Condition (3.9) takes no account of ωj+1, and if |ωj+1| is too small it is essential
not to accept (p′j+1)∗ and q′j+1. So, in addition to (3.9) we must take account of
possible growth in ‖Mj+1‖1. To analyze this, note that the nonzero part of the
rightmost column of Mj+1 is

Ω
−1/2
j P ∗j q

′
j+1|ωj+1|−1/2.

Since

‖Ω−1/2
j P ∗j q

′
j+1|ωj+1|−1/2‖1 ≤ ‖Mj+1‖1,
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Fig. 2. M55 (balanced op.); ‖M55‖1 ≈ 2e− 11.

a necessary condition for (3.9) to hold at step j + 2 without correction is that

‖|Ωj |−1/2P ∗j q
′
j+1‖1

|ωj+1|1/2
‖|Ωj+1|−1/2P ∗j+1q

′
j+2‖1(3.10)

≤ ‖Mj+1‖1‖|Ωj+1|−1/2P ∗j+1q
′
j+2‖1 ≤ ε.

The square root of (3.10) yields

(‖|Ωj |−1/2P ∗j q
′
j+1‖1‖|Ωj+1|−1/2P ∗j+1q

′
j+2‖1)1/2 ≤ ε1/2|ωj+1|1/4,

and this is guaranteed by

max(‖|Ωj |−1/2P ∗j q
′
j+1‖1, ‖|Ωj+1|−1/2P ∗j+1q

′
j+2‖1) ≤ ε1/2|ωj+1|1/4.(3.11)

A similar argument applied to (p∗j+1)′ yields our definition of semiduality.
Definition 3.1. Semiduality holds at step j + 1 if for i ≤ j,

max(‖p′∗i+1Qi|Ωi|−1/2‖∞, ‖|Ωi|−1/2P ∗i q
′
i+1‖1) ≤ ε1/2 |ωi+1|1/4.

4. The Lanczos algorithm with correction. In this section, we present a
practical and efficient implementation of the Lanczos algorithm with correction (Lan-
Cor hereafter). Several implementation details are addressed and relevant properties
of the computed quantities are established. Extensive work from [7] on how to imple-
ment the Lanczos recurrences is summarized in section 4.1. In section 4.2 we discuss
how to correct the duality loss and what effect this has on the computed quanti-
ties. An efficient implementation of correction steps called retroactive correction is
discussed and justified in section 4.3. In section 4.4 we will show how to compute
(p′j+1)∗Qj and P ∗j q

′
j+1 without accessing P ∗j and Qj and using only O(j) floating

point operations and storage per step. LanCor is given in section 4.5.
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4.1. Implementing the three-term recurrences. A prerequisite to the anal-
yses of later sections is an understanding of how nearly dual consecutive pairs of left
and right Lanczos vectors can be. We say that local duality holds at step j if

max
1<i≤j

(|p∗i qi−1|, |p∗i−1qi|) ≤ 4ε.(4.1)

In [7] it was proved that local duality is maintained to within a (theoretically nec-
essary but generally unrealistic) factor of n by the implementation of the three-term
recurrences below called LanLD. LanLD stands for the Lanczos algorithm maintaining
local duality.
Algorithm (LanLD).

Start: p1 = p/‖p‖2, q1 = q/‖q‖2, ω0 = 1, β1 = γ1 = 0, ω1 = p∗1q1.
Iterate: For i=1,MaxStep

1. r∗i = p∗iB − γiωi
ωi−1

p∗i−1, si = Bqi − qi−1
βiωi
ωi−1

2. αi ∈ {p∗i si, r∗i qi}
3. r∗i := r∗i − αi

ωi
p∗i , si := si − qi αiωi

4. αli = r∗i qi, αri = p∗i si /∗ these are small corrections to αi ∗/
5. r∗i := r∗i −

αli
ωi
p∗i , si := si − qi α

r
i

ωi
6. βi+1 = ‖r∗i ‖2, γi+1 = ‖si‖2
7. Check for invariant subspace. See equations (4.3) and (4.4).
8. p∗i+1 = r∗i /βi+1, qi+1 = si/γi+1

9. ωi+1 = p∗i+1qi+1

10. Check for breakdown: |ωi+1| < (n+ 10(i+ 1))ε
11. Check for convergence periodically (see section 2.2)

Remark 1. The meaning of step 2 is that αi can be assigned either value p∗i si or
r∗i qi; it does not matter which.

Remark 2. Local duality is maintained by steps 4 and 5.
The properties of the quantities computed by LanLD are summarized as follows.

We assume that the no-breakdown condition holds,

min
1≤i≤j

|ωi| ≥ (n+ 10j)ε,(4.2)

and that the no-invariant subspace conditions hold: for 1 ≤ i ≤ j,

βi+1 ≥ max(
√
ε(Φi + 1 + ψ)‖B‖2, |αli/ωi|)(4.3)

and

γi+1 ≥ max(
√
ε(Φi + 1 + ψ)‖B‖2, |αri /ωi|).(4.4)

Here Φi is the growth factor defined by (2.7), and the constant ψ accounts for the
rounding error introduced when the operator B is applied.

In this section, we add two more error bounds to our model of the computed
quantities which are proved to be realistic in [7]. First, the Lanczos vectors satisfy
the perturbed three-term recurrences

βj+1p
∗
j+1 = p∗jB −

αj + αlj
ωj

p∗j −
γjωj
ωj−1

p∗j−1 − f∗j(4.5)

and

qj+1γj+1 = Bqj − qj
αj + αrj
ωj

− qj−1
βjωj
ωj−1

− gj ,(4.6)
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where the matrices Fj = [f1, . . . , fj ] and Gj = [g1, . . . , gj ] are such that

max(‖Fj‖2, ‖Gj‖2) ≤ ε(Φj + 1)‖B‖2.(4.7)

Second, the tiny refinements to the trailing bits of each αi to maintain local duality,

Dl
j = diag(αli)

j
i=1 and Dr

j = diag(αri )
j
i=1,(4.8)

satisfy

max(‖Dl
j‖2, ‖Dr

j‖2) ≤ ε(Φj + 1)‖B‖2.(4.9)

4.2. Properties of the computed quantities. Recall from section 3 that the
loss of duality of the candidate Lanczos vectors to the previous Lanczos vectors is
corrected using a version of the GS process. Our model of the properties of the
quantities computed by LanCor is obtained by amending the model for LanLD to
account for correction steps.

To correct the loss of duality of the (i + 1)st Lanczos vectors to the previous
Lanczos vectors at the end of a Lanczos step we first compute

x∗i = (p′i+1)∗Qi−1, yi = P ∗i−1q
′

i+1.(4.10)

Next we “re-biorthogonalize” or correct the candidate Lanczos vectors:

(p̆j+1)∗ = (p′j+1)∗ − x∗iΩ−1
i−1P

∗
i−1(4.11)

and

q̆j+1 = q′j+1 −Qi−1Ω−1
i−1yi.(4.12)

Let Ij denote the set of all indices i up to and including j at which correction
steps are taken, let ei denote the ith column of the j × j identity matrix, and let

Λj = Dl
j +

∑
i∈Ij

βi+1ei(x
∗
i , 0), Υj = Dr

j +
∑
i∈Ij

[
yi
0

]
e∗i γi+1.(4.13)

Recall that Dl
j and Dr

j are defined in equation (4.8).
For the purpose of illustration, T40 + Υ40 corresponding to a model problem

discussed in [25] is displayed on a semilog scale in Figure 3.
The governing equations for LanCor are

P ∗j B = (Tj + Λj)Ω
−1
j P ∗j + ejβj+1p

∗
j+1 + F ∗j(4.14)

and

BQj = QjΩ
−1
j (Tj + Υj) + qj+1γj+1e

∗
j +Gj .(4.15)

The matrices Υj (for upper) and Λj (for lower) are upper and lower triangular matrices
of spikes, one spike for each correction step. Local duality, (4.1), (4.7), and

max(‖ΛjΩ−1/2
j ‖2, ‖Ω−1/2

j Υj‖2) ≤
√
ε(Φj + 1)‖B‖2(4.16)

are also realistic for LanCor [7].
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Fig. 3. T40 + Υ40.

4.3. Retroactive correction. In this section we show how to implement a
correction step,

p′j+1 → p̆j+1, q′j+1 → q̆j+1.

As in the symmetric case, correction steps are taken in pairs,

p′j+1 → p̆j+1, q′j+1 → q̆j+1,

p′j → p̆j , q′j → q̆j .

The reason for correcting the jth Lanczos vectors with the j + 1th is the same as in
the symmetric case, and for the convenience of the reader we revisit the explanation.
In practice the loss of duality is gradual,

‖P ∗j−1qj‖ ≈ ‖P ∗j−1qj+1‖,

and thus ‖P ∗j−1qj‖ is less than but approximately equal to the semiduality threshold.
Consider the j + 2th Lanczos vector

qj+2γj+2 = Bqj+1 − qj+1
αj+1

ωj+1
− qj

βj+1ωj+1

ωj
.

Multiply by P ∗j−1 to obtain

P ∗j−1qj+2γj+2 = P ∗j−1Bqj+1 − P ∗j−1qj+1
αj+1

ωj+1
− P ∗j−1qj

βj+1ωj+1

ωj
.
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If the jth Lanczos vectors are not corrected along with the j + 1th Lanczos vectors,
then

‖P ∗j−1qj+2‖γj+2 ≈ ‖P ∗j−1qj‖
βj+1|ωj+1|
|ωj |

,

which is often just below the semiduality threshold. Correcting the jth Lanczos
vectors with the j + 1th substantially reduces ‖P ∗j−1qj+2‖, and this postpones the
next correction step.

Correction steps are implemented so that each Lanczos vector is transferred from
slow storage to fast storage and back again only once. Following [24], we call this
retroactive correction. That is, correcting the jth Lanczos vectors with the j + 1th
doubles the number of floating point operations per correction step, but the amount
of data transfer is the same. Retroactive correction by the two-sided modified GS
algorithm is implemented as follows.
Algorithm (retroactive correction).

Iterate: For i = 1 . . . j − 1,
1. pj+1 := pj+1 − pi(ω−∗i (q∗i pj+1))
2. pj := pj − pi(ω−∗i (q∗i pj))
3. qj+1 := qj+1 − qi(ω−1

i (p∗i qj+1))
4. qj := qj − qi(ω−1

i (p∗i qj))
Recover local duality

1. pj+1 := pj+1 − pj(ω−∗j (q∗j pj+1))

2. qj+1 := qj+1 − qj(ω−1
j (p∗jqj+1))

Retroactive correction changes the relations among the computed quantities. None-
theless, a careful analysis shows that as long as semiduality is maintained proper-
ties (4.1), (4.7), and (4.16) are also realistic for LanCor with retroactive correction
[7]. It is important not to normalize pj and qj after a retroactive correction step. The
reason is that normalizing pj and qj in this case nonnegligibly alters βj and γj . This
needlessly complicates the approximate three-term recurrences among the computed
quantities.

4.4. Monitoring the loss of duality. We must correct for the loss of duality

when either p∗j+1Qj |Ω
−1/2
j | or |Ω−1/2

j |P ∗j qj+1 increases to
√
ε|ω1/4

j+1|. To compute these
vectors at each step is about as costly as correcting the loss of duality at each step.
The same problem arises in the symmetric case. Compromise symmetric Lanczos
algorithms avoid this costly step by updating a recurrence estimating the loss of
orthogonality at each step [11, 19, 20, 24, 28, 29]. In this section we extend the
partial reorthogonalization (PRO) algorithm from the symmetric Lanczos algorithm
[28, 29]. Recurrence relations for p∗j+1Qj and P ∗j qj+1 for the unnormalized two-sided
Lanczos algorithm based on a model of the properties of the quantities computed in
finite precision arithmetic appear in [36].

The sequence of vectors (p∗i+1Qi) and (P ∗i qi+1) satisfy a three-term recurrence
which we now derive. Let ωi,j = p∗i qj . In this notation, ωi = ωi,i.

Suppose that a correction step is not taken at step j (i.e., in computing the
(j + 1)st Lanczos vectors). Multiplying equation (4.5) by Qj and substituting BQj
according to (4.15), we have

βj+1p
∗
j+1Qj = p∗jQj

[
Ω−1
j (Tj + Υj)−

αj + αlj
ωj

I

]
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− γjωj
ωj−1

p∗j−1Qj + ωj,j+1γj+1e
∗
j + p∗jGj − f∗j Qj .(4.17)

Similarly multiplying (4.6) by P ∗j on the left and substituting in P ∗j B according
to (4.14), we have

P ∗j qj+1γj+1 =

[
(Tj + Λj)Ω

−1
j −

αj + αrj
ωj

I

]
P ∗j qj

−βjωj
ωj−1

P ∗j qj−1 + ejβj+1ωj+1,j + F ∗j qj − P ∗j gj .(4.18)

To further reduce these equations, we first need to discuss some additional rela-
tions among the computed quantities. First we show that the correction terms

p∗jQjΩ
−1
j Υj and ΛjΩ

−1
j P ∗j qj

negligibly affect the loss of duality among the computed Lanczos vectors. For this
reason, these matrices are not used to estimate the loss of duality and are not stored.
Since j is not a correction step, equation (4.13) implies that

ΛjΩ
−1
j p∗jqjej = Dl

jej = ejα
l
j .

Substitute the definition of semiduality, (3.3), and (4.16) to find∥∥∥∥ΛjΩ
−1
j

[
P ∗j−1qj

0

]∥∥∥∥
2

≤ ‖ΛjΩ−1/2
j ‖2‖Ω−1/2

j−1 P ∗j−1qj‖2 ≤ (Φj + 1)ε‖B‖2.

The analysis of p∗jQjΩ
−1
j Υj is similar.

Next we expand terms such as P ∗j qj :

p∗jQj = (p∗jQj−1, 0) + ωje
∗
j and P ∗j qj =

[
P ∗j−1qj

0

]
+ ωjej .(4.19)

By equation (4.19) and the definition of Tj , we have

p∗jQj

(
Ω−1
j Tj −

αj + αlj
ωj

I

)

= (p∗jQj−1, 0)

[
Ω−1
j Tj −

αj + αlj
ωj

I

]
+ γjωje

t
j−1 − αljetj(4.20)

and (
TjΩ

−1
j −

αj + αrj
ωj

I

)
P ∗j qj

=

[
TjΩ

−1
j −

αj + αrj
ωj

I

] [
P ∗j−1qj

0

]
+ ej−1βjωj − ejαrj .(4.21)

Since step j is not a correction step, the last row of Υj and the last column of Λj are
zero. That is why they do not appear.



NONSYMMETRIC LANCZOS 581

We also need the identities

p∗j−1Qj = (p∗j−1Qj−2, 0, 0) + ωj−1e
∗
j−1 + ωj−1,je

∗
j(4.22)

and

P ∗j qj−1 =

 P ∗j−2qj−1

0
0

+ ωj−1ej−1 + ωj,j−1ej .(4.23)

Finally, substitute equations (4.22) and (4.20) into equation (4.17) and equations (4.23)
and (4.21) into equation (4.18) and the desired recurrences appear:

βj+1p
∗
j+1Qj = (p∗jQj−1, 0)

(
Ω−1
j Tj −

αj
ωj
I

)
− γjωj
ωj−1

((p∗j−1Qj−2, 0, 0) + ωj−1,je
t
j)

+(ωj,j+1γj+1 + αrj − αlj)etj +O(ε(Φj + 1)‖B‖2)(4.24)

and

P ∗j qj+1γj+1 =

(
TjΩ

−1
j −

αj
ωj
I

)[
P ∗j−1qj

0

]

−βjωj
ωj−1

 P ∗j−2qj−1

0
0

+ ωj,j−1ej


+ej(βj+1ωj+1,j + αlj − αrj) +O(ε(Φj + 1)‖B‖2).(4.25)

Note that certain computable terms such as ωj,j−1 and αlj which are O(ε(Φj +
1)‖B‖2) are not included in O(ε(Φj+1)‖B‖2). This is done because these computable
quantities are used to estimate P ∗j qj+1 and p∗j+1Qj in the next section.

4.4.1. An implementation of the monitoring algorithm. LanCor is similar
to LanLD, but with additional work done (if necessary) between LanLD iterations to
maintain semiduality. The perturbed recurrences (4.24) and (4.25) are invoked to
compute βj+1p

∗
j+1Qj and P ∗j qj+1γj+1 after βj+1 and γj+1 are computed as in step

6 of LanLD. The decision whether or not to correct duality loss is then made as
determined in section 3.1. In this section we show how to implement the recurrences
to obtain accurate estimates of the duality loss.

In LanCor at each Lanczos step j the candidate j + 1th Lanczos vectors are
explicitly “dualized” against the j− 1th Lanczos vectors (extended local duality) and
then the jth Lanczos vectors (local duality).

P ∗j qj+1 is estimated by hj+1. Initially h2 and h3 are exact, and for j > 2,

hj+1γj+1 =

(
TjΩ

−1
j −

αj
ωj
I

)[
hj
0

]
−

 hj−1

0
0

 βjωj
ωj−1

− ej−2α
r
j .(4.26)

To account for the perturbation of the three-term recurrences by correction steps,
εdiag|Ω−1

j Tj | is added to the right-hand side above if the loss of the duality of qj−1

and qj was corrected. The j − 1 and j entries of the estimate hj+1 are assigned the
exact values p∗j−1qj+1 and p∗jqj+1. Maintaining extended local duality sweeps the αrj
term from the jth entry to the j − 2th entry, hence the ej−2α

r
j above. The estimate

of p∗j+1Qj is computed by the similar recurrence.
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4.5. The implementation of LanCor. In this section we summarize the im-
plementation of LanCor, the Lanczos algorithm maintaining semiduality.
Algorithm (LanCor).
Start: p1 = p/‖p‖2, q1 = q/‖q‖2, ω0 = 1, β1 = γ1 = 0, ω1 = p∗1q1.
Iterate: For i=1,MaxStep

1. r∗i = p∗iB − γiωi
ωi−1

p∗i−1, si = Bqi − qi−1
βiωi
ωi−1

2. αi = r∗i qi
3. r∗i = r∗i − αi

ωi
p∗i , si = si − qi αiωi

4. Maintain extended local duality (see section 4.4.1)
5. αli = r∗i qi, αri = p∗i si

6. r∗i := r∗i −
αli
ωi
p∗i , si := si − qi α

r
i

ωi
7. βi+1 = ‖r∗i ‖2, γi+1 = ‖si‖2
8. Check for invariant subspace. See equations (4.3) and (4.4).
9. p∗i+1 = r∗i /βi+1, qi+1 = si/γi+1

10. ωi+1 = p∗i+1qi+1

11. Check for breakdown: |ωi+1| < (n+ 10(i+ 1))ε
12. Monitor duality loss (see section 4.4.1)
13. Correct duality loss only if necessary (see section 4.3)
14. Check for convergence after a correction step only (see section 2.2)

Remark 3. The loss of duality among the computed Lanczos vectors corresponds
to either a near breakdown of the algorithm or the convergence of a Ritz value to an
eigenvalue of B [1]. For this reason it is more efficient to check for convergence only
after correction steps.

5. Preserved quantities. LanCor applied to an operator B after j successful
steps yields matrices P ∗j and Qj of Lanczos vectors and the reduced tridiagonal–
diagonal pencil (Tj ,Ωj). In this section we compare the computed quantities to the
corresponding exact quantities determined by B, the row span of P ∗j , and the column
span of Qj . We say that a computed quantity is preserved when it is as close to the
corresponding exact quantity as the data warrants.

Our main result is that semiduality suffices to preserve (Tj ,Ωj). See section 5.3.
The analysis is more complicated than in the symmetric case. We must avoid

perturbations that are proportional to ‖Ω−1
j ‖2 = 1/min1≤i≤j |ωi|.

5.1. Exact projections. The operator

Πj = Qj(P
∗
j Qj)

−1P ∗j(5.1)

is the oblique projection corresponding to the computed Lanczos vectors. The pro-
jection of B onto the spaces spanned by the Lanczos vectors is the matrix ΠjBΠj .
See Definition 2.1. The Lanczos vectors are dual if and only if P ∗j Qj is diagonal and
nonsingular.

We recover exactly dual bases corresponding to the computed Lanczos vectors by
use of the LDU factorization of P ∗j Qj :

P ∗j Qj = LjΩ̂jUj .(5.2)

Recall that Ωj =diag(P ∗j Qj). If Ω̂j is nonsingular, then substitute (5.2) into (5.1) to
obtain

Πj = QjU
−1
j Ω̂−1

j L−1
j P ∗j .(5.3)
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The rows of

P̂ ∗j = L−1
j P ∗j(5.4)

and the columns of

Q̂j = QjU
−1
j(5.5)

are dual since

P̂ ∗j Q̂j = L−1
j P ∗j QjU

−1
j = Ω̂j .

Two-sided GS applied to P ∗j and Qj yields P̂ ∗j and Q̂j . Next define T̂j by

T̂j = P̂ ∗j BQ̂j .(5.6)

Note that T̂j is not tridiagonal. The representation of ΠjBΠj with respect to the

bases Ω̂−1
j P̂ ∗j and Q̂j is Ω̂−1

j T̂j . This matrix is equivalent to the pencil (T̂j , Ω̂j). This
pencil is analogous to the orthogonal projection of the operator onto the span of the
computed Lanczos vectors in the symmetric case.

5.2. Conditions for preservation. Each computed Lanczos vector is the sum
of the vector which exactly satisfies a three-term recurrence and another vector whose
norm is proportional to the machine epsilon ε. See equations (4.5) and (4.6). This
result is typical of Krylov subspace methods [20]. This perturbation of the Lanczos
vectors causes perturbations of the diagonal elements of Ω by approximately ε and
perturbations of the tridiagonal elements of T by approximately ε‖B‖. We show
that exactly correcting the loss of duality among the computed Lanczos vectors does
not change the pencil (T,Ω) by significantly more than these amounts. We call this
property the preservation of T and Ω. The elements of T and Ω are not in general
determined to working (or full relative) precision. This implies that TΩ−1 and Ω−1T
are not determined to full absolute precision.

This section addresses the problem of determining necessary and sufficient con-
ditions for three properties of the computed quantities to hold. The three properties
are (1) that W = P ∗Q admits an LDU factorization, (2) that the diagonal matrix
D is approximately Ω, and (3) that L and U are well conditioned. To be precise, we
determine realistic sufficient conditions for any complex n×n matrix W with nonzero
diagonal elements to admit an LDU factorization

W = LDU(5.7)

such that

‖diag(W )−D‖2 ≤ 2ε(5.8)

and

max(‖L−1‖2, ‖U−1‖2) < 2.(5.9)

In our case W = P ∗Q. By equation (5.2) D = Ω̂ holds and (5.8) immediately
implies the preservation of Ω. The preservation of T is discussed in section 5.3.

Our results are given in the two theorems below. Theorem 5.1 gives necessary
and sufficient conditions for (5.7) and (5.8) to hold. Theorem 5.2 gives sufficient
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conditions for all three properties to hold which are only slightly stronger than the
hypotheses of Theorem 5.1 (i.e., the lower bound on |ωj | increases from 2jε to 10jε).
We ultimately increase the latter lower bound by nε to (n+ 10j)ε to account for the
discrepancy between the computed and exact values of P ∗j Qj .

For any matrix C let triu′(C) denote its strictly upper triangular part.
Theorem 5.1. Let W be a j×j complex matrix and let Ω = diag(W ) = diag(ωi).

Suppose that ε > 0, j > 2, (j − 2)ε < 1, and W satisfies the following hypotheses:

min
1≤i≤j

|ωi| ≥ 2(j − 2)ε,(5.10)

max(‖Ω−1/2triu′(W )‖1, ‖Ω−1/2triu′(W ∗)‖1) ≤
√
ε.(5.11)

Then equations (5.7) and (5.8) hold.
Proof. See [7].
Remark 4. The second hypothesis (5.11) is equivalent to the semiduality condi-

tion (3.3). Note that the factor of |ωi+1|1/4 that appears in Definition 3.1 to maintain
the viability of the two-sided GS process is not necessary to ensure the preservation
of (T,Ω) in Theorems 5.1 and 5.2.

One approach to proving Theorem 5.1 is to apply the perturbation theory for
Gaussian elimination. Many papers have recently appeared on this subject [2, 33,
34]. To guarantee condition (5.8), all of these general perturbation bounds require
significantly stronger hypotheses than Theorem 5.1.

Theorem 5.1 gives necessary and sufficient conditions for the preservation of Ω
(i.e., condition (5.8)). By increasing the lower bound on |ωj | by a factor of 5, we will
show that the computed quantities are preserved. Due to the difficulty of this task,
we must be satisfied with unachievable but realistic bounds.

Theorem 5.2. Let W be a j×j complex matrix and let Ω = diag(W ) = diag(ωi).
Suppose that ε > 0, j > 2, (j − 2)ε < 1, and Ω is nonsingular. Suppose in addition
that W satisfies the hypothesis (5.11), and that

min |ωi| ≥ 10jε.(5.12)

Then equations 5.7 to 5.9 hold.
Proof. See [7].
The idea of the proofs is to decompose W into the sequence of extensions

Wi+1 =

(
Wi yi
xti ωi+1

)
.(5.13)

We define the sequence {κi}ji=1 corresponding to a norm ‖.‖ by

max(‖xi‖, ‖yi‖) = κi.(5.14)

As in [17], we then extract the worst-case information corresponding to {κi}ji=1.

5.3. Preservation of T . The pencil computed by the three-term recurrences
can eventually become of larger order than the original matrix and clearly differs
from the one that would be produced in exact arithmetic, but this can never happen
if semiduality holds. In this section, we show that if semiduality is maintained then
the computed pencil (Tj ,Ωj) agrees with the exact oblique projection of the spans of
the computed left and right Lanczos vectors to full absolute precision.
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Correcting the loss of duality of the (j + 1)st Lanczos vectors to the previous
Lanczos vectors replaces the vectors computed by the three-term recursion with (ap-
proximations of) p̂j+1 and q̂j+1, where p̂j+1 denotes column j + 1 of P̂k and q̂j+1

denotes column j + 1 of Q̂k. The corresponding elements of T and Ω change to (ap-
proximations of) the corresponding elements of the dense matrix T̂ and the diagonal
matrix Ω̂. We want to know how large this perturbation is and in particular when it
is negligible.

The following theorem established the preservation of T for LanCor. Recall that
Theorem 5.1 establishes the preservation of Ω. The proof uses the properties of the
computed quantities established in section 4 and this section. The hypotheses of
Theorem 5.2 are the no-breakdown and no-invariance conditions from section 4.1 and
the semiduality condition; for 1 ≤ i ≤ j,

max(‖|Ωi|−1/2P ∗i qi+1‖1, ‖|Ωi|−1/2Q∗i pi+1‖1) ≤
√
ε.(5.15)

Theorem 5.3. Let B be a complex n×n matrix and let P ∗j and Qj be the matrices
of Lanczos vectors computed by LanCor. Let Tj denote the computed tridiagonal and

let T̂j be defined as in equation (5.6). If Ωj = diag(P ∗j Qj) satisfies the no-breakdown
condition (4.2) the no-invariant subspace conditions (4.3) and (4.4) and semiduality
holds (see (5.15)), then for Φj defined in equation (2.7)

‖T̂j − Tj‖2 = O(j(Φj + 1)ε‖B‖2)

holds.

Proof. See [7].

6. Numerical experiments. The Lanczos algorithm maintaining local duality
only (LanLD), semiduality (LanCor), and full duality (LanFRB) have been applied
to many tasks. We present the results for one representative example here. All
computations were done in MATLAB on an IBM Power Workstation with machine
precision ε ≈ 2 10−16 = 2e− 16.

6.1. The Tolosa matrix. We illustrate the properties of LanCor using the
Tolosa matrix A of order n = 2000 from the Harwell Boeing sparse matrix collection.
The computational task is to compute the largest eigenvalues of A to half precision.
We choose to compute the 50 largest eigenvalues because this emphasizes the difference
between LanLD and LanCor. A has 5184 nonzero entries and ‖A‖1 ≈ 1e + 6.8.
Since A averages less than three nonzeros per row, the inner products in the three-
term recurrences cost nearly as much as the matrix–vector multiplications in terms
of floating point operations.

The eigenvalue problem forA is known to be ill conditioned andA is known to pos-
sess multiple eigenvalues [26]. For theoretical purposes, we computed the eigenvalues
of A by the QR algorithm and observed that the spectral radius of A is approxi-
mately 1e + 3.4. For this reason, the MATLAB function balance() was applied to A
to obtain a balanced matrix B diagonally similar to A. For this B ‖B‖1 ≈ ‖B‖∞ ≈
1e + 4.0 holds. Since ‖B‖22 ≤ ‖B‖1‖B‖∞, balancing yields a matrix whose Euclidean
norm is within a factor of 4 of its spectral radius. QR applied to B computes three
real eigenvalues— −12.098, −24.196, and −36.294—of multiplicity 382; the remaining
eigenvalues are distinct and well separated. Though the eigenvalues of A and B are
the same (barring underflow), the computed eigenvalues of A and B by QR (without
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Table 1

Correction step 238 264 283 295 310 323 333 347 363
No. eigenvalues 14 22 26 28 34 38 42 48 56

balancing) agree to from full to half relative precision. We will compare the eigenval-
ues of B computed by the QR algorithm to the three implementations of the Lanczos
algorithm (LanFRB, LanCor, and LanLD) and Arnoldi’s method.

We did not compare the Lanczos algorithm to the implicitly restarted Arnoldi
iteration [30, 15]. Arnoldi’s method does establish a lower bound for the number
of steps required by implicitly restarted Arnoldi iteration. Implicit restarts can be
incorporated into the Lanczos algorithm as well as Arnoldi’s method [12].

6.2. Results. All three implementations of the Lanczos algorithm computed the
requested 50 eigenvalues to the same high accuracy. For Arnoldi’s method, LanFRB,
and LanLD the Ritz values are checked every 50 iterations. In each case p1 = q1 is
the same random vector (normal distribution). LanFRB and LanCor have identical
convergence properties; this is a consequence of the preservation of the pencil (T,Ω)
(see section 5). The reward for maintaining semiduality is that fewer Lanczos steps are
required to complete the given task. In this case, LanFRB and LanCor required 400
and 363 Lanczos steps, respectively, while LanLD and Arnoldi’s method required 450
and 400, respectively. Because convergence is checked after correction steps instead
of periodically in LanCOR, fewer Lanczos steps are required than for LanFRB in this
experiment.

No copies of converged eigenvalues appear among the Ritz values when semi- or
full duality is maintained, but copies do appear among the Ritz values computed by
LanLD.

LanCor takes 16 correction steps to compute the requested eigenvalues, 1/25th as
many as LanFRB. Table 1 gives the last 9 steps at which the duality loss is corrected
in LanCor and the number of converged Ritz values at that step.

For comparison we applied Arnoldi’s method with modified GS orthogonalization
to this task and computed eigenvalues of B to the same accuracy [27]. The number
of converged Ritz values near the end of the run are displayed in Table 2.

Table 2

Arnoldi step 50 100 150 200 250 300 350 400
No. eigenvalues 0 0 0 6 16 30 48 70

In this example Arnoldi’s method, LanFRB, and LanCor yield approximate eigen-
values of similar accuracy for a fixed number of steps; the differences in the number
of steps is due to the convergence criteria.

LanFRB, LanCor, and LanLD were each stable in the sense that

‖Ω−1T‖1 ≈ 35‖B‖2,

even though min |ωi| ≈ 2e− 5 (see section 2.3).
The log10 of the number of floating point operations (flops) in these Lanczos

and Arnoldi runs are tabulated in Table 3. The flop count for applying the op-
erator (a sparse matrix–vector multiplication in this case) is given in column OP;
column EIG displays the flop count for solving the reduced eigenvalue problems by
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Table 3

Results for balanced Tolosa.

FLOPS OP EIG (BI-) ALGO TOTAL
(log10) ORTH
Arnoldi 6.6 9.5 8.8 6.9 9.6
(400)
LanFRB 7.0 7.7 9.1 7.7 9.1
(400)
LanCor 7.0 7.8 8.1 7.8 8.4
(363)
LanLD 7.0 7.8 None 8.0 8.2
(450)

the QR algorithm for Arnoldi’s method and by the differential QD algorithm, an al-
gorithm that exploits the tridiagonal structure for the Lanczos-based procedures [8].
(BI-)ORTH gives the flop count for maintaining the duality or orthogonality of the
basis vectors, and column ALGO contains the remaining flop count. The number of
steps required by each method is given in parenthesis below the algorithm name.

We were surprised at the large number of flops required by the QR algorithm in
Arnoldi’s method in this example. For comparison note that computing the eigenval-
ues of B by the QR algorithm requires 1e + 11 flops.

50 100 150 200 250 300 350
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Fig. 4. Numerical duality for LanCor applied to Tolosa matrix.

Maintaining semiduality requires an order of magnitude fewer flops than full du-
ality. Also, LanCor has an order of magnitude fewer flops than Arnoldi’s method.

LanLD requires the fewest flops and takes the most steps. The low flop count
is due to the less rigorous stopping criteria. The error introduced by accepting a
Ritz value as an eigenvalue is estimated by the minimum of three quantities: the
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distance from the Ritz value to the nearest remaining Ritz value and the left and
the right unnormalized residuals. Recall from section 2.2 that if v is an eigenvector
of Ω−1T , then Qv is used to approximate an eigenvector of B, and reliable accuracy
estimates must factor in the shrinkage ‖Qv‖2/‖v‖2. We observed shrinkage, i.e.,
‖Qv‖2/‖v‖2 ≈ .01, for all the Ritz vectors of interest in this example. For this reason
the error estimates based on unnormalized Ritz vectors are 100 times too small. In
LanLD the Lanczos vectors are not stored and so the shrinkage of the Ritz vectors
is not available. Even if the Lanczos vectors are stored, forming the eigenvectors
requires 1e+8.6 real floating point operations (see section 2.2). That is, if we demand
reliability from LanLD similar to that of LanCor, the LanLD flop count will increase
above the LanCor flop count.

We conclude by illustrating the effectiveness of the duality-monitoring algorithm
of section 4.4.1. Figure 4 compares the log10 of our estimate of

(2) max(‖|Ωi|−1/2P ∗i qi+1‖1, ‖|Ωi|−1/2Q∗i pi+1‖1)

at each step (dash–dot line) i to the exact value (solid line). Each spike indicates a
correction step. The dotted line across the top of the figure is the target threshold
ε1/2|ωi|1/4.
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Abstract. This paper presents algorithms for computing stable Lagrangian invariant subspaces
of a Hamiltonian matrix and a symplectic pencil, respectively, having purely imaginary and unimodu-
lar eigenvalues. The problems often arise in solving continuous- or discrete-time H∞-optimal control,
linear-quadratic control and filtering theory, etc. The main approach of our algorithms is to determine
an isotropic Jordan subbasis corresponding to purely imaginary (unimodular) eigenvalues by using
the associated Jordan basis of the square of the Hamiltonian matrix (the S +S−1-transformation of
the symplectic pencil). The algorithms preserve structures and are numerically efficient and reliable
in that they employ only orthogonal transformations in the continuous case.

Key words. stable Lagrangian subspace, purely imaginary eigenvalue, Hamiltonian matrix,
unimodular eigenvalue, symplectic pencil
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1. Introduction. A matrix M ∈ R2n×2n is said to be Hamiltonian if JM =
(JM)T , where J ≡ Jn = [ On−In

In
On

]. Here In is the n × n identity matrix and On is

the n × n zero matrix. A matrix S ∈ R2n×2n is symplectic if STJS = J . A linear
pencil N − λL with N,L ∈ R2n×2n is said to be symplectic if NJNT = LJLT . If we
partition a Hamiltonian matrix M and a symplectic pencil N − λL comfortably with
J , respectively, then we have

M =

[
A G
H −AT

]
, G = GT , H = HT ,(1.1)

and

N =

[
A O
−H I

]
, L =

[
I G
O AT

]
, G = GT , H = HT .(1.2)

Our interest in the Hamiltonian matrix M in (1.1) and the symplectic pencil
N − λL in (1.2), respectively, stems from the fact that if[

A G
H −AT

] [
Ω1

Ω2

]
=

[
Ω1

Ω2

]
W, Ω1, Ω2, W ∈ Rn×n,(1.3)

then X = −Ω2Ω−1
1 (if Ω−1

1 exists) solves the continuous-time algebraic Riccati equa-
tion (CARE)

−XGX +XA+ATX +H = 0,(1.4)
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and if [
A O
−H I

] [
Ω1

Ω2

]
=

[
I G
O AT

] [
Ω1

Ω2

]
W,(1.5)

then X = −Ω2Ω−1
1 (if Ω−1

1 exists) solves the discrete-time algebraic Riccati equation
(DARE)

ATXA−X −ATXG(I +XG)−1XA+H = 0.(1.6)

In fact, the Hamiltonian matrix and the symplectic pencil are often derived from
continuous- and discrete-time optimal control problems, respectively, e.g., [5, 6, 8,
10, 11, 13, 14]. To obtain an optimizer, especially a stabilizing optimizer, of optimal
control problems, one must compute a particular invariant subspace satisfying (1.3) or
(1.5). This particular invariant subspace is usually referred to as a stable Lagrangian
subspace.

Definition 1.1. A subspace S ⊂ R2n is isotropic if

xTJy = 0 for all x, y ∈ S.

Definition 1.2. A subspace Y ⊂ R2n is called an M-stable isotropic subspace
if Y satisfies that (i) MY ⊂ Y, (ii) Y is isotropic, and (iii) Re(λ(M |Y)) ≤ 0. Here
λ(M |Y) denotes an eigenvalue of M restricted in Y.

Definition 1.3. A subspace W ⊂ R2n is called an (N,L)-stable isotropic sub-
space if (i) W is invariant under (N,L) [25]; i.e., there is a subspace V such that
NW, LW ⊂ V; (ii) W is isotropic; and (iii) |λ((N,L)|W)| ≤ 1.

Definition 1.4. If YL ⊂ R2n is an M -stable isotropic subspace with dim(YL) =
n, then YL is called an M -stable Lagrangian subspace.

Definition 1.5. If WL ⊂ R2n is an (N,L)-stable isotropic subspace with
dim(WL) = n, then WL is called an (N,L)-stable Lagrangian subspace.

For the continuous-time case, it is known that an M -stable Lagrangian subspace
is closely related to an internally stabilizing controller of an H∞-control system [5, 8].
In linear-quadratic control problems in which (A,G) is stabilizable with G positive
semidefinite, we can obtain the unique “weak” stabilizing symmetric solution of CARE
(1.4), and therefore an optimal controller by computing the unique M -stable La-
grangian subspace [14, 28]. In addition, several applications in Wiener filtering theory
[26] and network synthesis [1] also need to compute an M -stable Lagrangian subspace.
This is the reason why we are interested in computing an M -stable Lagrangian sub-
space. Unfortunately, an M -stable Lagrangian subspace does not always exist, while
some nonzero purely imaginary eigenvalues of M have odd partial multiplicities. A
counterexample can be found in [21].

To guarantee the existence of an M -stable Lagrangian subspace, M must satisfy
the following assumption.

(A1) The partial multiplicities of all purely imaginary eigenvalues are all even.

If we require that

(R1) the M -stable Lagrangian subspace YL have the lowest Jordan degree (that is,
there is no other M -stable Lagrangian subspace having total Jordan degree smaller than
that of YL), then the desired M -stable Lagrangian subspace YL is unique determined.

We will discuss the details of this result in the next section.
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The first purpose of this paper is to propose an efficient, reliable, and structure-
preserving algorithm for computing the M -stable Lagrangian subspace satisfying (R1)
under the assumption (A1). For Hamiltonian matrices with purely imaginary eigen-
values, Clements and Glover [5] proposed an eigenvector deflation technique that
guarantees that the eigenvalues appear with the correct pairing. This is certainly
an advantage over the general QR or QZ method [12, 15, 24], but this method still
ignores the structure in part during the process. In another recent paper, Ammar and
Mehrmann [2] proposed an elegant method, only using symplectic orthogonal trans-
formations to compute the M -stable Lagrangian subspace. Combining the method
with at least one step of defect correction is highly advisable. But, there are still
numerical difficulties in convergence of deflation steps if purely imaginary eigenvalues
occur [20, section 18, p. 143].

To avoid the numerical difficulties mentioned above, we shall develop a stable and
structure-preserving algorithm as a preprocessing step to deflate all purely imaginary
eigenvalues and to get a reduced Hamiltonian matrix having no purely imaginary
eigenvalues. Then the rest of the M -stable Lagrangian subspace corresponding to
stable eigenvalues with negative real parts can be computed by some reliable algo-
rithms, such as in [2, 23, 29]. In our algorithm, we first compute the skew-Hamiltonian
Schur decomposition of M2 by using the numerically stable square reduced algorithm
of Van Loan [27]. Then, we apply the algorithm proposed in [3] or [17] to the skew-
Hamiltonian Schur matrix to determine the Jordan subbasis corresponding to the
nonpositive eigenvalues of M2. These algorithms are numerically reliable and need
only O(n2) flops if the number of nonpositive eigenvalues of M2 is of order O(1).
Based on elementary linear algebra theory, we can determine an associated Jordan
subbasis Y corresponding to purely imaginary eigenvalues of M by using the Jordan
subbasis corresponding to nonpositive eigenvalues of M2. Under the assumption (A1)
that each purely imaginary eigenvalue has even partial multiplicities, by applying an
isotropicity requirement, we can separate an isotropic Jordan subbasis Υ correspond-
ing to each first half of Jordan blocks of purely imaginary eigenvalues from Y . Indeed,
the subspace span{Υ} lies on the M -stable Lagrangian subspace. Consequently, we
deflate the isotropic subbasis Υ from M by using symplectic orthogonal transforma-
tions and get a reduced Hamiltonian matrix having no purely imaginary eigenvalues.

For the discrete-time case, an (N,L)-stable Lagrangian subspace also play an im-
portant role for H∞-optimal or linear-quadratic control problems. In linear-quadratic
control problems in which (A,G) is stabilizable with G positive semidefinite, the
unique “weak” stabilizing symmetric solution of DARE (1.6) can be obtained by
computing the (N,L)-stable Lagrangian subspace [13]. For the H∞-control problem
a detailed treatment of the suboptimal controller versus the H∞-optimal control is
not available. The suboptimal case is treated in detail in [10, 11]. Although a fac-
torization theory similar to [5] has not been developed for the discrete-time case,
we still consider computing the (N,L)-stable Lagrangian subspace of N − λL from
a theoretical point of view. To ensure the existence and uniqueness of the desired
(N,L)-stable Lagrangian subspace with lowest Jordan degree, a related assumption
and requirement as in the continuous-time case are listed as follows.

(A2) The partial multiplicities of all unimodular eigenvalues of N − λL are even.

(R2) The (N,L)-stable Lagrangian subspace WL has the lowest Jordan degree. (That
is, there is no other (N,L)-stable Lagrangian subspace having total Jordan degree
smaller than that of WL.)
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As in a continuous-time case, we can also develop a reliable and structure-preserving
algorithm as a preprocessing step to deflate all unimodular eigenvalues and get a re-
duced symplectic pencil having no unimodular eigenvalues. Then the rest of the
(N,L)-stable Lagrangian subspace can be computed by algorithms of [19] or [29]. In
our algorithm we consider the S+S−1-transformation of the symplectic pencil N−λL
[18], i.e.,

Γ− λ∆ ≡
[(
NJLT + LJNT

)
− λLJLT

]
JT ,(1.7)

and then we compute the skew-Hamiltonian Schur pencil form of Γ − λ∆ by using
the numerically stable algorithm proposed in [22]. As in the continuous-time case,
we first compute a Jordan subbasis corresponding to eigenvalues of Γ − λ∆ with
magnitudes between −2 and 2 by algorithms of [3] or [17] and then use it to deter-
mine an isotropic Jordan subbasis corresponding to each first half of Jordan blocks
of unimodular eigenvalues of N − λL. Further, we deflate this subbasis of N − λL by
symplectic transformations and get a reduced symplectic pencil having no unimodular
eigenvalues.

For convenience, we list some notation which are adopted in this paper.
Zp denotes an orthonormal matrix which forms an orthonormal subbasis of
M2 corresponding to the zero eigenvalue with the Jordan degree of p; i.e., for
any nonzero vector v ∈ span{Zp},

(M2)pv = 0 and (M2)p−1 6= 0.

Z̃p denotes the matrix [Z1, . . . , Zp].
Yp denotes an orthonormal matrix which forms an orthonormal subbasis of
M corresponding to the zero eigenvalue with the Jordan degree of p; i.e., for
any nonzero vector v ∈ span{Yp},

Mpv = 0 and Mp−1 6= 0.

Ỹp denotes the matrix [Y1, . . . , Yp].
Υs denotes an orthonormal matrix which forms an orthonormal subbasis of
the maximal M -stable isotropic subspace corresponding to each first half of
Jordan blocks of zero eigenvalue.
J (`)(λ) denotes an `× ` elementary Jordan matrix corresponding to λ; i.e.,

J (`)(λ) =


λ 1

. . .
. . .

1
λ


`×`

.

Λ(`)(0) denotes an `× ` matrix with

Λ(`)(0) =

[
O`−1

δ`

]
, δ` = 1 or 0.

ej ≡ e(n)
j is the jth column vector of n× n identity matrix In.

N (A) denotes the null space of matrix A.
All script (calligraphic) capital letters, e.g., Y, W, etc. denote vector sub-
spaces.
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This paper is organized as follows. In section 2 we summarize some preliminary
results. In sections 3 and 4 we develop numerically reliable algorithms to compute
the desired isotropic subspaces of a Hamiltonian matrix and a symplectic pencil, re-
spectively, corresponding to purely imaginary and unimodular eigenvalues. In section
5, we show some numerical results to illustrate the numerical reliability of our algo-
rithms.

2. Preliminary. In this section, we review some important properties of a real
Hamiltonian matrix and a real symplectic pencil which have been developed and
exploited for several years. First, we state a theorem of [16] which gives a canonical
form of a Hamiltonian matrix.

Theorem 2.1 (see [16]). Let M ∈ R2n×2n be a Hamiltonian matrix. Then there
is a symplectic matrix S ∈ R2n×2n such that

S−1MS =

[
diag{J0, 0, T1, J

T
ν } diag{Λ0, Eµ, T2, Dν}

diag{0, E−µ, 0,−Dν} diag{−JT0 , 0,−TT1 ,−Jν}

]
,(2.1)

where µ = (µ1, . . . , µk2)T ∈ Rk2 , T1 ∈ Rk3×k3 with Re(λ(T1)) < 0, ν = (ν1, . . . , νk4)T ∈
Rk4 , and

J0 = diag{J (m1)(0), . . . , J (mk1 )(0)},
Λ0 = diag{Λ(m1)(0), . . . ,Λ(mk1 )(0)},
Eµ = diag{E(n1)(µ1), . . . , E(nk2 )(µk2)},
E−µ = diag{E(n1)(−µ1), . . . , E(nk2 )(−µk2)}

with (nj an even integer),

E(nj)(µj) =


0 µj

µj 1
· −1

µj ·
µj 1 0


nj×nj

,

E(nj)(−µj) =


0 −1 −µj

· −µj
1 ·

−1 −µj
−µj 0


nj×nj

,

Jν = diag{J (`1)(0), . . . , J (`k4 )(0)},
Dν = diag{D(`1)(ν1), . . . , D(`k4 )(νk4)}

with (`j an odd integer)

D(`j)(νj) =


0 −νj

νj
·

·
−νj 0


`j×`j

,
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and

n =

k1∑
j=1

mj +

k2∑
j=1

nj + k3 +

k4∑
j=1

`j .

By Theorem 2.1, we see that the Hamiltonian matrix M contains zero eigenvalues
and purely imaginary eigenvalues ±iµj for j = 1, . . . , k2 and ±iνj for j = 1, . . . , k4.

Under assumption (A1), the canonical form (2.1) becomes a simpler form,

S−1MS =

[
diag{J0, 0, T1} diag{Λ0, Eµ, T2}
diag{0, E−µ, 0} diag{−JT0 , 0,−TT1 , }

]
,(2.2)

where µ, T1, J0,Λ0, Eµ, E−µ are given in (2.1) with n =
∑k1
j=1mj +

∑k2
j=1 nj + k3.

Partition the symplectic matrix S = [S1, S2, S3, Ŝ1, Ŝ2, Ŝ3] with the block type
(2.2). Furthermore, we partition

S1 = [S
(1)
1 , . . . , S

(k1)
1 ] and Ŝ1 = [Ŝ

(1)
1 , . . . , Ŝ

(k1)
1 ]

comfortably with block type of J0 and write S
(j)
1 and Ŝ

(j)
1 in the column vector forms

S
(j)
1 = [s

(1,j)
1 , . . . , s(1,j)

mj ] and Ŝ
(j)
1 = [ŝ

(1,j)
1 , . . . , ŝ(1,j)

mj ]

for j = 1, . . . , k1. If δj = 1 (the (mj ,mj)th element of Λ(mj)(0)) for some j ∈
{1, . . . , k1}, then the maximal M -stable isotropic subspace with lowest Jordan degree

of span{S(j)
1 , Ŝ

(j)
1 } is

S(j)
1 = span{S(j)

1 }.(2.3)

If δj = 0 for some j ∈ {1, . . . , k1} (here mj must be even), then the maximal M -stable

isotropic subspace with lowest Jordan degree of span{S(j)
1 , Ŝ

(j)
1 } is

S(j)
1 = span{s(1,j)

1 , . . . , s
(1,j)
mj/2

, ŝ
(1,j)
mj/2

, . . . , ŝ(1,j)
mj }.(2.4)

Partition

S2 = [S
(1)
2 , . . . , S

(k2)
2 ] and Ŝ2 = [Ŝ

(1)
2 , . . . , Ŝ

(k2)
2 ]

with the block type Eµ and write S
(j)
2 and Ŝ

(j)
2 in the column vector forms

S
(j)
2 = [s

(2,j)
1 , . . . , s(2,j)

nj ] and Ŝ
(j)
2 = [ŝ

(2,j)
1 , . . . , ŝ(2,j)

nj ]

for j = 1, . . . , k2. The maximal M -stable isotropic subspace with lowest Jordan degree

of span{S(j)
2 , Ŝ

(j)
2 } is

S(j)
2 = span{s(2,j)

nj/2
, . . . , s(2,j)

nj , ŝ
(2,j)
1 , . . . , ŝ

(2,j)
nj/2
}.

Let S3 ≡ span{S3} denote a maximal M -stable isotropic subspace of span{S3, Ŝ3}.
Since S(j)

1 , j = 1, . . . , k1, S(j)
2 , j = 1, . . . , k2, and S3 are uniquely determined with

lowest Jordan degree by collecting these M -stable isotropic subspaces and letting

YL =

 k1⊕
j=1

S(j)
1

⊕
 k2⊕
j=1

S(j)
2

⊕ S3,
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we get that YL is the M -stable Lagrangian subspace satisfying (R1).
From the above discussion, we see that the desired Lagrangian subspace YL is

spanned by the Jordan vectors corresponding to each first half of Jordan blocks of
purely imaginary eigenvalue and the Jordan vectors corresponding to eigenvalues with
negative real parts.

Assumption (A1) is necessary for the uniqueness of (R1). If we relax (A1) in that
some partial multiplicities of zero eigenvalues of M are permitted to be odd, then the
M -stable Lagrangian subspace still exists, but the uniqueness of (R1) does not hold.
For example, let M = diag{J (3)(0), −J (3)(0)T }. Then M has zero eigenvalue with
partial multiplicities 3, 3. It is easily seen that {e1, e6, e5}, {e1, e2, e6}, {e6, e5, e4},
and {e1, e2, e3} are four distinct M -stable Lagrangian subspaces, but the first two
have the same lowest Jordan degrees. As mentioned in section 1, if some nonzero
eigenvalue has odd partial multiplicities, then the existence of M -stable Lagrangian
subspace can fail. Let M = [ 0

−1
1
0 ]. Then M has eigenvalues ±i associated with

eigenvectors [ 1
i ] and [ 1

−i ], respectively. It is easy to verify that M has no M -stable
Lagrangian subspace.

The following theorem of [14] states an important result from linear-quadratic
control problems.

Theorem 2.2. Let M be a Hamiltonian matrix as in (1.1). Let G be positive
semidefinite and (A,G) be stabilizable. Assume (A1) holds. Then there exists a sym-
plectic matrix S such that Λ(mj)(0) in (2.2) has zeros everywhere except one in the
(mj ,mj)th entry. Furthermore,

(i) there exists a unique M -stable Lagrangian subspace YL,
(ii) there exists a unique symmetric solution X ∈ Rn×n of CARE in (1.4) such

that Re(λ(A+GX)) ≤ 0 and span{[ IX ]} = YL.
Remark. For the case of Theorem 2.2, the only possible M -stable isotropic sub-

space corresponding to zero eigenvalues must have the form (2.3). The M -stable
Lagrangian subspace YL is then uniquely determined. Thus, requirement (R1) for YL
here is automatically satisfied.

For the symplectic pencil N − λL, we want to find the (N,L)-stable Lagrangian
subspace WL. By a skillful transformation of [20, p. 120], we can deflate zero and
infinity eigenvalues of N −λL simultaneously and obtain a reduced symplectic pencil
N̂ − λL̂ having only nonzero finite eigenvalues. Thus, computing the (N,L)-stable
Lagrangian subspace is equivalent to computing the stable Lagrangian subspace of
the symplectic matrix B = L̂−1N̂ . It is easily seen that the Cayley transformation
matrix

M = (I +B)(I −B)−1(2.5)

is Hamiltonian. Furthermore, since the transformation (2.5) is rational and M , B are
commuted, an M -stable Lagrangian subspace must be a stable Lagrangian subspace
of B. Similar to the continuous-time case, we can conclude that the (N,L)-stable
Lagrangian subspace WL is unique determined if (A2) and (R2) are satisfied.

Hereafter, for brevity, M -stable and (N,L)-stable Lagrangian subspaces mean
the M -stable and the (N,L)-stable Lagrangian subspaces with lowest Jordan degrees,
respectively.

3. Computing the stable Lagrangian subspace of a Hamiltonian matrix
having purely imaginary eigenvalues. Let M be the Hamiltonian matrix as in
(1.1). Assume (A1) holds; i.e., the partial multiplicities of purely imaginary eigenval-
ues of M are all even. In this section, we shall develop a reliable algorithm to compute
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the M -stable isotropic subspace Y corresponding to each first half of Jordan blocks
of all purely imaginary eigenvalues and get a reduced Hamiltonian matrix having no
purely imaginary eigenvalue. Combining Y with the isotropic subspace corresponding
to the strictly stable eigenvalues of M , we obtain the desired M -stable Lagrangian
subspace YL.

The main idea of our algorithm to determine Y is that we first compute a Jordan
basis corresponding to nonpositive eigenvalues of M2 and then use it to determine a
Jordan basis corresponding to purely imaginary eigenvalues of M and to determine
an isotropic basis Υ of Y.

We now consider the case of nonzero purely imaginary eigenvalues. Assume that
the conjugate eigenvalue pair ±iω of M have the Jordan blocks {J (2m1)(iω), . . . ,
J (2mk)(iω)} and {J (2m1)(−iω), . . . , J (2mk)(−iω)} with even orders, respectively. It is
easily seen that the negative eigenvalue−ω2 ofM2 has the Jordan blocks {J (2mj)(−ω2),
J (2mj)(−ω2)}kj=1. Hence, the eigenspace of M corresponding to each first half of

Jordan blocks {J (mj)(±iω)}kj=1 is just the eigenspace of M2 corresponding to each

first half of Jordan blocks {J (mj)(−ω2), J (mj)(−ω2)}kj=1. Thus, the desired M -stable

isotropic subspace can be determined directly from the associated eigenspace of M2.
The case of zero purely imaginary eigenvalue is more complicated than the case of
nonzero purely imaginary eigenvalue. In the following we shall discuss this case care-
fully.

Let {2m1, . . . , 2mk} with m1 ≤ · · · ≤ mk be the partial multiplicities of the zero

eigenvalues of M and n0 = 2
∑k
j=1mj be the algebraic multiplicity of zero eigenvalues.

Let

Y =
[
Y

(0)
1 , . . . , Y

(k−1)
2mk

]
,(3.1a)

be an orthonormal basis of the subspace spanned by the associated Jordan vectors,

where the submatrix Y
(j)
p for p = 1, . . . , 2mk is a 2n× (k − j) orthonormal matrix of

degree p and j ≡ j(p) ∈ {0, . . . , k − 1} is an integer function in p such that

2mj < p ≤ 2mj+1 (m0 = 0).(3.1b)

Remark. (i) A matrix Yp is of degree p if any nonzero vector v ∈ span{Yp} satisfies
Mpv = 0 and Mp−1v 6= 0. (ii) Since the mutually orthogonal subspaces spanned by

{Y (j)
p } are unique (p = 1, . . . , 2mk), for convenience we identify any two orthonormal

bases of span{Y (j)
p }.

Furthermore, we define

Ỹ (j)
p =

[
Y

(0)
1 , . . . , Y (j)

p

]
(3.2)

as the submatrix of Y of degree less than or equal to p. From elementary al-
gebra theory, we see that the partial multiplicities of zero eigenvalues of M2 are
{m1,m1, . . . ,mk,mk}. Let

Z =
[
Z

(0)
1 , . . . , Z(k−1)

mk

]
(3.3a)

be an orthonormal basis of the associated Jordan vectors, where the submatrix Z
(j)
p

for p = 1, . . . ,mk is a 2n × 2(k − j) orthonormal matrix of degree p and j ≡ j(p) ∈
{0, . . . , k − 1} is an integer function in p such that

mj < p ≤ mj+1 (m0 = 0).(3.3b)
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We also define

Z̃(j)
p =

[
Z

(0)
1 , . . . , Z(j)

p

]
(3.4)

as the submatrix of Z of degree less than or equal to p. Let Υs be an orthonormal
isotropic subbasis corresponding to each first half of Jordan blocks of zero eigenvalues.
In fact, Υs here is an orthonormal basis of the maximal isotropic subspace correspond-
ing to zero eigenvalues and span{Υs} ⊂ YL. The approach of our algorithm is that
we use Z to determine Y and then use Y to compute Υs.

We now develop a reliable algorithm to compute the matrix Z described in
(3.3a,b). For convenience hereafter, we assume that the only purely imaginary eigen-
value of M is zero.

Algorithm 3.1. This algorithm computes an orthonormal subbasis Z = [Z
(0)
1 , . . . ,

Z
(k−1)
mk ] of M2 corresponding to zero eigenvalues.

Step 1: Reduce M2 to a Hessenberg matrix by using the squared reduced algo-
rithm of [27]. That is, find a 2n × 2n symplectic orthogonal matrix Q so
that

QTM2Q = H ≡
[
H1 K1

O HT
1

]
,

where H1 is upper Hessenberg and K1 is skew-symmetric.
Step 2: Reduce H1 to a real Schur form by the QR algorithm, e.g., [9, p. 228].

That is, find an n× n orthogonal matrix Q1 so that

QT1 H1Q1 = R1, QT1 K1Q1 = S1,

where R1 is quasi-upper triangular.
Let n0 = the algebraic multiplicity of zero eigenvalues of M2.
Let

H :=

[
I O

O Î

] [
R1 S1

O RT1

] [
I O

O Î

]
(quasi-upper triangular),

Q :=

[
Q1 O
O Q1

] [
I O

O Î

]
, where Î =


0 1

·
·

1 0

 .
Set E := I2n, j = 0, q = 1, and m0 = 0.

Step 3: Repeat:
3.1 Find an orthonormal basis B̂0 of null space of H by applying an RRQR

factorization of [4]. That is, find a permutation Π1 and an orthogonal
matrix V1 such that

Π1HV1 =

(
O X

O Ĥ

)
,

where Ĥ is quasi-upper triangular. Let γH be the nullity of H.
Set B̂0 = V1[ IγH

0
].

Comment: An RRQR factorization of a quasi-upper triangular H needs
only O(n2) flops if n0 � n.
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• If q = 1, then

k =
γH
2
, γ∗ = γH , Jump = 0, B0 = B̂0,

else

γ = γH , Jump = γ∗ − γ, B0 =

[
0

B̂0

]
∈ R2n×γH

• If Jump 6= 0, then for ` = j + 1, . . . , j + Jump
2 , set m` = q − 1 and

update j = j + Jump
2 , γ∗ = γ.

• Set Z
(j)
q = QB0.

• If j = k, then stop.
3.2 Find two orthogonal matrices U2 and V2 by using Algorithm 3.1.1 pro-

posed by Beelen and Van Dooren [3] such that

UT2 (Π1HV1)V2 =

[
0 H12

0 H22

]
, UT2 (Π1EV1)V2 =

[
E11 E12

0 E22

]
.

Comment: (i) Here the matrix H22 is preserved to be quasi-upper tri-
angular and E11 is nonsingular. Algorithm 3.1.1 of [3] used in Step 3.2
needs only O(n2) flops. (ii) This substep determines the partial multi-
plicities and an orthonormal basis for the associated Jordan vectors [3].

3.3 Update (deflation step):
• H := H22 (dimension reduced).
• E := E22 (dimension reduced).
• If q = 1, then set Q = Q(V1V2),

else set Q = Q

[
I 0
0 V1V2

]
∈ R2n×2n.

• Set q = q + 1, go to Repeat.
Remark. (i) Instead of Step 3.2, one can also use a nonequivalence transforma-

tion to deflate the zero eigenvalues of the pencil H − λE [17]. The algorithm uses
nonunitary transformations but needs only about one-fourth flops of Algorithm 3.1.1
of [3]. (ii) If M2 has a negative eigenvalue −ω2, then we replace the matrix H in Step
3 by H + ω2I and perform the same process to compute an associated Jordan basis
corresponding to −ω2. (iii) This algorithm uses only orthogonal transformations. The
accuracy of the computed orthonormal Jordan subbasis Z depends on the sensitivity
of the computed nonpositive eigenvalues −ω2 of M2. It is shown in [27] that the
computed ±iω are the exact eigenvalues of a matrix M + E where ‖E‖ depends on
the square root of the machine precision. Hence, the accuracy of the computed Z is
reliable when the sensitivity of ±iω of M is acceptable.

The following theorem gives the relation between orthonormal Jordan bases corre-
sponding to zero eigenvalues of M2 and M , respectively. We use the notation defined
in (3.1)–(3.4) but omit the superscript (j).

Let Z̃ = [Z1, . . . , Zq] and Ỹp = [Y1, . . . , Yp], where Zq and Yp are orthonormal
Jordan bases of M2 and M , respectively, of degree q and p for q = 1, . . . ,mk and
p = 1, . . . , 2mk.

Theorem 3.2. For p = 1, . . . ,mk, it holds that
(i) span{Ỹ2p} = span{Z̃p},
(ii) span{Zp} = span{Y2p−1}⊕ span{Y2p},
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(iii) span{Y2p−1} = span{(I − Z̃p−1Z̃
T
p−1)MZp} = span{(ZpZTp )MZp},

(iv) if W2p−1 is an orthonormal basis of span{(I − Z̃p−1Z̃
T
p−1)MZp}, then

span{Y2p} = span{(I −W2p−1W
T
2p−1)Zp}.

For convenience, here we use Z̃0 = 0.
Proof. (i) Since (M2)pv = M2pv for any v ∈ R2n×1, (i) follows.
(ii) From (i), we have

span {Y2p} ⊕ span {Y2p−1} ⊕ span
{
Ỹ2p−2

}
= span {Zp} ⊕ span

{
Z̃p−1

}
.

Furthermore, both subspaces span{Zp} and span{Y2p}⊕ span{Y2p−1} are orthogonal

to span{Ỹ2p−2} (i.e., span{Z̃p−1}). Hence, (ii) is proved.
(iii) By the definition of Zp, we have

span{MZp} ⊂ span
{
Ỹ2p−1

}
= span{Y2p−1} ⊕ span

{
Z̃p−1

}
.(3.5)

This implies that

span
{(
I − Z̃p−1Z̃

T
p−1

)
MZp

}
⊂ span {Y2p−1} .(3.6)

On the other hand, from (ii), we have

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

}
⊂ span

{(
I − Z̃p−1Z̃

T
p−1

)
MZp

}
.(3.7)

By (3.6) and (3.7), it is easily seen that

dim
(

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

})
≤ dim

(
span

{(
I − Z̃p−1Z̃

T
p−1

)
MZp

})
≤ dim (span {Y2p−1}) .(3.8)

From (3.6) and (3.7), it follows that to verify the first equality of (iii) it is sufficient
to show that both inequalities in (3.8) hold. Now, suppose that

dim
(

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

})
< dim (span {Y2p−1}) .(3.9)

Since all partial multiplicities of zero eigenvalues are even,

dim (span {Y2p}) = dim (span {Y2p−1}) .(3.10)

From (3.9) and (3.10) it follows that the column vectors of (I − Z̃p−1Z̃
T
p−1)MY2p are

linearly dependent. Thus, there exists a nonzero vector ξ such that(
I − Z̃p−1Z̃

T
p−1

)
MY2pξ = 0.

This implies that MY2pξ ∈ span{Z̃p−1}. By the definition of Z̃p−1, we then have

M2p−1Y2pξ = (M2)p−1MY2pξ = 0.(3.11)

This contradicts the definition of Y2p. Therefore, the strict inequality in (3.9) does
not hold; i.e., both equalities in (3.8) hold. Thus, the first equality of (iii) is proved.



COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 601

From (ii), we know that there exists an orthonormal matrix U such that

Zp = [Y2p−1, Y2p]U.(3.12)

This implies that

MZp = [MY2p−1,MY2p]U.(3.13)

On the other hand, by the definitions of Y2p−1 and Z̃p−1, we have

span {MY2p−1} ⊂ span
{
Z̃p−1

}
.(3.14)

From (3.13) and (3.14), (
ZpZ

T
p

)
MZp =

[
0, ZpZ

T
pMY2p

]
U.

Hence, we get

span
{(
ZpZ

T
p

)
MZp

}
= span

{(
ZpZ

T
p

)
MY2p

}
.

Furthermore, from (3.5) and (3.12), we have

span
{(
ZpZ

T
p

)
MY2p

}
= span

{(
ZpZ

T
p

)
MZp

}
⊂ span {Y2p−1} .

This implies

dim
(
span

{(
ZpZ

T
p

)
MY2p

})
≤ dim (span {Y2p−1}) .(3.15)

Suppose the inequality of (3.15) holds. Then, from (3.10), we conclude that there
exists a vector ξ 6= 0 such that (

ZpZ
T
p

)
MY2pξ = 0.

This implies MY2pξ ∈ span{Z̃p−1}. By the same argument as (3.11) we get the
contradiction. Therefore, the second equality of (iii) is proved.

(iv) From (ii) and (iii) immediately follows (iv).
Remark. From statements (iii) and (iv) of Theorem 3.2, we see that the matrices

Y2p−1 and Y2p can be replaced by an orthonormal basis of span{(ZpZTp )MZp} and

span{(I −W2p−1W
T
2p−1)Zp}, respectively. In the following, we develop an algorithm

for computing Y2p−1 and Y2p by using the orthonormal bases Zp.
Algorithm 3.3. This algorithm computes Y2p−1 and Y2p by using the orthonor-

mal basis Zp, p = 1, . . . ,mk, obtained by Algorithm 3.1.

Step 1. Compute an orthonormal basis Q
(0)
1 of MZ

(0)
1 and set

Y
(0)
1 = Q

(0)
1 .

Step 2. Compute the SVD of (Q
(0)
1 )TZ

(0)
1 such that(

U
(0)
1

)T ((
Q

(0)
1

)T
Z

(0)
1

)
V

(0)
1 =

[
Σ

(0)
1 0

]
,
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where U
(0)
1 , V

(0)
1 are two unitary matrices and

Σ
(0)
1 =

 σ1

. . .

σk

 .
Set

Y
(0)
2 = Z

(0)
1 V

(0)
1

[
0

Ik

]
.

Set p = 2.
Step 3. Repeat:

If p > mk
2 + 1, then stop.

Determine j ∈ {0, 1, . . . , k − 1} such that mj < p ≤ mj+1.

3.1 Compute an orthonormal basis Q
(j)
p of MZ

(j)
p .

3.2 Compute the SVD of (Z
(j)
p )TQ

(j)
p such that(

U
(j)
2p−1

)T [(
Z(j)
p

)T
Q(j)
p

]
V

(j)
2p−1 = Σ

(j)
2p−1,

where U
(j)
2p−1, V

(j)
2p−1 are two unitary matrices and

Σ
(j)
2p−1 =


σ

(2p−1)
1

. . .

σ
(2p−1)
k−j

Ok−j


with σ

(2p−1)
1 ≥ · · · ≥ σ(2p−1)

k−j > 0.
Set

Y
(j)
2p−1 = Z(j)

p U (j)
p

[
Ik−j

0

]
.

3.3 Compute the SVD of
(
Y

(j)
2p−1

)T
Z

(j)
p such that

(
U

(j)T

2p

)[(
Y

(j)
2p−1

)T
Z(j)
p

]
V

(j)
2p =

[
Σ

(j)
2p

∣∣∣∣O] ,
where U

(j)
2p , V

(j)
2p are two unitary matrices and

Σ
(j)
2p =


σ

(2p)
1

. . .

σ
(2p)
k−j

 .
Set

Y
(j)
2p = Z(j)

p V
(j)
2p

[
0

Ik−j

]
.



COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 603

3.4 Update p := p+ 1 and go to Repeat.
This algorithm needs about O(n2) flops.
Denote Υs as an orthonormal basis of the M -stable isotropic subspace correspond-

ing to the first half of Jordan blocks of zero eigenvalues. We now define a sequence of
orthonormal bases {Υ̃p}mkp=1 which is closely related to the matrix Υs.

Definition 3.4. Let Υ̃p for p = 1, . . . ,mk be a maximal orthonormal basis
satisfying the following:

(i) span{Υ̃p} ⊂ N (Mp) (null space of Mp).

(ii) xTJy = 0 for any x, y ∈ span{Υ̃p}.
(iii) span{Υ̃p−1} ⊂ span{Υ̃p}. (Here, Υ̃0 ≡ 0.)
(iv) If there is a subspace V ⊂ R2n satisfying statements (i), (ii), and (iii), then

V ⊂ span{Υ̃p}.
Theorem 3.5. The following properties for the sequence {Υ̃p}mkp=1 defined above

are true:
(i) span{Υ̃p} is unique for p ∈ {1, . . . ,mk}.
(ii) span{Υ̃mk} = span{Υs}.

Proof. (i) From Theorem 2.1 and assumption (A1), we can assume that M has the

form (2.2). Since span{Υ̃p} ⊂ N (Mp) for p = 1, . . . ,mk, for convenience, we assume
without loss of generality (w.l.o.g.) that M has only zero eigenvalues and discuss two
typical cases of M in the following.

Case 1. Let k = 2, m1 < m2, and

M =


J (m1)(0) Λ(m1)(0)

J (m2)(0) Λ(m2)(0)

−J (m1)(0)T

−J (m2)(0)T


with Λ(m1)(0)(m1,m1) = Λ(m2)(0)(m2,m2) = 1.

For p ≤ m1, we have

N (Mp) = span{e1, . . . , ep, em1+1, . . . , em1+p}.

Since p < m1 + p ≤ m1 + m2 (= the half of dimension of M) for any x, y ∈ N (Mp)

we have xTJy = 0. From the definition of Υ̃p it follows that

span{Υ̃p} = N (Mp).

In addition, N (Mp) is unique. Thus, span{Υ̃p} is unique for p ≤ m1.
For m1 + 1 ≤ p ≤ m2, we have

N (Mp) = span{e1, . . . , em1 , e(m1+m2)+m1
, . . . , e(m1+m2)+m1−p+1, em1+1, . . . , em1+p}.

Let U ≡ span{e1, . . . , em1
, em1+1, . . . , em1+p}. Obviously, U ⊂ N (Mp). Since m1 +

p < m1 +m2 for any x, y ∈ U we have xTJy = 0. Hence,

U ⊂ span{Υ̃p}.

If U 6= span{Υ̃p}, then there exists a nonzero vector v ∈ span{e(m1+m2)+m1
, . . . ,

e(m1+m2)+m1−p+1} such that v ∈ span{Υ̃p} and v 6∈ U . But, for this v, there exists
an associated nonzero vector u ∈ U such that

uTJv 6= 0.
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This contradicts the definition of span{Υ̃p}. Hence U = span{Υ̃p}. Since U is unique,
the proof follows.

Case 2. Let k = 3, 2m1 < m2, and

M =


J (2m1)(0) 0

J (m2)(0) Λ(m2)(0)

−J (2m1)(0)T

−J (m2)(0)T


with Λ(m2)(0)(m2,m2) = 1. The proof of this case is similar to that for Case 1. We
omit it here.

(ii) By the definition of span{Υ̃p} and (i), (ii) follows immediately.

Remark. If we ignore the monotone property of span{Υ̃p}, i.e., condition (iii)

of Definition 3.4, then the uniqueness of span{Υ̃p} does not hold. For example, let
2m1 = 2, 2m2 = 4, and

M =


0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

 ;

then for p = 2 there exist two different maximal isotropic orthonormal bases {e(6)
1 , e

(6)
2 ,

e
(6)
3 } and {e(6)

2 , e
(6)
3 , e

(6)
4 }. But the latter does not form a subspace of span{Υs}.

Hence, we must determine Υs by using a monotone process.
We now develop an algorithm to determine the maximal isotropic subbasis Υs by

using the computed Ỹmk ≡ [Y1, . . . , Ymk ] and Theorem 3.5.

Algorithm 3.6. This algorithm computes Υs by using orthonormal basis Ỹmk
obtained by Algorithm 3.3.

Step 1. Let Υ̂ = [Y
(0)
1 , . . . , Y

(0)
m1 ] and p̂ = m1 + 1.

Step 2. Repeat:
Determine j ∈ {1, . . . , k} is a maximal integer such that mj < p̂.

If j = k, set Υs = Υ̂ and stop.
For p = mj + 1, . . . ,mj+1:
2.1 Find i ≥ 0 such that 2mi < p ≤ 2mi+1.

If p = m1 + 1, then Ŷ
(0)
m1+1 = Y

(0)
m1+1,

else Ŷ
(i)
p = [Y

(0)
m1+1, . . . , Y

(i)
p ].

Let #1 = the number of columns of Υ̂.

Let #2 = the number of columns of Ŷ
(i)
p .

2.2 Compute the SVD of Υ̂TJŶ
(i)
p such that(

U (j)
p

)T [
Υ̂TJŶ (i)

p

]
V (j)
p =

[
Σ(j,i)
p

∣∣∣∣O] ,
where

Σ(j,i)
p =


σ

(j,i)
1

. . .

σ
(j,i)
#1

 .
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Let #3 = max{q|σ(j,i)
q > 0 for q = 1, . . . ,#1}.

2.3 Update Υ̂ = [Y
(0)
1 , . . . , Y

(0)
m1 , Ŷ

(i)
p V

(j)
p [ 0

I#2−#3
]].

Endfor.
Step 3. Update p̂ = p+ 1 and go to Repeat.

Comment: (i) In substep 2.1, it is easily seen that

#1 =

j−1∑
`=0

(m`+1 −m`)(k − `) + (p−mj)(k − j)

and

#2 = 2

i−1∑
`=0

(m`+1 −m`)(k − `) + (p− 2mi)(k − i)−m1k.

(ii) This algorithm needs about O(n2) flops.
After the M -stable isotropic subspace span{Υs} is found, we can deflate it by

using symplectic orthogonal transformations to get a reduced Hamiltonian matrix M̂
(say!) having no purely imaginary eigenvalue. Then we compute the maximal stable

isotropic subspace of M̂ by exploiting [2, 23, 29]. Combining these two computed
isotropic subspaces, we obtain the desired M -stable Lagrangian subspace YL.

4. Computing the stable Lagrangian subspace of a symplectic pencil
having unimodular eigenvalues. Let N−λL be a symplectic pencil as in (1.2). As-
sume (A2) holds; i.e., the partial multiplicities of unimodular eigenvalues ofN−λL are
all even. In this section, we shall develop an algorithm to compute the (N,L)-stable
isotropic subspace W corresponding to the first half Jordan blocks of all unimodular
eigenvalues and get a reduced symplectic pencil having no unimodular eigenvalue.
Combining W with the maximal isotropic subspace corresponding to the strictly sta-
ble eigenvalues of N − λL, we obtain the desired (N,L)-stable Lagrangian subspace
WL.

The main idea of our algorithm to determine W is that by using S + S−1-
transformation [18] we first compute a Jordan basis of Γ−λ∆ as in (1.7) corresponding
to eigenvalues with magnitudes between −2 and 2 and a Jordan basis corresponding
to unimodular eigenvalues of N − λL and then use it to determine an isotropic basis
Υ of W.

We recall from (1.7) that

Γ− λ∆ ≡
[(
NJLT + LJNT

)
− λLJLT

]
JT .

Now we want to show the relation between Jordan bases corresponding to the uni-
modular eigenvalue µ of N − λL and the eigenvalue µ+ µ−1 of Γ− λ∆, respectively.
For the pencil N − λL, we can use the method of [20, p. 120] to deflate its zero
and infinity eigenvalues simultaneously and get a reduced symplectic pencil having
no zero or infinity eigenvalues. Hence, we can assume w.l.o.g. that both N and L are
nonsingular in the following.

Theorem 4.1. Let N −λL be a symplectic pencil having unimodular eigenvalues
µ ∈ {±1, e±iθ, (θ 6= 0)}. Let

J (2m1)(µ), . . . , J (2mk)(µ)(4.1)

be the corresponding Jordan blocks with even sizes. Then
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(i) for µ = ±1 the corresponding eigenvalue 2 or −2 of Γ−λ∆ has Jordan blocks

J (m1)(±2), J (m1)(±2), . . . , J (mk)(±2), J (mk)(±2),

(ii) for µ = e±iθ the corresponding eigenvalue eiθ + e−iθ of Γ − λ∆ has Jordan
blocks

J (2m1)(eiθ + e−iθ), . . . , J (2mk)(eiθ + e−iθ)

with the same sizes as (4.1).
Proof. To prove this theorem, we consider the following simple case. The complete

proof is a straightforward generalization. Let Y = [y1, . . . , y2m1 ] be a Jordan basis of
J (2m1)(µ) satisfying

NY = LY J (2m1)(µ).(4.2)

Write Y = JLTJTZ with Z = [z1, . . . , z2m1
]. Substituting Y into (4.2), we have

NJLTJTZ = LJLTJTZJ (2m1)(µ).(4.3)

Since NJNT = LJLT and N and J (2m1)(µ) are invertible, from (4.3) we get

LJNTJTZ = LJLTJTZJ (2m1)(µ)−1.(4.4)

Combining (4.3) and (4.4), we get(
NJLTJT + LJNTJT

)
Z = LJLTJTZ

(
J (2m1)(µ) + J (2m1)(µ)−1

)
.

If µ = ±1, then it is easily seen that

J (2m1)(±1) + J (2m1)(±1)−1 s.∼



±2 0 ±1 0
. . .

. . .
. . . ±1

0
0 ±2


s.∼
[
J (m1)(±2) 0

0 J (m1)(±2)

]
.

Here the symbol
s.∼ denotes “similar.” Thus, statement (i) is proved.

If µ = e±iθ, then it is easily seen that

J (2m1)(e±iθ) + J (2m1)(e±iθ)−1 s.∼


eiθ + e−iθ 1

. . .
. . .

. . . 1
eiθ + e−iθ

 .
Hence, statement (ii) follows.

As in section 3, we can also give the relation between orthonormal Jordan bases
corresponding to eigenvalues 2 and 1 of Γ − µ∆ and N − λL, respectively. Here we
use the same notation as in section 3.
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Let Z̃q = [Z1, . . . , Zq] and Ỹp = [Y1, . . . , Yp] for q = 1, . . . ,mk and p = 1, . . . , 2mk

be the orthonormal Jordan bases corresponding to 2 and 1 of Γ − µ∆ and N −
λL, respectively, where Zq and Yp are orthonormal Jordan bases of degree q and p,
respectively. We say that Zq is of degree q if it holds

(Γ− 2∆)v ∈ span{∆Z̃q−1}, (Γ− 2∆)v 6∈ span{∆Z̃q−2} (for q ≥ 2)

for all v ∈ span{Zq} and that Yp is of degree p if it holds

(N − L)v ∈ span{LỸp−1}, (N − L)v 6∈ span{LỸp−2} (for p ≥ 2)

for all v ∈ span{Yp}. Here we set Z̃0 = 0 and Ỹ0 = 0.

Let Θq be an orthonormal basis of JLTJTZq and Θ̃q = [Θ1, . . . ,Θq] for q =
1, . . . ,mk.

Theorem 4.2. For p = 1, . . . ,mk, we have
(i) span{Θ̃p} = span{Ỹ2p}.
(ii) span{Θp} = span{Y2p−1}⊕ span{Y2p},
(iii) span{Y2p−1} = span{(I − Θ̃p−1Θ̃T

p−1)(L−1N − I)Θp}
= span{(ΘpΘp

T )(L−1N − I)Θp},
(iv) if W2p−1 is an orthonormal basis of span{(I − Θ̃p−1Θ̃T

p−1)(L−1N − I)Θp},
then span{Y2p} = span{(I −W2p−1W

T
2p−1)Θp}.

Proof. (i) Let p = 1. For u ∈ span{Θ̃1} there is a vector v ∈ span{Z̃1} such that
u = JLTJT v. Then we have (Γ− 2∆)v = 0. Since

NL−1(Γ− 2∆) = (N − L)L−1(N − L)JLTJT (from (1.7)),(4.5)

we have

0 = NL−1(Γ− 2∆)v = (N − L)L−1(N − L)JLTJT v.

Hence, u ∈ span{Ỹ2} and span{Θ̃1} ⊂ span{Ỹ2}.
Conversely, if u ∈ span{Ỹ2}, then

(N − L)L−1(N − L)u = 0.(4.6)

By (4.5) and (4.6), we have

NL−1(Γ− 2∆)(JLTJT )−1u = 0.

Let v = (JLTJT )−1u. Since N and L are nonsingular, we have (Γ− 2∆)v = 0. Thus,

v ∈ span{Z̃1}. Statement (i) holds for p = 1.

Assume that statement (i) holds for p̂ = p− 1 < mk. For u ∈ span{Θ̃p} there is

a vector v ∈ span{Z̃p} such that u = JLTJT v. By (4.5) and the definition of Z̃p, we
have

(N − L)L−1(N − L)(JLTJT )v = NL−1(Γ− 2∆)v

= NL−1∆(Z̃p−1w̃p−1)

= N(JLTJT Z̃p−1w̃p−1)

for some nonzero vector w̃p−1. Since (i) holds for p̂ = p− 1, there is a nonzero vector
ŵ2(p−1) such that

Ỹ2(p−1)ŵ2(p−1) = JLTJT Z̃p−1w̃p−1.
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This implies

(N − L)L−1(N − L)(JLTJT )v = NỸ2(p−1)ŵ2(p−1)

= (N − L)Ỹ2(p−1)ŵ2(p−1) + LỸ2(p−1)ŵ2(p−1)

∈ span{LỸ2(p−1)}.

Hence, u ∈ span{Ỹ2p}.
Conversely, if u ∈ span{Ỹ2p}, from the proof of (i) of Theorem 4.1, we know that

there is a nonzero vector v with u = JLTJT v such that v ∈ span{Z̃p}. Hence, by
induction, statement (i) follows.

(ii), (iii), (iv) From (i) we have that

span
{

(L−1N − I)Θp

}
⊂ span

{
Ỹ2p−1

}
.(4.7)

Using (4.7) and a similar argument as in Theorem 3.2, we obtain (ii), (iii), and (iv)
immediately.

According to Theorems 4.1, 4.2, and 3.5, we can also develop a structure-preserving
algorithm to compute the (N,L)-stable Lagrangian subspace WL. The algorithm is
similar to Algorithms 3.1, 3.3, and 3.6. We omit the detail descriptions while the
statements are the same.

Algorithm 4.3. This algorithm computes the desired (N,L)-stable isotropic
basis Υs. Suppose that the only unimodular eigenvalue of N − λL is one.

Step 1: Reduce the skew-Hamiltonian pencil Γ − λ∆ ≡ [(NJLT + LJNT ) −
λLJLT ]JT to a skew-Hamiltonian quasi-upper upper triangular pencil by us-
ing the stable algorithm proposed by [22]; i.e., find orthogonal matrices U and
Q such that

UTΓQ =

[
Γ1 H1

O ΓT1

]
≡ H

and

UT∆Q =

[
∆1 E1

O ∆T
1

]
≡ E,

where Γ1 is quasi-upper triangular, ∆1 is upper triangular, and H1, E1 are
skew symmetric.
Set

H :=

[
I O

O Î

]
H

[
I O

O Î

]
(quasi-upper triangular),

E :=

[
I O

O Î

]
E

[
I O

O Î

]
(upper triangular),

Q := Q

[
I O

O Î

]
, where Î =


0 1

·
·

1 0

 .
Let j = 0, q = 1.
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Step 2: Compute Z
(j)
q for q = 1, . . . ,mk, by performing the same statements in

Step 3 of Algorithm 3.1 but replacing H by H−2E. Compute an orthonormal

basis Θ
(j)
q of JLTJTZ

(j)
q for q = 1, . . . ,mk.

Comment: Here Z
(j)
q is an orthonormal Jordan basis of degree q correspond-

ing to eigenvalue 2 of Γ− λ∆.

Step 3: Perform the same statements as in Algorithm 3.3 but replace MZ
(j)
p by

(L−1N − I)Θ
(j)
p .

Comment: This step computes an orthonormal Jordan basis {Y (j)
p }mkp=1 of

N − λL corresponding to the unimodular eigenvalue 1.
Step 4: Perform the same statements as in Algorithm 3.6 to compute the desired

(N,L)-stable isotropic basis Υs.
Remark. If N − λL has unimodular eigenvalues −1 or e±iθ, then we replace

H − 2E in Step 2 by H + 2E or H − ηE with η = eiθ + e−iθ and perform the same
process.

According to Algorithm 4.3, we can find the desired (N,L)-stable isotropic basis

Υs ≡
[
Υ

(0)
11

T
,Υ

(0)
21

T
,Υ

(0)
31

T
,Υ

(0)
41

T
]T

with Υ
(0)
11 ,Υ

(0)
31 ∈ R

n0
2 ×

n0
2 of N −λL. Here, n0 is the number of unimodular eigenval-

ues. We now give an algorithm to determine a symplectic matrix Q and a nonsingular
U such that

U(N − λL)Q =


N11 N12 0 0

0 N22 0 0
0 0 I 0
0 N42 0 I

− λ

I 0 L13 L14

0 I L23 L24

0 0 L33 0
0 0 L43 L44

 ,(4.8)

where the reduced symplectic pencil [N22

N42

0
I ]−λ[ I0

L24

L44
] has no unimodular eigenvalue.

Here L44 = NT
22, N42 = NT

42, and L24 = LT24.
Algorithm 4.4. This algorithm is to determine a symplectic matrix Q and an

invertible matrix U such that (4.8) holds.
Step 1: Find a symplectic Householder matrix Q1 such that

QT1 Υs =


Υ

(1)
11

Υ
(1)
21

Υ
(1)
31

0

 .
Set

N := QT1 NQ1, L := QT1 LQ1, U := QT1 , Q := Q1.

Step 2: If Υ
(1)
11 is singular or ill conditioned, then Return.

Else compute a Gaussian symplectic matrix Q−1
2 ≡ [ IΩ

0
I ], with Ω ≡ −Υ

(1)
31 Υ

(1)
11

−1
,

so that

Q−1
2


Υ

(1)
11

Υ
(1)
21

Υ
(1)
31

0

 =


Υ

(2)
11

Υ
(2)
21

0
0

 .
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Comment: Since Υs is isotropic, it follows that Ω is symmetric. Thus Q2 is
symplectic.
If (I + L12Ω) is singular or ill conditioned, then Return.
Else set

U2 :=

[
(I + L12Ω)−1 0

0 I

]
, U3 :=

[
I 0

−L12Ω I

]
,

Q := QQ2, U := U3U2U,

and form

N := UNQ =

 (I + L12Ω)−1N11 0

N21 + Ω− L22Ω(I + L12Ω)−1N11 I

 ,
L := ULQ =

 I (I + L12Ω)−1L12

0 L22 − L22Ω(I + L12Ω)−1L12

 .
Comment: Here the matrix L22 − L22Ω(I + L12Ω)−1L12 = NT

11(I + ΩL12)−1

and (I + L12Ω)−1L12 is symmetric.
Step 3: Find a symplectic Householder matrix Q3 such that

QT3


Υ

(2)
11

Υ
(2)
21

0
0

 =


Υ

(3)
11

0
0
0

 .
Set

N := QT3 NQ3, L := QT3 LQ3, Q := QQ3, U := QT3 U.

Remark. (i) This algorithm deflates the maximal (N,L)-stable isotropic subspace
of N − λL corresponding to unimodular eigenvalues and gets a reduced symplectic
pencil having no unimodular eigenvalue. Consequently, we can use the structure-
preserving algorithm proposed by [19] or [29] to compute the stable invariant subspace

of the reduced symplectic pencil. (ii) If the matrix (I + L12Ω) or Υ
(1)
11 in Step 2 is

not invertible or ill conditioned, then we return the deflation process to N − λL. We
deflate the isotropic basis Υs from N − λL directly by using symplectic orthogonal
transformations and get a reduced symplectic pencil having no unimodular eigenvalue.
Then we apply the algorithm of [29] to find the rest of the stable invariant subspace.
Although here only orthogonal symplectic transformations are used, it is numerically
difficult to keep symplecticity of N − λL explicitly [7]. Hence, it may be numerically
troublesome in this case.

5. Numerical examples. In this section we illustrate the numerical perfor-
mance of our algorithms for a Hamiltonian matrix M . A program based on Algorithms
3.1, 3.3, and 3.6 has been implemented on a SUN 4/470 computer using MATLAB
with eps ≈ 10−16.
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Example 5.1. Let

A0 = diag
{

[0], J (2)(0)T , J (4)(0)T ,−I2
}
,

H0 = diag
{

[−1],−Λ(2)(0),−Λ(4)(0),−I2
}
,

G0 = O9×9,

where J (mj)(0) and Λ(mj)(0) are defined in section 1 with Λ(mj)(0)(mj ,mj) = 1,

j = 1, 2. It is easily seen that the corresponding Hamiltonian matrix M0 = [A0

H0

0
−AT0

]

has nonzero eigenvalues −1, −1, 1, 1 and the zero eigenvalue with partial multiplicities
{2, 4, 8}. Now we construct a nontrivial Hamiltonian matrix M by

M =

 I V2

0 I

 V T1 0

0 V −1
1

M0

 V −T1 0

0 V1

 I −V2

0 I

 ,
where

V1 =


1 1 0

. . .
. . .

1
0 1

 and V2 =



1 1 0
1 −1 2

2 1
. . .

. . .
. . .

−1 8
0 8 1


.

The new matrix M ≡ [AH
G
−AT ] has the same Jordan canonical form as M0 and has

the forms

A =



−1 −1 1 0 0 0 0 0 0
−1 3 −3 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0
−1 4 −3 0 0 0 0 0 0
−1 1 −1 1 0 −5 5 0 0
−1 1 −1 0 1 7 −13 6 0
−1 1 −1 0 0 −4 11 −13 7
−1 1 −1 0 0 8 −14 16 −9
−1 1 −1 0 0 1 9 −15 6


,

H = diag


 −1 0 0

0 −1 1
0 1 −1

 , [ 0 0
0 0

]
,


−1 1 0 0

1 −2 1 0
0 1 −2 1
0 0 1 −1


 ,

G =



2 −2 1 −3 0 0 0 0 0
−2 10 −1 11 4 4 4 4 4

1 −1 −3 −5 −4 −1 −1 −1 −1
−3 11 −5 9 4 −1 3 3 3

0 4 −4 4 17 −36 20 −40 −5
0 4 −1 −1 −36 75 −70 92 −53
0 4 −1 3 20 −70 98 −146 90
0 4 −1 3 −40 92 −146 178 −118
0 4 −1 3 −5 −53 90 −118 115


.
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It is easy to check that H is negative definite and G is indefinite. The matrix M
satisfies the condition of Theorem 5.1 of [8] from H∞-control problems. Hence, we
can apply Algorithms 3.1, 3.3, and 3.6 to find an M -stable Lagrangian subspace YL.
We first use Algorithm 3.1 to compute an orthonormal Jordan subbasis Z[1 : 14]
corresponding to zero eigenvalues of M2. Since zero eigenvalues of M2 have partial
multiplicities {1, 1, 2, 2, 4, 4}, we check 2-norms of the following matrices:

M2Z[1 : 6] M4Z[7 : 10] M6Z[11 : 12] M8Z[13 : 14]

‖ · ‖2 3.34e–14 1.72e–12 8.65e–12 1.79e–12

.

Next, we use Algorithm 3.3 to compute an orthonormal Jordan subbasis Y [1 : 14]
corresponding to a zero eigenvalue of M . The zero eigenvalue of M has partial mul-
tiplicities {2, 4, 8}; we check 2-norms of the following matrices:

MY [1 : 3] M2Y [4 : 6] M3Y [7 : 8] M4Y [9 : 10]

‖ · ‖2 6.44e–14 4.04e–14 8.35e–12 5.27e–13

,

M5Y [11] M6Y [12] M7Y [13] M8Z[14]

‖ · ‖2 2.25e–10 4.22e–12 7.29e–12 2.31e–12

.

Now, we compute the maximal isotropic subbasis Υ[1 : 7] = Υs of the stable La-
grangian subspace corresponding to zero eigenvalues. At the same time, the isotrop-
icity of Υ[1 : 7] is checked:

‖ Υ[1 : 7]TJ9Υ[1 : 7] ‖2= 1.96e− 13.

Finally, we deflate the zero eigenvalue and the associated subbasis Υ[1 : 7] of M
by using symplectic orthogonal transformations and get a 4× 4 Hamiltonian matrix
having eigenvalues {−1,−1, 1, 1}. Then we use algorithms of [2, 23, 29] to find the
rest subbasis Υ[8 : 9] of the desired M -stable Lagrangian subspace YL. Consequently,
a symmetric stable solution Xsol of CARE (1.4) is computed by

Xsol = −Υ[10 : 18, 1 : 9] (Υ[1 : 9, 1 : 9])
−1
.

The 2-norm of the residual of the Riccati equation is 8.71e− 14.

6. Conclusions. In this paper, we have presented structure-preserving algo-
rithms for computing anM -stable and an (N,L)-stable Lagrangian subspace of Hamil-
tonian matrices and symplectic pencils having purely imaginary and unimodular
eigenvalues, respectively. These problems often arise in solving the continuous- or
discrete-time H∞-optimal and linear-quadratic control problems, etc. The main ap-
proach of our algorithms is to find a maximal isotropic subbasis corresponding to each
first half of Jordan blocks of purely imaginary eigenvalues (unimodular eigenvalues,
respectively). Furthermore, we deflate the computed isotropic subbasis by using sym-
plectic orthogonal transformations and get a reduced Hamiltonian matrix (symplectic
pencil) having no purely imaginary (unimodular) eigenvalues. Then we compute the
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maximal stable isotropic subspace of the reduced Hamiltonian matrix (symplectic pen-
cil) by applying some proposed methods of [2, 23, 29]. Thus, we obtain the desired
stable Lagrangian subspace by combining these two computed isotropic subspaces.
For the continuous case, we first compute an orthonormal Jordan basis corresponding
to nonpositive eigenvalues of M2 and then use it to determine the maximal isotropic
Jordan subbasis corresponding to each first half of Jordan blocks of purely imagi-
nary eigenvalues of M . The proposed algorithm is structure preserving and only uses
orthogonal transformations. The dominant flops of the algorithm are in the step of
reducing M2 to a skew-Hamiltonian upper triangular matrix. It requires O(n2) flops
for the deflation of the computed isotropic subbasis if the number of purely imaginary
eigenvalues is of order 1 compared with the dimension of matrices. Numerical ex-
periments performed on a number of constructive Hamiltonian matrices of dimension
30 with variant sizes of Jordan blocks have shown that our algorithm is stable and
reliable in accuracy of the computed maximal isotropic subbasis. For the discrete-
time case, we also develop an algorithm to compute the maximal isotropic Jordan
subbasis corresponding to each first half of Jordan blocks of unimodular eigenvalues
of a symplectic pencil N − λL. The approach is analogous to that developed in the
continuous case by replacing the M2-transformation by the S + S−1-transformation
of the symplectic pencil. The algorithm is structure preserving and uses orthogonal
transformations but in the deflation step. Since the algorithm preserves the symplec-
ticity for the pencil type, if the conditions of nonorthogonal transformations in the
deflation step are fairly good, the proposed algorithm is still efficient and reliable.

REFERENCES

[1] B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis, Lecture Notes
in Control and Information Science, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[2] G. S. Ammar and V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms, Linear
Algebra Appl., 149 (1991), pp. 55–72.

[3] T. Beelen and P. Van Dooren, An improved algorithm for the computation of Kronecker’s
canonical form of a singular pencil, Linear Algebra Appl., 105 (1988), pp. 9–65.

[4] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
[5] D. Clements and K. Glover, Spectral transformations via Hermitian pencils, Linear Algebra

Appl., 123 (1989), pp. 797–846.
[6] B. A. Francis and J. C. Doyle, Linear control theory with an H∞-optimality criterion, SIAM

J. Control Optim., 25 (1987), pp. 815–844.
[7] U. Flaschka, V. Mehrmann, and D. Zywietz, An analysis of structure preserving methods

for symplectic eigenvalue problems, RAIRO Automat.-Prod. Inform. Ind., 25 (1991), pp.
165–190.

[8] K. Glover, D. J. N. Limebeer, J. C. Doyle, E. M. Kasenally, and M. G. Safonov, A
characterization of all solutions to the fourblock general distance problem, SIAM J. Control
Optim., 39 (1991), pp. 283–324.

[9] G. Golub and C. F. Van Loan, Matrix Computation, The Johns Hopkins University Press,
Baltimore, MD, 1983.

[10] P. Iglesias, Robust and Adaptive Control for Discrete-Time Systems, Ph.D. dissertation, De-
partment of Electrical Engineering, Cambridge University, U.K., 1991.

[11] V. Ionescu and M. Weiss, Two Riccati formulae for the discrete-time H∞-control problem,
Internat. J. Control, 57 (1993), pp. 141–195.

[12] C. Kenney, A. J. Laub, and M. Wette, A stability-enhancing scaling procedure for Schur-
Riccati solvers, Systems Control Lett., 12 (1989), pp. 241–250.

[13] P. Lancaster, A. C. M. Ran, and L. Rodman, Hermitian solutions of the discrete algebraic
Riccati equation, Internat. J. Control, 44 (1986), pp. 777–802.

[14] P. Lancaster and L. Rodman, Existence and uniqueness theorems for the algebraic Riccati
equation, Internat. J. Control, 32 (1980), pp. 285–309.

[15] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.
Control, 24 (1979), pp. 913–921.



614 WEN-WEI LIN AND CHERN-SHUH WANG

[16] A. J. Laub and K. Meyer, Canonical forms for symplectic and Hamiltonian Matrices, Celes-
tial Mech., 9 (1974), pp. 213–238.

[17] W.-W. Lin, On reducing infinite eigenvalues of regular pencils by a nonequivalence transfor-
mation, Linear Algebra Appl., 78 (1986), pp. 207–231.

[18] W.-W. Lin, A new method for computing the closed loop eigenvalues of a discrete-time algebraic
Riccati equation, Linear Algebra Appl., 96 (1987), pp. 157–180.

[19] L.-Z. Lu and W.-W Lin, An iterative algorithm for the solution of the discrete-time algebraic
Riccati equation, Linear Algebra Appl., 188/189 (1993), pp. 465–488.

[20] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag, Berlin,
1991.

[21] C. Paige and C. F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear
Algebra Appl., 41 (1981), pp. 11–32.

[22] R. V. Patel, On computing the eigenvalues of a symplectic pencils, Linear Algebra Appl., 188
(1993), pp. 591–611.

[23] R. V. Patel, Z. Lin, and P. Misra, Computation of stable invariant subspaces of Hamiltonian
matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 284–298.

[24] P. H. Petkov, N. D. Christov, and M. M. Konstantinov, On the numerical properties
of the Schur approach for solving the matrix Riccati equation, Systems Control Lett., 9
(1987), pp. 197–201.

[25] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[26] A. J. Van Der Schaft and J. C. Willems, A new procedure for stochastic realization of
spectral density matrices, SIAM J. Control Optim., 22 (1984), pp. 845–855.

[27] C. F. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix, Linear Algebra Appl., 61 (1984), pp. 233–251.

[28] J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equations,
IEEE Trans. Automat. Control, 16 (1971), pp. 621–634.

[29] H.-G. Xu, Solving Algebraic Riccati Equations via Skew-Hamiltonian Matrices, Ph.D. thesis,
Department of Math, Fudan University, Shanghai, China, 1991.



THE MATRIX SIGN FUNCTION METHOD AND THE
COMPUTATION OF INVARIANT SUBSPACES∗

RALPH BYERS† , CHUNYANG HE‡ , AND VOLKER MEHRMANN§

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 615–632, July 1997 006

Abstract. A perturbation analysis shows that if a numerically stable procedure is used to
compute the matrix sign function, then it is competitive with conventional methods for computing
invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of By-
ers and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples
demonstrate the theoretical results.
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1. Introduction. If A ∈ Rn×n has no eigenvalue on the imaginary axis, then
the matrix sign function sign(A) may be defined as

sign(A) =
1

πi

∫
γ

(zI −A)−1dz − I,(1)

where γ is any simple closed curve in the complex plane enclosing all eigenvalues
of A with positive real part. The sign function is used to compute eigenvalues and
invariant subspaces [2, 4, 6, 13, 14] and to solve Riccati and Sylvester equations
[9, 15, 16, 28]. The matrix sign function is attractive for machine computation because
it can be efficiently evaluated by relatively simple numerical methods. Some of these
are surveyed in [28]. It is particularly attractive for large dense problems to be solved
on computers with advanced architectures [2, 11, 16, 33].

Beavers and Denman use the following equivalent definition [6, 13]. Let A =
XJX−1 be the Jordan canonical decomposition of a matrix A having no eigenvalues
on the imaginary axis. Let the diagonal part of J be given by the matrix D =
diag(d1, . . . , dn). If S = diag(s1, . . . , sn), where

si =

{
+1 if <(di) > 0,
−1 if <(di) < 0,

then sign(A) = XSX−1.
Let V+ = V+(A) be the invariant subspace of A corresponding to eigenvalues

with positive real part, let V− = V−(A) be the invariant subspace of A corresponding
to eigenvalues with negative real part, let P+(A) = P+ be the skew projection onto
V+ parallel to V−, and let P− = P−(A) be the skew projection onto V− parallel to

∗ Received by the editors November 21, 1994; accepted for publication (in revised form) by P.
Van Dooren July 12, 1996.

http://www.siam.org/journals/simax/18-3/27745.html
† University of Kansas, Department of Mathematics, Lawrence, KS 66045 (byers@ariel.math.

ukans.edu). Partial support was received from National Science Foundation grants INT-8922444 and
CCR-9404425 and University of Kansas GRF allocation 3514-20-0038.
‡ University of Kansas, Department of Mathematics, Lawrence, KS 66045 (he@math.ukans.edu).
§ TU-Chemnitz-Zwickau, Fak. f. Mathematik, D-09107 Chemnitz, Germany (mehrmann@

mathematik.tu-chemnitz.de). Partial support was received from Deutsche Forschungsgemeinschaft,
Projekt La 767/3-2.

615



616 RALPH BYERS, CHUNYANG HE, AND VOLKER MEHRMANN

V+. Using the same contour γ as in (1), the projection P+ has the resolvent integral
representation [23, p. 67], [2]

P+ =
1

2πi

∫
γ

(zI −A)−1dz.(2)

It follows from (1) and (2) that sign(A) = P+ − P− = 2P+ − I = I − 2P−.
The matrix sign function was introduced using definition (1) by Roberts in a 1971

technical report [34] which was not published until 1980 [35]. Kato [23, p. 67] reports
that the resolvent integral (2) goes back to 1946 [12] and 1949 [21, 22].

There is some concern about the numerical stability of numerical methods based
upon the matrix sign function [2, 8, 19]. In this paper, we demonstrate that evaluating
the matrix sign function is a more ill-conditioned computational problem than the
problem of finding bases of the invariant subspaces V+ and V−. See Example 1 in
section 3. Nevertheless, we also give perturbation and error analyses, which show
that (at least for Newton’s method for the computation of the matrix sign function
[8, 9]) in most circumstances the accuracy is competitive with conventional methods
for computing invariant subspaces. Our analysis improves some of the perturbation
bounds in [2, 8, 18, 24].

In section 2 we establish some notation and clarify the relationship between the
matrix sign function and the Schur decomposition. The next two sections give a
perturbation analysis of the matrix sign function and its invariant subspaces. Sec-
tion 5 gives a posteriori bounds on the forward and backward error associated with
a corrupted value of sign(S). Section 6 contains a stability analysis of the Newton
iteration.

Throughout the paper, ‖ · ‖ denotes the spectral norm, ‖ · ‖1 the 1-norm (or
column sum norm), and ‖ · ‖F the Frobenius norm ‖ · ‖F =

√∑
|aij |2. The set of

eigenvalues of a matrix A is denoted by λ(A). The open left half-plane is denoted by
C− and the open right half-plane is denoted by C+. Borrowing some terminology from
engineering, we refer to the invariant subspace V− = V−(A) of a matrix A ∈ Rn×n

corresponding to eigenvalues in C− as the stable invariant subspace and the subspace
V+ = V+(A) corresponding to eigenvalues in C+ as the unstable invariant subspace.
We use P+ = P+(A) for the skew projection onto V+ parallel to V− and P− = P−(A)
for the skew projection onto V− parallel to V+.

2. Relationship with the Schur decomposition. Suppose that A has the
Schur form

QHAQ =

[ k n− k
k A11 A12

n− k 0 A22

]
,(3)

where λ(A11) ⊂ C− and λ(A22) ⊂ C+ [17]. If Y is a solution of the Sylvester equation

Y A22 −A11Y = 2A12,(4)

then

QH sign(A)Q =

[ k n− k
k −I Y
n− k 0 I

]
,(5)
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QHP−Q =

[ k n− k
k I − 1

2Y
n− k 0 0

]
,

and

QHP+Q =

[ k n− k
k 0 1

2Y
n− k 0 I

]
.

The solution of (4) has the integral representation

Y =
1

πi

∫
γ

(zI −A11)−1A12(zI −A22)−1dz,(6)

where γ is a closed contour containing all eigenvalues of A with positive real part
[29, 36].

The stable invariant subspace of A is the range (or column space) of sign(A)−I =
−2P−. If

(sign(A)− I)Π = QR =
[
Q1 Q2

] [ R1 R2

0 0

]
(7)

is a QR factorization with column pivoting [1, 17], where Q and R are partitioned in
the obvious way, then the columns of Q1 form an orthonormal basis of this subspace.
Here Q is orthogonal, Π is a permutation matrix, R is upper triangular, and R1 is
nonsingular.

It is not difficult to use the singular value decomposition of Y to show that

‖ sign(A)‖ =
1

2
‖Y ‖+

√
1 +

1

4
‖Y ‖2.(8)

It follows from (4) that

‖Y ‖ ≤ 2‖A12‖
sep(A11, A22)

,(9)

where sep is defined as in [17] by sep(A11, A22) = minZ 6=0
‖A11Z−ZA22‖F

‖Z‖F .

3. The effect of backward errors. In this section we discuss the sensitivity of
the matrix sign function subject to perturbations. For a perturbation matrix E, we
give first-order estimates for sign(A+E) in terms of submatrices and powers of ‖E‖.

Based on Fréchet derivatives, Kenney and Laub [24] presented a first-order per-
turbation theory for the matrix sign function via the solution of a Sylvester equation.
Mathias [30] derived an expression for the Fréchet derivative using the Schur decom-
position. Kato’s encyclopedic monograph [23] includes an extensive study of series
representations and perturbation bounds for eigenprojections. In this section we de-
rive an expression for the Fréchet derivative using integral formulas.

Let

dA = min
µ∈R

σmin(A− µiI),

where σmin(A−µiI) is the smallest singular value of A−µiI. The quantity dA is the
distance from A to the nearest complex matrix with an eigenvalue on the imaginary
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axis. Practical numerical techniques for calculating dA appear in [7, 10]. If ‖E‖ < dA,
then E is too small to perturb an eigenvalue of A on or across the imaginary axis.
It follows that for ‖E‖ < dA, sign(A + E) and the stable and unstable invariant
subspaces of A+ E are smooth functions of E.

Consider the relatively simple case in which A is block diagonal.
Lemma 3.1. Suppose A is block diagonal,

A =

[
A11 0
0 A22

]
,

where λ(A11) ⊂ C− and λ(A22) ⊂ C+. Partition the perturbation E ∈ Rn×n confor-
mally with A as

E =

[
E11 E12

E21 E22

]
.(10)

If ‖E‖ < dA, then

sign(A+ E) = sign(A) + 2

([
0 F12

F21 0

])
+O(‖E‖2),

where F12 and F21 satisfy the Sylvester equations

A22F21 − F21A11 = E21,(11)

F12A22 −A11F12 = E12.(12)

Proof. The hypothesis that ‖E‖ < dA implies that the eigenvalues of A11 + E11

have negative real part and the eigenvalues of A22 + E22 have positive real part. In
the definition (1) choose the contour γ to enclose λ(A22) and λ(A22 +E22) but neither
λ(A11) nor λ(A11+E11). In particular, for all complex numbers z lying on the contour
γ, zI −A and zI − (A+ E) are nonsingular and

(zI − (A+ E))−1 = (zI −A)−1 + (zI −A)−1E(zI −A)−1

+ (zI −A)−1E(zI −A)−1E(zI − (A+ E))−1.

So,

sign(A+ E) =
1

πi

∫
γ

(zI − (A+ E))−1 dz − I

=
1

πi

∫
γ

((zI −A)−1 + (zI −A)−1E(zI −A)−1) dz − I

+O(‖E‖2)

= sign(A) + 2F +O(‖E‖2),

where

F =
1

2πi

∫
γ

(zI −A)−1E(zI −A)−1 dz.

Partitioning F conformally with E and A, then we have

F11 =
1

2πi

∫
γ

(zI −A11)−1E11(zI −A11)−1 dz,
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F12 =
1

2πi

∫
γ

(zI −A11)−1E12(zI −A22)−1 dz,

F21 =
1

2πi

∫
γ

(zI −A22)−1E21(zI −A11)−1 dz,

F22 =
1

2πi

∫
γ

(zI −A22)−1E22(zI −A22)−1 dz.

As in (6), F12 and F21 are the solutions to the Sylvester equations (11) and (12)
[29, 36]. The contour γ encloses no eigenvalues of A11, so (zI−A11)−1E11(zI−A11)−1

is analytic inside γ and F11 = 0.
We first prove that F22 = 0 in the case in which A22 is diagonalizable, say A22 =

XΛX−1, where Λ = diag(λ1, λ2, . . . , λn−k). Then

F22 = X

(
1

2πi

∫
γ

(zI − Λ)−1(X−1E22X)(zI − Λ)−1 dz

)
X−1.

Each component of the above integral is of the form
∫
γ
c(z − λj)−1(z − λk)−1 dz for

some constant c. If j = k then this is the integral of a residue-free holomorphic
function and hence it vanishes. If j 6= k, then∫

γ

c

(z − λi)(z − λj)
dz =

∫
γ

c

λi − λj

(
1

z − λi
− 1

z − λj

)
dz = 0.

The general case follows by taking limits of the diagonalizable case and using the
dominated convergence theorem.

The following theorem gives the general case.
Theorem 3.2. Let the Schur form of A be given by (3) and partition E confor-

mally as

QHEQ =

[ k n− k
k E11 E12

n− k E21 E22

]
.(13)

If ‖SES−1‖ < dA, where

S =

[
I −Y2
0 I

]
,

and Y satisfies (4), then

sign(A+ E) = sign(A) + Et − sign(A)Ep sign(A) +O(‖E‖2),

where

Et = Q

[
0 2Ẽ12 + Y Ẽ21Y

2

Ẽ21 0

]
QH ,

Ep = Q

[
0 0

Ẽ21 0

]
QH ,

Ẽ21 satisfies the Sylvester equation

A22Ẽ21 − Ẽ21A11 = E21,(14)
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and Ẽ12 satisfies

Ẽ12A22 −A11Ẽ12 = E12 −
Y E22

2
+
E11Y

2
− Y E21Y

4
.(15)

Proof. If S = [ I0
−Y

2
I

], then

S

[
A11 A12

0 A22

]
S−1 =

[
A11 0
0 A22

]
and

S

[
E11 E12

E21 E22

]
S−1 =

[
E11 − Y E21

2 E12 − Y E22

2 + E11Y
2 − Y E21Y

4

E21
E21Y

2 + E22

]
.

It follows from Lemma 3.1 that

sign(SQH(A+ E)QS−1) =

[
−I 0
0 I

]
+ 2

[
0 Ẽ12

Ẽ21 0

]
+O(‖E‖2).

Since sign(SAS−1) = S sign(A)S−1, multiplying QS−1 on the left side and SQH on
the right side of the above equation, we have

sign(A+ E) = sign(A) +Q

[
Y Ẽ21 2Ẽ12 − Y Ẽ21Y

2

2Ẽ21 −Ẽ21Y

]
QH +O(‖E‖2).(16)

It is easy to verify that[
Y Ẽ21 2Ẽ12 − Y Ẽ21Y

2

2Ẽ21 −Ẽ21Y

]
(17)

=

[
0 2Ẽ12 + Y Ẽ21Y

2

Ẽ21 0

]
−
[
−I Y
0 I

] [
0 0

Ẽ21 0

] [
−I Y
0 I

]
.

The theorem follows from

QH sign(A)Q = sign(QHAQ) =

[
−I Y
0 I

]
.

If dA is small relative to ‖A‖ or ‖Y ‖ is large relative to ‖A‖, then the hypothesis
that ‖SES−1‖ < dA may be restrictive. However, a small value of dA indicates
that A is very near a discontinuity in sign(A). A large value of ‖Y ‖ indicates that
sep(A11, A22) is small and the stable invariant subspace is ill conditioned [37, 39].

Of course Theorem 3.2 also gives first-order perturbations for the projections
P+ = P+(A) and P− = P−(A).

Corollary 3.3. Let the Schur form of A be given as in (3) and let E be as in
(13). Under the hypothesis of Theorem 3.2, the projections P+ and P− satisfy

P±(A+ E)

= P±(A) +
1

2
(Et − sign(A)Ep sign(A)) +O(‖E‖2)

= P±(A) +
1

2

(
Et −

(
P±(A)− P∓(A)

)
Ep
(
P±(A)− P∓(A)

))
+O(‖E‖2)

= P±(A) +
1

2

(
Et −

(
2P±(A)− I

)
Ep
(
2P±(A)− I

))
+O(‖E‖2),
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where Et and Ep are as in the statement of Theorem 3.2.
Taking norms in Theorem 3.2 gives the first-order perturbation bounds of the

next corollary.
Corollary 3.4. Let the Schur form of A be given as in (3) and E as in (13)

and let 0 < δ = min{sep(A11, A22), sep(A22, A11)}. Then the first-order perturbation
of the matrix sign function stated in Theorem 3.2 is bounded by

‖ sign(A+ E)− sign(A)‖ ≤ 4

δ

(
1 +
‖A12‖
δ

)2

‖E‖+O(‖E‖2).

On first examination, Corollary 3.4 is discouraging. It suggests that calculating
the matrix sign function may be more ill conditioned than finding bases of the stable
and unstable invariant subspace. If the matrix A whose Schur decomposition appears
in (3) is perturbed to A + E, then the stable invariant subspace, range(Q1), is per-
turbed to range(Q1 + Q2W ), where ‖W‖ ≤ 2‖E‖/δ [37, 39]. Corollary 3.4 and the
following example show that sign(A+ E) may indeed differ from sign(A) by a factor
of δ−3 which may be much larger than ‖E‖/δ.

Example 1. Let

A =

[
−η 1
0 η

]
,

E =

[
0 0
ε 0

]
.

The matrix A is already in Schur form, so sep(A11, A22) = 2η. If ε < η < 1, then we
have

sign(A) =

[
−1 η−1

0 1

]
,

sign(A+ E) =
1√
η2 + ε

[
−η 1
ε η

]
.

The difference is

sign(A+ E)− sign(A) = ε

[
η−2/2 −η−3/2
η−1 −η−2/2

]
+O(ε2).

Perturbing A to A + E does indeed perturb the matrix sign function by a factor of
δ−3.

Of course there is no rounding error in Example 1, so the stable invariant subspace
of A + E is also the stable invariant subspace of sign(A + E) and, in particular,
evaluating sign(A + E) exactly has done no more damage than perturbing A. The
stable invariant subspace of A is V−(A) = range([ 1

0 ]); the stable invariant subspace
of A+ E and sign(A+ E) is

V−(A+ E) = range

([
1
−ε

η+
√
η2+ε

])
= range

([
1
−ε
2η

])
+O(ε2).

For a general small perturbation matrix E, the angle between V−(A) and V−(A+
E) is of order no larger than O(1/η) [17, 37, 39]. The matrix sign function (and the
projections P− and P+) may be significantly more ill conditioned than the stable and
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unstable invariant subspaces. Nevertheless, we argue in this paper that despite the
possible poor conditioning of the matrix sign function, the invariant subspaces are
usually preserved about as accurately as their native conditioning permits.

However, if the perturbation E is large enough to perturb an eigenvalue across or
on the imaginary axis, then the stable and unstable invariant subspaces may become
confused and cannot be extracted from sign(A+ E). This may occur even when the
invariant subspaces are well conditioned, since the sign function is not defined in this
case. In geometric terms, in this situation A is within distance ‖E‖ of a matrix with
an eigenvalue with zero real part. This is a fundamental difficulty of any method that
identifies the two invariant subspaces by the signs of the real parts of the corresponding
eigenvalues of A.

4. Perturbation theory for invariant subspaces of the matrix sign func-
tion. In this section we discuss the accuracy of the computation of the stable invariant
subspace of A via the matrix sign function.

An easy first observation is that if the computed value of sign(A) is the exact
value of sign(A+E) for some perturbation matrix E, then the exact stable invariant
subspace of sign(A + E) is also an invariant subspace of A + E. Let A have Schur
form (3) and let E be a perturbation matrix partitioned conformally as in (13). Let
Q1 be the first k columns of Q and Q2 be the remaining n− k columns. If

0 ≤ ‖E21‖ (‖A12‖+ ‖E12‖)
sep(A11, A22)− ‖E11‖ − ‖E22‖

<
1

4
,

then A has a stable invariant subspace V−(A) = range(Q1) and A+E has an invariant
subspace range(Q1 +Q2W ), where W satisfies

‖W‖ ≤ 2‖E21‖
sep(A11, A22)− ‖E11‖ − ‖E22‖

(18)

≤ 2ε21
‖A‖

sep(A11, A22)
+O(ε2),(19)

where ε21 = ‖E21‖/‖A‖ [17, 37, 39]. The singular values of W are the tangents of the
canonical angles between V−(A) = range(Q1) and range(Q1 + Q2W ). In particular,
the canonical angles are at most of order O(1/ sep(A11, A22)).

Unfortunately, in general, we cannot apply backward error analysis; i.e., we cannot
guarantee that the computed value of sign(A) is exactly the value of sign(A + E)
for some perturbation E. Consider instead the effect of forward errors. Let B =
sign(A) + F , where F represents the forward error in evaluating the matrix sign
function. Let A have Schur form (3). Partition QH sign(A)Q and QHFQ as

QH sign(A)Q =

[ k n− k
k −I Y
n− k 0 I

]
and

QHFQ =

[ k n− k
k F11 F12

n− k F21 F22

]
,

where Q is the unitary factor from the Schur decomposition of A (3) and Y is a
solution of (4).
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Assume that

0 ≤ ‖F21‖(‖Y ‖+ ‖F12‖)
sep(I,−I)− ‖F11‖ − ‖F22‖

<
1

4
,

and let φ21 = ‖F21‖/‖ sign(A)‖.
Perturbing sign(A) to sign(A) + F changes the invariant subspace V−(A) =

V−(sign(A)) = range(Q1) to range(Q1 +Q2Ws), where [17, 37, 39]

‖Ws‖ ≤ 2‖F21‖/(2− ‖F11‖ − ‖F22‖),

and by (8) and (9)

‖F21‖ = φ21‖ sign(A)‖

≤ φ21

(
1

2
‖Y ‖+

√
1 +
‖Y ‖2

4

)

≤ φ21

(
2

‖A12‖
sep(A11, A22)

+ 1

)
.

Since sep(A11, A22) ≤ 2‖A‖F , Ws obeys the bounds

‖Ws‖ ≤ 2φ21

2 ‖A12‖
sep(A11,A22) + 1

2− ‖F11‖ − ‖F22‖

≤ 4φ21

(
‖A‖F

sep(A11, A22)

)
+O

(
‖F‖2

‖ sign(A)‖2

)
.(20)

Comparing (19) with (20), we see that the error bound (20) is no greater than twice
the error bound (19). Loosely speaking, a small relative error in sign(A) of size ε
might perturb the stable invariant subspace by not much more than twice as much as
a relative error of size ε in A can.

Therefore, the stable and unstable invariant subspaces of sign(A) may be less ill
conditioned and are never significantly more ill conditioned than the corresponding
invariant subspaces of A. There is no fundamental numerical instability in evaluating
the matrix sign function as a means of extracting invariant subspaces. However,
numerical methods used to evaluate the matrix sign function may or may not be
numerically unstable.

Example 1 continued. To illustrate the results, we give a comparison of our
perturbation bounds and the bounds given in [3] for both the matrix sign function and
the invariant subspaces in the case of Example 1. The distance to the nearest ill-posed
problem, i.e., dA = minµ σµ∈R(A−µiI), where σmin(A−µiI) is the smallest singular
value of (A− µiI), leads to an overestimation of the error in [3]. Since dA ≈ η−2, the
bounds given in [3] are, respectively, O(η−4) for the matrix sign function and O(η−2)
for the invariant subspaces.

5. A posteriori backward and forward error bounds. A priori backward
and forward error bounds for the evaluation of the matrix sign function remain elusive.
However, it is not difficult to derive a posteriori error bounds for both backward and
forward error.

We will need the following lemma to estimate the distance between a matrix S
and sign(S).
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Lemma 5.1. If S ∈ Rn×n has no eigenvalue with zero real part and
‖ sign(S)S−1 − I‖ < 1, then ‖ sign(S)− S‖ ≤ ‖S−1 − S‖.

Proof. Let F = sign(S)− S. The matrices F , S, and sign(S) commute, so

I = sign(S)2 = (S + F )2 = S2 + 2SF + F 2.

This implies that

S−1 − S
2

− S−1F 2

2
= F.

Taking norms and using ‖FS−1‖ = ‖ sign(S)S−1 − I‖ < 1, we get

1

2
‖S−1 − S‖+

1

2
‖F‖ ≥ ‖F‖

and the lemma follows.
It is clear from the proof of Lemma 5.1 that (sign(S) − S) ≈ (S−1 − S)/2 is

asymptotically correct as ‖ sign(S)−S‖ tends to zero. The bound in the lemma tends
to overestimate smaller values of ‖ sign(S)− S‖ by a factor of two.

Suppose that a numerical procedure for evaluating sign(A) applied to a matrix
A ∈ Rn×n produces an approximation S ∈ Rn×n. Consider the problem of finding
small norm solutions E ∈ Rn×n and F ∈ Rn×n to sign(A+E) = S+F . Of course, this
does not uniquely determine E and F . Common algorithms for evaluating sign(A),
such as Newton’s method for the square root of I, guarantee that S is very nearly
a square root of I [19]; i.e., S is a close approximation of sign(S). In the following
theorem, we have arbitrarily taken F = sign(S)− S.

Theorem 5.2. If ‖ sign(S)S−1− I‖ < 1 and ‖ sign(S)A−A sign(S)‖ < dA, then
sign(A+ E) = S + F for perturbation matrices E and F satisfying

‖F‖ ≤ ‖S−1 − S‖

and

‖E‖
‖A‖ ≤

‖ sign(S)A−A sign(S)‖
2‖A‖(21)

≤ ‖SA−AS‖
2‖A‖ + ‖S−1 − S‖.(22)

Proof. The matrices S+F and A+E commute, so an underdetermined, consistent
system of equations for E in terms of S, A, and F = sign(S)− S is

E(S + F )− (S + F )E = sign(S)A−A sign(S) = (SA−AS) + (FA−AF ).(23)

Let

UH sign(S)U =

[
−I Y
0 I

]
(24)

be a Schur decomposition of sign(S) whose unitary factor is U and whose triangular
factor is on the right-hand side of (24). Partition UHEU and UHAU conformally
with the right-hand side of (24) as

UHEU =

[
E11 E12

E21 E22

]



THE MATRIX SIGN FUNCTION AND INVARIANT SUBSPACES 625

and

UHAU =

[
A11 A12

A21 A22

]
.

Multiplying (23) on the left by UH and on the right by U and partitioning gives[
−Y E21 E11Y − Y E22 + 2E12

−2E21 E21Y

]
=

[
Y A21 −A11Y + Y A22 − 2A12

2A21 −A21Y

]
.

One of the infinitely many solutions for E is given by

UHEU =

[
E11 E12

E21 E22

]
=

[
0 1

2 (−A11Y + Y A22 − 2A12)
−A21 0

]
.(25)

For this choice of E, we have

2‖E‖ ≤ ‖ sign(S)A−A sign(S)‖
≤ ‖SA−AS‖+ ‖FA−AF‖
≤ ‖SA−AS‖+ 2‖S−1 − S‖ ‖A‖,

from which the theorem follows.
Lemma 5.1 and Theorem 5.2 agree well with intuition. To assure small forward

error, S must be a good approximate square root of I and, in addition, to assure
small backward error, sign(S) must nearly commute with the original data matrix A.
Newton’s method for a root of X2 − I tends to do a good job of both [19]. (Note
that, in general, Newton’s method makes a poor algorithm to find a square root of
a matrix. The square root of I is a special case. See [19] for details.) In particular,
the hypothesis that ‖ sign(S)S−1 − I‖ < 1 is usually satisfied when the matrix sign
function is computed by the Newton algorithm.

When S ≈ sign(S), the quantity ‖(S+S−1

2 )A−A(S+S−1

2 )‖ makes a good estimate
of the right-hand side of (21). The bound (22) is easily computed or estimated from
the known values of A and S. However, these expressions are prone to subtractive
cancellation of significant digits.

The quantity ‖E21‖ is related by (18) to perturbations in the stable invariant
subspace. The bounds (21) and (22) are a fortiori bounds on ‖E21‖, but, as the (1, 2)
block of (25) suggests, they tend to be pessimistic overestimates of ‖E21‖ if ‖S‖ � 1.

6. The Newton iteration for the computation of the matrix sign func-
tion. There are several numerical methods for computing the matrix sign function
[2, 25]. Among the simplest and most commonly used is the Newton–Raphson method
for a root of X2−I starting with initial guess X0 = A [34, 35]. It is easily implemented
using matrix inversion subroutines from widely available, high-quality linear algebra
packages like LAPACK [1, 2]. It has been extensively studied and many variations
have been suggested [2, 4, 5, 9, 18, 27, 25, 26, 28].

Algorithm 1 (Newton iteration (without scaling)).
X0 = A
FOR k = 0, 1, 2, . . .

Xk+1 = (Xk +X−1
k )/2

If A has no eigenvalues on the imaginary axis, then Algorithm 1 converges globally
and locally quadratically in a neighborhood of sign(A) [28]. Although the iteration
ultimately converges rapidly, initially convergence may be slow. However, the initial
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Fig. 1. ‖Xk − sign(A)‖1 in Example 2.

convergence rate (and numerical stability) may be improved by scaling [2, 5, 9, 18,
27, 25, 26, 28]. A common choice is to scale Xk 1/| det(Xk)|(1/n) [9].

Theorem 3.2 shows that the first-order perturbation of sign(A) may be as large as
‖ sign(A)‖2ε, where ε is the relative uncertainty in A. (If there is no other uncertainty,
then ε is at least as large as the round-off unit of the finite precision arithmetic.) Thus,
it is reasonable to stop the Newton iteration when

‖Xk+1 −Xk‖1 ≤ Cε‖Xk+1‖21.(26)

The ad hoc constant C is chosen to avoid extreme situations, e.g., C = 1000n. This
choice of C works well in our numerical experiments up to n = 700. Experience shows,
furthermore, that it is often advantageous to take an extra step of the iteration after
the stopping criterion is satisfied.

Example 2. This example demonstrates our stopping criterion. Algorithm 1
was implemented in MATLAB 4.1 on an HP 715/33 workstation with floating point
relative accuracy eps = 2 × 10−16. We constructed a 10 × 10 matrix A = QRQH ,
where Q is a random unitary matrix and R an upper triangular matrix with diagonal
elements −1 ± 0.2i,−2.0,−2.5,−3.0,−4.0,−4.5, 2 ± 0.2i, 6.0, a parameter α in the
(k, k+2) position and zero everywhere else. We chose α such that the norm ‖ sign(A)‖1
varies from small to large.

The typical behavior of the error ‖Xk − sign(A)‖ is that it goes down and then
becomes stationary. This behavior is shown in Figure 1 for the cases α = 0, α = 20,
and α = 50 in which ‖ sign(A)‖1 is 3× 100, 2× 103, and 6× 104, respectively.

Stopping criterion (26) is satisfied with C = 1000n at the 8th step for α = 0 and
at the 7th step for α = 20 and α = 50. Taking one extra step would stop at the 9th
step for α = 0 and at the 8th step for α = 20 and α = 50.

In exact arithmetic, the stable and unstable invariant subspaces of the iterates
Xk are the same as those of A. However, in finite precision arithmetic, rounding
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errors perturb these subspaces. The numerical stability of the Newton iteration for
computing the stable invariant subspace was analyzed in [8]; we give an improved
error bound here.

Let X and X+ be, respectively, the computed kth and (k + 1)st iterates of the
Newton iteration starting from

X0 = A = Q

[
A11 A12

0 A22

]
QH .

Suppose that X and X+ have the form

X = Q

[
X11 X12

E21 X22

]
QH , X+ = Q

[
X+

11 X+
12

E+
21 X+

22

]
QH .(27)

A successful rounding error analysis must establish the relationship between E+
21 and

E21. To do so we assume that some stable algorithm is applied to compute the inverse
X−1 in the Newton iteration. More precisely, we assume that X+ satisfies

X+ =
(X + EX) + (X + EX)−1

2
+ EZ ,(28)

where

‖EX‖ ≤ cε‖X‖,(29)

‖EZ‖ ≤ cε(‖X‖+ ‖X−1‖)(30)

for some constant c. Note that this is a nontrivial assumption. Ordinarily, if Gaussian
elimination with partial pivoting is used to compute the inverse, the above error bound
can be shown to hold only for each column separately [8, 38]. The better inversion
algorithms applied to “typical” matrices satisfy this assumption [38, p. 151], but it is
difficult to determine if this is always the case [31, pp. 22–26], [20, p. 150].

Write EX and EZ as

EX = Q

[
E′11 E′12

E′21 E′22

]
QH ,(31)

EZ = Q

[
E′′11 E′′12

E′′21 E′′22

]
QH .(32)

The following theorem bounds ‖E21‖ and indirectly the perturbation in the stable
invariant subspace.

Theorem 6.1. Let X, X+, EX , and EZ be as in (27), (28), (31), and (32). If
1
2 < 1− cε‖X‖‖X−1

11 ‖, 1
2 < 1− cε‖X‖‖X−1

22 ‖, and

0 < η = 1− 4(‖E21‖+ cε‖X‖)‖X−1
22 ‖‖X−1

11 ‖(‖X12‖+ cε‖X‖),

where c is as in (29) and (30), then

‖E+
21‖ ≤

1

2
(‖E21‖+ cε‖X‖)

(
1 +

4‖X−1
22 ‖‖X−1

11 ‖
η

)
+ cε(‖X‖+ ‖X−1‖).
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Proof. We start with (28). In fact, the relationship between E21 and E+
21 follows

from applying the explicit formula for the inverse of (X + EX) in [32]:

QH(X + EX)−1Q

=

[
X̃−1

11 + X̃−1
11 X̃12X̃

−1
c (E21 + E′21)X̃−1

11 −X̃−1
11 X̃12X̃

−1
c

−X̃−1
c (E21 + E′21)X̃−1

11 X̃−1
c

]
.

Here,

X̃11 = X11 + E′11,

X̃12 = X12 + E′12,

X̃22 = X22 + E′22,

X̃c = X̃22 − (E21 + E′21)X̃−1
11 X̃12.

Then

X+
11 =

1

2
(X̃11 + X̃−1

11 + X̃−1
11 X̃12X̃

−1
c (E21 + E′21)X̃−1

11 ) + E′′11,

X+
12 =

1

2
(X̃12 − X̃−1

11 X̃12X̃
−1
c ) + E′′12,

E+
21 =

1

2
((E21 + E′21)− X̃−1

c (E21 + E′21)X̃−1
11 ) + E′′21,(33)

X+
22 =

1

2
(X̃22 + X̃−1

c ) + E′′22.

Using the Neumann lemma that if ‖B‖ < 1, then ‖(I − B)−1‖ < (1 − ‖B‖)−1 [17],
we have

‖X̃−1
11 ‖ ≤

‖X−1
11 ‖

1− ‖X−1
11 ‖‖E′11‖

≤ ‖X−1
11 ‖

1− cε‖X−1
11 ‖‖X‖

≤ 2‖X−1
11 ‖.

The following inequalities are established similarly:

‖X̃−1
22 ‖ ≤ 2‖X−1

22 ‖,
‖X̃12‖ ≤ ‖X12‖+ cε‖X‖,

‖X̃−1
c ‖ ≤

‖X̃−1
22 ‖

1− ‖X̃−1
22 ‖(‖E21‖+ ‖E′21‖)‖X̃−1

11 ‖‖X̃12‖
≤ 2‖X−1

22 ‖
η

.

Inserting these inequalities into (33), we obtain

‖E+
21‖ ≤

1

2
(‖E21‖+ cε‖X‖)

(
1 +

4‖X−1
22 ‖‖X−1

11 ‖
η

)
+ ‖E′′21‖.

The bound in Theorem 6.1 is stronger than the bound of Byers in [8]. It follows from
(19) and Theorem 6.1 that if

‖E+
21‖

sep(X+
11, X

+
22)
≤ ‖E21‖

sep(X11, X22)
,

then rounding errors in a step of Newton corrupt the stable invariant subspace
by no more than one might expect from the perturbation E21 in (27). The term
sep(X+

11, X
+
22) is dominated by

sep

(
X11 +X−1

11

2
,
X22 +X−1

22

2

)
.
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So to guarantee that rounding errors in the Newton iteration do little damage, the
factors in the bound of Theorem 6.1, ‖X−1

11 ‖‖X−1
22 ‖ and (‖X‖ + ‖X−1‖), should be

small enough so that

‖E+
12‖ ≤

sep
(
X11+X−1

11

2 ,
X22+X−1

22

2

)
sep(X11, X22)

‖E21‖.(34)

Very roughly speaking, to have numerical stability throughout the algorithm, neither
‖X−1

11 ‖‖X−1
22 ‖ nor (‖X‖+ ‖X−1‖) should be much larger than 1/ sep(A11, A22).

The following example from [4] demonstrates numerical instability that can be
traced to the violation of inequality (34).

Example 3. Let

A11 =


1− α α
α 1− α

. . .
. . .

α 1− α


be a 10 × 10 real matrix, and let A22 = −AT11. Form R = [A11

E21

A12

A22
] and A =

QRQT , where the orthogonal matrix Q is chosen to be the unitary factor of the
QR factorization of a matrix with entries chosen randomly uniformly distributed in
the interval [0, 1]. The parameter α is taken as α = (1 − 10−5)/2 so that there are
two eigenvalues of A close to the imaginary axis from the left and right sides. The
entries of A12 are chosen randomly uniformly distributed in the interval [0, 1] too.
The entries of E21 are chosen randomly uniformly distributed in the interval [0, eps],
where eps = 2× 10−16 is the machine precision.

In this example, sep(A11, A22) = 2.0× 10−5 and σmin(A) = 3.4× 10−10. Table 1
shows the evolution of ‖E21‖1/ sep(X11, X22) during the Newton iteration starting
with X0 = A and X0 = R, respectively, where E21 is as in (27). The norm is taken to
be the 1-norm. Because ‖A−1

11 ‖1‖A−1
22 ‖1 = 1.0× 1010, ‖A−1‖1 = 2.3× 109, inequality

(34) is violated in the first step of the Newton iteration for the starting matrix A,
which is shown in the first column of the table. Newton’s method never recovers from
this.

It is remarkable, however, that Newton’s method applied to R directly seems
to recover from the loss in accuracy in the first step. The second column shows
that although ‖E21‖1/ sep(X11, X22) = 1.6 × 10−7 at the first step, it is reduced
by the factor 1/2 every step until it reaches 1.7 × 10−12, which is approximately
‖E21‖1/ sep(A11, A22). Observe that in this case the perturbation E′′21 in EZ as in
(28) is zero and ‖E+

21‖1 is dominated by 1
2 (‖E21‖1 +‖X−1

22 E21X
−1
11 ‖1). It is surprising

to see that from the second step on ‖X−1
11 E21X

−1
22 ‖1 is as small as eps, since A−1

11 and
A−1

22 do not explicitly appear in the term X−1
11 E21X

−1
22 after the first step.

Our analysis suggests that the Newton iteration may be unstable when Xk is ill
conditioned. To overcome this difficulty the Newton iteration may be carried out with
a shift along the imaginary line. In this case we must use complex arithmetic.

Algorithm 2 (Newton iteration with shift).
X0 = A− βiI
FOR k = 0, 1, 2, . . .

Xk+1 = (Xk +X−1
k )/2

END
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Table 1

Evolution of ‖E21‖1/ sep(X11, X22) in Example 3.

k ‖E21‖1/ sep(X11, X22) sep(X11, X22)
A R

0 8.7451e−11 7.0512e−11 2.0000e−05
1 7.7083e−07 1.5779e−07 1.0955e+00
2 5.0378e−07 1.0905e−07 7.9263e−01
3 1.2093e−07 2.5501e−08 1.6948e+00
4 8.3733e−08 1.2150e−08 1.7786e+00
5 7.3034e−08 5.4025e−09 2.0000
6 7.3164e−08 2.7012e−09 2.0000
7 7.2020e−08 1.3506e−09 2.0000
8 7.1731e−08 6.7532e−10 2.0000
9 7.1866e−08 3.3766e−10 2.0000

10 7.1888e−08 1.6883e−10 2.0000
11 7.1909e−08 8.4426e−11 2.0000
12 7.1926e−08 4.2231e−11 2.0000
13 7.1934e−08 2.1151e−11 2.0000
14 7.1938e−08 1.0646e−11 2.0000
15 7.1938e−08 5.4637e−12 2.0000
16 7.1937e−08 3.0055e−12 2.0000
17 7.1938e−08 2.0001e−12 2.0000
18 7.1937e−08 1.7474e−12 2.0000
19 7.1937e−08 1.7291e−12 2.0000
20 7.1937e−08 1.7290e−12 2.0000
21 7.1937e−08 1.7290e−12 2.0000

The real parameter β is chosen such that σmin(A−βiI) is not small. For Example
2, when β is taken to be 0.8, we have ‖E21‖1/ sep(X11, X22) = 7.3×10−12 for k = 21.
Then by our analysis the computed invariant subspace is guaranteed to be accurate.

7. Conclusions. We have given a first-order perturbation theory for the matrix
sign function and an error analysis for Newton’s method to compute it. This analysis
suggests that computing the stable (or unstable) invariant subspace of a matrix with
the Newton iteration in most circumstances yields results as good as those obtained
from the Schur form.
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Abstract. This paper considers an implicitly restarted Krylov subspace method that approxi-
mates a stable, linear transfer function f(s) of order n by one of order m, where n � m. It is well
known that oblique projections onto a Krylov subspace may generate unstable partial realizations.
To remedy this situation, the oblique projectors obtained via classical Krylov subspace methods are
supplemented with further projectors which enable the formation of stable partial realizations di-
rectly from f(s). A key feature of this process is that it may be incorporated into an implicit restart
scheme. A second difficulty arises from the fact that Krylov subspace methods often generate partial
realizations that contain nonessential modes. To this end, balanced truncation may be employed
to discard the unwanted part of the reduced-order model. This paper proposes oblique projection
methods for large-scale model reduction that simultaneously compute stable reduced-order models
while discarding all nonessential modes. It is shown that both of these tasks may be effected by a
single oblique projection process. Furthermore, the process is shown to naturally fit into an implicit
restart framework. The theoretical properties of these methods are thoroughly investigated, and
exact low-dimensional expressions for the L∞-norm of the residual errors are derived. Finally, the
behavior of the algorithm is illustrated on two large-scale examples.

Key words. Arnoldi, model reduction, Krylov subspace methods, large-scale systems, implicit
restarts
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PII. S0895479895279873

1. Introduction. Model reduction has been practiced widely by engineers, and,
until recently, the process was often based on intuition and a sound understanding
of the physical principles associated with the modeling task. Chemical engineers
assume that mixing is instantaneous and that packed distillation columns may be
modeled using discrete trays. Electrical engineers represent transmission lines and
eddy currents in the rotor cage of an induction motor by lumped circuits. Mechanical
engineers routinely remove the high-frequency vibration modes from models of aircraft
wings, turbine shafts, and flexible structures. The purpose of the present paper is to
systematize the model reduction of large-scale dynamical systems without any a priori
knowledge of their characteristics and to provide computable expressions for the errors
incurred during the approximation process.

Consider the dynamical system described by a stable, linear, time-invariant state-
space model of the form

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t),(1)

in which x(t) is the state vector of dimension n and u(t) and y(t) are scalar functions
representing the input and the output of the system, respectively. The matrix A and
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vectors b and c are real, with their dimensions fixed by those of x(t), u(t), and y(t). It
should be noted that the matrix A will be large and sparse in the following. Applying
Laplace transforms to the system in (1) for zero initial conditions leads to a transfer
function given by f(s) = c(sI −A)−1b. The task of any model-reduction algorithm is
then to find a stable approximate model of the form

ẋm(t) = Amxm(t) + bmu(t), ym(t) = cmxm(t),(2)

in which xm(t) ∈ Rm and m� n and where the associated low-order transfer function
is given by fm(s) = cm(sI − Am)−1bm. Well-established model reduction methods
such as the optimal Hankel norm [8] and the balanced truncation [20] begin by solving
the linear matrix equations

AP + PAT + bbT = 0 and ATQ+QA+ cT c = 0,(3)

which admit unique symmetric solutions if and only if λi(A) + λ̄j(A) 6= 0 for all
i, j, where λi denotes the ith eigenvalue and the overbar represents the complex
conjugate. Approximating large-scale systems via such methods is intractable because
of the prohibitive storage requirements and a computational burden of O(n3) for each
Lyapunov equation. The approach developed here has its roots in determining low-
rank approximate solutions to (3) via the application of classical Krylov subspace
methods [1, 18].

Recently, several schemes using Krylov subspace methods have been proposed
for the task of large-scale model reduction. The objective of such algorithms has
been to replace a high-order model by an mth-order low-dimensional approximation
while effecting O(m2n) operations. For example, in [1], this type of model reduction
formed an integral part of control system synthesis where high-order controllers had
to be avoided because of certain engineering considerations. Krylov subspace model
reduction schemes have recently been employed in linear circuit analysis, where they
allow for the accurate and efficient simulation of large-scale circuits [6]. In our pre-
vious work [16, 17, 18], the focus was placed on calculating low-rank approximate
solutions to (3). It was shown that these low-rank solutions were the exact controlla-
bility and observability Gramians of a dynamical system obtained by perturbing the
system in (1). Finally, it was demonstrated that the reduced-order models could be
readily computed via an oblique projection process based on the data generated in
the course of the iterative process. It is well known, however, that partial realizations
computed in this way may be unstable even if f(s) is stable. Thus, one of the aims
of this paper is to propose a method that yields a stable reduced-order model by
effecting a second oblique projection process which we shall call a stable projection.
An interesting feature of this method is that by combining the oblique projectors
generated by the iterative process with those from the stable projection, one may
compute stable reduced-order models by effecting a single oblique projection on f(s).
Consequently, one may cast the algorithm into an implicit restart setting which is
similar in philosophy to that proposed in [14, 15].

Stable partial realizations via implicitly restarted Krylov subspace methods have
been proposed in [14] in the context of control and in [15] in the setting of linear circuit
analysis. The difference between the methods proposed here and those of [14, 15] is
that, in the present setting, the integrity of both Arnoldi equations is preserved,
whereas [14, 15] focus on preserving only one of these equations. One may not wish
to approximate the state transition matrix independently of b and c, such as in a
modal reduction scheme, but rather obtain a reduced-order projection process that
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uses all the problem data. One advantage of the present approach is that it offers
computable expressions for the L∞-norm of the residual errors. Another advantage
is that the theoretical properties expounded in [18] remain in force irrespective of
the number of restarts performed; furthermore, the reduced-order model satisfies a
moment-matching property. While the implicit restart strategy presented here focuses
on model reduction, this approach may also be used to implicitly restart Krylov
subspace schemes for the solution of large-scale Lyapunov equations [16, 17] and
approximations to the exponential operator [22].

Krylov subspace methods are known to generate partial realizations which cap-
ture the outermost part of the spectrum of A. While this feature may be desirable in
some settings, such as for the solution of stiff ordinary differential equations, it often
results in reduced-order models that are unable to approximate the low-frequency
characteristics of f(s). A second objective addressed in this paper is to extract the
nonessential modes (i.e., those modes associated with the outermost part of A’s spec-
trum) from the reduced-order model by effecting a balanced truncation of fm(s). We
make use of a numerically robust variant of Moore’s algorithm [20] which does not
require the formation of the balancing transformations, known as the square root al-
gorithm [24]. A key feature of the square root model-reduction scheme is that it may
be cast as an oblique projection process and when combined with the oblique projec-
tors derived from the iterative process yields projectors that compute a reduced-order
approximation to f(s) which retains the essential characteristics of fm(s). A second
feature that will be exploited is that this process may be cast naturally into an im-
plicit restart framework. It is interesting to observe that one may combine the oblique
projectors from the iterative process with those obtained from the stable projection
and balanced truncation to produce an implicitly restarted Krylov subspace method
that computes stable partial realizations that accurately replicate the low-frequency
characteristics of f(s).

Related to this work are those of [4, 5], which use Krylov subspace methods to
obtain bases for the controllability and observability spaces; furthermore, in [5] Boley
and Golub presented a means of computing a minimal realization of a linear dynamical
system from the coefficients generated in the course of the Lanczos process. The
Lanczos process was also exploited by Parlett in [21] to obtain minimal realizations.
In that paper, the rank of the Hankel matrix was used to determine the order of
the minimal realization; furthermore, it was demonstrated that a minimal realization
could be constructed from the data generated by the Lanczos process. A similar
approach was adopted in [12], in which the minimal realization and its order were
found to be related to the different types of breakdown encountered in the Lanczos
process. Here too the onset of breakdown was given in terms of properties of the
Hankel matrix. Recently, the presentations in [3, 26] review the use of projection
methods for large-scale control problems. Each paper suggests the use of Krylov
subspace methods as an effective tool for the model reduction of large-scale linear
dynamical systems; however, no algorithms were provided.

The following summarizes the structure of this paper. Section 2 briefly describes
the application of classical Krylov subspace techniques to the model-reduction prob-
lem. Section 3 considers a general implicit restart structure for arbitrary transfor-
mations, a theoretical analysis is presented and computable L∞-norms of the error
expressions are derived. Section 4 uses the framework of section 3 to produce several
implicitly restarted Krylov subspace algorithms based on particular transformations
such as stable projections or balancing transformations. Two numerical experiments
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expounding the benefits of an implicitly restarted Krylov subspace method are found
in section 5, and section 6 contains the conclusions.

2. Oblique projection methods for large-scale model reduction. This
section considers oblique projection methods onto the m-dimensional Krylov sub-
spaces

Km(A, b) := span
{

[ b Ab · · · Am−1b ]
}

Lm(AT , cT ) := span
{

[ cT AT cT · · · (Am−1)T cT ]
}
,

which are parts of the controllability and observability subspaces, respectively. The
class of iterative techniques focused on hinge on the efficient formation of well-
conditioned bases for Km(A, b) and Lm(AT , cT ). To this end, one exploits a mod-
ified Gram–Schmidt process known as the Arnoldi process to calculate matrices Vm =
[v1, v2, . . . , vm] and Wm = [w1, w2, . . . , wm], whose columns form an orthogonal basis
for each of the Krylov subspaces as well as unit vectors vm+1 and wm+1, which are
orthogonal to Vm and Wm, respectively [2]. An outline of the Arnoldi process and
its application to several large-scale numerical linear algebra problems may be found
in [4, 7, 16, 17, 18, 19, 23]. By construction, the Arnoldi process associated with
Km(A, b) produces an m×m upper Hessenberg matrix Hm; furthermore, one readily
verifies that b and A satisfy

b = Vmlm,(4)

AVm = VmHm + ṼmH̃m,(5)

in which lm = e1‖b‖2, Ṽm = vm+1, and H̃m = hm+1,me
T
m and where hm+1,m is a

nonnegative scalar and e1 and em are, respectively, the first and last columns of the
m-dimensional identity matrix. From (5), it is easy to see that Hm = V TmAVm since

[Vm Ṽm] is part of an orthogonal matrix. In what follows, we refer to (4) and (5)
as the controllability Arnoldi equations. Similarly, associated with Lm(AT , cT ), the
Arnoldi process generates a lower Hessenberg matrix Gm; in this setting, c and A
then satisfy

cT = Wmk
T
m,(6)

ATWm = WmG
T
m + W̃mG̃

T
m,(7)

in which km = ‖c‖2eT1 , W̃m = wm+1, and G̃Tm = gm,m+1e
T
m and where gm,m+1

is a nonnegative scalar. It follows that Gm = WT
mAWm since [Wm W̃m] is part

of an orthogonal matrix. In the development below, we refer to (6) and (7) as the
observability Arnoldi equations. A key difference between the restart process proposed
in this paper and those of [14, 15] is that the present approach aims to preserve the
integrity of (4)–(7). The main advantage of this approach is that it allows simple
residual error expressions to be computed. In contrast, [14, 15] focus on preserving
(5) and (7), and no residual error expressions are provided. Furthermore, we show
that the implicitly restarted approximate model continues to satisfy a (modified)
moment-matching property enjoyed by the oblique projection approximation without
restarts.

2.1. Model reduction using Krylov subspace methods. The aim of this
section is to consider the Krylov subspace techniques described above to provide
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computationally efficient model-reduction schemes for large-scale dynamical systems.
Denoting the transfer function corresponding to the model (1) by f(s), then

f(s) = c(sI −A)−1b
s
=

[
A b
c 0

]
, A ∈ Rn×n, b, cT ∈ Rn.(8)

The model-reduction task determines a reduced-order model given by

fm(s) = cm(sI −Am)−1bm
s
=

[
Am bm
cm 0

]
, Am ∈ Rm×m, bm, c

T
m ∈ Rm,

which approximates the high-dimensional model f(s), where m� n.
Rewriting (8) as f(s) = cfb(s) = fc(s)b, where fb(s) = (sI − A)−1b and fc(s) =

c(sI − A)−1, permits us to consider fb(s) and fc(s) as the solutions to the coupled
linear systems

(sI −A)fb(s) = b and fc(s)(sI −A) = c,(9)

respectively. The focus of what follows is to approximate f(s) by obtaining approxi-
mate solutions fb,m(s) and fc,m(s) to the linear systems (9). These approximate solu-
tions are constructed to satisfy the following two conditions. (1) fb,m(s) ∈ Km(A, b),
i.e., fb,m(s) = Vmhm(s), such that Lm(AT , cT ) ⊥ {(sI−A)fb,m(s)− b}. (2) fTc,m(s) ∈
Lm(AT , cT ), i.e., fc,m(s) = gm(s)WT

m, such that {fc,m(s)(sI − A) − c} ⊥ Km(A, b).
Since fb,m(s) and fc,m(s) are approximate solutions to the linear systems in (9) and
f(s) = cfb(s) = fc(s)b, we will consider fm,1(s) := cfb,m(s) and fm,2(s) := fc,m(s)b
as approximations to f(s). The problem we wish to solve may be stated as follows.

Problem 2.1. Find approximate solutions fb,m(s) = Vmhm(s) and fc,m(s) =
gm(s)WT

m to (9) which satisfy the Galerkin-type conditions

WT
m{(sI −A)Vmhm(s)− b} = 0 ∀s, {gm(s)WT

m(sI −A)− c}Vm = 0 ∀s.(10)

For convenience, define the matrices

Ĥm := T−1
m WT

mAVm = Hm + T−1
m WT

mṼmH̃m,

Ĝm := WT
mAVmT

−1
m =Gm + G̃mW̃

T
mVmT

−1
m

for nonsingular Tm := WT
mVm and observe that Ĥm and Ĝm are upper and lower

Hessenberg, respectively. The following theorem gives the solution to Problem 2.1.
Theorem 2.1 (see [18]). Suppose that m steps of the Arnoldi process have been

taken and that Tm is nonsingular. Then
1. the Galerkin conditions in (10) are satisfied if and only if hm(s) = (sI −

Ĥm)−1lm and gm(s) = km(sI − Ĝm)−1. Under these conditions, the residual error
L∞-norms are

‖b− (sI −A)Vmhm(s)‖∞ =

∥∥∥∥[ T−1
m WT

mṼm
1

]
H̃mhm(s)

∥∥∥∥
∞
,(11) ∥∥c− gm(s)WT

m(sI −A)
∥∥
∞ =

∥∥∥gm(s)G̃m

[
W̃T
mVmT

−1
m 1

]∥∥∥
∞

;(12)

2. the approximations

fm,1(s)=cVmhm(s)
s
=

[
T−1
m WT

mAVm T−1
m WT

mb
cVm 0

]
=

[
Ĥm lm
kmTm 0

]
(13)
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and

fm,2(s)=gm(s)WT
mb

s
=

[
WT
mAVmT

−1
m WT

mb
cVmT

−1
m 0

]
=

[
Ĝm Tmlm
km 0

]
(14)

are different realizations of the same transfer function, namely, fm(s) = fm,1(s) =
fm,2(s) for all s.

Remark. 2.1. Throughout this paper, we assume that Tm is nonsingular, which is
equivalent to a breakdown-free Arnoldi process. Furthermore, for simplicity, we only
consider the model reduction of single-input single-output transfer functions. For the
model reduction of multi-input multioutput systems, one needs to resort to block
Arnoldi schemes. For more details of such processes, including breakdown, we refer
the reader to [4, 18] and the references therein.

Thus, for the mth-order approximate model described by (2), we can take either
fm(s) = fm,1(s) or fm(s) = fm,2(s), where fm,1(s) and fm,2(s) are given by (13) and
(14), respectively. The following procedure summarizes an oblique projection method
for model reduction of large-scale systems.

Algorithm 2.1 (Krylov subspace model-reduction algorithm).
• Start: Specify tolerances γ > 0 and ε > 0; set an integer parameter m.
• Perform m steps of the Arnoldi process with (A, b) to produce Hm, H̃m, Vm,

Ṽm, and lm.
• Perform m steps of the Arnoldi process with (AT , cT ) to produce Gm, G̃m,

Wm, W̃m, and km.
• Form the reduced-order model from either (13) or (14).
• Test the L∞-norm of the errors in (11) and (12); if either (11) > γ or (12) >
ε, increase m and continue the Arnoldi processes.

The reduced-order models given by (13) and (14) are computed readily from the
data generated in the course of the Arnoldi processes. It is known that such models
may be unstable even if f(s) is stable; furthermore, such partial realizations often con-
tain modes associated with the outer part of the spectrum of A. The following section
presents a framework able to remove such undesirable features by the application of
further oblique projectors within an implicit restart setting.

3. A general implicit restart framework. Implicit restart schemes were first
proposed to compute a few desired eigenvalues of large sparse nonsymmetric matrices
[25]. More recently, they have been exploited to compute stable partial realizations
in the setting of control problems and linear circuit analysis [14, 15]. The aim of
this section is to propose a general implicit restart framework based on the Arnoldi
process. A key feature of the present approach, which differs from existing implicit
restart schemes, is that the integrity of the controllability and observability Arnoldi
equations (4)–(7) is preserved. In contrast, existing methods focus on preserving (5)
and (7), which makes it difficult to establish system theoretic connections between
fm(s) and f(s). In the eigenvalue setting, preserving the integrity of either (4) or (6)
is not essential, since the starting vector is an eigenvector estimate and does not form
part of the problem data. An advantage offered by preserving the Arnoldi equations
is that one may establish computable error expressions that are similar to those of
Theorem 2.1; furthermore, one may demonstrate that the implicitly restarted reduced-
order model may be obtained by effecting low-rank perturbations to the state-space
representation of f(s).

Remark. 3.1. Commonly, implicit restarts refer to restarting the Arnoldi process
with updated starting vectors v1 and w1. In this work, we take a broader inter-
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pretation, so that restarts refer to removing, via oblique projections, all features of
fm(s) that are deemed undesirable in a given application and restarting the (modified)
Arnoldi process while preserving the Arnoldi equations (4)–(7).

Suppose that m steps of the Arnoldi process have been taken and that fm,1(s),
given in (13), is the reduced-order model obtained upon the application of the oblique
projection process in Theorem 2.1. Observe that fm,1(s) is not necessarily stable;

furthermore, similar to a power method, the Arnoldi process engenders an Ĥm whose
eigenvalues approximate those of A with large absolute value. The presence of such
features makes fm,1(s) unsuitable for many practical applications such as circuit sim-
ulation. Furthermore, robust controller design methods based on the small gain the-
orem require that the actual model (in this case f(s)) and the nominal model (in this
case fm,1(s)) have the same number of poles in the closed right-half complex plane
[9, 10]. Since f(s) is stable from the outset, stability of fm,1(s) is required for such

methods. Furthermore, if many eigenvalues of Ĥm approximate those of A with large
absolute value, fm,1(s) is a poor reduced-order model since it is unable to replicate
the low-frequency characteristics of f(s). Suppose that these undesirable features may
be extracted via the application of an additional oblique projection process; namely,
define two full-column rank matrices TL, TR ∈ Rm×r such that TTL TR = Ir, where Ir
is the r× r identity matrix and r < m. Then the desirable portion of fm,1(s) is given
by

fr,1(s)
s
=

[
TTL ĤmTR TTL lm
kmTmTR 0

]
.

The following is referred to as a basis change in the state-space realization of any
rational g(s):

g(s)
s
=

[
A b
c d

]
T→ g(s)

s
=

[
TAT−1 Tb
cT−1 d

]
,

where T is nonsingular. The next result establishes that the projectors TL and TR
applied to fm,1(s) may be combined with the oblique projectors generated in the
course of the Arnoldi process; furthermore, the composite projectors yield a reduced-
order model whose structure is reminiscent of (13).

Proposition 3.1. Suppose that m steps of the Arnoldi process have been taken
and that Tm is nonsingular. Let TR = QRRR and (TTm)−1TL = QLRL be QR decompo-
sitions in which QL, QR ∈ Rm×r are parts of orthogonal matrices and RL, RR ∈ Rr×r
are upper triangular. Define Vr := VmQR, Wr := WmQL, and Tr := WT

r Vr. Then
1. Tr is nonsingular and T−1

r = (QTLTmQR)−1 = RRR
T
L,

2. fr,1(s) may be expressed as

fr,1(s)
s
=

[
T−1
r WT

r AVr T−1
r WT

r b
cVr 0

]
.(15)

Proof. Since TL and TR have full-column rank, RL and RR are nonsingular. Using
the QR decompositions and TTL TR = Ir, Tr = QTLTmQR = (RTL)−1R−1

R , from which
part 1 follows. By Theorem 2.1, fr,1(s) may be expressed as

fr,1(s)
s
=

[
TTL T

−1
m WT

mAVmTR TTL T
−1
m WT

mb
cVmTR 0

]
(16)

s
=

[
RRT

T
L T
−1
m WT

mAVmQR RRT
T
L T
−1
m WT

mb
cVmQR 0

]
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upon substituting TR = QRRR and effecting a basis change using the transformation
RR. Substituting (TTm)−1TL = QLRL into (16) and using part 1 readily establishes
the claim in part 2.

Remark. 3.2. Alternatively, one may apply the transformations TL and TR to the
reduced-order model fm,2(s), given in (14), to yield

fr,2(s)
s
=

[
TTL ĜmTR TTL Tmlm
kmTR 0

]
.

On effecting the QR decompositions TL = QLRL and T−1
m TR = QRRR, one readily

demonstrates that

fr,2(s)
s
=

[
WT
r AVrT

−1
r WT

r b
cVrT

−1
r 0

]
,(17)

where Vr and Wr are defined in Proposition 3.1.
Observe that Vr and Wr continue to remain orthogonal bases to parts of the

controllability and observability subspaces since QR and QL are parts of orthogonal
matrices. From Proposition 3.1, it appears that fr,1(s) may be computed by imposing
a Galerkin condition on the residual of (9). Thus, similar to the arguments leading to
the statement of Problem 2.1, one defines an approximate solution to the first linear
system of (9) of the form fb,r(s) = Vrhr(s); then we consider fr,1(s) = cfb,r(s) as an
approximation to f(s). Similarly, fc,r(s) = gr(s)W

T
r defines an approximate solution

to the second linear system of (9), which leads to an approximation of f(s) given
by fr,2(s) = fc,r(s)b. The functions hr(s) and gr(s) are then computed by imposing
Galerkin conditions as shown by the next corollary. For notational convenience, define
Ĥr := T−1

r WT
r AVr and Ĝr := WT

r AVrT
−1
r .

Corollary 3.2. Suppose that the conditions of Proposition 3.1 are in force.
Then

1. hr(s) =
(
sI − Ĥr

)−1

T−1
r WT

r b if and only if {(sI −A)Vrhr(s)− b} ⊥Wr.

2. gr(s) = cVrT
−1
r

(
sI − Ĝr

)−1

if and only if
{
c− gr(s)WT

r (sI −A)
}
⊥ Vr.

Proof. By direct calculation,

WT
r {(sI−A)Vrhr(s)− b} = (sTr −WT

r AVr)hr(s)−WT
r b

= Tr

{(
sI − Ĥr

)
hr(s)− T−1

r WT
r b
}
.

Part 1 of the corollary is readily established, since Tr is nonsingular. Part 2 is verified
in a similar way.

The approximation to f(s) is then given by cVr(sI − Ĥr)
−1T−1

r WT
r b, which is

fr,1(s) as defined in (15). Since fr,1(s) and fr,2(s) may be computed via the applica-
tion of Galerkin conditions, it is natural to question whether the terms in (15) and
(17) satisfy certain “Arnoldi-like” equations. The development that follows answers
this question affirmatively and shows that this process naturally fits into an implicit
restart framework.

Suppose that QR⊥ is the orthogonal completion of QR so that [QR QR⊥ ] ∈ Rm×m
is an orthogonal matrix. Postmultiplying (5) by [QR QR⊥ ] enables one to express
(4) and (5) as

b = Vm[QR QR⊥ ][QR QR⊥ ]T lm,

AVm[QR QR⊥ ] = Vm[QR QR⊥ ][QR QR⊥ ]THm[QR QR⊥ ](18)

+ṼmH̃m[QR QR⊥ ],
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respectively, which leads to

b = Vrlr + [VmQR⊥ Ṽm]

[
QTR⊥ lm

0

]
,(19)

AVr = VrHr + [VmQR⊥ Ṽm]

[
QTR⊥HmQR
H̃mQR

]
,(20)

where lr = QTRlm and Hr = QTRHmQR. Observe that (20) is the (1,1) block of (18).
Similarly, suppose that QL⊥ is the orthogonal completion of QL so that [QL QL⊥] ∈
Rm×m is an orthogonal matrix. Then postmultiplying (7) by [QL QL⊥ ] enables one
to express (6) and (7) as

cT = Wm[QL QL⊥][QL QL⊥]T kTm,

ATWm[QL QL⊥] = Wm[QL QL⊥][QL QL⊥ ]TGTm[QL QL⊥](21)

+W̃mG̃
T
m[QL QL⊥ ],

respectively, which leads to

cT = Wrk
T
r + [WmQL⊥ W̃m]

[
QTL⊥k

T
m

0

]
,(22)

ATWr = WrG
T
r + [WmQL⊥ W̃m]

[
QTL⊥G

T
mQL

G̃TmQL

]
,(23)

where kTr = QTLk
T
m and Gr = QTLGmQL. Observe that (23) is the (1,1) block of (21).

The key observation is that despite the application of an additional oblique projection
process, (19)–(23) have an Arnoldi-like structure, except for the second term in the
right-hand side of (19) and (22). This leads one to conclude that we may restart the
iterative process with a view to improving the approximation.

3.1. An implicit restart scheme. The objective of this section is to propose
an implicit restart scheme based on the Arnoldi-like equations given in (19)–(23). In
order to effect a restart, consider (19) and (20), where

[VmQR⊥ Ṽm] ∈ Rn×(m−r+1) and

[
QTR⊥HmQR
H̃mQR

]
∈ R(m−r+1)×r.(24)

Suppose that the second term of (24) has (m − r + 1) linearly independent rows;
then the application of (m − r) steps of restart would yield a basis for part of the
controllability space spanned by the columns of [Vr VmQR⊥ ]. This basis is a rotation
of Vm since Vr = VmQR; therefore, [Vr VmQR⊥ ] does not contribute to updating
the reduced order model. Under such circumstances, the approximation errors would
stagnate irrespective of the number of restarts employed. Therefore, for an effective
restart scheme, one selects 2r < m, which will be a standing assumption throughout
this paper. Consider the QR decomposition[

QTR⊥ lm QTR⊥HmQR
0 H̃mQR

]
= Q[ l̃r H̃r],(25)

where [ l̃r H̃r] ∈ R(r+1)×(r+1) is upper triangular and Q ∈ R(m−r+1)×(r+1) is part of
an orthogonal matrix. Then (19) and (20) may be expressed as

b = Vrlr + Ṽr l̃r = [Vr Ṽr]

[
lr
l̃r

]
,(26)
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AVr = VrHr + ṼrH̃r = [Vr Ṽr]

[
Hr

H̃r

]
,(27)

where Ṽr := [VmQR⊥ Ṽm]Q ∈ Rn×(r+1). The following modified Gram–Schmidt pro-

cess augments the Arnoldi-like equations (26) and (27) to yield a matrix [Vm Ṽm],
which is part of an orthogonal matrix, and an (r + 1) upper Hessenberg matrix

[HT
m H̃T

m]T (i.e., for 1 ≤ j ≤ m, hj+r+2,j = 0). Observe that the first r columns of

[HT
m H̃T

m]T are already available from (27); furthermore, the first 2r + 1 columns of

[Vm Ṽm] are also available prior to the restart. It is thus natural to consider a process
which augments the existing data from dimension r to dimension m. The following
is a modified Gram–Schmidt process that performs this task.

Algorithm 3.1 (an implicitly restarted modified Gram–Schmidt process).
• For j = r + 1, r + 2, . . . ,m,
• w := Avj,

• for i = 1, 2, . . . , r + j,

{
hi,j := wT vi,
w := w − vihi,j ,

• hj+r+1,j := ‖w‖2 and vj+r+1 := w/hj+r+1,j.
Observe that Hm = V TmAVm is satisfied. Furthermore, the associated controlla-

bility Arnoldi equations in (4) and (5) remain in force with Hm, Vm, H̃m, Ṽm, and

lm = [lTr l̃Tr 0]T defined by the implicitly restarted Gram–Schmidt process. These
variables overwrite those computed in the previous restart step. To clarify the struc-
ture, we present an illustrative example in which r = 2 and m = 6. Writing (26) and
(27) as

b = [v1 v2 | v3 v4 v5]


l1
l2
l3
0
0

 , A[v1 v2] = [v1 v2 | v3 v4 v5]


× ×
× ×
× ×
× ×
0 ×

 ,
the following structure is obtained by augmenting these equations to m = 6:

b = [v1 v2 v3 v4 v5 v6]


l1
l2
l3
0
0
0

 =: Vmlm,

A[v1 v2 v3 v4 v5 v6] = [v1 v2 v3 v4 v5 v6 | v7 v8 v9]



× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×


,

⇒ AVm = [Vm Ṽm]

[
Hm

H̃m

]
.
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In order to effect a restart with the observability Arnoldi equations, consider the QR
decomposition [

QTL⊥k
T
m QTL⊥G

T
mQL

0 G̃Tr QL

]
= U [ k̃Tr G̃Tr ],(28)

where [ k̃Tr G̃Tr ] ∈ R(r+1)×(r+1) is upper triangular and U ∈ R(m−r+1)×(r+1) is part of
an orthogonal matrix. Thus, the observability Arnoldi equations may be expressed as

cT = Wrk
T
r + W̃rk̃

T
r and ATWr = WrG

T
r + W̃rG̃

T
r ,(29)

where W̃r = [WmQL⊥ W̃m]U ∈ Rn×(r+1) is part of an orthogonal matrix. One
may now employ the implicitly restarted modified Gram–Schmidt process to augment
(29) and to produce Gm,Wm, W̃m, and km satisfying the Arnoldi equations (6) and
(7). A reduced-order model is then formed following (13) or (14). Suppose that the
undesirable features present in this model may be removed by two full-rank matrices
TL and TR such that TTL TR = Ir, then Proposition 3.1 may be used to extract the
unwanted features by effecting a further state reduction. The restart process may then
be repeated until convergence. The following is an outline of the implicitly restarted
model-reduction algorithm.

Algorithm 3.2 (implicitly restarted model-reduction algorithm).
• Start: Specify m and r such that m > 2r.

1. Perform m steps of the Arnoldi process with (A, b) to find Hm, H̃m, Vm,

Ṽm, and lm.
2. Perform m steps of the Arnoldi process with (AT , cT ) to find Gm, G̃m,

Wm, W̃m, and km.
• Restart: Effect the QR decompositions

TR = [QR QR⊥ ]

[
RR
0

]
and (Tm)−TTL = [QL QL⊥ ]

[
RL
0

]
.

1. Effect the QR decompositions (25) and (28) which define the terms in
(26), (27), and (29).

2. Evaluate the residual errors ; if satisfied, form the reduced-order model
using (15) or (17) and stop; otherwise, continue.

3. Effect m − r implicitly restarted, modified Gram–Schmidt steps using
[lTr l̃Tr ]T , [HT

r H̃T
r ]T , and [Vr Ṽr] to yield lm, [HT

m H̃T
m]T , and [Vm Ṽm].

4. Effect m − r implicitly restarted, modified Gram–Schmidt steps using
[kr k̃r], [Gr G̃r], and [Wr W̃r] to yield km, [Gm G̃m], and [Wm W̃m].

Remark. 3.3. In practice, it is advisable to compute the QR factorizations in step
1 of the restart via the Gram–Schmidt or modified Gram–Schmidt orthogonalization
processes. For full details, including the case that the left-hand sides of (25) and (28)
do not have full-column rank, see [4, 13].

Two elements of Algorithm 3.2 have yet to be discussed: the first addresses the
selection of appropriate TL and TR of the restart step; the second concerns computable
error formulas for step 2 of the restart process. The second is the object of the next
subsection; the first is covered in section 4.

3.2. Theoretical properties. The aim of this section is to provide a theoretical
analysis of the implicit restart algorithm presented in section 3.1.
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To gauge the quality of the reduced-order model as each restart is completed, the
following theorem provides computable expressions for the L∞-norm of the residual
errors.

Theorem 3.3. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and
(27) and (29), respectively. The L∞-norm of the residual errors associated with the
approximate solutions to (9) are given by

‖b− (sI −A)Vrhr(s)‖∞ =

∥∥∥∥[ T−1
r WT

r Ṽr
I

](
l̃r + H̃rhr(s)

)∥∥∥∥
∞
,(30) ∥∥c− gr(s)WT

r (sI −A)
∥∥
∞ =

∥∥∥(k̃r + gr(s)G̃r

) [
W̃T
r VrT

−1
r I

]∥∥∥
∞
.(31)

Proof. Substituting (26) and (27) into the left-hand side of (30) yields

‖b− (sI −A)Vrhr(s)‖∞ =

∥∥∥∥[ lr − (sI −Hr)hr(s)

l̃r + H̃rhr(s)

]∥∥∥∥
∞

=

∥∥∥∥∥
[
−T−1

r WT
r Ṽr l̃r + (Hr − Ĥr)hr(s)

l̃r + H̃rhr(s)

]∥∥∥∥∥
∞

.

Substituting T−1
r WT

r ×(27) into the (1,1) block yields the desired result. The residual
error expression of (31) is derived in a similar way using (29).

Next, we establish properties of the reduced-order model that are reminiscent of
those derived in [18]. We begin by deriving low-rank approximate solutions to (3) by
imposing Galerkin-type conditions on their associated residual errors. Suppose that
the low-rank Gramians have the form Pr = VrXrV

T
r and Qr = WrYrW

T
r for some

symmetric matrices Xr and Yr ∈ Rr×r. The residual error functions associated with
a particular choice of Xr and Yr are then defined by

Rr = AVrXrV
T
r + VrXrV

T
r A

T + bbT , Sr = ATWrYrW
T
r +WrYrW

T
r A+ cT c.

The residual error functions may be factorized by using (26)–(29) to yield

Rr = [ Vr (I−VrT−1
r WT

r )Ṽr](32)

×
[
ĤrXr+XrĤ

T
r +T−1

r WT
r bb

TWr(T
T
r )−1 XrH̃

T
r +T−1

r WT
r bl̃

T
r

H̃rXr+ l̃rb
TWr(T

T
r )−1 l̃r l̃

T
r

]

×
[

V Tr
Ṽ Tr (I−Wr(T

T
r )−1V Tr )

]
,

Sr = [ Wr (I −Wr(T
T
r )−1V Tr )W̃r](33)

×
[
ĜTr Yr + YrĜr + (TTr )−1V Tr c

T cVrT
−1
r YrG̃r + (TTr )−1V Tr c

T k̃r
G̃Tr Yr + k̃Tr cVrT

−1
r k̃Tr k̃r

]

×
[

WT
r

W̃T
r (I − VrT−1

r WT
r )

]
.

The Arnoldi–Lyapunov solvers considered here seek symmetric Xr and Yr such that
the residual Rr and Sr satisfy orthogonality properties with respect to parts of the
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controllability and observability subspaces spanned by the columns of Vr and Wr,
respectively. The following theorem determines the low-rank Gramians that satisfy
such orthogonality conditions.

Theorem 3.4. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and

(27) and (29), respectively. Furthermore, suppose that λi(Ĥr) + λ̄j(Ĥr) 6= 0 ∀i, j and

λi(Ĝr) + λ̄j(Ĝr) 6= 0 ∀i, j. Then
1. WT

r RrWr = 0 if and only if

ĤrXr +XrĤ
T
r + T−1

r WT
r bb

TWr(T
T
r )−1 = 0.(34)

Under these conditions,

‖Rr‖F =

∥∥∥∥∥
[
HrXr +XrH

T
r + lrl

T
r XrH̃

T
r + lr l̃

T
r

H̃rXr + l̃rl
T
r l̃r l̃

T
r

]∥∥∥∥∥
F

.

2. V Tr SrVr = 0 if and only if

ĜTr Yr + YrĜr + (TTr )−1V Tr c
T cVrT

−1
r = 0.(35)

Under these conditions,

‖Sr‖F =

∥∥∥∥∥
[
GTr Yr + YrGr + kTr kr YrG̃r + kTr k̃r

G̃Tr Yr + k̃Tr kr k̃Tr k̃r

]∥∥∥∥∥
F

.

3. Xr and TTr YrTr are, respectively, the controllability and observability Gramians
of fr,1(s).

4. TrXrT
T
r and Yr are, respectively, the controllability and observability Gramians

of fr,2(s).
Proof. The proof is similar to the proofs of Theorems 2.3 and 3.2 in [18] and is

omitted.
The following result establishes that the low-rank Gramians Pr and Qr are the

exact Gramians of a pair of perturbed Lyapunov equations. It also gives the ap-
proximations fr,1(s) and fr,2(s) defined in (15) and (17), respectively, as minimal
realizations of various perturbations of f(s).

Theorem 3.5. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and
(27) and (29), respectively. Suppose that Pr := VrXrV

T
r and Qr := WrYrW

T
r are

the low-rank approximate solutions to (3), where Xr and Yr satisfy (34) and (35),
respectively.

1. Define the perturbations ∆ = (I−VrT−1
r WT

r ), ∆1 = ∆ṼrH̃rV
T
r , and ∆2 =

WrG̃rW̃
T
r ∆. Then

(A−∆1)Pr + Pr(A−∆1)T + (I −∆)bbT (I −∆)T = 0,(36)

(A−∆2)TQr +Qr(A−∆2) + (I −∆)T cT c(I −∆) = 0.(37)

Furthermore,

‖∆1‖2F =
∥∥∥H̃r

∥∥∥2

F
+
∥∥∥T−1

r WT
r ṼrH̃r

∥∥∥2

F
,

‖∆2‖2F =
∥∥∥G̃r∥∥∥2

F
+
∥∥∥G̃rW̃T

r VrT
−1
r

∥∥∥2

F
,

‖∆‖2F = n− 2r +
∥∥T−1

r

∥∥2

F
.
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2. Define ∆3 := ∆1 +∆2. Then WT
r ∆1Vr =WT

r ∆2Vr =WT
r ∆Vr =WT

r ∆3Vr = 0.
Furthermore,

(A−∆3)Pr + Pr(A−∆3)T + (I −∆)bbT (I −∆)T = 0,

(A−∆3)TQr +Qr(A−∆3) + (I −∆)T cT c(I −∆) = 0.

3. Define f∆i(s)
s
= ( (A−∆i), (I −∆)b, c(I −∆), 0 ) for i = 1, 2, 3. Then

fr,1(s) = fr,2(s) = f∆i(s) ∀s, i = 1, 2, 3.

Proof. Substituting (34) into (32) and rearranging yields (36), while substituting
(35) into (33) and rearranging yields (37). Part 2 follows by direct calculation using
part 1. The proof of part 3 is similar to the proof of Corollary 3.3 in [18] and is
omitted.

The effects of ∆3 and ∆ are to perturb A, b, and c in such a way that the
nonminimal modes of the perturbed system are simultaneously uncontrollable and
unobservable. The perturbation ∆1 to the transition matrix of f(s) yields n − r
uncontrollable modes while the perturbation ∆2 gives rise to n − r unobservable
modes [18].

Observe that ∆1, ∆2, and ∆3 are additive perturbations on the state transition
matrix of f(s) while ∆ is a multiplicative perturbation on the input and output vectors
b and c. It is interesting to observe that despite the fact that ∆1, ∆2, and ∆3 have
different Frobenius norms, each perturbed linear system is a different realization of
the same transfer function.

Although the Arnoldi equations (4)–(7) continue to be satisfied after any number

of restarts, the structure of the variables Hm, H̃m, lm, km, Gm, and G̃m differs from
that required by the Arnoldi process, namely, that

Em :=

[
lm Hm

0 H̃m

]
, Fm :=

[
km 0

Gm G̃m

]
are upper and lower triangular, respectively. Instead, Em and Fm for the restart
scheme are, respectively, r-upper and r-lower Hessenberg (i.e., for 1 ≤ j ≤ m,
(Em)j+r+1,j = (Fm)j,j+r+1 = 0) (see Algorithm 3.2 and Algorithm 3.1 and the sub-
sequent discussion). This implies that the moment-matching property

cAi−1b = cmA
i−1
m bm, 1 ≤ i ≤ 2m(38)

[11], which essentially follows from the triangular structure of Em and Fm, no longer
applies for the implicit restart scheme and an alternative justification of the scheme
is required. In the implicitly restarted model-reduction algorithm in [14, 15], the
authors give an equation similar to (38), relating modified moments of the original
and restarted Lanczos model. Here, we show that (38) is still satisfied, albeit for lower
values of i.

Theorem 3.6. Suppose that Hm, H̃m, lm, km, Gm, and G̃m are output by Algo-
rithm 3.2; define

Am = Hm + T−1
m WT

mṼmH̃m = T−1
m WT

mAVm,(39)

bm = lm = T−1
m WT

mb, cm = kmTm = cVm



IMPLICIT RESTARTS FOR KRYLOV SPACE MODEL REDUCTION 647

for nonsingular Tm = WT
mVm; and let k be the largest integer satisfying

k ≤ m

r + 1
.(40)

Then

Ai−1b = VmA
i−1
m bm, cAi−1 = cmA

i−1
m T−1

m WT
m, 1 ≤ i ≤ k.(41)

Hence,

cAi−1b = cmA
i−1
m bm, 1 ≤ i ≤ 2k.(42)

Proof. It follows from the r-upper triangular structure of Em that

H̃mH
i−1
m lm = 0, 1 ≤ i ≤ k − 1.(43)

Hence (39) implies that

Hi−1
m lm = Ai−1

m lm = Ai−1
m bm, 1 ≤ i ≤ k.(44)

Repeated evaluation of b, Ab, . . . , Aib using (4), (5), (43), and (44) verifies the first

part of (41). A similar procedure, using Gm, G̃m, and km, verifies the second part of
(41). Finally, (42) follows from (41) upon noting that

cA2i−1b = cAi−1AAi−1b = cmA
i−1
m T−1

m WT
mAVmA

i−1
m Bm

= cmA
2i−1
m bm, 1 ≤ i ≤ k.

Notice that when r = 0 (no restarts), k = m and (42) reduces to (38).
Remark. 3.4. One difficult issue associated with any restart scheme is the choice

of m. Clearly, if m = n− 1, then fm,1(s) = f(s). So the question is how small should
m be to guarantee convergence of fr,1(s) to the balanced truncation of f(s)? Theo-
rem 3.6 states that the restarted process generating fm,1(s) matches fewer moments
than an fm,1(s) based on no restarts. One interpretation is that, without restarts,
fm,1(s) tends to be a good approximation to the high-frequency component of f(s),
while effecting implicit restarts via the stable projection and balanced truncation of
fm,1(s), improves the approximation at low frequencies at the expense of degraded
high-frequency behavior.

Suppose that r is given and that fm,1(s) must match at least a given number of
moments of f(s) at s = ∞. Then (40) and (42) suggest a minimum value of m to
guarantee the moment-matching condition.

4. Stable projection and balanced truncation. The objective of this section
is to suggest transformations TL and TR which enable Algorithm 3.2 to form stable
partial realizations that retain the low-frequency characteristics of f(s).

Suppose that m steps of the Arnoldi process have been completed and that fm(s)
is an unstable partial realization of f(s). The approach proposed here then determines
TL and TR, which effects a stable projection of fm(s). In other words, the application
of TL and TR to fm(s) yields fm+(s), where fm(s) = fm+(s) + fm−(s) in which
fm+(s) is stable and fm−(s) is antistable. For the purposes of the present discussion,
suppose that fm(s) = cm(sI − Am)−1bm, then transform Am to a block-ordered real
Schur form

T1AmT
T
1 = As =

[
A11 A12

0 A22

]
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in which T1 is orthogonal, A11 ∈ Rp×p is stable, and A22 ∈ R(m−p)×(m−p) is anti-
stable. Following this change of basis, the system of first-order differential equations
is described by

ẋ = Asx+ T1bmu, y = cmT
T
1 x.(45)

The next step of the stable projection process is to eliminate the (1,2) block of As by
solving the Sylvester equation A11X−XA22+A12 = 0, which has a solution due to the

inertia properties of A11 and A22; see [8]. Applying the basis change T2 =
[
I −X
0 I

]
to the linear dynamical system in (45) yields

T2AsT
−1
2 =:

[
A11 0
0 A22

]
, T2T1bm =:

[
b1
b2

]
, cmT

T
1 T
−1
2 =:

[
c1 c2

]
.

With this decomposition complete, we conclude that

TL1
:= TT1 T

T
2

[
I
0

]
= TT1

[
I
−XT

]
and TR1

:= TT1 T
−1
2

[
I
0

]
= TT1

[
I
0

]
.

Finally, the stable part of fm(s) is

fm+(s) :=

[
TTL1

AmTR1 TTL1
bm

cmTR1
0

]
= c1(sI −A11)−1b1.

This selection of TL and TR may be used in Algorithm 3.2 to yield an implicitly
restarted model-reduction algorithm that is reminiscent of [14, 15].

Similar to a power method, Krylov subspace methods generate partial realizations
in which the spectrum of Am is known to approximate the outer part of the spectrum
of A. The presence of such eigenvalues contributes little to the low-frequency char-
acteristics of a dynamical model and may be removed without altering the model’s
behavior. It is therefore natural to consider the application of a model-reduction step
to fm+(s) whose purpose is to extract any redundant modes that might be present.
To this end, one resorts to either the square root or the Schur-based algorithms ex-
pounded in [24]. Suppose that the state dimension of fm+(s) is p; then the following
procedure determines the additional transformations, TL2

and TR2
, which extract the

undesirable modes.
Algorithm 4.1 (square root algorithm).
• Calculate the solutions Ps and Qs to the Lyapunov equations

A11Ps + PsA
T
11 + b1b

T
1 = 0 and AT11Qs +QsA11 + cT1 c1 = 0.

• Effect the factorizations Ps = LrL
T
r and Qs = LoL

T
o , and compute the sin-

gular value decomposition ÛΣpV̂
T = LTo Lr, where Σp = diag(σ1, . . . , σp) and

σ1 ≥ · · · ≥ σp.
• Suppose that the first r modes of fm+(s) are to be retained. Then define the

transformations TL2
= LoÛrΣ

−1/2
r ∈ Rr×p and TR2

= LrV̂rΣ
−1/2
r ∈ Rr×p,

where Σr = diag(σ1, . . . , σr) and Ûr and V̂r are the first r columns of Û and

V̂ , respectively.
We could also use the Schur-based algorithm in [24], which would yield different

TL2 and TR2 but would result in a different realization of the same reduced-order
model. In [24], Safonov and Chiang show that the square root and Schur-based
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model-reduction algorithms are equivalent to Moore’s balanced truncation method
[20]. In the present setting, the reduced-order model is given by

fr(s) =

[
TTL2

A11TR2
TTL2

b1
c1TR2 0

]
=:

[
Ar br
cr 0

]
.(46)

In a practical implementation, suppose that fm(s) is an unstable partial realization
that contains several redundant modes. Then, it is natural to combine the stable
projection and balanced truncation processes to form composite transformations that
yield an fr(s) which is both stable and free of redundant modes. Such composite
projectors are given by

TL = TL1TL2 = TT1

[
I
−XT

]
LoÛrΣ

−1/2
r and TR = TR1TR2 = TT1

[
I
0

]
LrV̂rΣ

−1/2
r ,

which may be applied to fm(s) to yield fr(s) in a single step. It is interesting to
observe that an implicit restart scheme may be obtained for any TR and TL provided
that TTL TR = Ir.

The following corollary establishes that the oblique projection methods of this
paper are closely related to balanced truncation, namely, that both methods satisfy
orthogonality conditions with respect to oblique projectors.

Corollary 4.1. Suppose that Ar, br, and cr are defined in (46) and define
hbal(s) = (sI −Ar)−1br and gbal(s) = cr(sI −Ar)−1. Then

(sI −A11)TR2
hbal(s)− b1 ⊥ TL2

and gbal(s)T
T
L2

(sI −A11)− c1 ⊥ TR2
.

Proof. The proof is similar to the proof of Corollary 3.2.

5. Numerical experiments. The purpose of this section is to illustrate, with
the help of two examples, the behavior of the implicitly restarted model-reduction
algorithm presented in sections 3 and 4. The tests reported here were performed on
a Sparc-10 Sun workstation using Pro-MATLAB 4.2 which carries out operations to
a unit round off of 2.22× 10−16.

The first problem is set up with A ∈ Rn×n, where n = 100 and the top left-hand
4× 4 block of A is set to

−0.01 0.1 0 0
−0.1 −0.01 0 0

0 0 −0.1 0.5
0 0 −0.5 −0.1

 ,
while the remaining nonzero elements of A are uniformly distributed in (0,−1) and
are all located on the leading diagonal. Consequently, all the system poles are real
except for four, which are −0.01±0.1j and −0.1±0.5j. The first 10 elements of b and
c are uniformly distributed in [0, 1], while the 90 remaining elements are uniformly
distributed in [0, 1/25]. We take m = 10 and r = 4. The infinity norm of f(s)
may be computed from max|f(jω)| ∀ω ∈ R. Table 1 shows the evolution of the
L∞-norm of the error expressions of (30) and (11), denoted here by Err2 and Err3,
respectively, against the number of restarts. The first column of Table 1 shows Err1,
which denotes the L∞-norm of the error fbal(s) − fr,1(s), where fbal(s) is the rth-
order balanced truncation of f(s). The table indicates that Err2 and Err3 fall in
magnitude as the number of restarts increases; however, as is well known, Galerkin
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Table 1

L∞-error norms associated with the implicitly restarted Arnoldi model-reduction scheme.

Restarts Err1 Err2 Err3 Restarts Err1 Err2 Err3
0 .3245 .7737 .3414 8 .0032 .7284 .0563
1 .1782 .7609 .3158 9 .0026 .7284 .0491
2 .0790 .7294 .2317 10 .0021 .7284 .0493
3 .0360 .7294 .1344 11 .0018 .7284 .0463
4 .0201 .7291 .1013 12 .0015 .7285 .0474
5 .0117 .7287 .0656 13 .0012 .7285 .0457
6 .0069 .7288 .0712 14 .0009 .7285 .0469
7 .0044 .7285 .0607 15 .0007 .7285 .0456

conditions of the type in (10) do not guarantee a nonincreasing evolution of Err2 or
Err3. Note that Err2 stagnates after an initial drop indicating convergence. Our
experience with similar examples indicates that Err1 always tends to zero (for large
enough m), which implies that fr,1(s) converges to fbal(s), although proving this
remains an open question. Observe that Err2 and Err3 do not converge to zero. This
follows from the fact that when approximating f(s) by a stable kth-order model fk(s),
‖f(s)− fk(s)‖∞ is greater than or equal to the (k+1)st Hankel singular value of f(s)
[8].

It is known that for many restart algorithms there exists a value of m below which
convergence of the solution is very slow or not possible [25]. The second example
illustrates that this is also the case for the restart algorithm presented here. The
problem is set up with A ∈ Rn×n, where n = 300. The eigenvalues of A are all
in the open left half plane; the real parts are uniformly distributed in the interval
[−1, 0), while the imaginary parts are randomly distributed in the interval [−5, 5].
b, cT ∈ Rn×1 are random.

Table 2

Evolution of relative L∞-error norms for m = 60.

Restarts 1 2 3 4 5 6 7 8 9
E (%) 64 79 64 68 66 123 67 87 82

Table 3

Evolution of relative L∞-error norms for m = 70.

Restarts 1 2 3
E (%) 333 23 4

Tables 2 to 4 illustrate the evolution of the percentage error E =
‖fr,1(s)− fbal(s)‖∞/‖fbal(s)‖∞ as a function of m and the number of restarts. Here
r = 5 and fbal(s) is the rth-order balanced truncation of f(s) = c(sI − A)−1b. Note
that for m = 60, no convergence occurs; for m = 70, fr,1(s) converges to within 4%
of fbal(s) after three restarts; while for m = 75, convergence is within 0.1% after only
two restarts. This example is typical of our numerical experience. Determining a
least value of m to guarantee convergence is still an unresolved problem and is under
investigation (see Remark 3.4).

6. Conclusions. This paper presents and tests a model-reduction algorithm for
large-scale, stable, linear, and time-invariant dynamic systems. We have developed a
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Table 4

Evolution of relative L∞-error norms for m = 75.

Restarts 1 2
E (%) 4.7 0.1

technique which combines the oblique Krylov subspace projectors with further pro-
jectors in order to obtain stable reduced-order approximate models that are able to
approximate the low-frequency behavior of the dynamic system. We also established
that this technique fits naturally within an implicit restart framework that defines an
iterative procedure able to refine approximations. Exact low-dimensional expressions
for the L∞-norm of the residual errors are also derived. Our numerical experiments
on several large-scale examples indicate that this process converges to the balanced
truncation of the dynamic system; however, formally establishing this claim remains
an open research problem. In place of the Arnoldi process, one may equally employ
the Lanczos algorithm to derive an implicitly restarted scheme for stable partial re-
alization. The derivation of such a scheme follows similar lines to those presented in
this paper, except that in the Lanczos setting the biorthogonality of [Vm Ṽm] and

[Wm W̃m] is enforced [5, 21].
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via the Lanczos Process, Technical report No. 11274-940217-02TM, AT&T Bell Laborato-
ries, Murray Hill, NJ, 1994.

[7] C. W. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, SIAM. J. Sci.
Statist. Comput., 4 (1983), pp. 583–601.

[8] K. Glover, All optimal Hankel norm approximations of linear multivariable systems and their
L∞ error bounds, Inter. J. Control, 39 (1984), pp. 1115–1193.

[9] K. Glover, Multiplicative approximation of linear multivariable systems with L∞ error
bounds, American Control Conference, Seattle, WA, pp. 1705–1709, 1986.

[10] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[11] W. B. Gragg and A. Lindquist, On the partial realization problem, Linear Algebra Appl., 50
(1983), pp. 277–319.
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Abstract. We derive versal deformations of the Kronecker canonical form by deriving the
tangent space and orthogonal bases for the normal space to the orbits of strictly equivalent matrix
pencils. These deformations reveal the local perturbation theory of matrix pencils related to the
Kronecker canonical form. We also obtain a new singular value bound for the distance to the orbits
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Notation.

‖x‖ The 2-norm of a vector x.
A A square matrix of size n× n. I or In is the identity matrix.
AT The transpose of A.
AH The conjugate transpose of A.
A The conjugate of A.
‖A‖E The Frobenius (or Euclidean) matrix norm.
σmin(A) The smallest singular value of A.
vec(A) An ordered stack of the columns of a matrix A from left to

right.
det(A) Determinant of A.
tr(A) Trace of A.
ker(A) Kernel of space spanned by the columns of A.
range(A) Range of space spanned by the columns of A.
diag(A1, . . . , Ab) A block diagonal matrix with diagonal blocks Ai.
A⊗B The Kronecker product of two matrices A and B whose (i, j)th

block element is aijB.
A− λB A matrix pencil of size m× n.
λi Eigenvalue of A or A− λB. Also, γi and α are used to denote

an eigenvalue.
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r, ri, si A − λB has r distinct eigenvalues λi of algebraic multiplicity
ri. The sizes of the Jordan blocks associated with an eigenvalue
are s1 ≥ s2 ≥ · · · ≥ sri .

Jj(γi) Jordan block of size j × j associated with γi.
Jj(γi, γ̄i) Real Jordan block of size 2j × 2j associated with a complex

conjugate pair of eigenvalues.
Nj Jordan block of size j × j associated with the infinite

eigenvalue.
Lj Singular block of right (column) minimal index of size

j × (j + 1).
LTj Singular block of left (row) minimal index of size (j + 1)× j.
〈A− λB,C − λD〉 Frobenius inner product of two matrix pairs.
orbit(A) The set of matrices similar to A.
orbit(A− λB) The set of matrix pencils equivalent to A− λB.
tan(A− λB) Tangent space of orbit(A− λB) at A− λB.
nor(A− λB) Normal space of orbit(A− λB) at A− λB.
S ⊕ T Direct sum of subspaces S and T of Rn.
S⊥ Subspace perpendicular to S. S ⊕ S⊥ is the complete space.
dim(S) Dimension of subspace S. dim(S) denotes dimension of

subspace spanned by the columns of S.
cod(S) Codimension is the dimension of the subspace complementary

to S.
P The 2mn-dimensional space of m× n matrix pencils, i.e., P =

tan(A− λB) ⊕ nor(A− λB).
V(p) Deformation or (mini)versal deformation with parameter vector

p ∈ Rl, where l ≥ 1. V(p) is also written V(p1, p2, . . . , pl). q is
also used as parameter vector.

Z(p) Deformation that spans the orthogonal complement of the orbit
of a matrix A.

ZA(p)− λZB(p) Deformation that spans the orthogonal complement of the orbit
of a pencil A− λB. Often abbreviated ZA − λZB .

1. Introduction and examples.

1.1. Introduction. Traditionally, canonical structure computations take as their
input some mathematical object, a matrix or a pencil, say, and return an equivalent
object that is perhaps simpler or makes clear the structure of the equivalence relation.
Some example equivalence relations and corresponding canonical forms are as follows.

Structure Equivalence relation Canonical form
Square matrices A ∼ X−1AX Jordan canonical form
Rectangular matrices A ∼ UAV Singular values
Rectangular matrices A ∼ XA Reduced echelon form
Matrix pencils A− λB ∼ P−1(A− λB)Q Kronecker canonical form
Analytic real functions f(x) ∼ f(φ(x)) ±xk

In the first three examples the input is a matrix. In the next example, the input
is a pencil. In these cases, X,P, and Q are presumed nonsingular and U and V are
presumed orthogonal. We presume the real functions f are analytic in a neighborhood
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of zero, f(0) = 0, φ(0) = 0, and φ(x) is monotonic and analytic near zero.

Canonical forms appear in every branch of mathematics. A few examples from
control theory may be found in [21, 20, 27, 19]. However, researchers in singularity
theory have asked what happens if you have not one object that you want to put into
a normal form, but rather a whole family of objects nearby some particular object
and you wish to put each member of the family into a canonical form in such a way
that the canonical form depends smoothly on the deformation parameters.

For example, one may have a one-parameter matrix deformation of A which is
simply an analytic function V(p) for which V(0) = A. An n parameter deformation
is defined the same way, except that p ∈ Rn. Similarly, one may have n parameter
deformations of pencils or functions. Remaining with the matrix example, we say two
deformations V1(p) and V2(p) are equivalent if V1(p) and V2(p) have the same Jordan
canonical form for each and every p. A deformation of a matrix is said to be versal if,
loosely speaking, it captures all possible Jordan form behaviors near the matrix. A
deformation is said to be miniversal if it does so with as few parameters as possible.
A more formal discussion of these definitions may be found in section 2.

The derivation of versal and miniversal deformations requires a detailed under-
standing of the perturbation theory of the objects under study. In particular, one
needs to understand the tangent space of the equivalence relation and how it is em-
bedded in the entire space. In section 2, we explain the mechanics of this perturbation
theory.

While we believe that versal deformations are interesting mathematical objects,
this work differs from others on the subject in that our primary goal is not so much the
versal deformation or the miniversal deformation, but rather the perturbation theory
and how it influences the computation of the Kronecker canonical form. As such,
we tend to be interested more in metrical information than topological information.
Therefore, we obtain new distance formulas to the space of less generic matrix pencils
in section 4. In section 5, we derive an explicit orthogonal basis for the normal space
of a Kronecker canonical form. For us a versal decomposition will be an explicit
decomposition of a perturbation into its tangential and normal components, and we
will not derive any miniversal deformations that may have simpler forms, but hide
the metric information.

Versal deformations for function spaces are discussed in [18, 25, 4, 5]. The first
application of these ideas for the matrix Jordan canonical form is due to Arnold [1].
Further references closely related to Arnold’s matrix approach are [30] and [6]. The
latter reference also includes applications to differential equations. Applications of the
matrix idea toward an understanding of companion matrix eigenvalue calculations
may be found in [13]. The only other work that we are aware of that considers
versal deformations of the Kronecker canonical form is by Berg and Kwatny [3], who
independently derived some of the normal forms considered in this paper.

Our section 2 contains a thorough explanation of versal deformations from a
linear algebra perspective. Section 3 briefly reviews matrix pencils and canonical
forms. Section 4 derives the geometry of the tangent and normal spaces to the orbits
of matrix pencils. Section 5 derives the versal deformations, while section 6 gives
applications and illustrations.

Notation is introduced and defined the first time it appears in the text. Some (but
not all) of the notation used in the paper is summarized on the previous page. For
example, the glossary of Toeplitz and Hankel matrices (section 5.2) is not repeated
there. Moreover, the definitions of different canonical forms (companion, Jordan,
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Kronecker, generalized Schur, etc.) are introduced in their context.

1.2. Geometry of matrix space. Our guiding message is very simple: matrices
should be seen in the mind’s eye geometrically as points in n2-dimensional space. A
perfect vision of numerical computation would allow us to picture computations as
moving matrices from point to point or manifold to manifold.

Abstractly, it hardly matters whether a vector is a column of numbers or a geo-
metric point in space. However, without the interplay of these two representations,
numerical linear algebra would not be the same. Imagine explaining without the
geometric viewpoint how Householder reflections transform vectors.

In contrast, in numerical linear algebra we all know that matrices are geometric
points in n2-dimensional space, but it is rare that we actually think about them this
way. Most often, matrices are thought of as either (sparse or dense) arrays of numbers,
or they are operators on vectors.

The Eckart–Young (or Schmidt–Mirsky theorem) [29, p. 210] gives a feel for the
geometric approach. The theorem states that the smallest singular value of A is the
Frobenius distance of A to the set of singular matrices. One can not help but see
a blob representing the set of singular matrices. This amorphous blob is most often
thought of as an undesirable part of town, so unfortunately numerical analysts hardly
ever study the set itself. Algebraic geometers recognize the singular matrices as a
variety, meaning that the set can be defined as the zero set of a polynomial system
(namely, det(A) = 0). It can also be “stratified” as the union of manifolds. The
most generic singular matrices are the ones with rank n − 1. These matrices form a
manifold.

Demmel helped pioneer the development of geometric techniques [7] for the analy-
sis of ill conditioning of numerical analysis problems. Shub and Smale [28] are applying
geometrical approaches toward the solution of polynomial systems.

We believe that if only we could better understand the geometry of matrix space,
our knowledge of numerical algorithms and their failures would also improve. A gen-
eral program for numerical linear algebra, then, is to transfer from pure mathemati-
cians the technology to geometrically understand the high dimensional objects that
arise in numerical linear algebra. This program may not be easy to follow. A major
difficulty is that pure mathematicians pay a price for their beautiful abstractions—
they do not always possess a deep understanding of the individual objects that we
wish to study. This makes technology transfer difficult. Even when the understanding
exists somewhere, it may be difficult to recognize or may be buried under a heavy
layer of notation. This makes technology transfer time consuming. Finally, even af-
ter expending time excavating, the knowledge may still be difficult to apply toward
the understanding or the improving of practical algorithms. This makes technology
transfer from pure mathematics frustrating.

Nevertheless, our goal as researchers is the quest for understanding which we may
then apply. In this paper, we follow our program for the understanding of the Jordan
and Kronecker canonical forms of matrices and matrix pencils, respectively. Many of
the ideas in this paper have been borrowed from the pure mathematics literature with
the goal of simplifying and applying them to the needs of numerical linear algebraists.

While this is quite a general program for numerical linear algebra, this paper
focuses on a particular goal. We analyze versal deformations from the numerical
linear algebra viewpoint and then compute normal deformations for the Kronecker
canonical form. We consider both of these as stepping stones toward the far more
difficult goal of truly understanding and improving staircase algorithms for the Jordan



VERSAL DEFORMATIONS OF MATRIX PENCILS 657

or Kronecker canonical form. These are algorithms used in systems and control theory.
The structures of these matrices or pencils reflect important physical properties of the
systems they model, such as controllability [10, 32].

The user chooses a parameter η to measure any uncertainty in the data. The
existence of a matrix or pencil with a different structure within distance η of the input
means that the actual system may have a different structure than the approximation
supplied as input. These algorithms try to perturb their input by at most η so as
to find a matrix or pencil with as high a codimension as possible. The algorithm is
said to fail if there is another perturbation of size at most η which would raise the
codimension even further. Therefore, we must understand the geometry of matrix
space to begin to understand how we can supply the correct information to the user.
With this information, we believe that we would then be able to not only correctly
provide the least generic solutions, but also understand how singularities hinder this
process. Bad solutions may then be refined so as to obtain better solutions. As the
next section illustrates, the geometry directly affects the perturbation theory.

1.3. Motivation: A singular value puzzle. Consider the following four nearly
singular matrices:

M1 =

(
0 1 + ε
0 0

)
, M2 =

(
0 1
ε 0

)
, M3 =

(
ε 1
0 −ε

)
, M4 =

(
ε 1
0 ε

)
.(1.1)

Each of these matrices are distance O(ε) from the Jordan block

J2(0) =

(
0 1
0 0

)
.

What is the smaller of the two singular values of each of M1,M2,M3, and M4? The
answer is

σmin(M1) = 0, σmin(M2) = ε, σmin(M3) ≈ ε2, and σmin(M4) ≈ ε2.

A quick way to verify this algebraically is to notice that the larger singular value of
each matrix is approximately 1 so that the smaller is approximately the (absolute)
determinant of the matrix. Another approach that bounds the smallest singular
value is the combination of the Eckart–Young theorem and the observation that these
matrices are singular:

M ′1 = M1, M ′2 =

(
0 1
0 0

)
, M ′3 =

(
ε 1
−ε2 −ε

)
, M ′4 =

(
ε 1
ε2 ε

)
.

When ε = 0 in (1.1) our four matrices become the singular 2 × 2 Jordan block
J2(0). As ε varies from 0 each of the four forms in (1.1) traces out a line in matrix
space. The geometric issue that is interesting here is that the line of matrices traced
out as ε varies is {1:In, 2:Normal, 3:Tangent, 4:Tangent} to the set of singular matrices.
Somehow, this feels like the “right” explanation for why the smaller singular values
are {1:0, 2:ε, 3:≈ ε2, 4:≈ ε2}.

Let us take a closer look at the set of singular matrices. The four parameters
found in a 2× 2 matrix M are best viewed in a transformed coordinate system:

M = (x, y, z, w) = x

(
0 1
0 0

)
+ y

(
0 0
1 0

)
+ z

(
1 0
0 −1

)
+ w

(
1 0
0 1

)
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=

(
w + z x
y w − z

)
.

In this coordinate system, the singular matrices fall on the surface described by the
equation w2 = z2 + xy. This is a three-dimensional surface in four-dimensional
space. The traceless singular matrices (w = 0) fall on the cone z2 + xy = 0 in
three-dimensional space.

Our matrix J2(0) may now be represented as (1, 0, 0, 0) and the four lines of
matrices mentioned above are

l1 = {(1 + ε, 0, 0, 0)} =

{(
0 1
0 0

)
+ ε

(
0 1
0 0

)}
,

l2 = { (1, ε, 0, 0) } =

{(
0 1
0 0

)
+ ε

(
0 0
1 0

)}
,

l3 = { (1, 0, ε, 0) } =

{(
0 1
0 0

)
+ ε

(
1 0
0 −1

)}
,

l4 = { (1, 0, 0, ε) } =

{(
0 1
0 0

)
+ ε

(
1 0
0 1

)}
.

The lines l1, l2, and l3 are all traceless; i.e., the matrices on each of these lines
may be viewed in the three-dimensional space of the cone. The line l1 is not only
tangent to the cone, but in fact it lies in the cone. The line l3 is tangent to one of the
circular cross sections of the cone.

Fig. 1.1. Cone of traceless singular matrices with “stick” representing a tangent.

Figure 1.1 illustrates l3 as a “stick” resting near the bottom of the cone. The line
l1 is a thin line on the cone through the same point.

The line l4 is normal to the cone, but it is also tangent to the variety of singular
matrices. One way to picture this in three dimensions is to take the three-dimensional
slice of {w2 = z2 + xy} corresponding to x = 1, i.e., {w2 − z2 = y}. This is a
hyperboloid with the Jordan block as a saddle point. The line is the tangent to the
parabola w2 = y which rests in the plane z = 0. Figure 1.2 illustrates this line with
a cylindrical stick whose central axis is the tangent. Finally, the line l2 is normal to
the set of singular matrices.

If we move a distance ε away from a point on a surface along a tangent, our
distance to the surface remains O(ε2). This is what the singular value corresponding
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Fig. 1.2. Variety of singular matrices. The axis of the cylindrical stick is tangent to the singular
variety.

to l3 and l4 is telling us. Alternatively, if we move normal to the surface as in l2, the
singular value changes more rapidly: O(ε).

The cone of singular matrices with w = 0 is not only a slice of a large dimensional
space, but it is also the (closure of) the set of matrices similar to J2(0) (which we
denote orbit(J2(0)) in section 2.4). The matrices similar to J2(0) are singular and
traceless. In fact, the only matrix that is singular and traceless that is not similar to
J2(0) is the 0 matrix which is the vertex of the cone. We further explore this case in
section 2.5 after we have defined versal deformations.

We conclude that the geometry of the orbit and, in particular, the directions of
the tangents and normals to the orbit directly influence the eigenvalue perturbation
theory.

2. Introduction to versal deformations. This introduction is designed to be
readable for general audiences, but we particularly target the numerical linear algebra
community.

The ideas here may be thought of as a numerical analyst’s viewpoint on ideas
that were inspired by Arnold’s work [1] on versal deformations of matrices. Further
elaboration upon Arnold’s versal deformations of matrices may be found in [6, Chap-
ters 2.9 and 2.10] and [30]. These ideas fit into a larger context of differential topology
and singularity theory. Bruce and Giblin [5] have written a wonderfully readable in-
troduction to singularity theory emphasizing the elementary geometrical viewpoint.
After reading this introduction, it is easy to be lulled into the belief that one has
mastered the subject, but a more advanced wealth of information may be found in
[18, 25, 4]. Finally, what none of these references do very well is clearly explain that
there is still much in this area that mankind does not yet fully understand.
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Singularity theory may be viewed as a branch of the study of curves and surfaces,
but its crowning application is toward the topological understanding of functions and
their behavior under perturbations. Of course, numerical analysts are very interested
in perturbations as well.

2.1. Characteristic polynomials give the “feel” of versal deformations.
Let V(p) be a differentiable one-parameter family of matrices through A ≡ V(0).
This is just a curve in matrix space. If A has a complicated Jordan canonical form,
then very likely the Jordan canonical form of V(p) is a discontinuous function of p.
(The Jordan canonical form, you will remember, can have nasty ones popping up
unexpectedly on the superdiagonal.) It is even more desirable if that function can
somehow describe the kinds of matrices that are near A.

Discontinuities are as unpleasant for pure mathematicians as they are for com-
puters. Therefore, Arnold [1] asks what kinds of functions of p are differentiable (or
many times differentiable, or analytic).

One function that comes to mind is the characteristic polynomial det(V(p)−λI).
The coefficients of det(V(p)−λI) are clearly differentiable functions of p no matter how
complicated a Jordan canonical form the matrix A might have. In numerical linear
algebra, we never compute the characteristic polynomial because the eigenvalues are
often very poorly determined by the coefficients of the characteristic polynomial.
Mathematically, the characteristic polynomial is a nice function of a matrix because
its coefficients, unlike the eigenvalues of the matrix, are analytic functions of the
entries of the matrix.

The characteristic polynomial is a reasonable representation for the Jordan canon-
ical form under the special circumstance that every matrix V(p) is nonderogatory (i.e.,
each matrix has exactly one Jordan block for each distinct eigenvalue). By a reason-
able representation, we mean here that it actually encodes the Jordan canonical form
of A. Theoretically, if you know the characteristic polynomial, then you know the
eigenvalues with appropriate multiplicities. It follows that there is a unique non-
derogatory Jordan canonical form (see Wilkinson [35, pp. 11–16 or Note 55, p. 408]).
To repeat, there is a one-to-one correspondence among the n eigenvalues of a non-
derogatory matrix, the characteristic polynomial of a nonderogatory matrix, and the
Jordan canonical form of a nonderogatory matrix, but only the characteristic poly-
nomial is a differentiable function of the perturbation parameter p. (The eigenvalues
themselves can have first-order perturbations with the nondifferentiable form p1/n,
for example, for an n × n matrix A with only one Jordan block Jn(λ). This is a
well-known example.)

In the language of numerical linear algebra, we would say that a nonderogatory
matrix A may be written in companion matrix form KCK−1 in such a way that
differentiable perturbations to the matrix A lead to differentiable perturbations to
the companion matrix C. Here the matrix K is a Krylov matrix (see [17, p. 369]).
Equivalently, first-order perturbations to the matrix A are manifested as first-order
perturbations to the companion matrix C. When A is a companion matrix, this gives
a first-order perturbation theory for the characteristic polynomials of nearby matrices.
This perturbation theory is computed in [13].

Our story would almost stop here if we were interested only in the Jordan form of
nonderogatory matrices. We say “almost” because it would be a shame to stop here
without explaining the ideas geometrically. Even if we did not discuss the geometry,
we have reasons to continue on, since matrix space is enriched with the derogatory
matrices, and also we wish to generalize these ideas about the Jordan canonical form
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to cover the more complicated case of the Kronecker canonical form.

2.2. The rational canonical form is not enough for derogatory matrices.
In the previous section we saw that n parameters were sufficient to specify the Jordan
canonical form of any matrix in a small neighborhood of a nonderogatory matrix.
What happens if the matrix is derogatory? One obvious guess turns out to be wrong.
The usual generalization of the companion matrix form for derogatory matrices is
the rational canonical form. If A is derogatory, it may be put in rational canonical
form. This form may be thought of as the direct sum of companion matrices Ci with
dimension m1 ≥ m2 ≥ · · · ≥ mk. The characteristic polynomial of each Ci divides
the characteristic polynomial of all the preceding Cj , j < i. Can any nearby matrix
be expressed as the direct sum of companion matrices with dimension m1,m2, . . . ,mk

in a nice differentiable manner? The answer is generally no; though good enough
to specify the Jordan canonical form of a matrix, the rational canonical form fails
to be powerful enough to specify the Jordan canonical forms of all matrices in a
neighborhood. This is because there are just not enough parameters in the rational
canonical form to cover all the possibilities. To have enough parameters we need a
“versal deformation.”

One simple example is the identity matrix (or the zero matrix). The rational
canonical form has m1 = · · · = mn = 1. The matrices with this form are the diagonal
matrices, and hence every one of them is nondefective (diagonalizable). However,
with an arbitrarily small perturbation of the identity, it is possible to obtain defective
matrices. The rational canonical form has n parameters, which are not enough.

2.3. Versal deformation: The linearized theory. The “linearized” picture
of a versal deformation is easy to understand. We therefore explain this picture before
plunging into the global point of view. The general case may be nonlinear, but the
linearized theory is all that really matters. For simplicity we assume that we are in
real n-dimensional Euclidean space, but this assumption is not so important.

We recall the elementary fact that if S and T are subspaces of Rn such that
S ⊕ T = Rn, then there exist linear projections πS and πT that map onto S and T ,
respectively.

Consider a point x ∈ S. We will investigate all possible perturbations y of x, but
we will not be concerned with perturbations that are within S itself. Psychologically,
we consider all the vectors in S to somehow be the same, so there will be no need to
distinguish them. Let T be any linear subspace such that S⊕T = Rn; i.e., any vector
may be written as the sum of an element of T and an element of S (not necessarily
uniquely). Clearly if t1, . . . , tk span T , then our perturbed vector x+y may be written
as

x+ y = x+

k∑
i=1

piti + (something in S),

where the pi may be chosen as linear functions of y. We see here what will turn out to
be the key idea of a versal deformation—every perturbation vector may be expressed
in terms of the pi and vectors that we are considering to all be equivalent.

We now formally introduce the local picture of versal deformations.
Definition 2.1. A linear deformation of the point x is a function defined on

p ∈ Rl:

V(p) = x+ Tp,
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where T = [t1, t2, . . . , tl] are arbitrary directions.
The choice of the word “deformation” is meant to convey the idea that we are

looking at small values of the pi, and these perturbations are small deformations of
the starting point x.

Definition 2.2. A linear deformation V1(p) of the point x is versal if for all
linear deformations V2(q) of the point x, it is possible to write

V2(q) = V1(φ(q)) + θ(q),

where φ(q) is a linear function from q1, . . . , qm to p1, . . . , pl with φ(0) = 0 and θ is a
linear function from q into S with θ(0) = 0.

We now explain why V1(p) = x +
∑l
i=1 piti is versal if and only if S ⊕ T = Rn.

Clearly V1(φ(q))+θ(q) ∈ S⊕T , and since V2(p) may be arbitrary, it is necessary that
span({ti})⊕S = Rn. It is also sufficient because we then obtain linear projections
allowing us to write V2(q) = x + πSV2(q) + πT V2(q). The functions φ and θ may be
obtained from πS and πT .

Definition 2.3. A linear deformation V(p) of the point x is universal or miniver-
sal if it is versal and has the fewest possible parameters needed for a versal deforma-
tion.

The number of parameters in a miniversal deformation is exactly the codimension
of S. Numerical analysts might prefer taking the ti to be an orthogonal basis for S⊥,
the subspace perpendicular to S. This provides one natural miniversal deformation.
Arnold [1] does not insist on using S⊥; any basis for any subspace of dimension
n − dimS will do provided that it intersects S at zero only. From the topological
point of view, this is exactly the same, though of course the numerical properties may
be quite different.

2.4. Versal deformations—the bigger picture. The previous section ex-
plained the linear or first-order theory of versal deformations. At this point, the
reader might wonder whether this is just a whole lot of jargon to merely extend a
basis for a subspace to the entire space. At the risk of delaying the motivation until
now, we decided to make sure that the linear theory be well understood.

We are still in a finite-dimensional Euclidean space Rn, but S will no longer be a
flat subspace. Instead, we wish to consider any equivalence relation ∼ such that the
orbit of x (orbit(x)≡ {y|y ∼ x}) is a sufficiently smooth submanifold. As an example
we might define x ∼ y to mean ‖x‖ = ‖y‖, in which case the orbits are spheres. In
this context the word “orbit” is quite natural. In n2-dimensional space points may
be thought of as n × n matrices, and the orbit is the set of matrices with the same
Jordan canonical form.

One final example that we must mention (because it explains the origins and
significance of singularity theory) lives in an infinite-dimensional space. The vector
space is the set of analytic functions f(x) for which f(0) = 0. We can define f ∼ g if
f(x) and g(φ(x)) have the same Taylor expansion at x = 0, where φ is a monotonic
analytic function with φ(0) = 0. The orbit of any function is some complicated
infinite-dimensional manifold, but the codimension of the manifold happens to be
finite.

Returning to Rn, we can now cast everything into a nonlinear context.
Definition 2.4. A deformation of the point x is any continuously differentiable

function

V(p1, . . . , pl)
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satisfying V(0) = x.
Definition 2.5. A deformation V1(p) of the point x is versal if for all deforma-

tions V2(q) it is possible to write

V2(q) ∼ V1(φ(q))

in an arbitrarily small neighborhood of 0, where φ(q) is a continuously differentiable
function from q1, . . . , qm to p1, . . . , pl for which φ(0) = 0.

The good news is that the inverse function theorem lets us express this nonlinear
notion in terms of the linear theory.

Theorem 2.6. A deformation V(p) of x is versal if and only if V∗(p) is a versal
linear deformation at the point x on the subspace tan(orbit(x)), where V∗(p) is the
linearization of V(p) near x (i.e., only first derivatives matter) and tan denotes the
subspace tangent to the orbit at x.

The rigorous proof may be found in [1], but the intuition should be clear: near
the point x, only linear deformations matter, and the curvature of the orbit becomes
unimportant—only the tangent plane matters. In other words, y ∼ x only if y is in
the orbit of x, but to first order y ∼ x if (roughly speaking) y = x + s, where s is a
small tangent vector to the orbit. The versality theorem (Theorem 2.6) shows that
we only have to consider versal linear deformations, which we in the following denote
V(p).

2.5. Versal deformations for the Jordan canonical form. We begin with
deformations of the matrix A = J2(0). The perturbation theory and the normal and
tangent spaces were discussed in section 1.3. We will use the same coordinate system
here.

Four parameters q = (q1, q2, q3, q4) are sufficient to describe the most general
deformation of A:

V2(q) =

(
0 1
0 0

)
+

(
q1 q2
q3 q4

)
.

The equivalence relation is that of similar matrices, and it is easy to see by
checking the trace and determinant that for sufficiently small values of q we have the
equivalence

V2(q) ∼ V1(p) ≡
(

0 1
p1 p2

)
,

where p = φ(q) is defined by p1 = q3(1 + q2) − q1q4 and p2 = q1 + q4. It is worth
emphasizing that the equivalence relation does not work if V2(q) is derogatory, but
this does not happen for small parameters q.

We then see from Definition 2.5 that the two-parameter deformation V1(p) is
versal. In fact, it is miniversal, in that one needs the two parameters. From the local
theory pictured in section 1.3, we saw that the orbit of J2(0) is the two-dimensional
cone, and therefore the tangent and normal spaces are each two dimensional. The
number of parameters in a miniversal deformation is always the dimension of the
normal space.

It is a worthwhile exercise to derive the similarity transformation S(q) (a defor-
mation of the identity matrix) for which

V2(q) = S(q)−1V1(φ(q))S(q),



664 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

and then linearize this map for small values of q to see which directions fall along the
tangent space to the cone and which directions are normal to the cone.

Now consider deformations of A = I2 or A = 0. Both matrices are derogatory
with two eigenvalues 1 and 0, respectively. The tangent space does not exist (i.e., it
is zero dimensional). Any possible behavior may be found near I2 (or 0), including a
one-dimensional space of derogatory matrices. The miniversal deformation of I2 (or
0) is the full deformation requiring four parameters.

The general case has been worked out by Arnold [1]. The tangent vectors to the
orbit of a matrix A are those matrices that may be expressed as XA − AX. The
normal space is the adjoint of the centralizer, i.e., the set of matrices Z satisfying

AHZ = ZAH .

Definition 2.7. A deformation V(p) = A + Z(p) of a matrix A is a versal
deformation if and only if Z(p) is a basis for the orthogonal complement of orbit(A)
that intersects the orbit at A.

The formal definition of the similarity orbit of a matrix A is

orbit(A) = {S−1AS : det(S) 6= 0}.

The parameterized normal form Z(p) is the set of matrices that commute with AH

[1, 16]. For numerical properties we prefer taking Z(p) to be an orthogonal basis for
the normal space of orbit(A) at A. This choice of Z(p) also ensures that V(p) is a
miniversal deformation with one parameter for each dimension of the normal space.

Let A have r distinct eigenvalues λi, i = 1 : r with ri Jordan blocks each. Let
s1(λi) ≥ s2(λi) ≥ · · · ≥ sri(λi) denote the sizes of the Jordan blocks corresponding
to the eigenvalue λi. Then the dimension of the normal space of A is

r∑
i=1

ri∑
j=1

(2j − 1)sj(λi) =
r∑
i=1

(s1(λi) + 3s2(λi) + 5s3(λi) + · · ·).

Notice that the values of the distinct λi play no role in this formula. The dimension
of the normal space of A is determined only by the sizes of the Jordan blocks of A
associated with distinct eigenvalues. If the matrix is in Jordan canonical form, then
the normal space consists of matrices Z(p) made up of Toeplitz blocks, whose block
structure is completely determined by the sizes of the Jordan blocks for different
eigenvalues. The normal space is the same for all matrices with the same Jordan
structure independent of the values of the distinct eigenvalues, so one may as well
consider only Jordan blocks corresponding to a 0 eigenvalue. This form of the normal
space for the 0 eigenvalues is a special case in Theorem 5.3.

3. The algebra of matrix pencils–canonical forms. We saw in section 2.4
that to consider versal deformations one needs a finite- or infinite-dimensional space
and an equivalence relation on this space. For the remainder of this paper, we consider
the finite-dimensional Euclidean space of matrix pencils endowed with the Euclidean
metric (usually denoted the Frobenius metric in this context). The equivalence rela-
tion is that of the strict equivalence of pencils.

We consider a matrix pencil A−λB, where A and B are arbitrary m×n matrices
with real or complex entries. The pencil is said to be regular if m = n and det(A−λB)
is not identically zero. Indeed, the zeros of det(A − λB) = 0 are the (generalized)
eigenvalues of a regular pencil. Otherwise, i.e., if det(A − λB) is identically zero or
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m 6= n, A − λB is called singular. Two m × n pencils A1 − λB1 and A2 − λB2 are
strictly equivalent if there exist constant (independent of λ) invertible matrices P of
size m×m and Q of size n× n such that

P−1(A1 − λB1)Q = A2 − λB2.

Kronecker has shown that any matrix pencil is strictly equivalent to a canonical
diagonal form that describes the structure elements of A− λB (including generalized
eigenvalues and eigenspaces) in full detail (e.g., see [16]). This form is a generalization
of the Jordan canonical form (JCF) to general matrix pencils.

3.1. Kronecker canonical form. The Kronecker canonical form (KCF) of A−
λB exhibits the fine structure elements, including elementary divisors (Jordan blocks)
and minimal indices, and is defined as follows [16]. SupposeA,B ∈ Cm×n. Then there
exist nonsingular P ∈ Cm×m and Q ∈ Cn×n such that

P−1(A− λB)Q = Ã− λB̃,(3.1)

where Ã = diag(A1, . . . , Ab) and B̃ = diag(B1, . . . , Bb) are block diagonal. Ai − λBi
is mi × ni. We can partition the columns of P and Q into blocks corresponding to
the blocks of Ã − λB̃: P = [P1, . . . , Pb], where Pi is m ×mi, and Q = [Q1, . . . , Qb],
where Qi is n×ni. Each block Mi ≡ Ai− λBi must be of one of the following forms:
Jj(α), Nj , Lj , or LTj . First we consider

Jj(α) ≡


α− λ 1

· ·
· 1
α− λ

 and Nj ≡


1 −λ

· ·
· −λ

1

 .
Jj(α) is simply a j × j Jordan block, and α is called a finite eigenvalue. Nj is a
j × j block corresponding to an infinite eigenvalue of multiplicity j. The Jj(α) and
Nj blocks together constitute the regular structure of the pencil. All the Ai − λBi
are regular blocks if and only if A − λB is a regular pencil. σ(A − λB) denotes
the eigenvalues of the regular part of A − λB (with multiplicities) and is called the
spectrum of A− λB.

The other two types of diagonal blocks are

Lj ≡

 −λ 1
· ·
−λ 1

 and LTj ≡


−λ
1 ·
· −λ

1

 .(3.2)

The j×(j+1) block Lj is called a singular block of right (or column) minimal index j.
It has a one-dimensional right null space [1, λ, . . . , λj ]T for any λ. The (j+1)×j block
LTj is a singular block of left (or row) minimal index j and has a one-dimensional left
null space for any λ. The left and right singular blocks together constitute the singular
structure of the pencil and appear in the KCF if and only if the pencil is singular. The
regular and singular structures define the Kronecker structure of a singular pencil.

We also have a real KCF associated with real matrix pencils. If A,B ∈ Rm×n,
there exist nonsingular P ∈ Rm×m and Q ∈ Rn×n, where as before P−1(A−λB)Q =
Ã−λB̃ is block diagonal. The only difference with (3.1) is the Jordan blocks associated
with complex conjugate pairs of eigenvalues. Let α = µ+ iω, where µ, ω are real and



666 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

ω 6= 0. If α is an eigenvalue of A − λB, then ᾱ is also an eigenvalue. Let Jj(α, ᾱ)
denote a Jordan block of size 2j × 2j associated with a complex conjugate pair of
eigenvalues, here illustrated with the case j = 3:

J3(α, ᾱ) ≡


µ− λ ω 1 0 0 0
−ω µ− λ 0 1 0 0
0 0 µ− λ ω 1 0
0 0 −ω µ− λ 0 1
0 0 0 0 µ− λ ω
0 0 0 0 −ω µ− λ

 .

The Jordan block Jj(α, ᾱ) plays the same role in the real JCF as diag(Jj(α), Jj(ᾱ))
does in the complex JCF. Notice that each pair of the 2j columns of the real P and Q
associated with a Jj(α, ᾱ) block form the real and imaginary parts of the (generalized)
principal chains corresponding to the complex conjugate pair of eigenvalues.

3.2. Generalized Schur form and reducing subspaces. In most applica-
tions it is sufficient to transfer A− λB to a generalized Schur form (e.g., to GUPTRI
form [11, 12])

PH(A− λB)Q =

 Ar − λBr ∗ ∗
0 Areg − λBreg ∗
0 0 Al − λBl

 ,(3.3)

where P (m × m) and Q (n × n) are unitary and ∗ denotes arbitrary conforming
submatrices. Here the square upper triangular block Areg − λBreg is regular and
has the same regular structure as A − λB (i.e., contains all eigenvalues (finite and
infinite) of A − λB). The rectangular blocks Ar − λBr and Al − λBl contain the
singular structure (right and left minimal indices) of the pencil and are block upper
triangular.

Ar − λBr has only right minimal indices in its KCF, indeed the same Lj blocks
as A − λB. Similarly, Al − λBl has only left minimal indices in its KCF, the same
LTj blocks as A − λB. If A − λB is singular at least one of Ar − λBr and Al − λBl
will be present in (3.3). The explicit structure of the diagonal blocks in staircase form
can be found in [12]. If A − λB is regular Ar − λBr and Al − λBl are not present
in (3.3) and the GUPTRI form reduces to the upper triangular block Areg − λBreg.
Staircase forms that reveal the Jordan structure of the zero and infinite eigenvalues
are contained in Areg − λBreg.

Given A−λB in GUPTRI form, we also know different pairs of reducing subspaces
[33, 11]. Suppose the eigenvalues on the diagonal of Areg − λBreg are ordered so that
the first k, say, are in Λ1 (a subset of the spectrum) and the remainder are outside Λ1.
Let Ar − λBr be mr × nr. Then the left and right reducing subspaces corresponding
to Λ1 are spanned by the leading mr + k columns of P and leading nr + k columns of
Q, respectively. When Λ1 is empty, the corresponding reducing subspaces are called
minimal, and when Λ1 contains the whole spectrum the reducing subspaces are called
maximal.

Several authors have proposed (staircase-type) algorithms for computing a gen-
eralized Schur form (e.g., see [2, 22, 24, 23, 31, 36]). They are numerically stable in
the sense that they compute the exact Kronecker structure (generalized Schur form
or something similar) of a nearby pencil A′ − λB′. δ ≡ ‖(A−A′, B −B′)‖E is an
upper bound on the distance to the closest (A+δA,B+δB) with the KCF of (A′, B′).
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Recently, robust software with error bounds for computing the GUPTRI form of a
singular A − λB has been published [11, 12]. Some computational experiments that
use this software will be discussed later.

3.3. Generic and nongeneric Kronecker structures. Although the KCF
looks quite complicated in the general case, most matrix pencils have a quite simple
Kronecker structure. If A−λB is m×n, where m 6= n, then for almost all A and B it
will have the same KCF, depending only on m and n. This corresponds to the generic
case when A − λB has full rank for any complex (or real) value of λ. Accordingly,
generic rectangular pencils have no regular part. The generic Kronecker structure for
A− λB with d = n−m > 0 is

diag(Lα, . . . , Lα, Lα+1, . . . , Lα+1),

where α = bm/dc, the total number of blocks is d, and the number of Lα+1 blocks
is m mod d (which is 0 when d divides m) [31, 8]. The same statement holds for
d = m − n > 0 if we replace Lα, Lα+1 in (3.2) by LTα , L

T
α+1. Square pencils are

generically regular; i.e., det(A−λB) = 0 if and only if λ is an eigenvalue. The generic
singular pencils of size n× n have the Kronecker structures [34]

diag(Lj , L
T
n−j−1), j = 0, . . . , n− 1.

Only if a singular A − λB is rank deficient (for some λ) may the associated KCF
be more complicated and possibly include a regular part, as well as right and left
singular blocks. This situation corresponds to the nongeneric or degenerate case,
which of course is the real challenge from a computational point of view.

The generic and nongeneric cases can easily be couched in terms of reducing
subspaces. For example, generic rectangular pencils have only trivial reducing sub-
spaces and no generalized eigenvalues at all. Generic square singular pencils have the
same minimal and maximal reducing subspaces. We think of a nongeneric case as an
A − λB that lies either in a submanifold (its orbit) or the bundle corresponding to
similar forms but with differing eigenvalues. In this case the pencil has nontrivial re-
ducing subspaces. Moreover, only if it is perturbed so as to move continuously within
this manifold or bundle does its reducing subspaces and generalized eigenvalues also
move continuously and satisfy interesting error bounds [9, 11, 14, 26]. These require-
ments are natural in many control and systems theoretic problems, such as computing
controllable subspaces and uncontrollable modes.

4. The geometry of matrix pencil space. In the coming sections we derive
formulas for the tangent and normal spaces of the orbit of a matrix pencil that we will
make use of in computing the versal form in section 5. We also derive new bounds
for the distance to less generic pencils.

4.1. The orbit of a matrix pencil and its tangent and normal spaces.
Any m × n matrix pair (A,B) (with real or complex entries) defines a manifold of
strictly equivalent matrix pencils in the 2mn-dimensional space P of m× n pencils:

orbit(A− λB) = {P−1(A− λB)Q : det(P )det(Q) 6= 0}.(4.1)

We may choose a special element of orbit(A−λB) that reveals the KCF of the pencil.
As usual, the dimension of orbit(A−λB) is equal to the dimension of the tangent

space to the orbit at A − λB, here denoted tan(A − λB). By considering the defor-
mation (Im + δX)(A− λB)(In − δY ) of A− λB to first-order term in δ, where δ is a
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small scalar, we obtain A − λB + δ(X(A − λB) − (A − λB)Y ) + O(δ2), from which
it is evident that tan(A − λB) consists of the pencils that can be represented in the
form

TA − λTB = (XA−AY )− λ(XB −BY ),(4.2)

where X is an m×m matrix and Y is an n× n matrix. (This may also be obtained
formally by differentiating the exponential map.)

In the language of pure mathematics the map that sends the triple (P,Q,A−λB)
to P−1(A−λB)Q is called a group action. The group is the ordered pair of nonsingular
matrices (P,Q) denoted GLm ×GLn which indicates the size of the matrices and the
fact that they are nonsingular. The group GLm × GLn then is acting on the set of
pencils.

A group action is transitive if it maps the set onto itself; i.e., if every member of
the set may be reached from every other member of the set by the map. Clearly the
group action is transitive on orbits. (This is merely a restatement of the definition of
an orbit: an orbit is a minimal transitive set with respect to the group action.)

Since the action is transitive, we immediately have that orbits are manifolds.
Intuitively, the tangent space “looks” the same at every point, since it may be moved
from any point to another point by the group action. Mathematically, the orbit is
a homogeneous space. The orbit may be equated with the quotient group obtained
by forming equivalence classes of pairs (P,Q) that map A − λB to the same point.
It is a small step to show that reducing subspaces vary smoothly if one perturbs a
pencil so that it stays on the same orbit. All one must do is lift a curve (maintaining
continuity) through a pencil back up to GLm×GLn and then project out the reducing
subspaces.

Using Kronecker products, we can represent the 2mn vectors TA−λTB ∈ tan(A−
λB) as [

vec(TA)
vec(TB)

]
=

[
AT ⊗ Im
BT ⊗ Im

]
vec(X)−

[
In ⊗A
In ⊗B

]
vec(Y ).

In this notation, we may say that the tangent space is the range of the 2mn×(m2+n2)
matrix

T ≡
[
AT ⊗ Im −In ⊗A
BT ⊗ Im −In ⊗B

]
.(4.3)

We may define the normal space nor(A − λB) as the space perpendicular to
tan(A − λB). Orthogonality in P, the 2mn-dimensional space of matrix pencils, is
defined with respect to a Frobenius inner product

〈A− λB,C − λD〉 ≡ tr(ACH +BDH),

where tr(X) denotes the trace of a square matrix X. Remembering that the space
orthogonal to the range of a matrix is the kernel of the Hermitian transpose, we have
that

nor(A− λB) = ker(TH) = ker

[
Ā⊗ Im B̄ ⊗ Im
−In ⊗AH −In ⊗BH

]
.

In ordinary matrix notation, this states that ZA − λZB is in the normal space of
A− λB if and only if

ZAA
H + ZBB

H = 0 and AHZA +BHZB = 0.(4.4)
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The conditions on ZA and ZB can easily be verified and also be derived in terms
of the Frobenius inner product, i.e.,

〈TA − λTB , ZA − λZB〉 = tr(X(AZHA +BZHB )− (ZHA A+ ZHBB)Y ).(4.5)

Verification. If conditions (4.4) are satisfied, it follows from (4.5) that the inner
product is zero.

Derivation. If 〈TA − λTB , ZA − λZB〉 = 0, then tr(X(AZHA + BZHB )− (ZHA A+
ZHBB)Y ) = 0 must hold for any X (of size m×m) and Y (of size n×n). By choosing
X ≡ 0, (4.5) reduces to tr((ZHA A+ZHBB)Y ) = 0, which holds for any Y if and only if
ZHA A+ZHBB = 0. Similarly, we can choose Y ≡ 0, which gives that AZHA +BZHB = 0.

If B = I, this reduces to ZA ∈ nor(A) if and only if ZHA ∈ centralizer(A), which is
a well-known fact (e.g., see [1]). We will see in section 5.3 that though the A-part of
the normal space is very simple when B = I, obtaining an orthonormal basis for the
B-part is particularly challenging. The requirement that ZB = −AHZA when B = I
destroys any orthogonality one may have in a basis for the A-part.

We now collect our general statements and a few obvious consequences.
Theorem 4.1. Let the m×n pencil A−λB be given. Define the 2mn×(m2 +n2)

matrix T as in (4.3). Then

tan(A− λB) = range(T ) = {(XA−AY )− λ(XB −BY )},

where X and Y are compatible square matrices, and

nor(A− λB) = ker(TH) = {ZA − λZB},

where ZAA
H + ZBB

H = 0 and AHZA +BHZB = 0.
The dimensions of these spaces are

dim(tan(A− λB)) = m2 + n2 − dim(ker(T ))(4.6)

and

dim(nor(A− λB)) = dim(ker(TH)) = dim(ker(T ))− (m− n)2.(4.7)

Of course, the tangent and normal spaces are complementary and span the com-
plete 2mn-dimensional space, i.e., P = tan(A − λB) ⊕ nor(A − λB), so that the
dimensions in (4.6) and (4.7) add up to 2mn, as they should.

Theorem 4.1 leads to one approach for computing a basis for nor(A − λB) from
the singular value decomposition (SVD) of T . Indeed, the left singular vectors corre-
sponding to the zero singular value form such a basis. The dimension of the normal
space is also known as the codimension of the orbit, here denoted cod(A− λB). Ac-
cordingly, we have the following “compact” characterization of the codimension of
orbit(A− λB).

Corollary 4.2. Let the m× n pencil A− λB be given. Then

cod(A− λB) = the number of zero singular values of T.

The corresponding result for the (square) matrix case is

cod(A) = the number of zero singular values of In ⊗A−AT ⊗ In.
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Although the SVD-based method is simple and has nice numerical properties (back-
ward stability), it is rather costly in the number of operations. Computing the SVD
of T is an O(m3n3) operation.

Knowing the Kronecker structure of A − λB, it is also possible to compute the
codimension of the orbit as the sum of separate codimensions [8]:

cod(A− λB) = cJor + cRight + cLeft + cJor,Sing + cSing.(4.8)

The different contributions in (4.8) originate from the Jordan structure of all eigen-
values (including any infinite eigenvalue), the right singular blocks (Lj ↔ Lk), the
left singular blocks (LTj ↔ LTk ), interactions of the Jordan structure with the singular

blocks (Lk and LTj ), and interactions between the left and right singular structures

(Lj ↔ LTk ), respectively. Explicit expressions for these codimensions are derived in
[8]. Assume that the given A−λB has r ≤ min (m,n) distinct eigenvalues λi, i = 1 : r
with ri Jordan blocks each. Let s1(λi) ≥ s2(λi) ≥ · · · ≥ sri(λi) denote the sizes of the
Jordan blocks corresponding to the eigenvalue λi. Then the separate codimensions of
(4.8) can be expressed as

cJor =

r∑
i=1

ri∑
j=1

(2j − 1)sj(λi) =

r∑
i=1

(s1(λi) + 3s2(λi) + 5s3(λi) + · · ·),

cRight =
∑
j>k

(j − k − 1), cLeft =
∑
j>k

(j − k − 1), cSing =
∑
j,k

(j + k + 2),

cJor,Sing = (size of complete regular part) · (number of singular blocks).

Notice that if we do not wish to specify the value of an eigenvalue λi, the codimension
count for this unspecified eigenvalue is one less, i.e.,

−1 + s1(λi) + 3s2(λi) + 5s3(λi) + · · · .

This is sometimes done in algorithms for computing the Kronecker structure of a
matrix pencil, where usually only the eigenvalues 0 and ∞ are specified and the
remaining ones are unspecified.

It is possible to extract the Kronecker structure of A − λB from a generalized
Schur decomposition in O((max(m,n))3) operations. The most reliable SVD ap-
proach for computing a generalized Schur decomposition of A− λB requires at most
O((max(m,n))4) operations, which is still small compared to computing the SVD of
T (4.3) for already moderate values of m and n (e.g., when m = n).

Speaking loosely, we refer to a pencil as having a particular codimension; when
speaking strictly we mean that the orbit of the pencil has this codimension.

For given m and n the generic pencil has codimension 0 (i.e., spans the complete
2mn-dimensional space), while the most nongeneric matrix pair (A,B)=(0m×n,0m×n)
has codimension = 2mn (i.e., defines a “point” in 2mn-dimensional space). Accord-
ingly, any m×n nongeneric pencil different from the “zero pencil” has a codimension
≥ 1 and < 2mn.
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4.2. A lower bound on the distance to a less generic pencil. The SVD
characterization of the codimension of orbit(A − λB) in Corollary 4.2 leads to the
following theorem, from which we present an interesting special case as a corollary.

Theorem 4.3. For a given m × n pencil A − λB with codimension c, a lower
bound on the distance to the closest pencil (A + δA) − λ(B + δB) with codimension
c+ d, where d ≥ 1, is given by

‖(δA, δB)‖E ≥
1√

m+ n

(
2mn∑

i=2mn−c−d+1

σ2
i (T )

)1/2

,(4.9)

where σi(T ) denotes the ith largest singular value of T (σi(T ) ≥ σi+1(T ) ≥ 0).

Proof. It follows from Corollary 4.2 that T has rank = 2mn − c if and only if
A− λB has codimension c and (A+ δA)− λ(B + δB) has codimension c+ d (d ≥ 1)
if and only if T + δT , where δT is defined as

δT ≡
[
δAT ⊗ Im −In ⊗ δA
δBT ⊗ Im −In ⊗ δB

]
,(4.10)

has rank 2mn− c− d. From the construction, it follows that

‖δT‖E =
√
m+ n‖(δA, δB)‖E

(each element δaij and δbij appears m + n times in δT ). The Eckart–Young and
Mirsky theorem for finding the closest matrix of a given rank (e.g., see [17]) gives that
the size of the smallest perturbation in Frobenius norm that reduces the rank in T
from 2mn− c to 2mn− c− d is(

2mn−c∑
i=2mn−c−d+1

σ2
i (T )

)1/2

.(4.11)

Moreover, the fact that A− λB has codimension c implies that σ2mn−c+1(T ) = · · · =
σ2mn(T ) = 0. Since ‖δT‖E must be larger than or equal to quantity (4.11), the proof is
complete.

Corollary 4.4. For a given generic m×n pencil A−λB, a lower bound on the
distance to the closest nongeneric pencil (A+ δA)− λ(B + δB) is given by

‖(δA, δB)‖E ≥
σmin(T )√
m+ n

,(4.12)

where σmin(T ) = σ2mn(T ) denotes the smallest singular value of T , which is nonzero
for a generic A− λB.

We remark that the set of m × n matrix pencils does not include orbits of all
codimensions from 1 to 2mn.

One application of Corollary 4.4 is to characterize the distance to uncontrollability
for a multiple input/multiple output linear system Eẋ(t) = Fx(t) + Gu(t), where E
and F are p× p matrices, G is p× q (p ≥ q), and E is assumed to be nonsingular. If
A− λB ≡ [G|F − λE] is generic, the linear system is controllable (i.e., the dimension
of the controllable subspace equals p) and a lower bound on the distance to the closest
uncontrollable system is given by (4.12).
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5. Versal deformations for the KCF. In the coming sections, we derive versal
deformations which for us will mean the decomposition of arbitrary perturbations into
the tangent and normal spaces of the orbits of equivalent pencils. Since the set of
pencils is itself a vector space, the tangent and normal spaces to the orbits may be
thought of as linear affine subplanes embedded in the space of pencils.

Definition 5.1. A deformation V(p) = A − λB + ZA(p) − λZB(p) of a pencil
A − λB is a versal deformation if and only if ZA(p) − λZB(p) is a basis for the
orthogonal complement of orbit(A− λB) that intersects the orbit at A− λB.

Throughout this paper we will choose ZA(p)− λZB(p) to have minimum number
of parameters and to be an orthogonal basis for the normal space of orbit(A − λB)
at A − λB. When it is clear from the context, we will drop the parameters and use
the notation ZA − λZB for the parameterized basis for the normal space.

5.1. An introductory example. We start with a small example before consid-
ering the general case. Let A−λB = L1⊕L4 with codimension = 2. (This means that
the manifold orbit(A−λB) has codimension 2 or dimension 68 in the 70-dimensional
space of 5× 7 pencils.) Since A− λB is already in KCF we know its block structure:

A− λB =


−λ 1 0 0 0 0 0
0 0 −λ 1 0 0 0
0 0 0 −λ 1 0 0
0 0 0 0 −λ 1 0
0 0 0 0 0 −λ 1

 .
From (4.2) the matrices in the tangent space are given by TA − λTB = (XA −

AY )− λ(XB −BY ), where

TA =



−y21 x11 − y22 −y23 x12 − y24 x13 − y25 x14 − y26 x15 − y27
−y41 x21 − y42 −y43 x22 − y44 x23 − y45 x24 − y46 x25 − y47

−y51 x31 − y52 −y53 x32 − y54 x33 − y55 x34 − y56 x35 − y57

−y61 x41 − y62 − y63 x42 − y64 x43 − y65 x44 − y66 x45 − y67
−y71 x51 − y72 −y73 x52 − y74 x53 − y75 x54 − y76 x55 − y77


and

TB =



x11 − y11 −y12 x12 − y13 x13 − y14 x14 − y15 x15 − y16 −y17
x21 − y31 −y32 x22 − y33 x23 − y34 x24 − y35 x25 − y36 −y37
x31 − y41 −y42 x32 − y43 x33 − y44 x34 − y45 x35 − y46 −y47

x41 − y51 −y52 x42 − y53 x43 − y54 x44 − y55 x45 − y56 −y57

x51 − y61 −y62 x52 − y63 x53 − y64 x54 − y65 x55 − y66 −y67


.

By inspection we find the following two relations between elements in TA and TB :

: ta21 + ta32 = tb31 + tb42

and

: ta31 + ta42 = tb41 + tb52,
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where taij and tbij denote the (i, j)th elements of TA and TB , respectively. These two
relations clearly show that the tangent space has codimension at least 2. It may be
verified that the other parameters may be chosen arbitrarily so that the codimension
is exactly 2.

We want to find ZA − λZB that is orthogonal to TA − λTB with respect to the
Frobenius inner product, i.e.,

0 ≡ 〈TA − λTB , ZA − λZB〉 ≡ tr(TAZ
H
A + TBZ

H
B ) ≡

∑
i,j

taijz
a
ij + tbijz

b
ij .(5.1)

This inner product is most easily envisioned as the sum of the elementwise multipli-
cation of the two pencils. Using this point of view, it is obvious that the normal space
consists of pencils of the form ZA − λZB ∈ nor(A− λB):

ZA − λZB =


0 0 0 0 0 0 0
p1 0 0 0 0 0 0
p2 p1 0 0 0 0 0
0 p2 0 0 0 0 0
0 0 0 0 0 0 0

− λ


0 0 0 0 0 0 0
0 0 0 0 0 0 0
−p1 0 0 0 0 0 0
−p2 −p1 0 0 0 0 0

0 −p2 0 0 0 0 0



=


0 0 0 0 0 0 0
p1 0 0 0 0 0 0

p2 + λ p1 p1 0 0 0 0 0
λ p2 p2 + λ p1 0 0 0 0 0

0 λ p2 0 0 0 0 0

 ,(5.2)

where p1 and p2 are arbitrary. Roughly speaking, the parameter p1 corresponds to
the doubly boxed entries ( ) and the parameter p2 corresponds to the singly boxed

entries. ( ).

Now, V(p) = A − λB + ZA − λZB may be thought of as a versal deformation,
or normal form, with minimum number of parameters (equal to the codimension of
the original pencil). It follows that any (complex) pencil close to the given A−λB in
KCF can be reduced to the two-parameter normal form V(p) = A− λB + ZA − λZB
in terms of equivalence transformations that are deformations of the identity.

5.2. Notation: A glossary of Toeplitz and Hankel matrices. The example
in the previous section shows that a nonzero block of ZA−λZB has a structured form.
Indeed, the (2, 1) block has a Toeplitz-like form with j − i = 3 nonzero diagonals
starting from the (1, 1) element of the (2, 1) block. A closer look shows that the A-
part has i−j−1 = 2 nonzero diagonals and the B-part is just the same matrix negated
and with the diagonals shifted one row downward. In general, different nonzero blocks
with Toeplitz or Hankel properties will show up in ZA − λZB ∈ nor(A − λB). To
simplify the proof of the general case we introduce some Toeplitz and Hankel matrices.
Arrows and “stops” near the matrices make clear how the matrix is defined.

Let SLs×t be a lower trapezoidal s×t Toeplitz matrix with the first nonzero diagonal
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starting at position (1, 1):

SLs×t =

↓

⊥



p1 0 0
...

. . . 0
... p1

ps−t+1

...
...

. . .
...

ps · · · ps−t+1


if s ≥ t and SLs×t =

↓

⊥

p1 0 · · · 0
...

. . .
. . .

...
ps · · · p1 0 · · · 0

 otherwise,

and let TLs×t be a lower trapezoidal s× t Toeplitz matrix with the first nonzero diag-
onal’s last element at position (s, t):

TLs×t =



0 · · · 0
...

...

0
...

p1
. . .

...
...

. . . 0
pt · · · p1


if s ≥ t and TLs×t =

pt−s+1 · · · p1 0 0
...

. . .
. . . 0

pt · · · pt−s+1 · · · p1

 otherwise.

` ←

` ←

If s < t, the entries of the last t− s columns of SLs×t are zero. Similarly, if s ≥ t, the
entries of the first s− t rows of TLs×t are zero.

Let SBs×t be a banded lower trapezoidal s× t Toeplitz with last row 0:

SBs×t =

↓

⊥



p1 0 0
...

. . . 0
... p1

ps−t
...

0
. . .

...
...

. . . ps−t
0 · · · 0


if s > t and SBs×t = 0 otherwise,

and let TBs×t be another banded lower trapezoidal s× t Toeplitz matrix, this time with
last column 0:

` ←

TBs×t =

pt−s · · · p1 0 · · · 0

0
. . .

. . .
. . .

...
0 0 pt−s · · · p1 0

 if s < t and TBs×t = 0 otherwise.

Notice that the last row of SBs×t (if s > t) and the last column of TBs×t (if s < t) have
all entries equal to zero.
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Moreover, let HL
s×t be a lower trapezoidal s × t Hankel matrix with the first

nonzero diagonal starting at position (1, t):

HL
s×t =



0 0 p1

0 .·.
...

p1

...
... ps−t+1

... .·.
...

ps−t+1 · · · ps



↓

⊥

if s ≥ t and HL
s×t =

0 · · · 0 p1

... .·. .·.
...

0 · · · 0 p1 · · · ps

↓
⊥
otherwise,

and let HU
s×t be a similar upper trapezoidal s× t Hankel matrix:

` ←

` ←

HU
s×t =



pt · · · p1

... .·. 0

p1 .·.
...

0
...

...
...

0 · · · 0


if s ≥ t and HU

s×t =

 pt · · · pt−s+1 · · · p1

... .·. . ·. 0
pt−s+1 · · · p1 0 0

 otherwise.

If s < t, the entries of the first t− s columns of HL
s×t are zero. Similarly, if s ≥ t, the

entries of the last s− t rows of HU
s×t are zero.

Let Hs×t be a dense s × t Hankel matrix (with the first diagonal starting at
position (1, 1)):

Hs×t =



p1 p2 p3 · · · pt

p2 .·.
...

p3

...
...

...
ps · · · ps+t−1


for both the cases s ≥ t and s < t.

The nilpotent k × k matrix

Ck =

[
0 Ik−1

0 0

]
will be used as a shift operator. For a given k × n matrix X, the rows are shifted
one row upward and downward by the operations CkX and CTk X, respectively. The
columns are shifted one column rightward and one column leftward in an n×k matrix
X by the operations XCk and XCTk , respectively. The k × (k + 1) matrices

Gk = [Ik 0] and Ĝk = [0 Ik],

will be used to pick all rows but one or all columns but one of a given matrix X in
the following way. The first k and last k rows in a (k+ 1)×n matrix X are picked by
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GkX and ĜkX, respectively. The k first and k last columns in an n× (k+ 1) matrix
X are picked by XGTk and XĜTk, respectively.

Let Îk denote the k × k matrix obtained by reversing the order of the columns
in the k × k identity matrix. It follows that for an n × k matrix X, the order of the
columns is reversed by the multiplication XÎk.

So far, the matrices introduced are rectangular Toeplitz and Hankel matrices with
a special structure, e.g., lower trapezoidal (SL, TL, HL), banded lower trapezoidal
(SB , TB), upper trapezoidal (HU ), or dense (H). The matrices C and G, Ĝ that will
be used as “shift” and “pick” operators, respectively, are Toeplitz matrices with only
one nonzero diagonal. In the next section we will see that versal deformations for
all combinations of different blocks in the KCF, except Jordan blocks with nonzero
finite eigenvalues, can be expressed in terms of these matrices. To cope with nonzero
finite Jordan blocks Jk(γ), γ 6= 0 we need to introduce three more matrices. First, we
introduce two lower triangular Toeplitz matrices DL and EL, which are involved in
the case with two Jk(γ) blocks. Finally, we introduce the “monstrous” matrix FD,
which captures the cases with a (left or right) singular block and a Jk(γ) block.

Given γ 6= {0,∞}, define two infinite sequences of numbers di and ei by the
recursion [

di
γei

]
= −

[
1 1
1 2− 1/i

] [
γdi−1

ei−1

]
(5.3)

starting with [
d1

e1

]
=

[
γ
1

]
.

Given sizes s and t, for 1 ≤ q ≤ min{s, t}, we define Ds×t[q] and Es×t[q] as lower
triangular Toeplitz matrices with q diagonals in terms of d1, . . . , dq and e1, . . . , eq−1

and a boundary value e∗q = −γdq:

Ds×t[q] =



0 · · · 0
dq

dq−1
. . .

...
. . .

. . .
...

d2
. . .

. . .
d1 d2 · · · dq−1 dq 0


and Es×t[q] =



0 · · · 0
e∗q

eq−1
. . .

...
. . .

. . .
...

e2
. . .

. . .
e1 e2 · · · eq−1 e

∗
q 0


.

We take linear combinations with parameters pj to form the matrices

DL
s×t =

min{s,t}∑
i=1

pjDs×t[i]π(i) and ELs×t =

min{s,t}∑
i=1

pjEs×t[i]π(i),(5.4)

where j = min{s, t}−i+1 and π(i) = −
∏i−1
k=2 kγ/(1−2k) is defined to be 1/γ and −1

for i = 1 and i = 2, respectively. The parameter index j and the scaling function π(i)
are chosen to satisfy DL

s×t = SLs×t and ELs×t = −CTs SLs×t for γ = 0 in Theorem 5.3 (see
Tables 5.1 and 5.2). By simplifying (5.4) using i = j and π(i) = 1, this consistency
will be lost, but we will still have valid expressions for the versal deformations.
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The relations between the elements of DL
s×t and ELs×t are most readily shown by

an example:

DL
4,3 =



0 0 0

p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)

0 0

p1

(
−2γ|γ|2

3
− 2γ

3

)
+p2

(
|γ|2+1

)
p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)

0

p1
2γ2

3
−p2γ+p3 p1

(
−2γ|γ|2

3
− 2γ

3

)
+p2

(
|γ|2+1

)
p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)


and

EL4,3 =



0 0 0

p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

0 0

p1

(
−2|γ|2

3
−1
)

+p2

(
−γ|γ|2−γ

)
p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

0

p1
2γ
3
−p2−p3γ p1

(
−2|γ|2

3
−1
)

+p2

(
−γ|γ|2−γ

)
p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

 .

Let FDs×t (D for dense) be defined as

FDs×t =
s∑
i=1

ps−i+1 Fs×t[i],

where Fs×t[q] has the q last rows nonzero and defined as

fs−q+1,j = γj−1 for j = 1, . . . , t,
fi,j = γfi,j−1 + fi−1,j−1 for i = s− q + 2, . . . , s, j = 2, . . . , t,

(5.5)

and fi,1 for i = s− q + 2, . . . , s is defined as the solution to

〈Fs×t[q]GTt−1 − λFs×t[q]ĜTt−1, Fs×t[s− i+ 1]GTt−1 − λFs×t[s− i+ 1]ĜTt−1〉 ≡ 0.

Notice that fi,1 is used as an unknown in the generation of elements in (5.5). In
the definition of Fs×t[q], the solutions for fi,1 for i = s − q + 2, . . . , s ensure that

Fs×t[q]G
T
t−1 − λFs×t[q]Ĝ

T
t−1 is orthogonal to Fs×t[q̂]G

T
t−1 − λFs×t[q̂]Ĝ

T
t−1 for q̂ =

1, . . . , q − 1.
Also here we show a small example to facilitate the interpretation of the defini-

tion:

FD3×2 =


p1 p1γ

p2 − p1
(|γ|2+1)γ

|γ|4+2|γ|2+2
p2γ + p1

|γ|2+2

|γ|4+2|γ|2+2

p3 − p2
γ

|γ|2+1
+ p1

γ2

|γ|4+2|γ|2+2
p3γ + p2

1
|γ|2+1

− p1
γ

|γ|4+2|γ|2+2

 .
5.3. Versal deformations—the general case. Without loss of generality as-

sume that A− λB is already in KCF, M = diag(M1,M2, . . . ,Mb), where each Mk is
either a Jordan block associated with a finite or infinite eigenvalue or a singular block
corresponding to a left or right minimal index. A pencil TA − λTB = XM −MY
in the tangent space can be partitioned conformally with the pencil M so that
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TAij − λTBij = XijMj − MiYij , where Mk is mk × nk, Xij is mi × mj , and Yij is
ni × nj : X11 · · · X1b

...
. . .

...
Xb1 · · · Xbb


 M1

. . .

Mb

−
 M1

. . .

Mb


 Y11 · · · Y1b

...
. . .

...
Yb1 · · · Ybb

 .
Since the blocks TAij −λTBij , i, j = 1, . . . , b are mutually independent, we can study

the different blocks of TA−λTB separately. Let ZAij−λZBij be conformally sized blocks
of ZA − λZB . From (4.4) we know that ZA − λZB is in the normal space if and only
if AHZA + BHZB = 0 and ZAA

H + ZBB
H = 0. We obtain a simple result since A

and B are block diagonal.
Proposition 5.2. Assume that

M = A− λB = diag(A1, A2, . . . , Ab)− λdiag(B1, B2, . . . , Bb)

is in KCF, where each block Ai − λBi ≡ Mi represents one block in the Kronecker
structure. Then ZA − λZB ∈ nor(A− λB) if and only if

AHj Z
A
ji = −BHj ZBji and ZAjiA

H
i = −ZBjiBHi for i = 1, . . . , b and j = 1, . . . , b.

The mutual independency of the (i, j) blocks of ZA and ZB implies that we only
have to consider two Mk blocks at a time:

TA[i, j]− λTB [i, j] =

[
Xii Xij

Xji Xjj

] [
Mi 0
0 Mj

]
−
[
Mi 0
0 Mj

] [
Yii Yij
Yji Yjj

]
=

[
TAii TAij

TAji TAjj

]
− λ

[
TBii TBij

TBji TBjj

]

and

ZA[i, j]− λZB [i, j] =

[
ZAii ZAij

ZAji ZAjj

]
− λ

[
ZBii ZBij

ZBji ZBjj

]
.(5.6)

Notably, by interchanging the blocks Mi = Ai − λBi and Mj = Aj − λBj in the
KCF, we only have to interchange the corresponding blocks in ZA−λZB accordingly.
For example, if ZA[i, j]− λZB [i, j] in (5.6) belongs to nor(diag(Mi,Mj)), then[

ZAjj ZAji

ZAij ZAii

]
− λ

[
ZBjj ZBji

ZBij ZBii

]
∈ nor(diag(Mj ,Mi)).

This implies that given two blocks Mi and Mj , it is sufficient to consider the case
diag(Mi,Mj). In the following we will order the blocks in the KCF so that ZA−λZB
is block lower triangular.

Theorem 5.3. Let A− λB = diag(A1, A2, . . . , Ab)− λdiag(B1, B2, . . . , Bb) be in
KCF with the structure blocks Mi = Ai−λBi ordered as follows: Lk, Jk(0), Jk(γ) (for
γ 6= {0,∞}), Nk, and LTk , where the ordering within each block type is in increasing
order of size, except for the LTk blocks, which are ordered by decreasing order of size.

For all i and j, let the (i, j), (j, i) and (i, i), (j, j) blocks of ZA(p) − λZB(p) cor-
responding to diag(Mi,Mj) be built from Table 5.1 and Table 5.2, respectively.
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Table 5.1

Blocks in ZA − λZB ∈ nor(A − λB), where for Lα ⊕ Lβ , Jα(0) ⊕ Jβ(0), Jα(γ) ⊕ Jβ(γ), and

Nα ⊕Nβ it is assumed that α ≤ β. For LTα ⊕ LTβ , α ≥ β is assumed. Also γ1 6= γ2 is assumed.

KCF:Mi⊕Mj ZAij ZBij ZAji ZBji

Lα⊕Lβ 0 0 SB
β×(α+1)

−CTβ S
B
β×(α+1)

Lα⊕Jβ(0) 0 0 SL
β×(α+1)

−CTβ S
L
β×(α+1)

Lα⊕Jβ(γ) 0 0 FD
β×(α+2)

GTα+1 −FD
β×(α+2)

ĜTα+1

Lα⊕Nβ 0 0 CTβ H
L
β×(α+1)

−HL
β×(α+1)

Lα⊕LTβ 0 0 Gβ+1H(β+2)×(α+1) −Ĝβ+1H(β+2)×(α+1)

Jα(0)⊕Jβ(0) SLα×β −CTα SLα×β TLβ×α −CTβ T
L
β×α

Jα(0)⊕LTβ 0 0 HU
(β+1)×α −HU

(β+1)×αC
T
α

Jα(γ)⊕Jβ(γ) DLα×β ELα×β DLβ×α ELβ×α

Jα(γ)⊕LTβ 0 0 Gβ+1(ÎαFDα×(β+2)
)T −Ĝβ+1(ÎαFDα×(β+2)

)T

Nα⊕Nβ CTα S
L
α×β −SLα×β CTβ T

L
β×α −TLβ×α

Nα⊕LTβ 0 0 TL
(β+1)×αC

T
α −TL

(β+1)×α

LTα⊕LTβ 0 0 TB
(β+1)×α −TB

(β+1)×αCα

Jα(0)⊕Jβ(γ) 0 0 0 0

Jα(0)⊕Nβ 0 0 0 0

Jα(γ1)⊕Jβ(γ2) 0 0 0 0

Jα(γ)⊕Nβ 0 0 0 0

Table 5.2

The diagonal blocks in ZA − λZB ∈ nor(A− λB).

KCF:Mi ZAii ZBii

Lα 0 0

Jα(0) SLα×α −CTα SLα×α
Jα(γ) DLα×α ELα×α

Nα CTα S
L
α×α −SLα×α

LTα 0 0

Then ZA(p)− λZB(p) gives an orthogonal basis for nor(A− λB) with minimum
number of parameters; i.e., V(p) = A− λB + ZA(p)− λZB(p) is a miniversal defor-
mation of A− λB.

The superscripts B,L,U , and D of the matrices in Tables 5.1 and 5.2 are parts
of the matrix definitions in section 5.2. The superscript T is the matrix transpose.
All subscripts, e.g., α× β, refer to the sizes of the matrices.

Notice that the diagonal blocks (i, i) and (j, j) of ZA−λZB can also be obtained
from Table 5.1 by setting i = j. For clarity we also display the expressions for the
(i, i) and (j, j) blocks of ZA − λZB corresponding to all kinds of structure blocks Mi

in Table 5.2. Of course, the (j, j) blocks corresponding to Mj are read from Table 5.2
by substituting α with β.
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The proof of Theorem 5.3 consists of three parts.

1. The blocks of ZA−λZB displayed in Table 5.1 fulfill the conditions in Propo-
sition 5.2, which imply that ZA − λZB ∈ nor(A − λB) is orthogonal to an
arbitrary TA − λTB ∈ tan(A− λB).

2. The number of independent parameters in ZA−λZB is equal to the codimen-
sion of orbit(A−λB), which implies that the parameterized normal form has
minimum number of parameters.

3. Each block in Table 5.1 defines an orthogonal basis; i.e., the basis for each
parameter pi is orthogonal to the basis for each other parameter pj , i 6= j.

We start by proving part 3 and then prove parts 1 and 2 for the 16 different
cases diag(Mi,Mj) corresponding to different combinations of structure blocks in the
KCF. In Table 5.3 we display the codimension for these 16 cases and the number of
parameters in the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB . The codimensions
are computed from (4.8), which is the minimum number of parameters required to
span the corresponding normal space. For the ordering and the sizes of the blocks
in A − λB we have made the same assumptions in Table 5.3 as in Table 5.1. Notice
that the codimension counts for Lα ⊕ Lβ and LTα⊕LTβ are 0 if α = β. The number
of parameters required in each of the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB
follows from the proof given below.

Table 5.3

The number of parameters in the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB ∈ nor(Mi ⊕
Mj).

KCF:Mi⊕Mj cod(Mi⊕Mj) (i, i) (i, j) (j, i) (j, j)
Lα⊕Lβ β − α− 1 0 0 β − α− 1 0
Lα⊕Jβ(0) 2β 0 0 β β
Lα⊕Jβ(γ) 2β 0 0 β β
Lα⊕Nβ 2β 0 0 β β
Lα⊕LTβ α+ β + 2 0 0 α+ β + 2 0

Jα(0)⊕Jβ(0) β + 3α α α α β
Jα(0)⊕LTβ 2α α 0 α 0

Jα(γ)⊕Jβ(γ) β + 3α α α α β
Jα(γ)⊕LTβ 2α α 0 α 0

Nα⊕Nβ β + 3α α α α β
Nα⊕LTβ 2α α 0 α 0

LTα⊕LTβ α− β − 1 0 0 α− β − 1 0

Jα(0)⊕Jβ(γ) α+ β α 0 0 β
Jα(0)⊕Nβ α+ β α 0 0 β
Jα(γ1)⊕Jβ(γ2) α+ β α 0 0 β
Jα(γ)⊕Nβ α+ β α 0 0 β

To fully appreciate this rather technical proof it could be more fruitful to look
first at some examples of versal deformations in section 6.1.

Proof of part 3. We show that each matrix pencil block in Table 5.1 has all its
parameters in orthogonal directions. This is trivial for blocks built from the structured
Toeplitz and Hankel matrices SL, SB , H, HL, HU , TL, or TB (possibly involving
some kind of shift). Remember that the Frobenius inner product can be expressed in
terms of the sum of all results from elementwise multiplications as shown in (5.1). For
each of these matrices, the elementwise multiplication of the basis for one parameter
pi and the basis for another parameter pj , j 6= i only results in multiplications where
at least one of the two elements is zero. Obviously, these bases are orthogonal. For
the matrix pencil blocks built from the FD matrix, the orthogonality follows from
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construction since some of the elements are explicitly chosen so that the Frobenius
inner product is zero.

For the proof for the blocks of type DL−λEL we define sq in terms of the di and
ei in (5.3) to be

sq =

q∑
i=1

i|di|2 +

q−1∑
i=1

i|ei|2 − qγdqeq.

Independent of s and t, the number sq is the inner product of the qth basis vector
with the rth, where q < r.

We show by induction that sq = 0 for q = 1, 2, . . . . Clearly s1 = |γ|2 − γγ = 0.
We now show that sq+1 − sq = 0, from which the result follows:

qγdqeq + (q + 1)|dq+1|2 + q|eq|2 − (q + 1)γdq+1eq+1

= qeq(γdq + eq) + (q + 1)dq+1(dq+1 − γ eq+1)

= dq+1((q + 1)(dq+1 − γ eq+1)− qeq)

= dq+1

(
(q + 1)

(
−γdq − eq + γdq + 2eq −

eq
q + 1

)
− qeq

)
= dq+1((q + 1)eq − eq − qeq) = 0.

Since ZA − λZB is built from b2 mutually independent blocks in Table 5.1, each
associated with ci parameters, it follows that ZA − λZB is an orthogonal basis for a
(c1 + c2 + · · ·+ cb2)-dimensional space, with one parameter for each dimension.

Proof of parts 1 and 2. Now, it remains to show that ZA − λZB is orthogonal to
tan(A − λB) and that the number of parameters in ZA − λZB is equal to cod(A −
λB). Since the number of parameters in orthogonal directions cannot exceed the
codimension, it is sufficient to show that we have found them all. The orthogonality
between ZA − λZB and tan(A − λB) is shown by proving that each pair of blocks
fulfills the conditions AHj Z

A
ji = −BHj ZBji and ZAjiA

H
i = −ZBjiBHi in Proposition 5.2.

In the following we refer to these as the first and second conditions, respectively.
We carry out the proofs for all 16 cases Mi⊕Mj in Table 5.1, starting with blocks

where Mi and Mj are of the same kind.
Jα(0)⊕ Jβ(0): We note that Jk(0) = Ck − λIk. First condition for the (j, i)

block:

AHj Z
A
ji = CTβ T

L
β×α = IβC

T
β T

L
β×α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = TLβ×αC

T
α = TLβ×αC

T
α Iα = CTβ T

L
β×αIα = −ZBjiBHi ,

where we used that TLβ×αC
T
α = CTβ T

L
β×α for β ≥ α. Similarly for the (i, j) block,

AHi Z
A
ij = CTαS

L
α×β = IαC

T
αS

L
α×β = −BHi ZBij

and

ZAijA
H
j = SLα×βC

T
β = SLα×βC

T
β Iβ = CTαS

L
α×βIβ = −ZBijBHj .

Here we used that SLα×βC
T
β = CTαS

L
α×β for β ≥ α.
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Since the (i, i), (i, j), and (j, i) blocks of ZA − λZB have α parameters each and
the (j, j) block has β parameters, the total number of parameters in ZA − λZB is
equal to cod(Jα(0)⊕ Jβ(0)) = β + 3α.

Nα ⊕Nβ : Since there is a symmetry between Jk(0) = Ck−λIk and Nk = Ik−λCk
and there is a corresponding symmetry between blocks in ZA−λZB for Jk(0) and Nk
blocks, the proof for Nα ⊕Nβ is similar to the case Jα(0)⊕ Jβ(0).

Jα(γ)⊕ Jβ(γ): Here the (j, i) block and the (i, j) block are defined similarly (see
Table 5.1), and therefore it is sufficient to prove one of them with no constraints on
α and β. We note that Jk(γ) = γIk + Ck − λIk. We show that the first and second
conditions hold for ZAji = Dβ×α[q] and ZBji = Eβ×α[q] for q = 1, . . . ,min{α, β}. First
condition:

AHj Z
A
ji = (γIβ + Cβ)HDβ×α[q] = γDβ×α[q] + CTβ Dβ×α[q].

Remember that Dβ×α[q] has all elements zero, except for the q lower left diagonals,
where all elements in each diagonal are identical and defined by the element in the first
column. For q = 1 the proof is trivial. For q > 1, AHj Z

A
ji gives the following matrix.

All diagonals starting at position (u, 1) for 1 ≤ u ≤ β − q are zero. The elements in
the diagonal starting at position (β − q + 1, 1) are γdq, which by definition is equal
to −e∗q , which in turn defines the corresponding diagonal in −Eβ×α[q]. The elements
in the diagonals starting at positions (β − u + 1, 1), where 1 ≤ u < q, are equal to
γdu + du+1. Since du+1 is defined as −γdu − eu, the elements in these diagonals are
equal to −eu, which defines the elements in the corresponding diagonals in −Eβ×α[q].
Since −Eβ×α[q] = −BHj ZBji , we have proved the first condition.

Second condition: Since Dβ×α[q] only has q ≤ min{s, t} nonzero diagonals in the
lower left corner of the matrix, a shift of rows downward gives the same result as a
shift of columns leftward, i.e., CTβ Dβ×α[q] = Dβ×α[q]CTα . Using information from the
first part, we obtain

ZAjiA
H
i = Dβ×α[q](γIα + Cα)H = γDβ×α[q] +Dβ×α[q]CTα = γDβ×α[q] + CTβ Dβ×α[q]

= AHj Z
A
ji = −Eβ×α[q] = −ZBjiBHi

since Bi is the identity matrix.
Also here, the number of parameters in ZAjj−λZBjj is β, and there are α parameters

in each of the other three blocks, giving β + 3α in total.
Even though the (i, i), (j, i), (i, j), and (j, j) blocks look rather complicated, they

reduce for γ = 0 to the corresponding blocks for Jα(0)⊕ Jβ(0) in Table 5.1.

Lα ⊕ Lβ : Here we use Lk = Ĝk − λGk. First condition for the (j, i) block:

AHj Z
A
ji = ĜTβS

B
β×(α+1) =

[
0

SBβ×(α+1)

]
=

[
CTβ S

B
β×(α+1)

0

]
= GTβC

T
β S

B
β×(α+1) =−BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i =SBβ×(α+1)Ĝ

T
β =

[
0

SBβ×(α+1)

]
=

[
CTβ S

B
β×(α+1)

0

]
=CTβ S

B
β×(α+1)G

T
β =−ZBjiBHi .

Since the contribution from Lα⊕Lβ to the codimension is β−α−1 and the (j, i) block
has β − α− 1 independent parameters, we deduce that all other blocks in ZA − λZB
are zero.
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LT
α ⊕ LT

β : Since this case is just the transpose of Lα⊕Lβ , the proof is almost the
same, and therefore we omit the technical details here.

So far we have proved all cases where both blocks are of the same type. Since
the diagonal blocks in ZA − λZB always correspond to such cases (see Table 5.3 for
the number of parameters in these blocks), from now on we only have to consider the
(i, j) and (j, i) blocks, where i 6= j for the remaining cases.

Lα ⊕ Jβ(0): First condition for the (j, i) block:

AHj Z
A
ji = CTβ S

L
β×(α+1) = IβC

T
β S

L
β×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = SLβ×(α+1)Ĝ

T
α = CTβ S

L
β×(α+1)G

T
α = −ZBjiBHi .

The (i, i) and (j, j) blocks contribute with zero and β parameters, respectively.
Since the (j, i) block gives another β parameters, we have found all 2β parameters,
and therefore it follows that ZAij = λZBij = 0.

Lα ⊕ Jβ(γ): First condition for the (j, i) block:

AHj Z
A
ji = (γIβ + Cβ)HFDβ×(β+2)G

T
α+1 = γFDβ×(β+2)G

T
α+1 + CTβ F

D
β×(β+2)G

T
α+1.

By inspection we see that the (u, v) element of this matrix is γfdu,v + fdu−1,v if u > 1

and γfdu,v if u = 1 (where fdu,v denotes the (u, v) element of FD). The right-hand side
of the same condition is

−BHj ZBji = IβF
D
β×(β+2)Ĝ

T
α+1,

which simply is the β leftmost columns of FDβ×(β+2). The (u, v) element of this matrix

is then fdu,v+1, which is defined as γfdu,v + fdu−1,v if u > 1 and γfdu,v if u = 1.
Second condition for the (j, i) block:

ZAjiA
H
i Ĝ

T
α = FDβ×(α+2)G

T
α+1Ĝ

T
α = FDβ×(α+2)

 0
Iα
0

 = FDβ×(α+2)Ĝα+1G
T
α = −ZBjiBHi .

As in the previous case, the (i, i) and (j, j) blocks contribute with zero and β
parameters, respectively. Since the (j, i) block gives the remaining β parameters, the
(i, j) block is the zero pencil.

Notably, for γ = 0, the “monstrous” (j, i) block reduces to the (j, i) block for
Lα ⊕ Jβ(0) in Table 5.1.

Lα ⊕Nβ : First condition for the (j, i) block:

AHj Z
A
ji = IβC

T
βH

L
β×(α+1) = CTβH

L
β×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i Ĝ

T
α = CTβH

L
β×(α+1) =

[
0

HL
(β−1)×α

]
= HL

β×(α+1)G
T
α = −ZBjiBHi .

Also here, the (i, i) and (j, j) blocks contribute with zero and β parameters,
respectively. Since the (j, i) block gives the remaining β parameters, the (i, j) block
is the zero pencil.
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Lα ⊕ LT
β : For this case the (i, i) and (j, j) blocks are zero pencils. First condition

for the (j, i) block:

AHj Z
A
ji = ĜβGβ+1H(β+2)×(α+1) = [0 Iβ 0]H(β+2)×(α+1)

= GβĜβ+1H(β+2)×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = Gβ+1H(β+2)×(α+1)Ĝ

T
α ,

which is a matrix consisting of the β+1 first rows and α last columns of H(β+2)×(α+1).
This matrix is identical to the one given by the β + 1 last rows and α first columns
of H(β+2)×(α+1), i.e.,

Ĝβ+1H(β+2)×(α+1)G
T
α = −ZBjiBHi .

Since this block has all α+β+ 2 parameters, it follows that the (i, j) block is the
zero pencil.

Jα(0)⊕ LT
β : First condition for the (j, i) block:

AHj Z
A
ji = ĜβH

U
(β+1)×α,

which simply is the last β rows in HU
(β+1)×α. Another way to construct this matrix

is to shift the columns in HU
(β+1)×α one column leftward and pick the β first columns

of the matrix, which can be written as

GβH
U
(β+1)×αC

T
α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = HU

(β+1)×αC
T
α = HU

(β+1)×αC
T
α Iα = −ZBjiBHi .

The (i, i) and (j, j) blocks contribute with α and zero parameters, respectively.
Since the (j, i) block gives another α parameters, we conclude that the (i, j) block is
the zero pencil.

Jα(γ)⊕ LT
β : Since the proof for this case is similar to the one for the case Lα ⊕

Jβ(γ), we omit the technical details here. It follows that for γ = 0, the (j, i) block
reduces to the (j, i) block for Jα(0)⊕ LTβ in Table 5.1.

Nα ⊕ LT
β : First condition for the (j, i) block:

AHj Z
A
ji = ĜβT

L
(β+1)×αC

T
α ,

which is the last β rows in TL(β+1)×α shifted one column leftward. This matrix is

identical to the one given by the β first rows in TL(β+1)×α, which is

GβT
L
(β+1)×α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = TL(β+1)×αC

T
α Iα = TL(β+1)×αC

T
α = −ZBjiBHi .
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The (i, i) and (j, j) blocks in ZA − λZB contribute with α and zero parameters,
respectively. Since the (j, i) block gives another α parameters, we conclude that the
(i, j) block is the zero pencil.

Jα(0)⊕ Jβ(γ), Jα(0)⊕Nβ , Jα(γ1)⊕ Jβ(γ2), and Jα(γ)⊕Nβ : In these four cases
the (i, i) and (j, j) blocks contribute with α and β parameters, respectively, and there-
fore the (j, i) and (i, j) blocks are zero pencils.

Since we have considered all possible cases of Mi and Mj blocks, the proof is
complete.

6. Applications and examples.

6.1. Some examples of versal deformations of matrix pencils in KCF.
In the following we show three examples of versal deformations of matrix pencils. For
the 7× 8 pencil A− λB = L2 ⊕ J2(0)⊕ J3(0) with codimension 14, the 14-parameter
versal deformation V(p) = A− λB + ZA − λZB , where ZA − λZB ∈ nor(A− λB), is
given by

ZA =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
p1 0 0 p6 0 p10 0 0
p2 p1 0 p7 p6 p11 p10 0
p3 0 0 0 0 p12 0 0
p4 p3 0 p8 0 p13 p12 0
p5 p4 p3 p9 p8 p14 p13 p12


and

ZB =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−p1 0 0 −p6 0 −p10 0 0

0 0 0 0 0 0 0 0
−p3 0 0 0 0 −p12 0 0
−p4 −p3 0 −p8 0 −p13 −p12 0


.

For the 3×4 pencil A−λB = L1⊕J2(γ) with codimension 4, the four-parameter
versal deformation V(p) = A− λB + ZA − λZB , where ZA − λZB ∈ nor(A− λB), is
given by

ZA =

 0 0 0 0

p1 p1γ p3(|γ|2 + 1) 0

p2 − p1
2γ
|γ|2+1

p2γ − p1
|γ|2−1

|γ|2+1
−p3γ + p4 p3(|γ|2 + 1)


and

ZB =

 0 0 0 0

−p1γ −p1γ
2 −p3(|γ|2γ + γ) 0

−p2γ + p1
|γ|2−1

|γ|2+1
−p2γ

2 − p1
2γ
|γ|2+1

−p3 − p4γ −p3(|γ|2γ + γ)

 .
For the 11× 11 pencil A− λB = L1 ⊕ J3(0)⊕N4 ⊕LT2 with codimension 26, the

26-parameter versal deformation V(p) = A − λB + ZA − λZB , where ZA − λZB ∈
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nor(A− λB), is given by

ZA =



0 0 0 0 0 0 0 0 0 0 0
p1 0 p13 0 0 0 0 0 0 0 0
p2 p1 p14 p13 0 0 0 0 0 0 0
p3 p2 p15 p14 p13 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 p4 0 0 0 p19 0 0 0 0 0
p4 p5 0 0 0 p20 p19 0 0 0 0
p5 p6 0 0 0 p21 p20 p19 0 0 0
p8 p9 p18 p17 p16 p23 0 0 0 0 0
p9 p10 p17 p16 0 p24 p23 0 0 0 0
p10 p11 p16 0 0 p25 p24 p23 0 0 0


and

ZB =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−p1 0 −p13 0 0 0 0 0 0 0 0
−p2 −p1 −p14 −p13 0 0 0 0 0 0 0

0 −p4 0 0 0 −p19 0 0 0 0 0
−p4 −p5 0 0 0 −p20 −p19 0 0 0 0
−p5 −p6 0 0 0 −p21 −p20 −p19 0 0 0
−p6 −p7 0 0 0 −p22 −p21 −p20 −p19 0 0
−p9 −p10 −p17 −p16 0 −p24 −p23 0 0 0 0
−p10 −p11 −p16 0 0 −p25 −p24 −p23 0 0 0
−p11 −p12 0 0 0 −p26 −p25 −p24 −p23 0 0


.

6.2. Versal deformations of the set of 2 × 3 matrix pencils. In [15], the
algebraic and geometric characteristics of the set of 2×3 matrix pencils were examined
in full detail, including the complete closure hierarchy. There, all nonzero and finite
eigenvalues were considered as unspecified. R2 was used to denote a 2× 2 block with
nonzero finite eigenvalues, i.e., any of the three structures J1(α)⊕J1(β), J1(α)⊕J1(α),
and J2(α), where α, β 6= {0,∞}. However, in the context of versal deformations all
these forms are considered separately and with the eigenvalues specified (known).
Consequently, we now have 20 different Kronecker structures to investigate. For
example, the versal deformation of A − λB = L0 ⊕ J2(γ), γ 6= {0,∞}, is found by
computing ZA − λZB =

(6.1)[
p1 + λ γ p1 p3(|γ|2 + 1) + p3(|γ|2γ + γ) 0

p2 − p1γ

|γ|2+1
+ λ(p2γ + p1

|γ|2+1
) −p3γ + p4 + λ(p3 + p4γ) p3(|γ|2 + 1) + p3(|γ|2γ + γ)

]
.

In Table 6.1 we show the versal deformations for all different Kronecker structures
for this set of matrix pencils. The different structures are displayed in increasing
codimension order.

6.2.1. Using GUPTRI in a random walk in tangent and normal direc-
tions of nongeneric pencils. To illustrate how perturbations in the tangent space
and the normal space affect the Kronecker structure computed by a staircase algo-
rithm, we have performed a set of tests on nongeneric 2× 3 matrix pencils. Since the



VERSAL DEFORMATIONS OF MATRIX PENCILS 687

Table 6.1

Versal deformations V(p) = A− λB + ZA − λZB of the set of 2× 3 matrix pencils.

KCF A− λB ZA − λZB

L2

[
−λ 1 0
0 −λ 1

] [
0 0 0
0 0 0

]
L1 ⊕ J1(γ)

[
−λ 1 0
0 0 γ − λ

] [
0 0 0

p1 + λ γ p1 γ p1 + λ γ2p1 p2 + λ γ p2

]
L1 ⊕ J1(0)

[
−λ 1 0
0 0 −λ

] [
0 0 0
p1 0 p2

]
L1 ⊕N1

[
−λ 1 0
0 0 1

] [
0 0 0
0 λ p1 λ p2

]
L0 ⊕ J1(γ1)⊕ J1(γ2)

[
0 γ1 − λ 0
0 0 γ2 − λ

] [
p1 + λ γ1 p1 p3 + λ γ1 p3 0
p2 + λ γ2 p2 0 p4 + λ γ2 p4

]
L0 ⊕ J2(γ)

[
0 γ − λ 1
0 0 γ − λ

]
See (6.1)

L0 ⊕ 2J1(γ)

[
0 γ − λ 0
0 0 γ − λ

] [
p1 + λ γ p1 p3 + λ γ p3 p5 + λ γ p5

p2 + λ γ p2 p4 + λ γ p4 p6 + λ γ p6

]
L0 ⊕ J1(0)⊕ J1(γ)

[
0 −λ 0
0 0 γ − λ

] [
p1 p3 0

p2 + λ γ p2 0 p4 + λ γ p4

]
L0 ⊕ J1(γ)⊕N1

[
0 γ − λ 0
0 0 1

] [
p1 + λ γ p1 p3 + λ γ p3 0

λ p2 0 λ p4

]
L0 ⊕ J2(0)

[
0 −λ 1
0 0 −λ

] [
p1 p3 0

p2 + λ p1 p4 + λ p3 p3

]
L0 ⊕N2

[
0 1 −λ
0 0 1

] [
λ p1 λ p3 0

p1 + λ p2 p3 + λ p4 λ p3

]
L0 ⊕ J1(0)⊕N1

[
0 −λ 0
0 0 1

] [
p1 p3 0
λ p2 0 λ p4

]
L0 ⊕ L1 ⊕ LT0

[
0 −λ 1
0 0 0

] [
0 0 0

p1 + λ p2 p3 + λ p4 p4 + λ p5

]
L0 ⊕ 2J1(0)

[
0 −λ 0
0 0 −λ

] [
p1 p3 p5

p2 p4 p6

]
L0 ⊕ 2N1

[
0 1 0
0 0 1

] [
λ p1 λ p3 λ p5

λ p2 λ p4 λ p6

]
2L0 ⊕ LT1

[
0 0 −λ
0 0 1

] [
p1 + λ p2 p4 + λ p5 0
p2 + λ p3 p5 + λ p6 0

]
2L0 ⊕ J1(γ)⊕ LT0

[
0 0 γ − λ
0 0 0

] [
p1 + λ γ p1 p4 + λ γ p4 p7 + λ γ p7

p2 + λ p3 p5 + λ p6 p8 + λ γ p8

]
2L0 ⊕ J1(0)⊕ LT0

[
0 0 −λ
0 0 0

] [
p1 p4 p7

p2 + λ p3 p5 + λ p6 p8

]
2L0 ⊕N1 ⊕ LT0

[
0 0 1
0 0 0

] [
λ p1 λ p4 λ p7

p2 + λ p3 p5 + λ p6 λ p8

]
3L0 ⊕ 2LT0

[
0 0 0
0 0 0

] [
p1 + λ p2 p5 + λ p6 p9 + λ p10

p3 + λ p4 p7 + λ p8 p11 + λ p12

]

staircase algorithm considers all nonzero finite eigenvalues as unspecified, we have not
included these cases in the test.

For the remaining 12 nongeneric cases a random perturbation EA − λEB , with
entries eaij , e

b
ij , has been decomposed into two parts TA − λTB ∈ tan(A − λB) and
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ZA − λZB ∈ nor(A− λB) such that

EA = TA + ZA and EB = TB + ZB .

We illustrate the decomposition of EA−λEB with A−λB = L0⊕J2(0). From Table
6.1 we get

ZA =

[
p1 p3 0
p2 p4 p3

]
, ZB =

[
0 0 0
−p1 −p3 0

]
.

Let TA − λTB = (EA − λEB)− (ZA − λZB). Now, the parameters pi are determined
by computing the component of EA − λEB in each of the four orthogonal (but not
orthonormal) directions that span the normal space:

Z1 =
1

2

([
1 0 0
0 0 0

]
− λ

[
0 0 0
−1 0 0

])
,

Z2 = 1

([
0 0 0
1 0 0

]
− λ

[
0 0 0
0 0 0

])
,

Z3 =
1

3

([
0 1 0
0 0 1

]
− λ

[
0 0 0
0 −1 0

])
,

Z4 = 1

([
0 0 0
0 1 0

]
− λ

[
0 0 0
0 0 0

])
.

We conclude that

p1 =
ea11 − eb21

2
, p2 = ea21, p3 =

ea12 + ea23 − eb22
3

, p4 = ea22.

It is easily verified that 〈TA − λTB , ZA − λZB〉 = 0.
GUPTRI [11, 12] has been used to compute the Kronecker structure of the perturbed

pencils A− λB + ε(EA − λEB), A− λB + ε(ZA − λZB), and A− λB + ε(TA − λTB)
for ε = 10−16, 10−15, . . . , 100. We investigate how far we can move in the tangent and
normal directions before GUPTRI reports the generic Kronecker structure.

The procedure has been repeated for all cases and for 100 random perturbations
(EA, EB), where ‖(EA, EB)‖F = 1 and ‖EA‖F = ‖EB‖F . The entries of (EA, EB) are
uniformly distributed in (−0.5, 0.5). For each case and for each perturbation EA−λEB
we record the size of ε when GUPTRI reports the generic Kronecker structure. In Table
6.2 we display the smallest, median, and maximum values of ε for the 100 random
perturbations.

Entries marked + in Table 6.2 mean that the generic structure was not found for
any size of the perturbations. All these results were for perturbations in tan(A−λB),
and they indicate that for these Kronecker structures there is little or no curvature in
the orbit at this point (pencil) in this direction. Here the tangent directions are very
close to orbit(A− λB).

Notably, the results for the perturbations ε(EA − λEB) are, except for one case,
similar to the results for ε(ZA−λZB). This is natural since the perturbation EA−λEB
implies a translation both in the tangent space and the normal space directions. The
structure changes appear more rapidly in the normal space, i.e., for smaller ε. Our
computational results extend the cone example in section 1.3 to 2× 3 matrix pencils.

Why is the smallest perturbation 10−16(ZA − λZB) sufficient to find the generic
structure for the three cases L0⊕ 2J1(0), L0⊕ 2N1, and 3L0⊕ 2LT0 ? The explanation
is connected to the procedure for determining the numerical rank of matrices.
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Table 6.2

How far we can move in tangent and normal directions before nongeneric 2× 3 matrix pencils
turn generic.

ε(ZA − λZB) ε(TA − λTB)
A− λB cod(A− λB) εmin εmedian εmax εmin εmedian εmax

L1 ⊕ J1(0) 2 10−4 10−4 10−3 10−2 10−1 10−1

L1 ⊕N1 2 10−4 10−4 10−3 10−2 10−1 100

L0 ⊕ J2(0) 4 10−4 10−4 10−3 10−2 10−1 100

L0 ⊕N2 4 10−5 10−4 10−3 10−2 10−1 10−1

L0 ⊕ J1(0)⊕N1 4 10−4 10−4 10−2 10−2 10−1 100

L0 ⊕ L1 ⊕ LT0 5 10−4 10−4 10−2 10−2 10−1 100

L0 ⊕ 2J1(0) 6 10−16 10−16 10−16 + + +
L0 ⊕ 2N1 6 10−16 10−16 10−16 + + +
2L0 ⊕ LT1 6 10−4 10−4 10−2 + + +
2L0 ⊕ J1(0)⊕ LT0 8 10−5 10−4 10−1 + + +
2L0 ⊕N1 ⊕ LT0 8 10−4 10−4 10−3 + + +
3L0 ⊕ 2LT0 12 10−16 10−16 10−16 + + +

GUPTRI has two input parameters, EPSU and GAP, which are used to make rank
decisions to determine the Kronecker structure of an input pencil A − λB. Inside
GUPTRI the absolute tolerances EPSUA = ‖A‖E · EPSU and EPSUB = ‖B‖E · EPSU are
used in all rank decisions, where the matrices A and B, respectively, are involved.
Suppose the singular values of A are computed in increasing order, i.e., 0 ≤ σ1 ≤
σ2 ≤ · · · ≤ σk ≤ σk+1 ≤ · · ·; then all singular values σk < EPSUA are interpreted
as zeros. The rank decision is made more robust in practice: if σk < EPSUA but
σk+1 ≥ EPSUA, GUPTRI insists on a gap between the two singular values such that
σk+1/σk ≥ GAP. If σk+1/σk < GAP, σk+1 is also treated as zero. This process is
repeated until an appreciable gap between the zero and nonzero singular values is
obtained. In all of our tests we have used EPSU = 10−8 and GAP = 1000.0.

For the most nongeneric case 3L0⊕2LT0 , both the A-part and the B-part are zero
matrices giving EPSUA = EPSUB = 0, which in turn leads to the decision that a full
rank perturbation EA − λEB times a very small ε is interpreted as a generic pencil.
For the other two cases, either the A-part or the B-part is full rank and the other
part is a zero matrix, which accordingly is interpreted to have full rank already for
the smallest perturbation.

6.2.2. Versal deformations and minimal perturbations for changing a
nongeneric structure. In the following we illustrate how versal deformations are
useful in the understanding of the relations between the different structures by looking
at requirements on perturbations to (A,B) for changing the Kronecker structure.
Assume that we have the following matrix pencil with the Kronecker structure L1 ⊕
J1(0):

A− λB =

[
−ε1λ ε2 0

0 0 −ε3λ

]
and ZA − λZB =

[
0 0 0
p1 0 p2

]
.(6.2)

It was shown in [15] that L1⊕J1(0) with codimension 2 is in the closure of orbit(L1⊕
J1(γ)) (γ 6= {0,∞} but otherwise unspecified) with codimension 1, which in turn is in
the closure of orbit(L2) (the generic KCF) with codimension 0. Notice that in Table
6.1, since γ is assumed specified, L1 ⊕ J1(γ) has two parameters (and codimension
= 2). In the discussion that follows we assume that γ is finite and nonzero but
unspecified.
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We will now, for this example, illustrate how perturbations in the normal space
directions can be used to find more generic Kronecker structures (going upward in the
Kronecker structure hierarchy) and how we can perturb the elements in A − λB to
find less generic matrix pencils. Since the space spanned by ZA − λZB is the normal
space, we must always first hit a more generic pencil when we move infinitesimally in
normal space directions.

The KCF remains unchanged as long as p1 = p2 = 0, but for p1 = 0 and p2 6= 0,
the KCF is changed into L1 ⊕ J1(γ) (with γ = p2). That is, by adding a component
in a normal space direction, we find a more generic pencil in the closure hierarchy.
Notably, the size of the required perturbation is equal to the smallest size of an
eigenvalue to be interpreted as nonzero. By choosing p1 nonzero (and p2 arbitrary),
the resulting pencil will be generic with the KCF L2.

To find a less generic structure, we may proceed in one of the following ways.
1. Find a less generic structure in the closure of orbit(L1 ⊕ J1(0)).
2. Go upward in the closure hierarchy to a more generic structure and then look

in that orbit’s closure for a less generic structure.
We know from the investigation in [15] that all structures with higher codimension

than A − λB = L1 ⊕ J1(0) include an L0 block in their Kronecker structures, which
in turn implies that A and B must have a common column nullspace of at least
dimension 1. Therefore, the smallest perturbation that turns L1 ⊕ J1(0) less generic
is the smallest perturbation that reduces the rank of

[
A
B

]
=


0 ε2 0
0 0 0
ε1 0 0
0 0 ε3

 .
The size of the smallest rank-reducing perturbation is equal to the smallest of the
singular values ε1, ε2, and ε3. By just deleting one εi, the corresponding perturbed
pencil is a less generic pencil within the closure of orbit(L1 ⊕ J1(0)). These three
cases correspond to approach 1 above. We summarize these perturbations and the
perturbations in the normal space in Table 6.3. Notice that approach 2 will always
require a perturbation larger than min{εi}.

Which of the nongeneric structures displayed in Table 6.3 is obtained by the
smallest perturbation to L1 ⊕ J1(0)? Mathematically, it is easy to see that the per-
turbations in the normal space always can be made smaller than a rank-reducing
perturbation εi, since p1 and p2 are parameters that can be chosen arbitrarily small,
e.g., smaller than min{εi}.

However, in finite-precision arithmetic, it is not clear that the smallest pertur-
bation required to find another structure is in the normal direction. This can be
illustrated by using GUPTRI to compute the Kronecker structures for A − λB as in
(6.2) and perturbed as in Table 6.3. For EPSU = 10−8, ε2 = 1, and ε1 = ε3 = 10−10,
GUPTRI uses different tolerances EPSUA = 10−8 and EPSUB = 10−18 for making rank
decisions in A and B, respectively. It follows that for p1 and p2 of order 10−6, GUPTRI
still computes the Kronecker structure L1 ⊕ J1(0). However, if p1 = p2 = 0 and
the B-part of the pencil is perturbed by ε1 or ε3, GUPTRI computes the less generic
structures, just as shown in Table 6.3.

7. Conclusions. In this paper, we have obtained not only versal deformations
for deformations of KCFs, but more importantly for our purposes, metrical informa-
tion for the perturbation theory of matrix pencils relevant to the KCF. We demon-



VERSAL DEFORMATIONS OF MATRIX PENCILS 691

Table 6.3

Perturbing A− λB (defined in (6.2)) yields the pencil Ã− λB̃ with more or less generic struc-
tures. The codimension of the original orbit is 2.

‖(∆A,∆B)‖F Ã− λB̃ KCF cod(Ã− λB̃)

p1

[
−ε1λ ε2 0
p1 0 −ε3λ

]
L2 0

p2

[
−ε1λ ε2 0

0 0 p2 − ε3λ

]
L1 ⊕ J1(p2) 1 (2)

ε1

[
0 ε2 0
0 0 −ε3λ

]
L0 ⊕ J1(0)⊕N1 4

ε3

[
−ε1λ ε2 0

0 0 0

]
L0 ⊕ L1 ⊕ LT0 5

ε2

[
−ε1λ 0 0

0 0 −ε3λ

]
L0 ⊕ 2J1(0) 6

strated with numerical experiments in section 6 how this theory may be used in
practice to see how computations are influenced by the geometry. In Part II of this
paper, we will explore the stratification theory of matrix pencils with the goal of
making algorithmic use of the lattice of orbits under the closure relationship [14].
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Abstract. We present a characterization of the solution set S, the symmetric solution set Ssym,
the persymmetric solution set Sper, and the skew-symmetric solution set Sskew of real linear systems
Ax = b with the n × n coefficient matrix A varying between a lower bound A and an upper bound

A, and with b similarly varying between b, b. We show that in each orthant the sets Ssym, Sper,
and Sskew are, respectively, the intersection of S with sets, the boundaries of which are quadrics.
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1. Introduction. Let [A] be an n× n matrix with compact intervals as entries,
let [b] be a vector with n interval components, and let E be the n×n permutation ma-
trix with ones in the northeast–southwest diagonal and zeros elsewhere. The purpose
of this paper is to characterize the solution sets

S := {x ∈ Rn| Ax = b, A ∈ [A], b ∈ [b]},(1.1)

Ssym := {x ∈ Rn| Ax = b, A = AT ∈ [A] = [A]T , b ∈ [b]},(1.2)

Sper := {x ∈ Rn| Ax = b, EA = (EA)T ∈ E[A] = (E[A])T , b ∈ [b]},(1.3)

Sskew := {x ∈ Rn| Ax = b, A = −AT ∈ [A] = ([a]ij) = −[A]T ,(1.4)

[a]ii = 0 for i = 1, . . . , n, b ∈ [b]}

by means of inequalities which show that in each fixed orthant O the solution set S is
the intersection of finitely many half spaces, while Ssym ∩O, Sper ∩O, and Sskew ∩O
are the intersection of S∩O with finitely many sets, the boundaries of which are conic
sections in Rn. The characterization of S ∩ O was already given in [4], [5], [7], [11],
[12], and others while the characterization of Ssym ∩ O in the two-dimensional case
was derived in [4]. The technique there could not be transferred onto the general case
in an obvious way. It was changed in [2], [3]. We will use here a different technique
known as Fourier–Motzkin elimination, which is described, e.g., in [14].
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Note that we require
no additional condition on [A] in the case of S,
[A] = [A]T in the case of Ssym,
E[A] = (E[A])T in the case of Sper,
[A] = ([a]ij) = −[A]T with [a]ii = 0, i = 1, . . . , n in the case of Sskew.

(1.5)

The restrictions in (1.5) are not severe. If [A] 6= [A]T in the case of Ssym, e.g., and
if [B] denotes the largest interval matrix in [A] such that [B] = [B]T holds, then the
matrices in [A]\[B] do not influence Ssym. Therefore, instead of [A] the matrix [B]
would play the crucial role in characterizing Ssym.

We emphasize that [A] is allowed to contain singular real matrices. The restriction
[a]ii = 0, i = 1, . . . , n in the case of Sskew stems from the fact that a skew-symmetric
matrix A = (aij) ∈ Rn×n is defined by A = −AT which implies aii = 0 for i =
1, . . . , n. We also recall that this matrix is singular if n is odd. This can be seen from
detA = det(−AT ) = det(−A) = (−1)n detA. The condition EA = (EA)T for Sper
characterizes a persymmetric matrix which is defined to be symmetric with respect
to the northeast–southwest diagonal; cf. [6], e.g.

The sets in (1.1)–(1.4) occur when dealing with linear systems of equations, the
input data of which are afflicted with tolerances (cf. [1], [10], or [13], e.g.). This is the
case when data Ǎ, b̌ are perturbed by errors caused, e.g., by measurements or by a
conversion from decimal to binary digits on a computer. Assume that these errors are
known to be bounded by some quantities ∆A ∈ Rn×n and ∆b ∈ Rn with nonnegative
entries. Then it seems reasonable to accept a vector x̃ as the “correct” solution of
Ǎx = b̌ if it is in fact the solution of a perturbed system Ãx = b̃ with

Ã ∈ [A] := [Ǎ−∆A, Ǎ+ ∆A], b̃ ∈ [b] := [b̌−∆b, b̌+ ∆b].

The characterization of all such x̃ led Oettli and Prager [11] to their famous equiva-
lence

x ∈ S ⇐⇒ | b̌− Ǎx | ≤ ∆A|x|+ ∆b,(1.6)

where |v| := (|vi|) ∈ Rn for v = (vi) ∈ Rn. It relates the midpoint residual to
the tolerances and to |x| and was reformulated in [7] similarly as in the subsequent
Theorem 3.4. Often Ǎ belongs to a particular class of matrices with dependencies in
their entries. Such a class is formed by symmetric matrices, persymmetric matrices,
skew-symmetric matrices, and others. Therefore, it is reasonable to consider subsets
of S for which the elements x are solutions of linear systems Ax = b with special
matrices A only. This leads to the problem discussed in this paper. Our results are
formulated in terms of inequalities involving the bounds of [A], [b]. They can easily
be reformulated using the midpoints Ǎ, b̌ and the tolerances ∆A, ∆b, although a
compact form such as (1.6) is still missing.

We also mention that the sets Ssym and Sskew were already considered in [8] and
[9]. There, bounds for the projections of these sets onto the coordinate axes were
derived but no characterization of these sets were given.

We have arranged our paper as follows. In section 2 we list the notation which
we will use throughout the paper; in section 3 we present the results. We close our
paper with some examples in section 4 which illustrate the technique and the theory.
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2. Preliminaries. By Rn, Rn×n, IR, IRn, and IRn×n we denote the set
of real vectors with n components, the set of real n × n matrices, the set of in-
tervals, the set of interval vectors with n components, and the set of n × n inter-
val matrices, respectively. By “interval” we always mean a real compact interval.
Interval vectors and interval matrices are vectors and matrices, respectively, with
interval entries. We write intervals in brackets with the exception of degenerate
intervals (so-called point intervals), which we identify with the element being con-
tained, and we proceed similarly with interval vectors and interval matrices. We
write [A] = [A,A] = ([a]ij) = ([aij , aij ]) ∈ IRn×n simultaneously, without further

reference, and we use an analogous notation for intervals and interval vectors. By [A]T

we mean the transposed matrix of [A] . We mention that [A] = [A]T is equivalent to

A = AT and A = A
T

and that [A] = −[A]T is equivalent to A = −AT and A = −AT .
Therefore, if an interval matrix [A] fulfills the condition [A] = −[A]T , its midpoint
matrix Ǎ := 1

2 (A+A) satisfies Ǎ = −ǍT ; i.e., Ǎ is skew-symmetric. We call an n×n
interval matrix singular if it contains at least one singular real matrix; otherwise, we
call it regular . For computations with interval quantities we refer to [1] or [10] .

By O we denote any closed orthant of Rn. To distinguish among the sets
S, Ssym, Sper, and Sskew we call Ssym the symmetric solution set , Sper the persym-
metric solution set , and Sskew the skew-symmetric solution set .

3. Results. We start this section with a topological result which for S and Ssym
is already known (see [4]).

Theorem 3.1. Let [A] ∈ IRn×n be regular and satisfy (1.5).

(a) Each of the sets Ssym, Sper, Sskew, S ∩O, Ssym ∩O, Sper ∩O, and Sskew ∩O
is compact.

(b) Each of the sets S, Ssym, Sper, Sskew, and S∩O is connected; S∩O is convex.

Proof. First, we prove the assertions for Sskew. Let A = −AT ∈ [A] and interpret

x = A−1b as a function f of the n(n−1)
2 variables aij , 1 ≤ i < j ≤ n and the n

variables bi, 1 ≤ i ≤ n. This function is continuous. Since [a]ij , [b]i are connected
and compact the same holds for the range Sskew of f .

The compactness of the intersection Sskew ∩O follows from Sskew being compact
and from O being closed.

In the cases of S, Ssym, and Sper one proves the assertions by similar arguments.

The convexity of S ∩ O results from the fact that this set can be expressed as
the intersection of finitely many half spaces (cf. [11] or the subsequent Theorem 3.4,
e.g.).

Remark. If [A] is singular but contains no singular symmetric matrix the proof
of Theorem 3.1 shows that Ssym remains compact and connected and that Ssym ∩O
remains compact. An analogous statement holds for Sper, Sskew, Sper ∩ O, and
Sskew ∩O. For singular [A] the solution set S, however, is empty or unbounded since
the kernel of each singular matrix A ∈ [A] is unbounded. Due to singularity, the
function f with f(A, b) := A−1b is certainly not defined on [A] × [b]. This already
indicates that the assertions of Theorem 3.1 may be wrong in the singular case. As
an illustration we consider the example

[A] :=

(
0 [−1, 1]

[−1, 1] 0

)
, [b] :=

(
1
0

)
.
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Any real matrix A ∈ [A] can be represented by

A =

(
0 α
β 0

)
with α, β ∈ [−1, 1]. Hence A is regular with

A−1 =

(
0 β−1

α−1 0

)
provided that αβ 6= 0. We obtain

S = { (γ, δ)T | γ ∈ R, −∞ < δ ≤ −1 or 1 ≤ δ <∞},
Ssym = Sskew = { (0, δ)T | −∞ < δ ≤ −1 or 1 ≤ δ <∞},

which shows that neither S nor Ssym nor Sskew is compact or connected in this
case.

Our next theorem characterizes Sskew by a set of inequalities. Its proof starts
with

x ∈ Sskew ⇐⇒ b ≤ Ax ≤ b, A = −AT ∈ [A],(3.1)

transforms the inequalities in a suitable way by introducing new variables zij , and
continues by applying the Fourier–Motzkin elimination (see [14], e.g.) to replace the
entries of A by their bounds aij and aij , respectively.

Theorem 3.2. Let [A] = −[A]T ∈ IRn×n with [a]ii = 0, i = 1, . . . , n, and let
[b] ∈ IRn. Then for any orthant O ⊆ Rn the set Sskew ∩ O can be represented as
an intersection of finitely many closed sets, the boundaries of which are quadrics or
hyperplanes. The inequalities characterizing these hyperplanes and quadrics can be
derived from b ≤ Ax ≤ b, A = −AT ∈ [A], x ∈ O by means of the Fourier–Motzkin
elimination.

Proof. Step 1. Let (3.1) hold, fix an orthant O, and define

a−ij :=

{
aij if xixj ≥ 0,
aij if xixj < 0,

a+
ij :=

{
aij if xixj ≥ 0,
aij if xixj < 0,

b−i :=

{
bi if xi ≥ 0,

bi if xi < 0,
b+i :=

{
bi if xi ≥ 0,
bi if xi < 0.

(3.2)

Note that the values of a−ij , a
+
ij , b

−
i , b

+
i are constant as long as x remains in the same

orthant and that they satisfy a−ij = −a+
ji and a−ii = a+

ii = 0. We first will see that
(3.1) is equivalent to

x ∈ S ∧ ∃ zij ∈ R such that
a−ijxixj ≤ zij ≤ a+

ijxixj , i, j = 1, . . . , n, i < j,

zij = −zji, i, j = 1, . . . , n,
b−i xi ≤

∑n
j=1 zij ≤ b

+
i xi, i = 1, . . . , n.

(3.3)

Setting zij := aijxixj immediately shows that “(3.1)⇒ (3.3).” To prove the converse
we will construct A ∈ Rn×n such that A = −AT ∈ [A] and Ax ∈ [b]. Consider a fixed
index pair i0, j0 and define ai0j0 according to the following procedure.
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Case 1: xi0 = 0. Since x ∈ S by (3.3), there are real numbers a∗i0j for j = 1, . . . , n
such that

ai0j ≤ a
∗
i0j ≤ ai0j(3.4)

and

bi0 ≤
n∑
j=1

a∗i0jxj ≤ bi0 .(3.5)

If xj0 6= 0 then ai0j0 := a∗i0j0 =: −aj0i0 ; if xj0 = 0 then ai0j0 := ǎi0j0 with ǎi0j0 being

the corresponding entry of the skew-symmetric midpoint matrix Ǎ ∈ [A].
Case 2: xi0 6= 0. If xj0 6= 0 then ai0j0 :=

zi0j0
xi0xj0

; if xj0 = 0 then ai0j0 is already

defined by the preceding case when the roles of i0 and j0 are exchanged.
If one lets i0 run from 1 to n and if for each fixed i0 the second index in zi0j0

runs from 1 to n then by the procedure above a skew-symmetric matrix A ∈ [A] is
constructed which satisfies (3.1). Note that in Case 1 of our procedure there may occur
several choices for the entries a∗i0j such that (3.4) and (3.5) are valid. It is obvious
that in this case for a fixed i0 the entries of one and the same double inequality (3.5)
must be chosen for those j0 = 1, . . . , n for which xj0 6= 0. Together with the last
double inequality in (3.3), this guarantees bi ≤

∑n
j=1 aijxj ≤ bi.

The condition “x ∈ S” in (3.3) is necessary, as the example A := 0 ∈ R1×1,
b := 1 ∈ R shows. Here, x = 0 ∈ R is clearly not in S ⊇ Sskew, but the remaining
conditions of (3.3) are fulfilled for z11 = 0.

Step 2. By zii = −zii we obtain zii = 0. Therefore, we omit zii in (3.3). We
now apply the Fourier–Motzkin elimination to (3.3). We illustrate this process by
eliminating z12. To this end we replace zij by −zji for all i > j in the inequalities of
(3.3). We rewrite these inequalities and change their order by forming three groups:
the inequalities of the first group have the form · · · ≤ z12 with z12-free left-hand side,
the inequalities of the second group read z12 ≤ · · · with z12-free right-hand side, and
the inequalities of the third group do not contain z12. Since the maximum over all left-
hand sides of the inequalities of the first group is less than or equal to the minimum
over all right-hand sides of the inequalities of the second group, these inequalities are
equivalent to requiring that each left-hand side of the first group be less than or equal
to each right-hand side of the second group while keeping all inequalities of the third
group. Omitting trivial inequalities, (3.3) is equivalent to

x ∈ S ∧ ∃ zij ∈ R such that

a−12x1x2 ≤ b+1 x1 −
∑n

j=3 z1j ,

a−12x1x2 ≤ −b−2 x2 +
∑n

j=3 z2j ,

b−1 x1 −
∑n

j=3 z1j ≤ a
+
12x1x2,

b−1 x1 −
∑n

j=3 z1j ≤ −b
−
2 x2 +

∑n
j=3 z2j ,

−b+2 x2 +
∑n

j=3 z2j ≤ a
+
12x1x2,

−b+2 x2 +
∑n

j=3 z2j ≤ b
+
1 x1 −

∑n
j=3 z1j ,

remaining (in)equalities of (3.3),

(3.6)

where z12 and z21 no longer occur. This process of eliminating zij can be continued
until we end up with a set of final inequalities which (together with x ∈ S ∩ O) is
equivalent to x ∈ Sskew ∩ O and which contains no variable zij . This proves the
theorem.



698 GÖTZ ALEFELD, VLADIK KREINOVICH, AND GÜNTER MAYER

At the end of the elimination process, there are two special inequalities for each
i ∈ {1, . . . , n} which can be divided by xi 6= 0 such that no fractions occur. For
example, if the first inequality of (3.6) is combined successively with the inequalities
a−1jx1xj ≤ z1j one obtains the final inequality

∑n
j=2 a

−
1jx1xj ≤ b+1 x1. Since a−11 =

a+
11 = 0 it can be supplemented to

∑n
j=1 a

−
1jx1xj ≤ b+1 x1, which reduces to

n∑
j=1

a−1jxj ≤ b1 if x1 > 0 and
n∑
j=1

a−1jxj ≥ b1 if x1 < 0.(3.7)

From the third inequality of (3.6) one similarly obtains

n∑
j=1

a+
1jxj ≥ b1 if x1 > 0 and

n∑
j=1

a+
1jxj ≤ b1 if x1 < 0.(3.8)

With

â−ij :=

{
aij if xj ≥ 0,
aij if xj < 0,

â+
ij :=

{
aij if xj ≥ 0,
aij if xj < 0,

(3.9)

the four inequalities in (3.7) and (3.8) can be summarized to

n∑
j=1

â−1jxj ≤ b1 and
n∑
j=1

â+
1jxj ≥ b1,

provided that x1 6= 0. Repeating the arguments, one finally gets∑n
j=1 â

−
ijxj ≤ bi,∑n

j=1 â
+
ijxj ≥ bi,

}
i = 1, . . . , n(3.10)

if no component of x equals 0. These inequalities are just those which characterize
S and which are known as the Oettli–Prager theorem (cf. [11]), which we restate as
Theorem 3.4. They can either be omitted in the list of inequalities if “x ∈ S” remains
there as in (3.6), or “x ∈ S” can be cancelled when (3.10) is used instead. This last
remark also holds if some of the components of x are zero.

We also note that the number n# of final inequalities for Sskew ∩ O seems to be

double exponential. Thus we could show that n# is roughly bounded by 8 ·
(

3
2

)2κ+1

with κ := n(n+1)
2 . Since the arguments are a little bit clumsy and the proof is lengthy

we will skip it.
The same technique for Sskew can also be applied to construct a set of inequalities

which characterize Ssym provided that [A] = [A]T . To get the equivalence to “x ∈
Ssym” one must replace the equality in (3.1) by A = AT , and one uses zij = zji
in (3.3) instead of zij = −zji. Analogously to Theorem 3.2, we get the following
theorem.

Theorem 3.3. Let [A] = [A]T ∈ IRn×n and let [b] ∈ IRn. Then for any orthant
O ⊆ Rn the set Ssym ∩ O can be represented as an intersection of finitely many
closed sets, the boundaries of which are quadrics or hyperplanes. The inequalities
characterizing these hyperplanes and quadrics can be derived from the elimination
process described above or they are of the form xi = 0.

Theorem 3.3 can analogously be formulated for Sper since Ax = b⇐⇒ EAx = Eb,
whence Sper for A equals Ssym for EA = (EA)T .
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The solution set for other classes of special matrices such as Hankel or Toeplitz
matrices shows particularities which essentially differ from those which we have pre-
sented up to now. Thus, the inequalities need no longer remain the same in a fixed
orthant and they cannot be treated by means of the particular variables zij . Work in
this respect is in progress.

Inequalities (3.10) can also be obtained with the technique above if one starts
with

x ∈ S(3.11)

instead of x ∈ Sskew. The conditions corresponding to (3.3) then read

∃ zij ∈ R such that

{
â−ijxj ≤ zij ≤ â+

ijxj , i, j = 1, . . . , n,

bi ≤
∑n

j=1 zij ≤ bi, i = 1, . . . , n
(3.12)

with â−ij , â
+
ij from (3.9). To prove the implication “(3.12) ⇒ (3.11)” set aij =

zij
xj

if

xj 6= 0. If xj = 0 then any element from [a]ij can be used to construct a matrix A
such that Ax ∈ [b] holds. It is easy to see that one ends up with inequalities (3.10) if
one performs the elimination process as above, starting with (3.12).

For completeness we state the result in a separate theorem.
Theorem 3.4 (Oettli–Prager theorem [11]). Let [A] ∈ IRn×n and let [b] ∈ IRn.

Then for any orthant O ⊆ Rn the set S ∩O can be represented as the intersection of
closed half spaces. These half spaces are given by∑n

j=1 â
−
ijxj ≤ bi,∑n

j=1 â
+
ijxj ≥ bi,

}
i = 1, . . . , n(3.13)

or

xi ≤ 0 or xi ≥ 0,(3.14)

where the inequalities in (3.14) are used to characterize the orthant O and where
â−ij , â

+
ij are defined in (3.9).

4. Examples. In this section we present several examples to illustrate the results
of section 3. In particular, we construct the inequalities for characterizing S, Ssym,
Sper, and Sskew.

In our first example we consider 2× 2 interval matrices.
Example 4.1.

(a) Let [A] ∈ IR2×2, [b] ∈ IR2. Then S is characterized according to (3.13) by
the inequalities{

â−11x1 + â−12x2 ≤ b1, â+
11x1 + â+

12x2 ≥ b1,

â−21x1 + â−22x2 ≤ b2, â+
21x1 + â+

22x2 ≥ b2
(4.1)

with the coefficients according to (3.9).
(b) Let [A] = [A]T hold. The symmetric solution set Ssym is described by the

four inequalities in (4.1) supplemented by the two inequalities{
b−1 x1 − b+2 x2 − a+

11x
2
1 + a−22x

2
2 ≤ 0,

−b+1 x1 + b−2 x2 + a−11x
2
1 − a+

22x
2
2 ≤ 0

(4.2)
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with the coefficients from (3.2). These inequalities show that the boundary of Ssym
can already be curvilinear in the 2× 2 case.

(c) Let E[A] = (E[A])T hold. The persymmetric solution set Sper is described
by the four inequalities in (4.1) supplemented by the two inequalities in (4.2) if one
redefines a±ii , b

±
i appropriately.

(d) Let [A] = −[A]T hold with [a]ii = 0 for i = 1, 2. The skew-symmetric solution
set Sskew is given by the four inequalities in (4.1) with â−ii = â+

ii = 0 in addition to
the two inequalities

b−1 x1 ≤ −b−2 x2, −b+2 x2 ≤ b+1 x1,(4.3)

which follow directly from (3.6) taking into account z11 = z22 = 0. The skew-
symmetric solution set in R2 is apparently bounded by a polygon; i.e., its boundary
is formed by straight lines. Taking into account â−ii = â+

ii = 0, one sees immedi-
ately from (4.1) that the solution set S is an interval vector. This is not always the
case for Sskew. For example, choose [b] := (1, 1)T and [a]12 := [0.25, 1]. Then any
skew-symmetric element A of [A] can be written in the form

A = α

(
0 1
−1 0

)
= −α2A−1 with 0.25 ≤ α ≤ 1.

Hence Sskew = {β(−1, 1)T | 1 ≤ β ≤ 4}; i.e., Sskew is the straight line in the plane
between the points (−1, 1) and (−4, 4). The corresponding solution set S, however,
is given by

S = { (−β, γ)T | 1 ≤ β, γ ≤ 4 } = ([−4,−1], [1, 4])T .

In our second example we consider 3× 3 tridiagonal interval matrices.
Example 4.2.

(a) Let [A] ∈ IR3×3 with [a]13 = [a]31 := 0, and let [b] ∈ R3. Then S is
characterized by the inequalities

â−11x1 + â−12x2 ≤ b1, â+
11x1 + â+

12x2 ≥ b1,

â−21x1 + â−22x2 + â−23x3 ≤ b2, â+
21x1 + â+

22x2 + â+
23x3 ≥ b2,

â−32x2 + â−33x3 ≤ b3, â+
32x2 + â+

33x3 ≥ b3,

(4.4)

where the coefficients are again given by (3.9).
(b) For tridiagonal 3× 3 matrices [A] = [A]T the symmetric solution set Ssym is

characterized by the six inequalities in (4.4) and by the four additional inequalities
+b−1 x1 − b+2 x2 − a+

11x
2
1 + a−22x

2
2 + a−23x2x3 ≤ 0,

+b−1 x1 − b+2 x2 + b−3 x3 − a+
11x

2
1 + a−22x

2
2 − a+

33x
2
3 ≤ 0,

+b−1 x1 − (+b+2 − b−2 )x2 − a+
11x

2
1 − a+

12x1x2 − (+a+
22 − a−22)x2

2 ≤ 0,
+b−2 x2 − b+3 x3 − a+

12x1x2 − a+
22x

2
2 + a−33x

2
3 ≤ 0

(4.5)

together with their four counterparts, which one gets by replacing each minus sign
by a plus sign, and vice versa (also in the superscripts). The coefficients of (4.5) are
defined in (3.2). Note that the information of the third inequality in (4.5) is contained
in that of the first row of (4.4) if [b]2 and [a]22 are point intervals.

Without proof we mention that the number of inequalities for Ssym increases to
44 for a dense 3× 3 system.
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(c) The skew-symmetric solution set Sskew is characterized by (4.4) with â−ii =
â+
ii = 0 for i = 1, 2, 3 and by the inequalities

−b+1 x1 − b+2 x2 + a−23x2x3 ≤ 0,
+b−1 x1 + b−2 x2 + b−3 x3 ≤ 0,

+b−1 x1 − (+b+2 − b−2 )x2 − a+
12x1x2 ≤ 0,

−b+2 x2 − b+3 x3 − a+
12x1x2 ≤ 0

(4.6)

together with their four counterparts, which are defined analogously as for Ssym. The
inequalities in (4.6) look similar to those in (4.5) when taking into account [a]ii = 0
for i = 1, 2, 3. Again, the third inequality in (4.6) equals the first one in (4.4) if [b2]
is a point interval. Note also that according to section 1 each skew-symmetric matrix
from R3×3 is singular!

In our third example we describe S and Sskew in two different ways, a direct way
(feasible since there is only one nontrivial pair of intervals) and a second way where
we will apply the results of Example 4.2.

Example 4.3. Let

[A] :=

 0 1 0
−1 0 [0.5, 1]
0 [−1,−0.5] 0

 , [b] :=

 [0, 2]
0
−1

 .

Then [A] = −[A]T with [a]ii = 0, i = 1, 2, 3. Each A ∈ [A], b ∈ [b] can be represented
as

A =

 0 1 0
−1 0 α
0 −β 0

 , b =

 γ
0
−1


with α, β ∈ [0.5, 1], γ ∈ [0, 2]. The linear system Ax = b then reads

x2 = γ,(4.7)

−x1 + αx3 = 0,(4.8)

−βx2 = −1.(4.9)

(a) We first want to describe the solution set S. Equations (4.7) and (4.8) show
that x2 ≥ 0 and sign(x1x3) ≥ 0. This means that only the first orthant O1 and the
sixth orthant O6 can contain elements of S, where O1 is characterized by xi ≥ 0, i =
1, 2, 3, and where O6 is given by x1 ≤ 0, x2 ≥ 0, x3 ≤ 0. By the first and the third
equation the system (4.7)–(4.9) is solvable if and only if βγ = 1. This is possible for
any β ∈ [0.5, 1] since γ = β−1 ∈ [1, 2] ⊆ [0, 2]. The solution can be rewritten as

x1 = αx3, x2 = β−1, x3 ∈ R.(4.10)

For each fixed α, β ∈ [0.5, 1] these equations represent, of course, a straight line which
lies in the plane x2 = β−1 ∈ [1, 2] and which crosses the x2-axis at (0, β−1, 0). For
each fixed β ∈ [0.5, 1] one thus gets a (double) sector in O1 ∪ O6 which is bounded
by the straight lines x1 = 0.5x3 and x1 = x3 while x2 = β−1. Varying β results in
two wedges, the cutting edges of which have length 1 and meet at the x2-axis from
(0, 1, 0) to (0, 2, 0).

(b) To characterize Sskew let α = β. From (4.10) we then obtain x1x2 = x3

with x2 ∈ [1, 2], i.e., Sskew is the intersection of S with the hyperbolical paraboloid
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x3 = x1x2 which transforms to y3 = y2
1−y2

2 via x1 = y1 +y2, x2 = y1−y2, x3 = y3. In
particular, the boundary of Sskew is curvilinear. Figure 1 shows S∩O1 and Sskew∩O1.
The intersections S ∩O6 and Sskew ∩O6 are obtained by rotating the two sets around
the x2-axis by an amount of 180◦ degrees.
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0

.5

5

5

0

S
 1 S

 2

Fig. 4.1. The shape of the solution sets S1 := S ∩O1, S2 := Sskew ∩O1 in Example 4.3.

(c) We now want to describe S and Sskew in a second way, namely, by the in-
equalities resulting from (4.4) and (4.6). For simplicity we use S ⊆ O1 ∪ O6, which
yields a−23 = 0.5 = −a+

32, a+
23 = 1 = −a−32. Inequalities (4.4) can then be written in

the form

0 ≤ x2 ≤ 2,(4.11)

0.5x3 ≤ x1 ≤ x3,(4.12)

1 ≤ x2 ≤ 2(4.13)

if (x1, x2, x3) ∈ O1. In O6 inequality (4.12) must be replaced by x3 ≤ x1 ≤ 0.5x3.
Since (4.13) is more restrictive than (4.11) we can omit (4.11). Thus S is characterized
by (4.12) and (4.13).

Inequalities (4.6) and their counterparts yield to

b−1 x1 ≤ x2x3 ≤ 2b+1 x1,(4.14)

b−1 x1 ≤ x3 ≤ b+1 x1,(4.15)

b−1 x1 ≤ x1x2 ≤ b+1 x1,(4.16)

x3 = x1x2(4.17)
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in O1; in O6 inequality (4.14) must be exchanged by 2b−1 x1 ≤ x2x3 ≤ b+1 x1. Dividing
(4.16) by x1 implies (4.11). Hence (4.16) can be omitted. Since (4.15) is identical
with (4.16) if (4.17) is used, we can skip (4.15) too. Replacing x3 in (4.14) by (4.17)
and dividing by x1 yields to 0 = b1 ≤ x2

2 ≤ 2b1 ≤ 4, which again is fulfilled if (4.11)
holds. Therefore, the inequalities for Sskew reduce in O1 to

1 ≤ x2 ≤ 2,

x1 ≤ x3 ≤ 2x1,

x3 = x1x2,

which is equivalent to (4.10) when taking into account α = β ∈ [0.5, 1]. The same
holds in O6 if the second double inequality is replaced by 2x1 ≤ x3 ≤ x1.

In our last example we consider a 2× 2 interval matrix [A] which satisfies [A] =
[A]T .

Example 4.4. Let

[A] :=

(
1 [0, 1]

[0, 1] [−4,−1]

)
, [b] :=

(
[0, 2]
[0, 2]

)
.

Then [A] = [A]T with

A =

(
1 α
β −γ

)
∈ [A] =⇒ A−1 =

1

γ + αβ

(
γ α
β −1

)
with α, β ∈ [0, 1], γ ∈ [1, 4]. Since b ≥ 0 the first component of A−1b is nonnegative
for all b ∈ [b]. Therefore, S is completely contained in the union O1 ∪ O4 of the first
and the fourth quadrants.

We first consider S ∩O1. According to (4.1) we get the inequalities

x1 ≤ 2, x2 ≥ −0.5, x2 ≥ −x1, x1 ≥ x2.(4.18)

This means that S ∩O1 is the triangle with the corners (0, 0), (2, 0), and (2, 2).
The corresponding inequalities for S ∩O4 are given by

x1 ≥ 0, x2 ≥ −2, x2 ≤ 2− x1, x2 ≤ 0.25x1.(4.19)

They describe a quadrangle with the corners (0, 0), (0,−2), (4,−2), and (2, 0).
To describe Ssym ∩ O1 we need inequalities (4.18) and the two inequalities from

(4.2), which can be transform to

4x2
1 + (4x2 + 1)2 ≥ 1, (x1 − 1)2 + x2

2 ≤ 1.(4.20)

The first inequality of (4.20) describes an ellipse and its exterior. Since the ellipse lies
completely in the lower half plane the first inequality of (4.20) is no restriction for
Ssym ∩ O1. The second inequality describes a closed disc D1 with center (1, 0) and
radius 1. The boundary of the intersection with S ∩O1 is formed by the straight line
from (0, 0) to (1, 1), the part of the circle ∂D1 from (1, 1) to (2, 0), and the part of
the x1-axis from (2, 0) back to (0, 0).

The inequalities in (4.19) together with the two inequalities

x2
1 + 4x2

2 ≥ 0, (x1 − 1)2 + (x2 + 1)2 ≤ 2(4.21)

characterize Ssym ∩ O4. The first inequality in (4.21) is always true. The second
inequality describes a disc D2 with center (1,−1) and radius

√
2. The boundary of

its intersection with S ∩O4 is formed by the straight lines from (0, 0) to (0,−2), from
(0,−2) to (2,−2), and from (2, 0) to (0, 0), and by the part of the circle ∂D2 from
(2,−2) to (2, 0). The situation is illustrated by Figure 2 .
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- x1

−1 1 2 3 4

6
x2

2

1

−1

−2

�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@
@
@@

Ssym

S

�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

�
�
�
�

�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
�
�

�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
��

�
�
��

Fig. 4.2. The shape of the solution sets S, Ssym in Example 4.4.

Acknowledgment. We thank both referees for their valuable suggestions and
remarks which improved this paper.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the symmetric solution set, in
Applications of Interval Computations, R. B. Kearfott and V. Kreinovich, eds., Kluwer,
Boston, MA, 1995, pp. 61–79.

[3] G. Alefeld, V. Kreinovich, and G. Mayer, Symmetric linear systems with perturbed in-
put data, in Numerical Methods and Error Bounds, G. Alefeld and J. Herzberger, eds.,
Akademie Verlag, Berlin, 1996, pp. 16–22.

[4] G. Alefeld and G. Mayer, On the symmetric and unsymmetric solution set of interval
systems, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1223–1240.
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Abstract. A new spectral algorithm for reordering a sparse symmetric matrix to reduce its
envelope size was described in [Barnard, Pothen, and Simon, Numer. Linear Algebra Appl., 2 (1995),
pp. 317–334]. The ordering is computed by associating a Laplacian matrix with the given matrix and
then sorting the components of a specified eigenvector of the Laplacian. In this paper we provide an
analysis of the spectral envelope reduction algorithm. We describe related 1- and 2-sum problems;
the former is related to the envelope size, while the latter is related to an upper bound on the work
in an envelope Cholesky factorization. We formulate these two problems as quadratic assignment
problems and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-
sum by considering a relaxation of the problem and then show that the spectral ordering finds a
permutation matrix closest to an orthogonal matrix attaining the lower bound. This provides a
stronger justification of the spectral envelope reduction algorithm than previously known. The lower
bound on the 2-sum is seen to be tight for reasonably “uniform” finite element meshes. We show
that problems with bounded separator sizes also have bounded envelope parameters.

Key words. 1-sum problem, 2-sum problem, envelope reduction, eigenvalues of graphs, Lapla-
cian matrices, quadratic assignment problems, reordering algorithms, sparse matrices
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PII. S089547989427470X

1. Introduction. We provide a raison d’être for a novel spectral algorithm to
reduce the envelope of a sparse symmetric matrix described in a companion paper
[2]. The algorithm associates a discrete Laplacian matrix with the given symmetric
matrix and then computes a reordering of the matrix by sorting the components of
an eigenvector corresponding to the smallest nonzero Laplacian eigenvalue. The re-
sults in [2] show that the spectral algorithm can obtain significantly smaller envelope
sizes compared to other currently used algorithms. All previous envelope reduction
algorithms (known to us), such as the reverse Cuthill–McKee (RCM) algorithm and
variants [3, 16, 17, 26, 37], are combinatorial in nature, employing breadth-first search
to compute the ordering. In contrast, the spectral algorithm is an algebraic algorithm
whose good envelope reduction properties are somewhat intriguing and poorly under-
stood.

We describe problems related to envelope reduction called the 1- and 2-sum prob-
lems and then formulate these problems as quadratic assignment problems (QAPs).
We show that the QAP formulation of the 2-sum enables us to obtain lower bounds
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on the 2-sum (and related envelope parameters) based on the Laplacian eigenvalues.
The lower bounds seem to be quite tight for finite element problems when the mesh
points are nearly all of the same degree and the geometries are simple. Further, a
closest permutation matrix to an orthogonal matrix that attains the lower bound is
obtained, to within a linear approximation, by sorting the second Laplacian eigen-
vector components in monotonically increasing or decreasing order. This justifies the
spectral envelope-reducing algorithm more strongly than earlier results.

Although initially envelope-reducing orderings were developed for use in envelope
schemes for sparse matrix factorization, these orderings have been used in the past
few years in several other applications. The RCM ordering has been found to be
an effective preordering in computing incomplete factorization preconditioners for
preconditioned conjugate-gradient methods [4, 6]. Envelope-reducing orderings have
been used in frontal methods for sparse matrix factorization [7].

The wider applicability of envelope-reducing orderings prompts us to take a fresh
look at the reordering algorithms currently available and to develop new ordering
algorithms. Spectral envelope reduction algorithms seem to be attractive in this
context, since they

(i) compare favorably with existing algorithms in terms of the quality of the
orderings [2],

(ii) extend easily to problems with weights, e.g., finite element meshes arising
from discretizations of anisotropic problems, and

(iii) are fairly easily parallelizable.
Spectral algorithms are more expensive than the other algorithms currently available.
But since the envelope reduction problem requires only one eigenvector computation
(to low precision), we believe the costs are not impractically high in computation-
intensive applications, e.g., frontal methods for factorization. In contexts where many
problems having the same structure must be solved, a substantial investment in finding
a good ordering might be justified since the cost can be amortized over many solutions.
Improved algorithms that reduce the costs are being designed as well [25].

We focus primarily on the class of finite element meshes arising from discretiza-
tions of partial differential equations. Our goals in this project are to develop efficient
software implementing our algorithms and to prove results about the quality of the
orderings generated.

The projection approach for obtaining lower bounds of a QAP is due to Hadley,
Rendl, and Wolkowicz [19], and this approach has been applied to the graph partition-
ing problem by the latter two authors [35]. In earlier work a spectral approach for the
graph (matrix) partitioning problem has been employed to compute a spectral nested
dissection ordering for sparse matrix factorization, for partitioning computations on
finite element meshes on a distributed-memory multiprocessor [21, 33, 34, 36], and
for load balancing parallel computations [22]. The spectral approach has also been
used to find a pseudo peripheral node [18]. Juvan and Mohar [23, 24] have provided
a theoretical study of the spectral algorithm for reducing p-sums, where p = 1, 2, and
∞, and Helmberg et al. [20] have obtained spectral lower bounds on the band width.
A survey of some of these earlier results may be found in [31]. Paulino et al. [32] have
also considered the use of spectral envelope reduction for finite element problems.

The following is an outline of the rest of this paper. In section 2 we describe
various parameters of a matrix associated with its envelope and introduce the envelope
size and envelope work minimization problems and the related 1- and 2-sum problems.
We prove that bounds on the minimum 1-sum yield bounds on the minimum envelope
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size and, similarly, bounds on the minimum 2-sum yield bounds on the work in an
envelope Cholesky factorization. We also show in this section that minimizing the
2-sum is NP-complete. We compute lower bounds for the envelope parameters of
a sparse symmetric matrix in terms of the eigenvalues of the Laplacian matrix in
section 3. The popular RCM ordering is obtained by reversing the Cuthill–McKee
(CM) ordering; the RCM ordering can never have a larger envelope size and work
than the CM ordering, and is usually significantly better. We prove that reversing
an ordering can improve or impair the envelope size by at most a factor ∆, and the
envelope work by at most ∆2, where ∆ is the maximum degree of a vertex in the
adjacency graph. In section 4, we formulate the 2- and 1-sum problems as QAPs.
We obtain lower and upper bounds for the 2-sum problem in terms of the eigenvalues
of the Laplacian matrix in section 5 by means of a projection approach that relaxes
a permutation matrix to an orthogonal matrix with row and column sums equal to
one. We justify the spectral envelope reduction algorithm in section 6 by proving that
a closest permutation matrix to an orthogonal matrix attaining the lower bound for
the 2-sum is obtained, to within a linear approximation of the problem, by permuting
the second Laplacian eigenvector in monotonically increasing or decreasing order. In
section 7 we show that graphs with small separators have small envelope parameters as
well by considering a modified nested dissection ordering. We present computational
results in section 8 to illustrate that the 2-sums obtained by the spectral reordering
algorithm can be close to optimal for many finite element meshes. Section 9 contains
our concluding remarks. The appendix contains some lower bounds for the more
general p-sum problem, where 1 ≤ p <∞.

2. A menagerie of envelope problems.

2.1. The envelope of a matrix. Let A be an n × n symmetric matrix with
elements aij , whose diagonal elements are nonzero. Various parameters of the matrix
A associated with its envelope are defined below.

We denote the column indices of the nonzeros in the lower triangular part of the
ith row by

row(i) = {j : aij 6= 0 and 1 ≤ j ≤ i}.

For the ith row of A we define

fi(A) = min{j : j ∈ row(i)} and

ri(A) = i− fi(A).

Here fi(A) is the column index of the first nonzero in the ith row of A (by our
assumption of nonzero diagonals, 1 ≤ fi ≤ i) and the parameter ri(A) is the row
width of the ith row of A. The bandwidth of A is the maximum row width

bw(A) = max{ri(A) : i = 1, . . . , n}.

The envelope of A is the set of index pairs

Env(A) = {(i, j) : fi(A) ≤ j < i, i = 1, . . . , n}.

For each row, the column indices lie in an interval beginning with the column index
of the first nonzero element and ending with (but not including) the index of the
diagonal nonzero element.
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Fig. 2.1. An ordering of a 7-point grid and the corresponding matrix. The lower triangle of
the envelope is indicated by marking zeros within it by asterisks.
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Table 2.1

Row widths and column widths of the matrix in Figure 2.1.

i 1 2 3 4 5 6 7 8 9
ri 0 1 1 3 4 4 3 4 4
ci 3 4 3 4 4 3 2 1 0

We denote the size of the envelope by Esize(A) = |Env(A)|. (The number
Esize(A) + n (which includes the diagonal elements) is called the profile of A [7].)
The work in the Cholesky factorization of A that employs an envelope storage scheme
is bounded from above by

Wbound(A) ≡ (1/2)
n∑
i=2

ri(ri + 3).

This bound is tight [29] when an ordering satisfies (1) fi(A) ≤ fj(A) when i < j for
all i, j between 1 and n, and (2) fi(A) < i for all i = 2, . . ., n.

A 3× 3 7-point grid and the nonzero structure of the corresponding matrix A are
shown in Figure 2.1. A “ • ” indicates a nonzero element and a “ ∗ ” indicates a zero
element that belongs to the lower triangle of the envelope in the matrix. The row
widths given in Table 2.1 are easily verified from the structure of the matrix. The
envelope size is obtained by summing the row widths and is equal to 24. (Column
widths ci are defined later in this section.)

The values of these parameters strongly depend on the choice of an ordering of
the rows and columns. Hence we consider how these parameters vary over symmetric
permutations PTAP of a matrix A, where P is a permutation matrix. We define
Esizemin(A), the minimum envelope size of A, to be the minimum envelope size among
all permutations PTAP of A. The quantities Wboundmin(A) and bw min(A) are
defined in a similar fashion. Minimizing the envelope size and the bandwidth of a
matrix are NP-complete problems [28], and minimizing the work bound is likely to
be intractable as well. So one must settle for heuristic orderings to reduce these
quantities.

It will be helpful in section 3 to consider a “column-oriented” expression for the
envelope size for obtaining a lower bound on this quantity. The width of a column j
of A is the number of row indices in the jth column of the envelope of A. In other
words,

cj(A) = |{k : k > j and ∃` ≤ j3ak` 6= 0}|.

(This is also called the jth front width.) It is then easily seen that the envelope size is

Esize(A) =

n∑
j=1

cj .(2.1)

The work in an envelope factorization scheme is given by

Ework(A) = (1/2)

n∑
j=1

c2j ,(2.2)

where we have ignored the linear term in cj . The column widths of the matrix in
Figure 2.1 are given in Table 2.1. These concepts and their interrelationships are
described by Liu and Sherman [29] and are also discussed in [5, 15].
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The envelope parameters can also be defined with respect to the adjacency graph
G = (V,E) of A. Denote nbr(v) = {v} ∪ adj(v). In terms of the graph G and an
ordering α of its vertices, we can define

r(v, α) = max{α(v)− α(w) : w ∈ nbr(v), α(w) ≤ α(v)}.
Hence we can write the envelope size and work associated with an ordering α as

Esize(G,α) =
∑
v∈V

r(v, α) =
∑
v∈V

max{α(v)− α(w) : w ∈ nbr(v), α(w) ≤ α(v)},

Wbound(G,α) =
∑
v∈V

r(v, α)
2

=
∑
v∈V

max{(α(v)− α(w))2 : w ∈ nbr(v), α(w) ≤ α(v)}.

The goal is to choose a vertex ordering α : V 7→ {1, . . . , n} to minimize one of
the parameters described above. We denote by Esize min(G) (Wboundmin(G)) the
minimum value of Esize(G,α) (Wbound(G,α)) over all orderings α. The reader can
compute the envelope size of the numbered graph in Figure 2.1 using the definition
given in this paragraph, to verify that Esize(G) = 24.

The jth front width has an especially nice interpretation if we consider the ad-
jacency graph G = (V,E) of A. Let the vertex corresponding to a column j of A
be numbered vj , so that V = {v1, . . . , vn}, and define Vj = {v1, . . . , vj}. Denote
adj(X) = (∪v∈Xadj(v)) \X for a subset of vertices X. Then cj(A) = |adj(Vj)|.

To illustrate the dependence of the envelope size on the ordering, we include in
Figure 2.2 an ordering that leads to a smaller envelope size for the 7-point grid. Again,
a “•” indicates a nonzero element and a “∗” indicates a zero element that belongs to
the lower triangle of the envelope in the matrix. This ordering by “diagonals” yields
the optimal envelope size for the 7-point grid [27].

2.2. 1- and 2-sum problems. It will be helpful to consider quantities related
to the envelope size and envelope work, the 1-sum and the 2-sum.

For real 1 ≤ p <∞, we define the p-sum to be

σpp(A) =
n∑
i=1

∑
j∈row(i)

(i− j)p.

Minimizing the 1-sum (p = 1) is the optimal linear arrangement problem, and the
limiting case p = ∞ corresponds to the minimum bandwidth problem; both these
are well-known NP-complete problems [13]. We will show in the section 2.3 that
minimizing the 2-sum is NP-complete as well.

We write the envelope size and the 1-sum, and the envelope work and the 2-sum,
in a way that shows their relationships:

Esize(A) =

n∑
i=1

max
j∈row(i)

(i− j),(2.3)

σ1(A) =
n∑
i=1

∑
j∈row(i)

(i− j);(2.4)

Wbound(A) =

n∑
i=1

max
j∈row(i)

(i− j)2,(2.5)

σ2
2(A) =

n∑
i=1

∑
j∈row(i)

(i− j)2.(2.6)
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Fig. 2.2. Another ordering of a 7-point grid and the corresponding matrix. Again the lower
triangle of the envelope is indicated by marking the zeros within it by asterisks.
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The parameters σ1,min(A) and σ2
2,min(A) are the minimum values of these parameters

over all symmetric permutations PTAP of A.
We now consider the relationships between bounds on the envelope size and the

1-sum and between the upper bound on the envelope work and the 2-sum. Let ∆
denote the maximum number of off-diagonal nonzeros in a row of A. (This is the
maximum vertex degree in the adjacency graph of A.)

Theorem 2.1. The minimum values of the envelope size, envelope work in the
Cholesky factorization, 1-sum, and 2-sum of a symmetric matrix A are related by the
following inequalities:

Esizemin(A) ≤ σ1,min(A) ≤ ∆Esize min(A),(2.7)

Wboundmin(A) ≤ σ2
2,min(A) ≤ ∆Wboundmin(A),(2.8)

σ2,min(A) ≤ σ1,min(A) ≤
√
|E| σ2,min(A).(2.9)

Proof. We begin by proving (2.8). Our strategy will be first to prove the inequal-
ities

Wbound(A) ≤ σ2
2(A) ≤ ∆Wbound(A),

and then to obtain the required result by considering two different permutations of
A.

The bound Wbound(A) ≤ σ2
2(A) is immediate from equations (2.5) and (2.6). If

the inner sum in the latter equation is bounded from above by

∆ max
j∈row(i)

(i− j)2,

then we get ∆Wbound(A) as an upper bound on the 2-sum.

Now let X1 be a permutation matrix such that Ã1 ≡ XT
1 AX1 and Wbound(Ã1) =

Wbound min(A). Then we have

σ2
2,min(A) ≤ σ2

2(Ã1) ≤ ∆Wbound(Ã1) = ∆Wboundmin(A).

Further, let X2 be a permutation matrix such that Ã2 ≡ XT
2 AX2 and σ2

2(Ã2) =
σ2

2,min(A). Again, we have

Wboundmin(A) ≤Wbound(Ã2) ≤ σ2
2(Ã2) = σ2

2,min(A).

We obtain the result by putting the last two inequalities together.
We omit the proof of (2.7) since it can be obtained by a similar argument and

proceed to prove (2.9). The first inequality σ2(A) ≤ σ1(A) holds since the p-norm of
any real vector is a decreasing function of p. The second inequality is also standard
since it bounds the 1-norm of a vector by means of its 2-norm. This result was obtained
earlier by Juvan and Mohar [24]; we include its proof for completeness. Applying the
Cauchy–Schwarz inequality to σ2

1(A), we have n∑
i=1

∑
j∈row(i)

(i− j)

2

≤

 n∑
i=1

∑
j∈row(i)

1

  n∑
i=1

∑
j∈row(i)

(i− j)2
 = |E|σ2

2(A).
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We obtain the result by considering two orderings that achieve the minimum 1- and
2-sums. 2

2.3. Complexity of the 2-sum problem. We proceed to show that minimiz-
ing the 2-sum is NP-complete. In section 8 we show that the spectral algorithm
computes a 2-sum within a factor of two for the finite element problems in our test
collection. This proof shows that despite the near-optimal solutions obtained by the
spectral algorithm on this test set, it is unlikely that a polynomial time algorithm can
be designed for computing the minimum 2-sum.

Readers who are willing to accept the complexity of this problem without proof
should skip this section; we recommend that everyone do so on a first reading.

Given a graph G = (V,E) on n vertices, MINTWOSUM is the problem of
deciding if there exists a numbering of its vertices α : V 7→ {1, . . . , n} such that∑

(u,v)∈E(α(u)−α(v))2 ≤ k for a given positive integer k. This is the decision version
of the problem of minimizing the 2-sum of G.

Theorem 2.2. MINTWOSUM is NP-complete.

Remark. This proof follows the framework for the NP-completeness of the 1-sum
problem in Even [8, section 10.7], but the details are substantially different.

Proof. The theorem will follow if we show that MAXTWOSUM, the problem of
deciding whether a graph G′ on n vertices has a vertex numbering with 2-sum greater
than or equal to a given positive integer k′, is NP-complete. For, the 2-sum of G′ under
some ordering is at least k′ if and only if the 2-sum of the complement of G′ under the
same ordering is at most p(n)−k′, where p(n) =

∑n
j=1

∑j−1
i=1 (j− i)2 = n4/12−n2/12

is the 2-sum of the complete graph.

We show that MAXTWOSUM is NP-complete by a reduction from MAXCUT,
the problem of deciding whether a given graph G = (V,E) has a partition of its
vertices into two sets {S, V \ S} such that |δ(S, V \ S)|, the number of edges joining
S and V \ S, is at least a given positive integer k. From the graph G we construct a
graph G′ = (V ′ ≡ V ∪{x1, . . . , xn4}, E′ ≡ E) by adding n4 isolated vertices to V and
no edges to E. We claim that G has a cut of size at least k if and only if G′ has a
2-sum at least k′ ≡ k · n8.

If G has a cut (S, V \ S) of size at least k, define an ordering α′ of G′ by inter-
posing the n4 isolated vertices between S and V \ S: number the vertices in S first,
the isolated vertices next, and the vertices in V \ S last, where the ordering among
the vertices in each set S and V \ S is arbitrary. Every edge belonging to the cut
contributes at least n8 to the 2-sum, and hence its value is at least k · n8.

The converse is a little more involved.

Suppose that G′ has an ordering α′ : V ′ 7→ {1, 2, . . . , n+ n4} with 2-sum greater
than or equal to k · n8. The ordering α′ of G′ induces a natural ordering α : V 7→
{1, . . . , n} of G if we ignore the isolated vertices and maintain the relative ordering of
the vertices in V . For each 1 ≤ i ≤ n, define the ordered set Si = {v ∈ V : α(v) ≤ i}.
Then each pair (Si, V \ Si) is a cut in G. Further, each such cut in G induces a
cut (S′i, V

′ \ S′i) in the larger graph G′ as follows. The vertex set S′i is formed by
augmenting Si with the isolated vertices numbered lower than the highest numbered
(nonisolated) vertex in Si (with respect to the ordering α′).

We now choose a cut (S′, V ′ \S′) that maximizes the “1-sum over the cut edges”∑
v∈S′,w∈V ′\S′

(v,w)∈E′,

|α′(v)− α′(w)|,
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from among the n cuts (S′i, V
′ \ S′i). By means of this cut and the ordering α′, we

define a new ordering β′ by moving the isolated vertices in the ordered set S′ to the
highest numbers in that set, by moving the isolated vertices in V ′ \ S′ to the lowest
numbers in that set, and by preserving the relative ordering of the other vertices. The
effect is to interpose the isolated vertices in “between” the two sets of the cut.

Claim. The 2-sum of the graph G′ under the ordering β′ is greater than that
under α′.

To prove the claim, we examine what happens when an isolated vertex x belonging
to S′ is moved to the higher end of that ordered set.

Define three sets A′, B′, C ′ as follows. The set A′ (B′) is the set of vertices in
S′ numbered lower (higher) than x in the ordering α′ and C ′ ≡ V ′ \ S′. Also, let
E1 denote the edges joining A′ and B′, E2 denote edges joining B′ and C ′, and E3

denote those joining A′ and C ′.
Denote the contribution, with respect to the ordering α′, of an edge ek ∈ E1 to

the 1-sum by ak and that of an edge el ∈ E2 by bl. Then the change in the 2-sum
due to moving x is ∑

E2

(bl + 1)2 − b2l +
∑
E1

(ak − 1)2 − a2
k

= |E1|+ |E2|+
∑
E2

2bl −
∑
E1

2ak.

The third term on the right-hand side is the contribution to the 1-sum made by
the edges E2 in the cut (A′ ∪ B′, C ′) ≡ (S′, V ′ \ S′), while the fourth term is the
contribution made by the edges E1 in the cut (A′, B′ ∪ C ′). By the choice of the cut
(S′, V ′ \ S′), we find that the difference is positive, and hence that the 2-sum has
increased in the new ordering obtained from α′ by moving the vertex x.

We now show that after moving the vertex x, (A′ ∪B′, C ′) continues to be a cut
that maximizes the 1-sum over the cut edges among all cuts (S′i, V

′ \ S′i) with respect
to the new ordering. For this cut, the 1-sum over cut edges has increased by |E2|
because the number of each vertex in B has decreased by one in the new ordering.
Among cuts with one set equal to an ordered subset of A′, the 1-sum over cut edges
can only decrease when x is moved, since the set B′ moves closer to A′, and C ′ does
not move at all relative to A′. Now consider cuts of the form (A′ ∪B′1, B′2 ∪C ′), with
B′1 an ordered subset of B′, and B′1 ∪B′2 = B′. The cut edges now join A′ to B′2 ∪C ′,
and B′1 to B′2 ∪ C ′. The edges joining A′ to B′2 contribute a smaller value to the
1-sum in the new ordering relative to α′, while the edges joining A′ to C ′ contribute
the same to the 1-sum in both cuts (A′∪B′, C ′) and (A′∪B′1, B′2∪C ′) under the new
ordering. The edges joining B′1 and B′2 do not change their contribution to the 1-sum
in the new ordering. The edges that join B′1 and C ′ form a subset of the edges that
join B′ and C ′, and hence the contribution of the former to the 1-sum is no larger
than the contribution of the latter set in the new ordering. This shows that the cut
(A′∪B′, C ′) continues to have a 1-sum over the cut edges larger than or equal to that
of any cut (A′ ∪ B′1, B′2 ∪ C ′). Finally, any cut that includes A′, B′, and an ordered
subset C ′1 of C ′ can be shown by similar reasoning to not have a larger 1-sum than
(S′, V ′ \ S′).

The reasoning in the previous paragraph permits us to move the isolated vertices
in S′ one by one to the higher end of that set without decreasing the 2-sum while
simultaneously preserving the condition that the cut (S′, V ′ \ S′) has the maximum
value of the 1-sum over the cut edges. The argument that we can move the isolated
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vertices in V ′ \ S′ to the beginning of that ordered set follows from symmetry since
both the 2-sum and the 1-sum are unchanged when we reverse an ordering. Hence by
inducting over the number of isolated vertices moved, the ordering β′ has a 2-sum at
least as large as the ordering α′. This completes the proof of the claim.

The rest of the proof involves computing an upper bound on the 2-sum of the
graph G′ under the ordering β′ to show that since G′ has 2-sum greater than k′, the
graph G has a cut of size at least k.

Let δ ≡ |(S′, V ′ \S′)|. The cut edges contribute at most δ · (n4 +n)2 to the upper
bound on the 2-sum; the uncut edges contribute at most the 2-sum of a complete
graph on n vertices. The latter is p(n) ≡ n4/12− n2/12. Thus we have, keeping only
the positive terms,

δ(n4 + n)2 + (1/12)n4 ≥ kn8

⇒ δ + (2δ)/n3 + (1/(12n4)) + δ/n6 ≥ k.

Since the number of cut edges δ is at most n2/2, the sum of the latter three terms on
the left-hand side is easily computed to be less than 1 for n > 2. Hence we conclude
that the graph G has a cut with at least k edges. This completes the proof of the
theorem. 2

3. Bounds for envelope size. In this section we present lower bounds for the
minimum envelope size and the minimum work involved in an envelope Cholesky
factorization in terms of the second Laplacian eigenvalue. We will require some back-
ground on the Laplacian matrix.

3.1. The Laplacian matrix. The Laplacian matrix Q(G) of a graph G is the
n× n matrix D−M , where D is the diagonal degree matrix and M is the adjacency
matrix of G. If G is the adjacency graph of a symmetric matrix A, then we could
define the Laplacian matrix Q directly from A:

qij =


−1 if i 6= j and aij 6= 0,
0 if i 6= j and aij = 0,∑n

j=1

j 6=i
|qij | if i = j.

Note that

xTQx = xTDx− xTMx

=
∑
j≤i
aij 6=0

(xi − xj)2.(3.1)

The eigenvalues of Q(G) are the Laplacian eigenvalues of G, and we list them
as λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λn(Q). An eigenvector corresponding to λk(Q) will be
denoted by xk and will be called a kth eigenvector of Q. It is well known that Q is a
singular M -matrix, and hence its eigenvalues are nonnegative. Thus λ1(Q) = 0, and
the corresponding eigenvector is any nonzero constant vector c. If G is connected,
then Q is irreducible, and then λ2(Q) > 0; the smallest nonzero eigenvalues and the
corresponding eigenvectors have important properties that make them useful in the
solution of various partitioning and ordering problems. These properties were first
investigated by Fiedler [9, 10]; as discussed in section 1, more recently several authors
have studied their application to such problems.
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3.2. Laplacian bounds for envelope parameters. It will be helpful to work
with the “column-oriented” definition of the envelope size. Let the vertex corre-
sponding to a column j of A be numbered vj in the adjacency graph so that V =
{v1, . . . , vn}, and let Vj = {v1, . . . , vj}. Recall that the column width of a vertex vj is
cj = |adj(Vj)| and that the envelope size of G (or A) is

Esize(G) =
n∑
j=1

cj .

Recall also that ∆ denotes the maximum degree of a vertex. Given a set of vertices
S, we denote by δ(S) the set of edges with one endpoint in S and the other in V \ S.

We make use of the following elementary result, where the lower bound is due to
Alon and Milman [1] and the upper bound is due to Juvan and Mohar [24].

Lemma 3.1. Let S ⊂ V be a subset of the vertices of a graph G. Then

λ2(Q)
|S||V \ S|

n
≤ |δ(S)| ≤ λn(Q)

|S||V \ S|
n

. 2

Theorem 3.2. The envelope size of a symmetric matrix A can be bounded in
terms of the eigenvalues of the associated Laplacian matrix as

λ2(Q)

6∆
(n2 − 1) ≤ Esize(A) ≤ λn(Q)

6
(n2 − 1).

Proof. From Lemma 3.1,

|δ(Vj)| ≥
λ2(Q)

n
j(n− j).

Now cj(A) = |adj(Vj)| ≥ |δ(Vj)|/∆; substituting the lower bound for |δ(Vj)| and
summing this latter expression over all j, we obtain the lower bound on the envelope
size.

The upper bound is obtained by using the inequality cj(A) ≤ |δ(Vj)| with the
upper bound in Lemma 3.1. 2

A lower bound on the work in an envelope Cholesky factorization can be obtained
from the lower bound on the envelope size.

Theorem 3.3. A lower bound on the work in the envelope Cholesky factorization
of a symmetric positive-definite matrix A is

Ework(A) ≥ Esize(A)
2

2n
.

Proof. The proof follows from equations (2.1) and (2.2) by an application of the
Cauchy–Schwarz inequality. We omit the details. 2

Cuthill and McKee [3] proposed one of the earliest ordering algorithms for re-
ducing the envelope size of a sparse matrix. George [14] discovered that reversing
this ordering leads to a significant reduction in envelope size and work. The envelope
parameters obtained from the RCM ordering are never larger than those obtained
from CM [29]. The RCM ordering has become one of the most popular envelope size
reducing orderings. However, we do not know of any published quantitative results on
the improvement that may be expected by reversing an ordering, and here we present
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the first such result. For degree-bounded finite element meshes, no asymptotic im-
provement is possible; the parameters are improved only by a constant factor. Of
course, in practice, a reduction by a constant factor could be quite significant.

Theorem 3.4. Reversing the ordering of a sparse symmetric matrix A can change
(improve or impair) the envelope size by at most a factor ∆ and the envelope work by
at most ∆2.

Proof. Let vj denote the vertex in the adjacency graph corresponding to the jth
column of A (in the original ordering) so that the jth column width cj(A) = |adj(Vj)|,
where Vj = {v1, . . . , vj}. Let Ã denote the permuted matrix obtained by reversing
the column and row ordering of A. We have the inequality

cj(A) = |adj(Vj)| ≤ |δ(Vj)| ≤ ∆|adj(V \ Vj)| = ∆cn−j(Ã).

Since Esize(A) =
∑n
j=1 cj(A), summing this inequality over j from one to n, we obtain

Esize(A) ≤ ∆Esize(Ã). By symmetry, the inequality Esize(Ã) ≤ ∆Esize(A) holds as
well.

The inequality on the envelope work follows by a similar argument from the
equation Ework(A) = (1/2)

∑n
j=1 c

2
j . 2

4. Quadratic assignment formulation of 2- and 1-sum problems. We
formulate the 2- and 1-sum problems as QAPs in this section.

4.1. The 2-sum problem. Let the vector p =
(

1 2 · · · n
)T

, and let α
be a permutation vector, i.e., a vector whose components form a permutation of 1,
. . ., n. We may write α = Xp, where X is a permutation matrix with elements

xij =

{
1 if j = α(i),
0 otherwise.

It is easily verified that the (α(i), α(j)) element of the permuted matrix XTAX is the
element aij of the unpermuted matrix A. Let B = p pT ; then bij = ij. We denote the
set of all permutation vectors with n components by Sn.

We write the 2-sum as a quadratic form involving the Laplacian matrix Q:

σ2
2,min(A) = min

X
σ2

2(XTAX)

= min
α∈Sn

∑
α(j)≤α(i)

aα(i),α(j) 6=0

(α(i)− α(j))2

= min
α∈Sn

αTQα

= min
α∈Sn

n∑
i=1

n∑
j=1

qij α(i)α(j).

The transformation from the second to the third line makes use of (3.1).
This quadratic form can be expressed as a QAP by substituting bα(i),α(j) =

α(i)α(j):

min
α∈Sn

αTQα = min
α∈Sn

n∑
i=1

n∑
j=1

qij bα(i)α(j).
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There is also a trace formulation of the QAP in which the variables are the
elements of the permutation matrix X. We obtain this formulation by substituting
Xp for α. Thus

min
α∈Sn

αTQα = min
X

pTXTQXp.

We may consider the last scalar expression as the trace of a 1 × 1 matrix and then
use the identity trMN = trNM to rewrite the right-hand side of the last displayed
equation as

min
X

trQXp pTXT ≡ min
X

trQXBXT .

This is a QAP since it is a quadratic in the unknowns xij , which are the elements
of the permutation matrix X. The fact that B is a rank-one matrix leads to great
simplifications and savings in the computation of good lower bounds for the 2-sum
problem.

4.2. The 1-sum problem. Let M be the adjacency matrix of a given symmetric
matrix A and let S denote a “distance matrix” with elements sij = |i − j|, both of
order n. Then

σ1,min(A) = min
X

σ1(XTAX)

= min
α∈Sn

∑
α(j)≤α(i)

mα(i),α(j) 6=0

α(i)− α(j)

= (1/2) min
α∈Sn

n∑
i=1

n∑
j=1

mij sα(i),α(j)

= (1/2) min trMXSXT .

Unlike the 2-sum, the matrices involved in the QAP formulation of the 1-sum are
both of rank n. Hence the bounds we obtain for this problem by this approach are
considerably more involved, and will not be considered here.

5. Eigenvalue bounds for the 2-sum problem.

5.1. Orthogonal bounds. A technique for obtaining lower (upper) bounds for
the QAP

min
X

trQXBXT , X is a permutation matrix,

is to relax the requirement that the minimum (maximum) be attained over the class
of permutation matrices. Let u = (1/

√
n )
(

1 1 . . . 1
)

denote the normalized
n-vector of all ones. A matrix X of order n is a permutation matrix if and only if it
satisfies the following three constraints:

Xu = u, XTu = u,(5.1)

XTX = In,(5.2)

xij ≥ 0, i, j = 1, . . . , n.(5.3)

The first of these, the stochasticity constraint , expresses the fact that each row sum
or column sum of a permutation matrix is one; the second states that a permutation
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matrix is orthogonal; the third states that its elements are nonnegative. The simplest
bounds for a QAP are obtained when we relax both the stochasticity and nonnega-
tivity constraints and insist only that X be orthonormal. The following result is from
[11]; see also [12].

Theorem 5.1. Let the eigenvalues of a matrix be ordered

λ1(·) ≤ λ2(·) ≤ · · · ≤ λn(·).

Then, as X varies over the set of orthogonal matrices, the following upper and lower
bounds hold:

n∑
i=1

λi(Q)λn+1−i(B) ≤ trQXBXT ≤
n∑
i=1

λi(Q)λi(B). 2

The Laplacian matrix Q has λ1(Q) = 0; also λi(B) = 0, for i = 1, . . ., n− 1, and
λn(B) = pT p = (1/6)n(n+ 1)(2n+ 1). Hence the lower bound in the theorem above
is zero and the upper bound is (1/6)λn(Q)n(n+ 1)(2n+ 1).

5.2. Projection bounds. Stronger bounds can be obtained by a projection
technique described by Hadley, Rendl, and Wolkowicz [19]. The idea here is to satisfy
both the stochasticity and orthonormality constraints and relax only the nonnegativ-
ity constraints. This technique involves projecting a permutation matrix X into a
subspace orthogonal to the stochasticity constraints (5.1) by means of an eigenpro-
jection.

Let the n×n−1 matrix V be an orthonormal basis for the orthogonal complement
of u. By the choice of V , it satisfies two properties: V Tu = 0 and P =

(
u V

)
is

an orthonormal matrix of order n.
Observe that

PTXP =

(
uT

V T

)
X
(
u V

)
=

(
uTXu uTXV
V TXu V TXV

)
=

(
1 0T

0 Y

)
,

where Y ≡ V TXV .
This suggests that we take

X = P

(
1 0T

0 Y

)
PT

= u uT + V Y V T .(5.4)

Note that with this choice the stochasticity constraints Xu = u and XTu = u are
satisfied. Furthermore, if X is an orthonormal matrix of order n satisfying Xu = u,
then

PTXP =

(
1 0T

0 Y

)
is orthonormal, and this implies that Y is an orthonormal matrix of order n − 1.
Conversely, if Y is orthonormal of order n − 1, then the matrix X obtained by the
construction above is orthonormal of order n. The nonnegativity constraint X ≥ 0
becomes, from (5.4), V Y V T ≥ −u uT . These facts will enable us to express the
original QAP in terms of a projected QAP in the matrix of variables Y .
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To obtain the projected QAP, we substitute the representation of X from (5.4)
into the objective function tr QXBXT . Since Qu = 0 by the construction of the
Laplacian, terms of the form Qu uT · · · vanish. Further,

trQV Y V TBu uT = tr uTQV Y V TBu,

where we use the identity trMN = trNM for an n× k matrix M and a k×n matrix
N . Again this term is zero since uTQ = 0T . Hence the only nonzero term in the
objective function is

trQ V Y V T B V Y TV T

= tr (V TQV ) Y (V TBV ) Y T

= tr Q̂Y B̂Y T ,

where M̂ = V TMV is a projection of a matrix M .
We have obtained the projected QAP in terms of the matrix Y of order n − 1,

where the constraint that X be a permutation matrix now imposes the constraints
that Y be orthonormal and that V Y V T ≥ −uuT . We obtain lower and upper bounds
in terms of the eigenvalues of the matrices Q̂ and B̂ by relaxing the nonnegativity
constraint again.

Theorem 5.2. The following upper and lower bounds hold for the 2-sum problem:

(1/12)λ2(Q)(n− 1)n(n+ 1) ≤ σ2
2(A) ≤ (1/12)λn(Q)(n− 1)n(n+ 1).

Proof. If we apply the orthogonal bounds to the projected QAP, we get

n−1∑
i=1

λi(Q̂)λn−i(B̂) ≤ σ2
2(A) ≤

n−1∑
i=1

λi(Q̂)λi(B̂).

The vector u is the eigenvector of Q corresponding to the zero eigenvalue, and hence
eigenvectors corresponding to higher Laplacian eigenvalues are orthogonal to it. Thus
any such eigenvector xj can be expressed as xj = V rj . Substituting this last equation

into the eigenvalue equation Qxj = λj(Q)xj and premultiplying by V T , we obtain

Q̂rj = λj(Q)rj . Hence for i = 2, . . ., n, we have λi(Q) = λi−1(Q̂). Also, λn−1(B̂) =

pTV V T p, and all other eigenvalues are zero. Hence it remains to compute the largest

eigenvalue of B̂.
From the representation In = PPT = u uT + V V T , we compute

pTV V T p

= pT p− (pT u) (uT p)

= (1/6)n(n+ 1)(2n+ 1)− (1/4)n(n+ 1)2 = (1/12)(n− 1)n(n+ 1).

We get the result by substituting these eigenvalues into the bounds for the
2-sum. 2

For later use in justifying the spectral algorithm for minimizing the 2-sum, we
observe that the lower bound is attained by the matrix

X0 = u uT + V RSTV T ,(5.5)

where R (S) is a matrix of eigenvectors of Q̂ (B̂) and the eigenvectors correspond to

the eigenvalues of Q̂ (B̂) in nondecreasing (nonincreasing) order.
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The result given above has been obtained by Juvan and Mohar [24] without using
a QAP formulation of the 2-sum. We have included this proof for two reasons. First, in
the next subsection, we show how the lower bound may be strengthened by diagonal
perturbations of the Laplacian. Second, in the following section, we consider the
problem of finding a permutation matrix closest to the orthogonal matrix attaining
the lower bound.

5.3. Diagonal perturbations. The lower bound for the 2-sum can be further
improved by perturbing the Laplacian matrix Q by a diagonal matrix Diag(d), where
d is an n-vector, and then using an optimization routine to maximize the smallest
eigenvalue of the perturbed matrix.

Choosing the elements of d such that its elements sum to zero, i.e., uT d = 0,
simplifies the bounds we obtain, and hence we make this assumption in this subsection.
We begin by denoting Q(d) = Q+ Diag(d) and expressing

f(X) ≡ trQXBXT = trQ(d)XBXT − tr Diag(d)XBXT .

The second term can be written as a linear assignment problem (LAP) since one of
the matrices involved is diagonal. Let the permutation vector α = Xp, and let dB
denote the n-vector formed from the diagonal elements of B:

tr Diag(d)XBXT =
n∑
i=1

dibα(i),α(i) = tr d dB
TXT .

We now proceed, as in the previous subsection, to obtain projected bounds for
the quadratic term, and thus for f(X). Note that Q(d)u = (1/

√
n )d since Qu = 0

and uTQ(d)u = 0 since the elements of d sum to zero. We let Bu = (1/
√
n ) r(B)

denote the row sum of the elements of B.
With notation as in the previous subsection, we substitute X = uuT +V Y V T in

the quadratic term in f(X). The first term trQ(d)uuTBuuT = truTQ(d)uuTBu = 0.
The second and third terms are equal, and their sum can be transformed as follows:

2 trQ(d)V Y V TBu uT = 2 tr uTQ(d)V Y V TBu

= (2/n) tr dTV Y V T r(B) = (2/n) tr V T r(B) dTV Y

= (2/n) tr Y TV T d r(B)
T
V = (2/n) tr d r(B)

T
V Y TV T .

Note that this term is linear in the projected variables Y , and we shall find it conve-
nient to express it in terms of X by the substitution XT − u uT = V Y TV T . Thus

(2/n) tr d r(B)
T
V Y TV T = (2/n) tr d r(B)

T
(XT − u uT ) = (2/n) tr d r(B)

T
XT

since the second term is equal to tr uT d r(B)
T
u, which is zero by the choice of d.

Finally, the fourth term becomes tr Q̂(d)Y B̂Y T , where Q̂(d) = V TQ(d)V , and as

before B̂ = V TBV .
Putting it all together, we obtain

f(X) = tr Q̂(d)Y B̂Y T + tr
(

(2/n)d r(B)
T
XT − d dBTXT

)
.

Observe that the first term is quadratic in the projected variables Y and the remaining
terms are linear in the original variables X. Our lower bound for the 2-sum shall be
obtained by minimizing the quadratic and linear terms separately.
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We can simplify the LAP by noting that B = p pT . Thus rB,i = i
∑n
j=1 j =

(1/2)n(n+1)i, and hence (2/n)r(B) = (n+1)p. Further, dB = sq(p), the vector with

ith component equal to i2. Hence the final expression for the LAP is

tr d
(

(n+ 1)pT − sq(p)T
)
XT .

The minimum value of this problem, denoted by L(d) (the minimum over the per-
mutation matrices X for a given d), can be computed by sorting the components of d
and

(
(n+ 1)p− sq(p)

)
.

The eigenvalues of B̂ can be computed as in the previous subsection. We may
choose d to maximize the lower bound. Thus this discussion leads to the following
result.

Theorem 5.3. The minimum 2-sum of a symmetric matrix A can be bounded as

σ2
2,min(A) ≥ max

d

{
(1/12)λ1(Q̂(d))(n− 1)n(n+ 1) + L(d)

}
,

where the components of the vector d sum to zero. 2

6. Computing an approximate solution from the lower bound. Consider
the problem of finding a permutation matrix Z “closest” to an orthogonal matrix X0

that attains the lower bound in Theorem 5.2. We show in this section that sorting
the second Laplacian eigenvector components in nonincreasing (also nondecreasing)
order yields a permutation matrix that solves a linear approximation to the problem.
This justifies the spectral approach for minimizing the 2-sum.

From (5.5), the orthogonal matrix X0 = uuT +V RSTV T , where R (S) is a matrix

of eigenvectors of Q̂ (B̂) corresponding to the eigenvalues of Q̂ (B̂) in increasing
(decreasing) order. We begin with a preliminary discussion of some properties of the
matrix X0 and the eigenvectors of Q. For j = 1, . . ., n − 1, let the jth column of R
be denoted by rj , and similarly let sj denote the jth column of S. Then s1 = cV T p,
where c is a normalization constant; for j = 2, . . ., n− 1, the vector sj is orthogonal

to V T p, i.e.,

sj
TV T p = 0.(6.1)

Recall from the previous section that a second Laplacian eigenvector x2 = V r1.
Now we can formulate the “closest” permutation matrix problem more precisely.

The minimum 2-sum problem may be written as

min
Z
‖(Q+ αI)1/2Zp‖2

2
.

We have chosen a positive shift α to make the shifted matrix positive definite and
hence to obtain a weighted norm by making the square root nonsingular. It can be
verified that the shift has no effect on the minimizer since it adds only a constant
term to the objective function.

We substitute Z = X0 + (Z −X0) and expand the 2-sum about X0 to obtain

(6.2)

‖(Q+ αI)1/2Zp‖2
2

= ‖(Q+ αI)1/2X0 p‖2
2
+2tr pT (Z −X0)T (Q+αI)X0 p+‖(Q+ αI)1/2(Z −X0) p‖2

2
.
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The first term on the right-hand side is a constant since X0 is a given orthogonal
matrix; the third term is a quadratic in the difference (Z −X0) and hence we neglect
it to obtain a linear approximation. It follows that we can choose a permutation
matrix Z close to X0 to approximately minimize the 2-sum by solving

min
Z

tr pTZT (Q+ αI)X0 p = min
Z

tr (Q+ αI)X0BZ
T .(6.3)

Substituting for X0 from (5.5) in this LAP and noting that Qu = 0, we find

min
Z

tr (Q+ αI)X0BZ
T = min

Z
tr (Q+ αI) (u uT + V RSTV T )BZT

= min
Z

(
trQV RSTV TBZT + α tr u uTBZT + α tr V RSTV TBZT

)
.(6.4)

The second term on the right-hand side is a constant since

tr u uTBZT = tr uTBZTu = tr uTBu = (uT p)2.

Here we have substituted ZTu = u from (5.1). We proceed to simplify the first term
in (6.4), which is

trQV RSTV TBZT = trQV

n−1∑
j=1

rj sj
T

V T p pTZT .

From (6.1) we find that sj
TV T p = 0, for j = 2, . . ., n − 1, and hence only the first

term in the sum survives . Noting that s1 = cV T p and V r1 = x2, this term becomes

trQx2 (cpTV ) V T p pTZT = cλ2(Q)(pTV V T p) tr x2 p
TZT .

The third term in (6.4) can be simplified in a similar manner, and hence ignoring
the constant second term, this equation becomes

c(λ2(Q) + α) (pTV V T p) min
Z

tr x2 p
TZT .

Hence we are required to choose a permutation matrix Z to minimize trx2p
TZT =

trZTx2p
T . The solution to this problem is to choose Z to correspond to a permutation

of the components of x2 in nonincreasing order, since the components of the vector p
are in increasing order. Note that −x2 is also an eigenvector of the Laplacian matrix,
and since the positive or negative signs of the components are chosen arbitrarily,
sorting the eigenvector components into nondecreasing order also gives a permutation
matrix Z closest, within a linear approximation, to a different choice for the orthogonal
matrix X0 (see (5.5)).

Similar techniques can be used to show that if one is interested in maximizing the
2-sum, then a closest permutation matrix to the orthogonal matrix that attains the
upper bound in Theorem 5.2 is approximated by sorting the components of the Lapla-
cian eigenvector xn (corresponding to the largest eigenvalue λn(Q)) in nondecreasing
(nonincreasing) order.

7. Asymptotic behavior of envelope parameters. In this section, we first
prove that graphs with good separators have asymptotically small envelope param-
eters and next study the asymptotic behavior of the lower bounds on the envelope
parameters as a function of the problem size.
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7.1. Upper bounds on envelope parameters. Let α, β, and γ be constants

such that (1/2) ≤ α, γ < 1, and define n0 ≡ (β/(1− α))
1/(1−γ)

. A class of graphs
G has nγ-separators if every graph G on n > n0 vertices in G can be partitioned
into three sets A, B, S such that no vertex in A is adjacent to any vertex in B, and
the number of vertices in the sets are bounded by the relations |A|, |B| ≤ αn and
|S| ≤ βnγ . If n ≤ n0, then we choose the separator S to consist of the entire graph.
If n > n0, then by the choice of n0,

αn+ βnγ = n
(
α+ βnγ−1

)
< n

(
α+ βnγ−1

0

)
= n,

and we separate the graph into two parts A and B by means of a separator S. The
assumption that γ is at least a half is not a restriction for the classes of graphs that
we are interested in here: planar graphs have n1/2-separators and overlap graphs [30]
embedded in d ≥ 2 dimensions have n(d−1)/d-separators. The latter class includes
“well-shaped” finite element graphs in d dimensions, i.e., finite element graphs with
elements of bounded aspect ratio.

Theorem 7.1. Let G be a class of graphs that has nγ-separators and maximum
vertex degree bounded by ∆. The minimum envelope size Esizemin(G) of any graph
G ∈ G on n vertices is O(n1+γ).

Proof. If n ≤ n0, then we order the vertices of G arbitrarily. Otherwise, let a
separator S separate G into the two sets A and B, where we choose the subset B to
have no more vertices than A. We consider a “modified nested dissection” ordering
of G that orders the vertices in A first, the vertices in S next, and the vertices in B
last. (See the ordering in Figure 2.1, where S corresponds to the set of vertices in the
middle column.)

The contribution to the envelope ES made by the vertices in S is bounded by the
product of the maximum row width of a vertex in S and the number of vertices in S.
Thus

ES ≤ |S| · |A ∪ S| ≤ βnγ(αn+ βnγ) = αβn1+γ + β2n2γ .

We also consider the contribution made by vertices in B that are adjacent to nodes in
S as a consequence of numbering the nodes in S. There are at most ∆|S| such vertices
in B. Since these vertices are not adjacent to any vertex in A, the contribution EB
made by them is

EB ≤ ∆|S| · |B ∪ S| ≤ ∆βnγ(αn+ βnγ) = ∆αβn1+γ + ∆β2n2γ .

Let n1 (n2) denote the number of vertices in the subset A (B). Adding the
contributions from the two sets of nodes in the previous paragraph, we obtain the
recurrence relation

E(n) ≤ αβ(1 + ∆)n1+γ + β2(1 + ∆)n2γ + max
n1,n2

(E(n1) + E(n2)) ,(7.1)

where n1, n2 ≤ αn and n1 + n2 ≤ n.
We claim that

E(n) ≤ C1n
1+γ + C2n

2γ logn(7.2)

for suitable constants C1 and C2 to be chosen later. We prove the claim by induction
on n.
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For n ≤ n0, the claim may be satisfied by choosing C1 to be greater than or equal
to (n0 + 1)/2, since

E(n) ≤ n(n+ 1)/2 ≤ n(n0 + 1)/2 ≤ C1n
1+γ .

Now consider the case when n > n0. Let the maximum in the recurrence relation
(7.1) be attained for n1 = an and n2 = bn ≤ (1 − a)n, where 1/2 ≤ a ≤ α < 1.
Since n > n0, we have n1, n2 < n; thus the inductive hypothesis can be applied to the
subgraphs induced by A and B. Hence we substitute the bound (7.2) into recurrence
relation (7.1) to obtain

E(n) ≤
(
αβ(1 + ∆) + C1(a1+γ + (1− a)1+γ)

)
n1+γ

+
(
β2(1 + ∆) + C2(a2γ log an+ (1− a)2γ log(1− a)n)

)
n2γ .

For the claim to be satisfied, this bound must be less than the right-hand side of
inequality (7.2). We prove this by considering the coefficients of the terms n1+γ and
n2γ .

Consider the n1+γ term first. It is easy to see that a1+γ + (1−a)1+γ < 1 because
1/2 ≤ a ≤ α < 1 and γ is positive. Furthermore, this expression attains its maximum
when a is equal to α. Denote this maximum value by ε ≡ α1+γ + (1 − α)1+γ < 1.
Equating the coefficients of n1+γ in the recurrence relation, if

C1ε+ αβ(1 + ∆) ≤ C1,

then the first term in the claimed asymptotic bound on E(n) would be true. Both
this inequality and the condition on C1 imposed by n0 are satisfied if we choose

C1 ≥ max

{
αβ(1 + ∆)

1− ε , (n0 + 1)/2

}
.

We simplify the coefficient of the n2γ term a bit before proceeding to analyze it.
We have

a2γ log an+ (1− a)2γ log(1− a)n

≤ a2γ log an+ (1− a)2γ log an ≤
(
α2γ + (1− α)2γ

)
logα n ≡ θ logα n

≤ logα n.

In the transformations we have used the following facts: 1− a ≤ a since a ≥ 1/2; the
maximum of a2γ + (1 − a)2γ , when 1/2 ≤ a ≤ α and 2γ is greater than or equal to
one, is attained for a = α; this maximum value θ is less than one. Hence for the claim
to hold, we require

C2 logα n+ β2(1 + ∆) ≤ C2 logn.

This last inequality is satisfied if we choose

C2 ≥
β2(1 + ∆)

logα−1
. 2

A similar proof yields Wboundmin(G) = O(n2+γ), which is an upper bound on
the work in an envelope Cholesky factorization. Hence good separators imply small
envelope size and work. Although we have used a “modified nested dissection” order-
ing to prove asymptotic upper bounds, we do not advocate the use of this ordering
for envelope reduction. Other envelope reducing algorithms considered in this paper
are preferable because they are faster and yield smaller envelope parameters.
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Table 7.1

Asymptotic upper and lower bounds on envelope size and work for an overlap graph in d di-
mensions.

problem separator λ2 Esize(A) Ework(A)
size LB UB LB UB

d-dim. O(n1−1/d) Θ(n−2/d) Ω(n2−2/d) O(n2−1/d) Ω(n3−4/d) O(n3−1/d)

7.2. Asymptotic behavior of lower bounds. In this subsection we consider
the implications of the spectral lower bounds that we have obtained. We denote
the eigenvalue λ2(Q) by λ2 for the sake of brevity in this subsection. We use the
asymptotic behavior of the second eigenvalues together with the lower bounds we
have obtained to predict the behavior of envelope parameters. For the envelope size,
we make use of Theorem 3.2; for the envelope work, we employ Theorem 3.3.

The bounds on envelope parameters are tight for dense and random graphs (matri-
ces). For instance, the full matrix (the complete graph) has λ2 = ∆+1 = n, and hence
Esizemin(A) = Θ(n2). Similarly, the bound on the envelope work Eworkmin(A) =
Θ(n3). The predicted lower bound is within a factor of three of the envelope size.
These bounds are also asymptotically tight for random graphs where each possible
edge is present in the graph with a given constant probability p, since the second
Laplacian eigenvalue satisfies [23]

λ2 = pn−Θ([p(1− p)n logn]1/2).

More interesting are the implications of these bounds for degree-bounded finite
element meshes in two and three dimensions. We will employ the following result
proved recently by Spielman and Teng [38].

Theorem 7.2. The second Laplacian eigenvalue of an overlap graph embedded
in d dimensions is bounded by O(n−2/d). 2

Planar graphs are overlap graphs in two dimensions and well-shaped meshes in
three dimensions are also overlap graphs with d = 3.

Table 7.1 summarizes the asymptotic lower and upper bounds on the envelope
parameters for a well-shaped mesh embedded in d dimensions. The most useful values
are d = 2 and d = 3. As before, the lower bound on the envelope size is from
Theorem 3.2, while the lower bound on the envelope work is from Theorem 3.3. The
upper bound on the envelope size follows from Theorem 7.1, and the upper bound
on the envelope work follows from the upper bound on Wbound(A), discussed at the
end of the proof of that theorem.

The lower bounds are obtained for problems where the upper bounds on the second
eigenvalue are asymptotically tight. This is reasonable for many problems, for instance,
model problems in partial differential equations. Note that the regular finite element
mesh in a discretization of Laplace’s equation in two dimensions (Neumann boundary
conditions) has λ2 = Θ(h2) = Θ(n−1), where h is the smallest diameter of an element
(smallest mesh spacing for a finite difference mesh). The regular three-dimensional
mesh in the discretized Laplace’s equation with Neumann boundary conditions satis-
fies λ2 = Θ(h2) = Θ(n−2/3).

For planar problems, the lower bound on the envelope size is Ω(n), while the
upper bound is O(n1.5). For well-shaped three-dimensional meshes, these bounds are
Ω(n4/3) and O(n5/3). The lower bounds on the envelope work are weaker since they
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Table 8.1

2-sums from the spectral reordering algorithm and lower bounds for triangulations of the sphere.

|V | |E| λ2 Spectral Spectral Gap(%)
LB 2-sum

18 48 2.00 969 978 0.9
66 192 6.25e-1 1.50e+4 1.54e+4 2.6

258 768 1.65e-1 2.36e+5 2.53e+5 6.9
1,026 3,072 4.17e-2 3.75e+6 4.05e+6 7.4
4,098 12,270 1.05e-2 6.00e+7 6.44e+7 7.3

16,386 49,152 2.60e-3 0.953e+9 1.03e+9 9.1

are obtained from the corresponding bounds on the envelope size. Direct methods
for solving sparse systems have storage requirements bounded by O(n logn) and work
bounded by O(n1.5) for a two-dimensional mesh; in well-shaped three-dimensional
meshes these are O(n4/3) and O(n2).

These results suggest that when a two-dimensional mesh possesses a small second
Laplacian eigenvalue, envelope methods may be expected to work well. Similar con-
clusions should hold for three-dimensional problems when the number of mesh points
along the third dimension is small relative to the number in the other two dimensions
and for two-dimensional surfaces embedded in three-dimensional space.

8. Computational results. We now present computational results to verify
how well the spectral ordering reduces the 2-sum. We report results on two sets of
problems.

The first set of problems, shown in Table 8.1, is obtained from John Richardson’s
(Thinking Machines Corporation) program for triangulating the sphere. The spectral
lower bounds reported are from Theorem 5.2. Gap is the ratio with numerator equal
to the difference between the 2-sum and the lower bound and the denominator equal
to the 2-sum. The results show that the spectral reordering algorithm computes values
within a few percent of the optimal 2-sum, since the gap between the spectral 2-sum
and the lower bound is within that range.

Table 8.2 contains the second set of problems, taken from the Boeing–Harwell
and NASA collections. Here the bounds are weaker than those in Table 8.1. These
problems have two features that distinguish them from the sphere problems. Many of
them have less regular degree distributions; e.g., NASA1824 has maximum degree 41
and minimum degree 5. They also represent more complex geometries. Nevertheless,
these results imply that the spectral 2-sum is within a factor of two of the optimal
value for these problems. These results are somewhat surprising since we have shown
that minimizing the 2-sum is NP-complete.

The gap between the computed 2-sums and the lower bounds could be further
reduced in two ways. First, a local reordering algorithm applied to the ordering
computed by the spectral algorithm might potentially decrease the 2-sum. Second,
the lower bounds could be improved by incorporating diagonal perturbations to the
Laplacian.

9. Conclusions. The lower bounds on the 2-sums show that the spectral re-
ordering algorithm can yield nearly optimal values in spite of the fact that minimizing
the 2-sum is an NP-complete problem. To the best of our knowledge, these are the
first results providing reasonable bounds on the quality of the orderings generated by
a reordering algorithm for minimizing envelope-related parameters. Earlier work had
not addressed the issue of the quality of the orderings generated by the algorithms.
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Table 8.2

2-sums from the spectral reordering algorithm and lower bounds for some problems from the
Boeing–Harwell and NASA collections.

Problem |V | |E| λ2 Spectral Spectral Gap(%)
LB 2-sum

CAN1072 1,072 5,686 7.96e–2 8.17e+6 9.02e+6 9.4
NASA1824 1,824 18,692 2.71e–1 1.37e+8 1.74e+8 21
NASA2146 2,146 35,052 1.35e–1 1.11e+8 1.32e+8 16

NACA 4,224 12,416 3.57e–3 2.24e+7 2.70e+7 17
BARTH4 6,019 17,473 1.76–3 3.19e+7 5.41e+7 41
BARTH 6,691 19,748 2.62e–3 6.54e+7 6.69e+7 2.2

BARTH5 15,606 45,878 7.41e–4 2.35e+8 3.06e+8 23
BCSSTK30 28,924 1,007,284 1.96e–2 3.00e+10 5.73e+10 48
COPTER2 55,476 352,238 6.77e–3 9.63e+10 1.17e+11 18

Unfortunately, the tight bounds on the 2-sum do not lead to tight bounds on the
envelope parameters. However, we have shown that problems with bounded separa-
tor sizes have bounded envelope parameters and have obtained asymptotic lower and
upper bounds on these parameters for finite element meshes.

Our analysis further shows that the spectral orderings attempt to minimize the
2-sum rather than the envelope parameters. Hence a reordering algorithm could be
used in a postprocessing step to improve the envelope and wavefront parameters from
a spectral ordering. A combinatorial reordering algorithm called the Sloan algorithm
has been recently used by Kumfert and Pothen [25] to reduce envelope size and front
widths. Currently this algorithm computes the lowest values of the envelope param-
eters on a collection of finite element meshes.

Acknowledgments. Professor Stan Eisenstat (Yale University) carefully read
two drafts of this paper and pointed out several errors. Every author should be so
blessed! Thanks, Stan.

Appendix. Lower bounds on the minimum p-sum. We prove two lower
bounds on the minimum p-sum. We make use of Lemma 3.1 in proving the first result.
In the following Bm(x) is the mth Bernoulli polynomial and Bm is the mth Bernoulli
number.

Theorem A.1. For 1 ≤ p <∞, the minimum p-sum of a graph G on n vertices
satisfies

σpp,min(G) ≥ 1

p+ 1
(Bp+1(s+ 1)−Bp+1) ,

where s = (λ2/4∆)n.
Proof. Consider any ordering α of the vertices of G. Partition the vertices into

two sets: A consisting of the lowest numbered n/2 vertices and B consisting of the
highest numbered n/2 vertices. By Lemma 3.1 the number of edges joining A and B,
|δ(A,B)|, is

|δ(A,B)| ≥ λ2

n
(n/2)

2
.

Hence at least s = |δ(A,B)|/∆ vertices in B are adjacent to vertices in A. Each
vertex in this subset of B has the smallest row width when it is adjacent to the
highest numbered vertex in A and to no other vertices in A. Hence these s vertices
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make a contribution of at least 1p + · · · + sp to the p-sum, and this sum can be
expressed in terms of the Bernoulli polynomials, as stated. 2

From an expansion of the Bernoulli polynomial, we find that asymptotically

σpp,min(G) ≥ 1

(p+ 1)(4∆)p+1
λ2
p+1np+1 +O((λ2

p/∆p)np).

We proceed to obtain another lower bound on the minimum p-sum.
The next result makes use of the following lemma recently proved by Helmberg

et al. [20]. Define the following symmetric function of the two positive integers m1,
m2 (with m1 +m2 < n) and parameters λ2, λn:

f(m1,m2)=

√
m1m2

2n

[(√
m1m2 +

√
(n−m1)(n−m2)

)
λ2(A.1)

+
(√

m1m2 −
√

(n−m1)(n−m2)
)
λn

]
.

Lemma A.2. Let S1, S2 be two disjoint subsets of the vertices of a graph G on
n vertices, with |Si| = si, for i = 1, 2. Then the number of edges joining S1 and S2,
|δ(S1, S2)|, satisfies

|δ(S1, S2)| ≥ f(s1, s2). 2

Theorem A.3. For 1 ≤ p <∞, the minimum p-sum of a graph G satisfies

σpp,min(G) ≥ 1

2p+1∆

λ2
p+1

(λn + λ2)p+2
(2λn + λ2)(λn + 2λ2)np+1.

Proof. Consider any ordering α of the vertices of G and a tripartition A, B, C:
we choose A to consist of the lowest numbered a ≡ (n− b)/2 vertices, C to consist of
the highest numbered (n− b)/2 vertices, and B to contain the remaining b vertices in
the “middle.” Here b, the size of B, is a parameter that will be determined later to
obtain a large lower bound.

From Lemma A.2, |δ(A,C)|, the number of edges joining A and C, is at least
f(a, a), where the symmetric function f(., .) is defined in (A.1). Hence there are at
least sC = f(a, a)/∆ vertices in C adjacent to vertices in A. Each of these vertices
has row width at least b.

Initially, consider the contribution to the envelope size Esize(G) made by these
vertices to obtain a suitable value for b:

Esize(G) ≥ f(a, a)

∆
b(A.2)

=
(n− b)

4n

[(
n− b

2
+
n+ b

2

)
λ2 +

(
n− b

2
− n+ b

2

)
λn

]
b

∆

=
1

4∆
b(n− b) (λ2 − (b/n)λn) .

We choose b to maximize the lower bound on the envelope size. Differentiating the
cubic polynomial in (A.2) with respect to b and simplifying, we obtain the quadratic
equation

b2 − 2

3

λ2 + λn
λn

nb+
1

3

λ2

λn
n2 = 0.
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From the quadratic we find that the maximizer is, to first order, bm = (1/2)(λ2/(λn+
λ2))n.

Now we consider the contribution to the p-sum made by the sC vertices in C
adjacent to vertices in A. Each of these vertices contributes at least bp to the p-sum,
and thus a lower bound on the minimum p-sum is

σpp,min(G) ≥ 1

4∆
(n− b) (λ2 − (b/n)λn) bp.

It is not easy to find a maximizer of the right-hand side in the bound above on the
p-sum since the polynomial in b is of degree p + 2. Hence we choose b equal to
the maximizer of the envelope size. We obtain the bound stated in the theorem by
substituting b = bm in the bound above. 2

Juvan and Mohar [24] have proved upper bounds for the p-sums. The techniques
in this Appendix can be used to compute bounds on Esize(A) and Wbound(A), but
the results are weaker than those obtained in section 3.
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Abstract. We study the sensitivity of algebraic eigenvalue problems associated with matrices
arising from linearization and discretization of the steady-state Navier–Stokes equations. In particu-
lar, for several choices of preconditioners applied to the system of discrete equations we derive upper
bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size.
The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the
viscosity and quadratic in the inverse of the mesh size and that scaling can be used to decrease the
sensitivity in some cases. Experimental results supplement these results and confirm the relatively
mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller
than the analysis suggests.
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1. Introduction. This paper concerns properties of the eigenvalues of matri-
ces arising from the discrete linearized steady-state Navier–Stokes equations. The
continuous problem is

− ν∆u + (u · grad) u + grad p = f in Ω,(1)

together with the incompressibility constraint

− div u = 0 in Ω,(2)

subject to suitable boundary conditions on ∂Ω, where Ω is an open bounded domain
in R2. These equations constitute a fundamental problem in computational fluid
dynamics; see, e.g., [1], [6], [8]. The two-dimensional vector field u represents the
velocity in Ω, p represents pressure, and the scalar ν is the viscosity, roughly speaking,
the ratio of convection to diffusion in the system.

A methodology for computing the numerical solution is to discretize (1)–(2) using
finite difference or finite element methods and then to solve the resulting nonlinear
system by some iterative method. Linearization leads to a set of matrix equations of
the form (

F BT

B 0

)(
u
p

)
=

(
f
0

)
,(3)

where u and p now represent discrete versions of velocity and pressure, respectively.
We will restrict our attention to the discrete Oseen equations

−ν∆u + (w · grad) u + grad p = f ,

−div u = 0,
(4)
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where w is given such that div w = 0. These equations arise from a nonlinear iteration
of the form −ν∆u(m) + (u(m−1) · grad) u(m) + grad p(m) = f , −div u(m) = 0; see [10].
In this case

F = νA+N,

where A consists of a pair of uncoupled discrete Laplace operators, corresponding to
diffusion, and N is a skew-symmetric matrix representing convection. We will also
assume that the velocity and pressure discretizations are div-stable; see, e.g., [1, p.
57], [8, p. 10ff], [16]. In matrix notation, this is equivalent to the condition

γ2 ≤ (p,BA−1BT p)

(p,Mp)
≤ Γ2 for all p,(5)

where (·, ·) denotes the Euclidean inner product, γ and Γ are constants that are in-
dependent of the discretization mesh size h, and for finite elements M is the pressure
mass matrix, i.e., the Grammian matrix of basis functions defining the discrete pres-
sure space.1 For finite differences on uniform grids, a natural analogue is M = h2I.

Let L denote the coefficient matrix of (3). The following preconditioning matrices
were introduced in [3]: a block diagonal preconditioner

QD =

(
F 0
0 1

νM

)
(6)

and a block triangular preconditioner

QT =

(
F BT

0 − 1
νM

)
.(7)

It was shown in [3] that the eigenvalues of each of the preconditioned matrices AD =
LQ−1

D and AT = LQ−1
T are uniformly bounded independent of the mesh size used

in the discretization. Numerical experiments also suggested that Krylov subspace
iterative methods such as the generalized minimal residual (GMRES) [13] and quasi-
minimal residual (QMR) methods [5] can be used to solve the preconditioned system
with iteration counts independent of the mesh size.

We are concerned with the sensitivity of the eigenvalues of the preconditioned
Oseen matrix using the two preconditioners (6) and (7). The motivation for studying
this lies in the fact that the use of either preconditioner in an iteration entails applying
the action of the inverse of the matrix of either (6) or (7) to a vector at each step.
This in turn requires the computation of the action of F−1, which, if direct methods
are used, will dominate the cost. An alternative that was considered in [3] is to
approximate the action of F−1 (i.e., compute an approximate solution to systems with
coefficient matrix F ) using an inner iteration. Unless very stringent stopping criteria
are used here, the resulting preconditioned operators can be viewed as perturbations
of those of (6)–(7). Thus, we are interested in the sensitivity of the eigenvalues to
perturbation.

If the preconditioned matrix is perturbed by a matrix of size ε, then the perturba-
tions of the eigenvalues will depend on ε and also on parameters associated with the

1 An inequality analogous to (5) also holds, with different constants, if M is any matrix spectrally
equivalent to the mass matrix; for example, M could be the diagonal matrix consisting of the diagonal
of the mass matrix [17]. In what follows, we will not distinguish among such possibilities for M .
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underlying problem, specifically, the viscosity ν and mesh size h. In this paper, we
examine these dependencies using a combination of analytic and experimental results.
The analysis derives from Wilkinson’s classical perturbation analysis [18], which shows
that if there are no nonlinear elementary divisors, the perturbations are of magnitude
O(ε). The analytic bounds are stated as functions of ν and h but they also depend on
properties of certain matrices associated with the Schur complement BF−1BT derived
from (4). The latter quantities are studied in a series of numerical experiments. The
combination of analytic and experimental results indicates that there is an increase
in sensitivity to perturbation as the viscosity decreases, with growth roughly linear in
1/ν. This effect can be mitigated to some extent by scaling the first equation of (4)
(the momentum equation). The bounds also establish linear dependence on 1/h with
the preconditionerQT and quadratic dependence withQD, although the experimental
results suggest that perturbations are considerably less sensitive to this parameter.

An outline of the paper now follows. In section 2, we derive preliminary bounds
and relations for several operators associated with the preconditioned matrices. In
section 3, we derive the analytic perturbation bounds for the block tridiagonal pre-
conditioner, and in section 4, we present the analysis for the block diagonal precondi-
tioner. For simplicity, the analysis is done for the case in which the coefficient matrix
of (4) has full rank, although often in practice (and in our experiments) it is rank
deficient by one because the pressure p is uniquely defined only up to a constant. In
section 5, we show that the analytic results carry over to this case. In section 6, we
present the experimental results, and in section 7, we show how the analysis applies
for the case of the inexact computation of the action of F−1.

2. Preliminary results. In this section we derive preliminary bounds and re-
lations for several operators associated with the preconditioners (6)–(7). We will
assume that the discrete problem (3) arises from a standard finite difference or low-
order finite element scheme on a uniform grid with mesh size h and that the discrete
problem is scaled so that the extreme eigenvalues of the discrete Laplace operators of
A are contained in an interval of the form [c1h

2, c2], where here and below ci denotes
a generic constant that is independent of h and ν. This is a natural scaling for finite
elements, and for finite differences on a uniform grid it corresponds to the five-point
operator with 4 in the diagonal entries and −1 in the off-diagonal entries. With this
normalization, BBT /h2 is also a scaled discrete Laplace operator and its eigenvalues
are contained in an interval of the same form. Let the discrete velocity and pres-
sure spaces have dimension nu and np, respectively. For div-stable discretizations,
nu ≥ np, and typically nu is significantly larger than np.

2

It will be convenient to use the symbol Q instead of 1
νM in the matrices of (6).

The preconditioned matrices are then given by

AD =

(
F BT

B 0

)(
F−1 0

0 Q−1

)
=

(
I KT

G 0

)
(8)

for the block diagonal preconditioner and

AT =

(
F BT

B 0

)(
F−1 F−1BTQ−1

0 −Q−1

)
=

(
I 0
G H

)
(9)

for the block triangular preconditioner. The submatrices on the right of (8)–(9) are

G = BF−1, KT = BTQ−1, H = GKT = BF−1BTQ−1.

2 For two-dimensional problems, the vector u has two components of grid vectors, and stability
considerations often also lead to more grid points for velocity than for pressure [8].
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The identity matrices are of order nu.

We recall some results from [3], which give bounds on the eigenvalues of H. Let
S = BF−1BT denote the Schur complement matrix for (3), and let

C = B

(
F−1 + F−T

2

)
BT , R = B

(
F−1 − F−T

2

)
BT

denote the symmetric and skew-symmetric parts of S, respectively. It was shown in
[3] that

γ2ν2

δ2 + ν2
≤ (q, Cq)

(q,Qq)
≤ Γ2,

|(q,Rq)|
(q,Qq)

≤ Γ2

2
,(10)

where γ and Γ are as in (5) and δ is the largest eigenvalue of A−1N , which is also
uniformly bounded independent of h [4]. Consequently, Bendixson’s theorem [14, p.
418] implies that the eigenvalues of H are contained in the box[

γ2ν2

δ2 + ν2
,Γ2

]
×
[
−Γ2

2
,

Γ2

2

]
(11)

in the complex plane.

We first derive bounds on the singular values of G, which will be used in the
perturbation analysis for the block triangular preconditioner.

Theorem 2.1. The largest singular value of G is bounded above by a quantity of
magnitude O(1/ν) which is independent of h as h → 0. The smallest singular value
of G is bounded below by a quantify of magnitude O(h) which is bounded independent
of ν as ν → 0.

Proof. The singular values of G are the square roots of the eigenvalues of GGT ,
and the largest and smallest of these eigenvalues are the extrema of (q,GGT q)/(q, q).
This Rayleigh quotient can be rewritten as

(q,GGT q)

(q, q)
=

(F−TBT q, F−TBT q)

(q, q)
=

(F−TBT q, F−TBT q)

(F−TBT q,BT q)

(F−TBT q,BT q)

(q, q)
.(12)

We consider the two terms in the product on the right of (12) separately. For the first
term, the substitution w = F−TBT q gives

(F−TBT q, F−TBT q)

(F−TBT q,BT q)
=

(w,w)

(w,FTw)
=

(w,w)(
w,
(
F+FT

2

)
w
) =

1

ν

(w,w)

(w,Aw)
.

Under the assumption on the scaling of the discrete Laplacian operators composing
A, it follows that

c1
ν
≤ (F−TBT q, F−TBT q)

(F−TBT q,BT q)
≤ c2h

−2

ν
.(13)

The second term of the product in (12) is

(q,BF−1BT q)

(q, q)
=

(q, Cq)

(q, q)
=

(q, Cq)

(q,Qq)

(q,Qq)

(q, q)
.(14)
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It is well known (see [17]) that the pressure mass matrix is spectrally equivalent to
h2I, so that

c1h
2

ν
≤ (q,Qq)

(q, q)
≤ c2h

2

ν
.(15)

Thus, the bounds for the symmetric part in (10) together with (12)–(15) imply

c1h
2

δ2 + ν2
≤ (q,GGT q)

(q, q)
≤ c2
ν2
.

The singular values of K will be used to analyze the block diagonal preconditioner.
Lemma 2.2. The largest singular value of K is bounded above by a quantity

of magnitude O
(
ν
h

)
. The smallest singular value is bounded below by a quantity of

magnitude O(ν).
Proof. The largest singular value is ‖K‖2 = ‖KT ‖2. Using KT = BTQ−1 and

Q = 1
νM , we have

‖KT ‖2 ≤ ν ‖BT ‖2 ‖M−1‖2.

But ‖M−1‖2 = O(h−2), and our assumptions on B imply that ‖BT ‖2 = ‖BBT ‖1/22 =

O(h). The smallest singular value is the inverse of ‖(KKT )−1‖1/22 . Then

‖(KKT )−1‖2 ≤
1

ν2
‖M‖22 ‖(BBT )−1‖2 =

1

ν2
c1h

4 c2h
−4.

Consider an alternative scaling in problems (1) and (4) in which the first equation
is multiplied by 1

ν . This does not change the solutions, but, as we will show in sections
3 and 4, it affects the sensitivity of discrete eigenvalues. For (4), scaling gives

−∆u +
1

ν
(w · grad) u + grad

(
1

ν
p

)
=

1

ν
f .(16)

The new discrete problem is as in (3) except that F , p, and f are replaced by F̂ = 1
νF ,

1
ν p, and 1

ν f , respectively. Let Q̂ = νQ = M , Ĝ = BF̂−1, K̂T = BT Q̂−1, and

Ĥ = ĜK̂T . The analogues of (11) and the bounds of Theorem 2.1 and Lemma 2.2
are given below. The proof follows from the fact that Ĝ = νG, K̂ = 1

νK, and Ĥ = H.

Corollary 2.3. With the scaling of (16), the eigenvalues of Ĥ are contained in
the box (11); the singular values of Ĝ are bounded above by a quantity of magnitude
O(1) and below by a quantity of magnitude O(hν); and the singular values of K̂ are
bounded above by a quantity of magnitude O

(
1
h

)
and below by a quantity of magnitude

O(1).
In the following, we will not specifically identify the matrices associated with this

scaling using the “hat” symbol. Instead, we will use the notation of (8)–(9) to refer
generically to both scalings. We will distinguish them as derived from either the
“original” formulation (4) or the “scaled” formulation (16) of the Oseen equations.

Finally, we will use the notation αG,K to denote the secant of the largest principal
angle between Range(GT ) and Range(KT ). That is, if QG and QK are matrices whose
columns represent orthonormal bases of Range(GT ) and Range(KT ), respectively,
then

αG,K = ‖(QTGQK)−1‖2 =
1

σmin(QTGQK)
,(17)
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where σmin denotes the smallest singular value (see [7, p. 584]). It is easily shown
(e.g., using QR decompositions) that

αG,K = ‖KT (GKT )−1G‖2.(18)

3. Analytic bounds for the block triangular preconditioner. It is evident
from (9) that the eigenvalues of AT consist of λ = 1 of multiplicity nu together with
the eigenvalues of H. We seek a factorization

AT = VTDTV−1
T(19)

that provides insight into the sensitivity of these eigenvalues to perturbation. We will
look for factors of the form

DT =

(
I 0
D21 Λ

)
nu
np

, VT =

(
V11 V12

V21 V22

)
nu
np

,

nu np nu np

(20)

where the subblocks of DT and VT must be determined and the dimensions are as
indicated. Let H have Jordan canonical form H = PΛP−1. The requirement ATVT =
VTDT is satisfied if

V11 = I, V12 = 0,
G = (I −H)V21 + PD21, V22 = P.

(21)

We distinguish between two cases: 1 ∈ σ(H) and 1 /∈ σ(H).
Suppose first that H has no eigenvalues equal to 1. The choice D21 = 0 in (20)

leads to V21 = (I −H)−1G. In this case, (19) represents a Jordan form for AT with

VT =

(
I 0

(I −H)−1G P

)
, V−1

T =

(
I 0

−P−1(I −H)−1G P−1

)
.(22)

Let AT (ε) = AT + εE be a perturbation of AT , where

E =

(
E11 E12

E21 E22

)
.(23)

The classical perturbation analysis of Wilkinson based on Gerschgorin theory [18, p.
71ff] shows that for every eigenvalue λ of AT with only linear elementary divisors,
perturbations of λ in σ(AT (ε)) are contained in a circle centered at λ with radius of
size cε, where c is independent of ε. The structure of VT can be used to obtain further
insight into the sizes of the perturbations. Let

ÊT = V−1
T EVT =

(
Ê11 Ê12

Ê21 Ê22

)
,(24)

so that we are concerned with the eigenvalues of

V−1
T AT (ε)VT = DT + εÊT =

(
I 0
0 Λ

)
+ ε

(
Ê11 Ê12

Ê21 Ê22

)
.(25)

Here and in the following the symbol “c” represents a generic constant that is inde-
pendent of the parameters h, ν, and ε.
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Lemma 3.1. If 1 6∈ σ(H), then there are nu eigenvalues λ̂ of AT (ε) (counting
multiplicity) satisfying

|λ̂− 1| ≤ ε ‖Ê11‖∞ + cε2 ‖Ê12‖∞.(26)

If there are m ≤ np eigenvalues λ of H with linear elementary divisors, then there

are m eigenvalues λ̂ of DT (ε), distinct from those of (26), that satisfy

|λ̂− λ| ≤ ε ‖Ê22‖∞ + cε2 ‖Ê21‖∞.(27)

Proof. Multiplying the first block row on the right side of (25) by ε/β, multiplying
the first block column by β/ε, and then applying Gerschgorin’s theorem leads to the
bound

|λ̂− (1 + ε[Ê11]ii)| ≤ ε
∑
j 6=i
|[Ê11]ij |+ ε2/β

∑
j

|[Ê12]ij |,

where β is such that the Gerschgorin disks for the first and second blocks of the scaled
matrix are disjoint (see [18, p. 73]). Assertion (26) follows. The argument for (27) is
identical, applied to the second block row of (25).

Thus, we can restrict our attention to the block diagonal entries of ÊT . Using
(22)–(24) we have

Ê11 = E11 + E12(I −H)−1G ,

Ê22 = −P−1(I −H)−1GE12P + P−1E22P.
(28)

The following result gives bounds on the perturbations of eigenvalues as functions of
the viscosity ν and mesh size h for a perturbation satisfying ‖E‖2 ≤ 1.3

Theorem 3.2. Assume ‖E‖2 ≤ 1. If 1 6∈ σ(H), then the eigenvalues λ̂ of AT (ε)
that are perturbations of λ = 1 satisfy

|λ̂− 1| ≤


ε
c1
νh

+O(ε2) for the original formulation,

ε
c1
h

+O(ε2) for the scaled formulation,

(29)

where c1 = c ‖(I −H)−1‖2. For eigenvalues λ of H with linear elementary divisors,

the perturbations λ̂ ∈ σ(AT (ε)) satisfy

|λ̂− λ| ≤


ε
c2
νh

+O(ε2) for the original formulation,

ε
c2
h

+O(ε2) for the scaled formulation,

(30)

where c2 = c κ(P ) ‖(I −H)−1‖2.
Proof. Relations (28) together with standard bounds on matrix lp-norms give

‖Ê11‖∞ ≤
c

h
‖Ê11‖2 ≤

c

h

(
1 + ‖(I −H)−1‖2 ‖G‖2

)
,

‖Ê22‖∞ ≤
c

h
‖Ê22‖2 ≤

c

h
κ(P )

(
‖(I −H)−1‖2 ‖G‖2 + 1

)
.

3 This assumption is stronger than the inequality |Eij | ≤ 1 used by Wilkinson; the latter condition
follows from our assumption.
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The conclusions follow from the upper bounds on ‖G‖2 in Theorem 2.1.
In the case 1 ∈ σ(H), we use an alternative version of (20). By analogy with the

analysis above, let V21 = (I −H)†G, where (I −H)† is the pseudoinverse. Then

VT =

(
I 0

(I −H)†G P

)
, V−1

T =

(
I 0

−P−1(I −H)†G P−1

)
.

Similarity (19) then holds for the choice

DT =

(
I 0

P−1ΠG Λ

)
,

where Π is the orthogonal projection onto the null space of I−HT . The perturbation
of DT associated with AT (ε) is then

V−1
T AT (ε)VT = DT + εÊT =

(
I 0
0 Λ

)
+

(
εÊ11 εÊ12

−P−1ΠG+ εÊ21 εÊ22

)
.(31)

First consider the eigenvalues ofH different from 1 with linear elementary divisors.
Let η be a parameter in (0, 1). Multiplying the second block row of (31) by εη and
the second block column by ε−η produces the matrix(

I 0
0 Λ

)
+

(
εÊ11 ε1−ηÊ12

−εηP−1ΠG+ ε1+ηÊ21 εÊ22

)
.(32)

For any η ∈ (0, 1) and small enough ε, the Gerschgorin disk for a perturbation λ̂ of
λ ∈ σ(H), λ 6= 1, is disjoint from the disks corresponding to perturbations of the
eigenvalue 1. Consequently, if λ has only linear elementary divisors, then

|λ̂− λ| ≤ εη ‖P−1ΠG‖∞ +O(ε).

For eigenvalues equal to 1, multiplying the second block row of (31) by ε1/2 and
multiplying the second block column by ε−1/2 produces(

I 0
0 Λ

)
+

(
εÊ11 ε1/2Ê12

−ε1/2P−1ΠG+ ε3/2Ê21 εÊ22

)
.(33)

Thus, for λ = 1 with linear or quadratic elementary divisors, the perturbations satisfy

|λ̂− λ| ≤ ε1/2 max
(
‖Ê12‖∞, ‖P−1ΠG‖∞

)
+O(ε).

Bounding the matrix infinity norms in (32) and (33) gives the following result.
Theorem 3.3. If 1 ∈ σ(H) with linear or quadratic elementary divisors, then

the eigenvalues λ̂ of AT (ε) that are perturbations of λ = 1 satisfy

|λ̂− 1| ≤ ε1/2
c

h
max

(
‖P‖2, ‖P−1‖2 ‖G‖2

)
+O(ε).(34)

For λ ∈ σ(H) different from 1 with linear elementary divisors, the perturbations

λ̂ ∈ σ(AT (ε)) satisfy

|λ̂− λ| ≤ εη
c

h
‖P−1‖2‖G‖2 +O(ε)(35)

for any η ∈ (0, 1). Here ‖G‖2 = O(1/ν) in the original formulation and ‖G‖2 = O(1)
for the scaled formulation.

Note that for any λ ∈ σ(AT ) with nonlinear elementary divisors, bounds analo-
gous to (29)–(30) and (34)–(35) can be obtained in which the dependence on ε is of
the form ε1/r, where r is the order of the largest Jordan block for λ; see [18, p. 79].
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4. Analytic bounds for the block diagonal preconditioner. For the block
diagonal preconditioner, we have results only in the case in which the Schur com-
plement matrix H has no nonlinear elementary divisors. As in Theorem 3.2, the
perturbation analysis will be stated in terms of properties of P , a fixed matrix of
eigenvectors of H. In addition, some of the bounds depend on αG,K , the secant of the
largest principal angle between Range(GT ) and Range(KT ), as defined in (17).

Consider the eigenvalue problem for AD,(
I KT

G 0

)(
u
p

)
= θ

(
u
p

)
.

This leads to the conditions

KT p = (θ − 1)u, Gu = θp(36)

on the components of the eigenvectors. One solution corresponds to the eigenvalue
θ = 1; the assumption that B and therefore K have full rank then implies that any
associated eigenvector satisfies p = 0, Gu = 0. We use two approaches to identify
eigenvalues θ 6= 1 and corresponding eigenvectors.

1. The substitution of u = ( 1
θ−1 )KT p into the second equation of (36) gives

GKT p = θ(θ − 1) p.

That is, any eigenpair (λ, p) of H = GKT leads to two eigenvalues

θ+ =
1 +
√

1 + 4λ

2
, θ− =

1−
√

1 + 4λ

2
(37)

of AD. The associated eigenvectors are(
u+

p

)
,

(
u−
p

)
,(38)

where

u+ =

(
1

θ+ − 1

)
KT p, u− =

(
1

θ− − 1

)
KT p.(39)

2. Alternatively, the substitution of p = 1
θGu into the first equation of (36) gives

KTGu = θ(θ − 1)u.

KTG has a zero eigenvalue of multiplicity nu − np (the dimension of the null space
of G) plus 2np nonzero eigenvalues. If (λ, u) is an eigenpair with λ 6= 0, then (37)
defines a pair of eigenvalues of AD. In this case, the eigenvectors have the form(

u
p+

)
,

(
u
p−

)
,(40)

where

p+ =

(
1

θ+

)
Gu, p− =

(
1

θ−

)
Gu.(41)
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It is straightforward to show that any u+ or u− from (39) is an eigenvector of
KTG and any p+ or p− from (41) is an eigenvector of GKT . Therefore, we will use
the symbol “±” to refer to the pairs of eigenvalues and eigenvectors of AD; i.e., u±
will refer to the first entries of either (38) or (40), p± to the second entries, and θ±
to the associated eigenvalue. We have established the following result.

Theorem 4.1. The eigenvectors of AD corresponding to the eigenvalue θ = 1

have the form (
u
0

), where Gu = 0. The eigenvectors corresponding to eigenvalues

different from 1 have the form (
u±
p±

), where the associated eigenvalues θ± satisfy

(37), and

Hp± = λp±, KTGu± = λu±, p± =

(
1

θ±

)
Gu±, u± =

(
1

θ± − 1

)
KT p±.

Let Θ± denote a diagonal matrix with entries {θ±} from (37). If the eigenvalues of
H have only linear elementary divisors, then ADVD = VDDD, where

DD =

 I 0 0
0 Θ+ 0
0 0 Θ−

 nu − np
np
np

, VD =

V U+ U−

0 P+ P−

 nu

np

,

nu−
np np np

nu−
np npnp

in which the columns of V form an orthogonal basis of the null space of G and

P± = GU±Θ−1
± , U± = KTP±(Θ± − I)−1.(42)

We will normalize the matrices U± and P± as follows:

U+ = U− = U = KTP,

P+ = P (Θ+ − I),

P− = P (Θ− − I).

(43)

It is then easily verified that

V−1
D =

 I 0 0
0 (Θ+ −Θ−)−1 0
0 0 (Θ− −Θ+)−1

 Φ 0
P−1

+ G P−1

P−1
− G P−1

 ,

where

Φ = V T (I − U(GU)−1G) = V T (I −KT (GKT )−1G).(44)

Now let AD(ε) = AD + εE be a perturbation of AD, where E is as in (23). The
eigenvalues of this perturbed matrix are the same as those of

V−1
D AD(ε)VD = DD + εÊD =

 I + εÊ11 εÊ12 εÊ13

εÊ21 Θ+ + εÊ22 εÊ23

εÊ31 εÊ32 Θ− + εÊ33

 ,(45)

where ÊD = V−1
D EVD. As in section 3, Gerschgorin analysis implies that for small

ε the effects of perturbation can be bounded using the perturbations on the block
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diagonal of (45). These are given by

Ê11 = ΦTE11V,

Ê22 = (Θ+ −Θ−)−1
[
P−1

+ G(E11U + E12P+) + P−1(E21U + E22P+)
]
,

Ê33 = (Θ− −Θ+)−1
[
P−1
− G(E11U + E12P−) + P−1(E21U + E22P−)

]
.

(46)

Theorem 4.2. If H has no nonlinear elementary divisors, then the eigenvalues
θ̂ of AD(ε) that are perturbations of θ = 1 satisfy

|θ̂ − 1| ≤ ε c
h

(1 + αG,K) +O(ε2)

for both the original and scaled formulations of the discrete Oseen equations. The
perturbations of eigenvalues different from 1 satisfy

|θ̂+−θ+| ≤


ε κ(P )αG,K

( c1
h2

+
c2
νh

)
+O(ε2) for the original formulation,

ε κ(P )αG,K
c

h2
+O(ε2) for the scaled formulation

(47)

and

|θ̂− − θ−| ≤


ε κ(P )

( c1
h2

+
c2
νh

)
+O(ε2) for the original formulation,

ε κ(P )
c

h2
+O(ε2) for the scaled formulation.

(48)

Proof. For the perturbations of λ = 1, it follows from (18), (44), and (45) that

|θ̂ − 1| ≤ ε c ‖Ê11‖∞ ≤ ε
c

h
‖Ê11‖2 ≤ ε

c

h
(1 + αG,K).

For the perturbations of eigenvalues different from 1, note that (37) and the
bounds (11) on the eigenvalues of H imply that the norm of each of the diagonal
matrices

Θ+ − I, Θ− − I, (Θ+ −Θ−)−1,
Θ−1

+ , (Θ− − I)−1(49)

is bounded independent of ν and h. Gerschgorin analysis gives

|θ̂± − θ±| ≤ ε
c

h
‖Êjj‖2,(50)

where j = 2 corresponds to Θ+ and j = 3 to Θ−. Relations (43) and (46) then imply

‖Êjj‖2 ≤ ‖(Θ+ −Θ−)−1‖2
(
‖P−1
± G‖2 + ‖P−1‖2

) (
‖KT ‖2 + ‖Θ± − I‖2

)
‖P‖2.(51)

Consider ‖P−1
− G‖2. Using the expression for P− in (43), we have

‖P−1
− G‖2 ≤ ‖(Θ− − I)−1‖2 ‖P−1‖2 ‖G‖2,

and combining this with (51) gives

‖Ê33‖2 ≤ κ(P ) ‖(Θ− −Θ+)−1‖2
(
‖(Θ− − I)−1‖2 ‖G‖2 + 1

) (
‖KT ‖2 + ‖Θ− − I‖2

)
.
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Result (48) follows from (50), the boundedness of the matrices of (49), and the bounds
on ‖G‖2 and ‖KT ‖2 in Lemma 2.2 and Corollary 2.3.

For ‖P−1
+ G‖2, first observe that (42) and (43) imply

(P−1
+ G)(KTPΘ−1

+ ) = I.

Let (P−1
+ G)T = Q1R1 and KTPΘ−1

+ = Q2R2 be QR factorizations, where R1 and R2

are square and nonsingular. Then RT1 Q
T
1 Q2R2 = I and

‖P−1
+ G‖2 = ‖R1‖2 ≤ ‖R−1

2 ‖2 ‖(QT1 Q2)−1‖2 = αG,K ‖R−1
2 ‖2.(52)

But ‖R−1
2 ‖2 is the inverse of the smallest singular value of KTPΘ−1

+ , so that

‖R−1
2 ‖2 ≤ ‖Θ+P

−1(KKT )−1P−TΘ+‖1/22 ≤ ‖Θ+‖2 ‖P−1‖2 ‖(KKT )−1‖1/22 .

From Lemma 2.2, Corollary 2.3, and the boundedness of ‖Θ+‖2, the term on the
right is bounded by c/ν ‖P−1‖2 for the original formulation and c ‖P−1‖2 for the
alternative formulation. Result (47) then follows from (50), (51) (with j = 2), and
(52).

Remark 4.1. The difference between (47) and (48) stems from the fact that
‖(Θ+ − I)−1‖2 is not independent of ν, so we cannot bound ‖P−1

+ G‖2 directly. The
results of section 6 suggest that the perturbations do not behave differently, but we
see no way to avoid including αG,K in (47).

5. The rank-deficient case. Unless an additional constraint is imposed on the
pressure in (1)–(2) or (4), the matrix of (3) will be rank deficient by one. This is the
case for the test problems of section 6. We outline here how the analysis above carries
over in the rank-deficient case.

For the block triangular preconditioner, ATVT = VTDT where, for 1 6∈ σ(H), the
analogues of the matrices defined in (20)–(22) are

DT =

(
I 0
0 Λ

)
, VT =

(
I 0

(I −H)−1G P

)
, V†T =

(
I 0

−P †(I −H)−1G P †

)
.

Λ is a square matrix of order np − 1 whose eigenvalues are the nonzero eigenvalues
of H, and P spans the associated invariant subspace. In particular, P † replaces P−1

and V†T replaces V−1
T . The analysis of perturbations of the nonzero eigenvalues of AT

then carries through verbatim with the inverse of the smallest singular value of P in
place of ‖P−1‖2. The case 1 ∈ σ(H) is generalized in a similar manner with (I −H)†

in place of (I −H)−1.
For the block diagonal preconditioner, the analogue of the similarity transforma-

tion of Theorem 4.1 is ADVD = VDDD, where

DD =

 I 0 0
0 Θ+ 0
0 0 Θ−

 nu−np+1

np

np

, VD =

 V U+ U−

0 P+ P−

 nu

np

.

nu−
np+1

np
−1

np
−1

nu−
np+1

np
−1

np
−1

Once again, all the analysis of section 4 goes through with P referring to the matrix
of eigenvectors corresponding to nonzero eigenvalues of H, P † in place of P−1, and
the inverse of the smallest nonzero eigenvalue of KKT in place of ‖(KKT )−1‖2.
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Fig. 1. Eigenvalues of AT (left) and AD (right) for ν = 1/20 and n = 32.

6. Experimental results. We now present the results of numerical experiments
that supplement the analysis of sections 3 through 5. Our test problem is a discrete
Oseen operator (4) on Ω = (−1, 1) × (−1, 1), with Dirichlet boundary conditions
u1 = u2 = 0 on the three fixed walls (x = −1, y = −1, x = 1) and u1 = 1, u2 = 0 on
the moving wall (y = 1). The coefficients of the convection terms describe a circular
vortex

w1 = 2y(1− x2), w2 = −2x(1− y2).

We discretize using bilinear finite elements on a uniform rectangular n × n velocity
grid of width h = 2/n augmented by streamline upwinding [9, p. 185]. To impose
div-stability, the pressure discretization uses “macro-elements” of width 2h; see [8,
p. 30]. The hydrostatic pressure is not explicitly specified, so that the matrices (3)
are rank deficient by one. Additional details about this problem are given in [3]. All
computations were performed in MATLAB on either a Sun SPARC-20 workstation
or a DEC-Alpha 2100 4/275 workstation.

We first show in Figure 1 some sample distributions of eigenvalues of AT and AD
for ν = 1/20 and n = 32. The plot on the left gives an indication of the rectangle
enclosing the eigenvalues of H (see (11)); the plot on the right represents the result
of the mapping λ 7→

(
1±
√

1 + 4λ
)
/2 of (37). Both pictures include the eigenvalue 1

of multiplicity nu = 2178 for AT and nu − np + 1 = 1890 for AD.
We present our results primarily as tabulations of maximum perturbations and

other quantities for various choices of viscosity parameter ν and grid parameter n.
The rows and columns of the tables indicate behavior as either ν → 0 or n becomes
large (h → 0). Note that accurate discrete solutions to (4) are obtained only if ν is
not too small relative to h. This difficulty can be ameliorated to some extent by an
appropriate choice of discretization, such as the streamline upwinding method used
here [2], [9, p. 262]. In practical experiments, it is often desired to compute solutions of
a fixed accuracy for a variety of values of ν by letting h→ 0 and ν → 0 simultaneously.
In an effort to follow trends in the data, we will consider some combinations of ν and
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Table 1

Maximum normalized perturbations of eigenvalues of AT .

n = 16 ν 1 1/10 1/20 1/30 1/50 1/100
Original λ = 1 21.7 137.6 318.5 478.2 766.1 1509.5

formulation λ 6= 1 21.4 80.5 201.1 313.4 529.9 1110.0
Scaled λ = 1 21.7 16.7 16.9 16.9 16.9 17.1

formulation λ 6= 1 21.4 8.3 10.2 10.6 10.7 11.2

n = 32
Original λ = 1 15.7 58.6 56.6 83.0 172.0 402.4

formulation λ 6= 1 22.7 26.7 50.8 43.1 141.2 257.8
Scaled λ = 1 15.7 15.2 14.0 14.1 14.2 14.4

formulation λ 6= 1 22.7 6.9 3.4 11.1 93.0 35.7

Table 2

Maximum normalized perturbations of eigenvalues of AD.

n = 16 ν 1 1/10 1/20 1/30 1/50 1/100
Original λ = 1 13.4 13.5 13.7 14.2 14.8 15.8

formulation Re(λ) < 0 11.6 7.5 6.5 9.8 16.2 31.9
Re(λ) > 1 10.1 8.3 7.6 10.6 16.5 32.1

Scaled λ = 1 13.4 13.5 13.7 14.2 14.8 15.8
formulation Re(λ) < 0 11.6 45.3 9.0 10.0 15.6 20.7

Re(λ) > 1 10.1 44.3 9.4 10.5 15.9 23.4

n = 32
Original λ = 1 12.9 12.9 13.0 13.0 13.1 13.7

formulation Re(λ) < 0 55.6 5.1 2.8 9.4 74.9 51.2
Re(λ) > 1 46.6 7.4 4.0 8.4 71.8 58.0

Scaled λ = 1 12.9 12.9 13.0 13.0 13.1 13.7
formulation Re(λ) < 0 55.6 48.7 19.0 60.4 505.6 324.3

Re(λ) > 1 46.6 47.7 19.6 57.6 516.7 301.1

h that could produce inaccurate solutions.
Our main results are in Tables 1 and 2. Table 1 shows the effects of perturba-

tion of the block tridiagonal preconditioner for two values of n and various ν. This
data was obtained by computing the eigenvalues of a set of ten perturbed matrices
AT (ε) = AT + εE where ε = 10−8 and E is a dense matrix with uniformly distributed
random numbers in an interval [−an, an], where an = 16/n. (For this choice, ‖E‖2 is
approximately constant for all n.) For λ = 1, the table presents(

max
λ̂∈σ1(AT+εE)

|λ̂− 1|
)

/ε,

where σ1(AT +εE) is the set of np eigenvalues that are closest to 1, and the maximum
is over all the perturbations. For λ 6= 1, the table shows(

max
λ̂∈σ′1(AT+εE)

|λ̂− λ|
)

/ε,

where σ′1(AT + εE) denotes the perturbations of λ ∈ σ(AT ), λ 6= 1, and λ 6= 0.4

4 These were obtained by sorting σ(AT ) and σ(AT + E) for each E and comparing the ordered
sets. For all tests, similar results were obtained for other values of ε.
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Table 3

Condition number of matrix P of eigenvectors of H.

ν 1 1/10 1/20 1/30 1/50 1/100
n = 16 5.4 18.0 5.4 5.0 7.9 14.7
n = 32 60.8 45.7 26.8 78.5 557.0 413.3
n = 64 181.8 3876.0 2900.4 2029.1 5441.2 2.74e4

Table 4

Norm of (I −H)−1.

ν 1 1/10 1/20 1/30 1/50 1/100
n = 16 100.8 16.2 17.1 17.1 16.5 16.6
n = 32 70.8 70.9 23.4 16.7 43.2 17.3
n = 64 697.0 2.59e4 1124.9 318.7 61.9 231.1

Table 5

Secant of largest principal angle between Range(GT ) and Range(KT ) (αG,K).

ν 1 1/10 1/20 1/30 1/50 1/100
n = 16 1.11 1.65 2.51 3.29 4.53 6.51
n = 32 1.16 1.72 2.76 3.77 5.57 8.96

xxx xxx

Analogous results for the block diagonal preconditioner are shown in Table 2. Here
we also distinguish between the eigenvalues with positive and negative real parts.

We also present experimental results for three other quantities appearing in the
bounds of sections 3 and 4: κ(P ), ‖(I − H)−1‖2, and αG,K . These are shown in
Tables 3, 4, and 5, respectively. Here κ(P ) refers to the version used for the rank-
deficient problem as outlined in section 5. It was obtained by computing the matrix
of eigenvectors P of H, normalizing the columns of P to have unit l2-norm, and
then computing the ratio of largest to smallest singular values of the submatrix of P
corresponding to the nonzero eigenvalues of H. (The normalization ensures that we
are within a factor of

√
np of the condition number of the optimally scaled version

of P [15].) Note that κ(P ) and αG,K exhibit a general tendency to increase as either
ν → 0 or n increases, with κ(P ) being particularly volatile.

Now consider the data of Table 1 for the block triangular preconditioner. Several
trends are apparent.

1. In the original formulation, the perturbations of both λ = 1 and λ 6= 1 are
increasing with 1/ν. In the scaled formulation, the perturbations of λ = 1
are insensitive to ν. This behavior is consistent with the results of Theorem
3.2.

2. In the scaled formulation, the perturbations of λ 6= 1 show some growth with
1/ν for n = 32, although there is no clear trend. This may arise from growth
in the product κ(P ) ‖(I −H)−1‖2.

3. There is little or no increase in perturbation size (and a decrease in some
cases) with the change of grid size from n = 16 to n = 32. This contrasts
with the bounds from the analysis, which degrade as h→ 0.

Next, consider Table 2.
1. The perturbations of λ 6= 1 for both the unscaled and scaled problems show

some growth with 1/ν. The qualitative trends are similar, but the perturba-
tions for the scaled formulations are larger. In contrast, the analysis (Theorem
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Table 6

Maximum normalized perturbations of eigenvalues of H.

ν 1 1/10 1/20 1/30 1/50 1/100
n = 16 3.8 4.7 2.4 2.4 3.2 5.3
n = 32 8.3 4.8 3.4 10.8 73.5 31.1
n = 64 28.4 226.4 134.1 61.7 130.8 402.3

4.2) suggests that the scaled version would be smaller; therefore, it appears
that the upper bounds of this analysis are not giving a complete indication
of dependence on ν.

2. The perturbations of λ = 1 are insensitive to ν and there is essentially no
difference between the perturbations of the eigenvalues with positive and
negative real parts. As noted in Remark 4.1, we believe the dependence on
αG,K is an artifact of the proof.

3. The dependence on the mesh size is more pronounced for the triangular pre-
conditioning, although there is no consistent pattern.

Thus, the analysis gives upper bounds on perturbation sizes, although it is not
possible to completely correlate the analytic bounds and experimental results. This
is likely due to the lack of a clear pattern in the behavior of κ(P ) and ‖(I −H)−1‖2,
together with the use of norm inequalities throughout the analysis that are not neces-
sarily tight. For example, the analysis combines bounds on matrix l2-norms derived
from the underlying differential operator with l∞ norms derived from Gerschgorin
bounds. We suspect that the factor of 1/h used to relate these quantities artificially
inflates the dependence of the bounds on the mesh size, although we see no way to
avoid introducing this term. In general, both the analysis and experiments indicate
a tendency for perturbations of the eigenvalues different from 1 to increase with 1/ν,
but growth appears to be at worst linear and for the block triangular preconditioning
it can be reduced by scaling.

Finally, Table 6 examines the sensitivity of the eigenvalues of the reduced matrix
H to perturbation. The entries are(

max
λ̂∈σ(H+εE)

|λ̂− λ|
)
/ε.

The results also indicate that the perturbations increase as the viscosity decreases,
and they display some growth as the number of mesh points increase, roughly like that
for the block diagonal preconditioner displayed in Table 2. Note that the dependence
on both 1/ν and n is much less severe than that of κ(P ) shown in Table 3. Once
again, this stands in contrast to analytic bounds such as those obtainable from the
Bauer–Fike theorem [7, p. 342], which suggests perturbations proportional to κ(P ).

7. Inexact inner iteration. We conclude by examining the effect of the inex-
act computation of the action of F−1. For brevity, we restrict our attention to the
unscaled version of AT ; a similar analysis leads to essentially the same conclusions for
AD. If the action of F−1 is approximated using an iterative method for each system
Fw = v, then F−1 can be replaced by F−1 +E in (9). The perturbed preconditioned
matrix is then AT + E , where

E =

(
FE FEKT

BE BEKT

)
.



EIGENVALUES OF PERTURBED NAVIER–STOKES OPERATORS 749

For this analysis it will be useful to consider the complete version of (24),

ÊT =

 FE(I +KT (I −H)−1G) FEKTP

P−1(I − (I −H)−1)BE
· (I +KT (I −H)−1G)

P−1(I − (I −H)−1)BEKTP

 .

Suppose the approximate solution w̃ satisfies

‖v − Fw̃‖
‖v‖ ≤ τ(53)

for some tolerance τ . Standard inequalities yield the bounds on the relative error

‖w − w̃‖
‖w‖ ≤ ‖F‖ ‖F−1‖ τ, ‖w − w̃‖

‖w‖ ≤ ‖F‖ ‖E‖ .

Treating these as approximate equalities gives ‖E‖ ≈ τ‖F−1‖. It follows that

‖Ê11‖ ≤≈ τ ‖F‖ ‖F−1‖
(
1 + ‖KT ‖ ‖(I −H)−1‖ ‖G‖

)
,

‖Ê12‖ ≤≈ τ ‖F‖ ‖F−1‖ ‖KT ‖ ‖P‖ ,
‖Ê21‖ ≤≈ τ ‖P−1‖ (1 + ‖(I −H)−1‖) ‖B‖ ‖F−1‖

(
1 + ‖KT ‖ ‖(I −H)−1‖ ‖G‖

)
,

‖Ê22‖ ≤≈ τ κ(P ) ‖I − (I −H)−1‖ ‖F−1‖ ‖KT ‖.

Using the l2-norm, let us consider the dependence of these bounds on the viscos-
ity ν under the assumption (derived from the experimental results presented above)
that the influence of P and H is not significant. The bounds on ‖Ê11‖ and ‖Ê21‖
include the product ‖KT ‖ ‖G‖ = O(ν) ·O(1/ν), which is independent of ν. Using the
coercivity and continuity of the convection–diffusion operator, it can be shown that
as functions of ν,

‖F‖ = O(1), ‖F−1‖ = O(1/ν).

(An algebraic proof can be found in [4, Theorem 1].) This implies that the bounds on
‖Ê11‖ and ‖Ê21‖ grow as ν decreases, whereas the bounds on ‖Ê12‖ and ‖Ê22‖ are
independent of ν. If τ is small, then as in section 3 we can restrict our attention to the
block diagonal entries, which indicate that the perturbations of eigenvalues different
from 1 in this particular case do not depend on ν. On the other hand, if τ is large,
then it is not possible to exclude Ê21 from the Gerschgorin analysis, and the presence
of ‖F−1‖ in this bound suggests that perturbations in all eigenvalues grow like 1/ν.

Consider the implication of these observations on the performance of iterative
methods for solving the discrete Oseen equations (3). We demonstrated in [3] that the
iteration counts of Krylov subspace methods such as GMRES with the preconditioner
QT (7) are independent of the mesh size, but that there is some deterioration in
performance as ν decreases. Now suppose an inner iteration with stopping criterion
(53) is used to approximate the action of F−1. The analysis given here suggests that if
τ is large, there may be additional degradation of performance for small ν. In contrast,
if τ is small then only λ = 1 is sensitive to perturbation, which suggests that (extra)
degradation of the inner iteration with decreasing ν may not be as pronounced. Figure
2 shows the results of numerical experiments that corroborate these observations. The
figure plots iteration counts of right-preconditioned “flexible” GMRES (FGMRES)
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Fig. 2. Iterations of FGMRES with inexact convection–diffusion solves.

[12] as a function of ν for solving the discrete problem (3). The inner iteration for
the convection–diffusion subproblems Fw = v was a line Gauss–Seidel method with
stopping criterion (53).5 The test matrices were those used in section 6; the right-hand
side f consisted of normally distributed random numbers with mean 0 and variance
1. The outer iteration used a zero initial guess and was stopped when the relative
residual in the Euclidean norm was less than or equal to 10−6. The results with inner
iteration are compared with the use of a direct method for the action of F−1. They
indicate that for the relatively modest tolerance τ = 10−3, the inexact inner solves
lead to little increase in outer iterations for any ν. For less stringent τ , additional
outer iterations are required and the number of additional iterations becomes larger
as ν decreases.

Remark 7.1. It can be shown that for small τ the perturbations of the eigenval-
ues of the scaled system behave in the same way as those for the unscaled system.
However, scaling affects the relative weighting given to the two block equations of
(3), which in turn may affect the iterative solver. Therefore, we have restricted our
attention here to the unscaled system.

Acknowledgments. The author acknowledges helpful discussions with Santiago
Arteaga, Luca Pavarino, and Pete Stewart and insightful comments from Hans Wein-
berger. The numerical results with FGMRES used software produced by Tim Kelley
[11].
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BORIS REICHSTEIN¶, AND LEIBA RODMAN‖

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 752–774, July 1997 012

Abstract. Witt’s theorem on the extension of H-isometries to H-unitary matrices with respect
to the scalar product generated by a self-adjoint nonsingular matrix H is studied in detail. All
possible extensions are given, and their structure as a real analytic manifold is described. Analogous
problems with respect to skew-symmetric scalar products are studied as well.

The main motivation to study these problems, as well as the main applications of the results
obtained, concerns polar decompositions in indefinite scalar product spaces. As another application,
for given B all solutions of the matrix equation XA = B with H-unitary X and upper triangular A
are described. Equations of this type are of vital importance in hyperbolic QR decompositions.
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1. Introduction. Let F be either the field of real numbers R or the field of
complex numbers C. Fix a real symmetric (if F = R) or complex Hermitian (if
F = C) invertible n × n matrix H. Consider the scalar product induced by H
according to the formula [x, y] = 〈Hx, y〉, x, y ∈ Fn. Here 〈 · , · 〉 stands for the
standard scalar product in Fn defined by 〈x, y〉 =

∑n
j=1 xj ȳj , where (x1, . . . , xn)T

and (y1, . . . , yn)T are column vectors in Fn. (Of course, ȳj = yj if F = R.) The
scalar product [ · , · ] is nondegenerate ([x, y] = 0 for all y ∈ Fn implies x = 0) but is
indefinite in general. In other words, the real number [x, x] can be positive, negative,
or zero for various x ∈ Fn (unless H is definite). The vector x ∈ Fn is called positive
if [x, x] > 0, neutral if [x, x] = 0, and negative if [x, x] < 0.

Well-known concepts related to the scalar product [ · , · ] are defined in obvious
ways. Thus, given an n× n matrix A over F , the adjoint A[∗] is defined by [Ax, y] =
[x,A[∗]y] for all x, y ∈ Fn. The formula A[∗] = H−1A∗H is verified immediately.
(Here and elsewhere we denote by A∗ the conjugate transpose of A, so that A∗ = AT

if F = R.) A matrix A is called H-self-adjoint if A[∗] = A or, equivalently, if HA is
Hermitian. An n×n matrix U is called H-unitary if [Ux,Uy] = [x, y] for all x, y ∈ Fn
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‡Dipartimento di Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy. The

work of this author was performed under the auspices of C. N. R.-G. N. F. M. and was partially
supported by the research project “Nonlinear problems in analysis and its physical, chemical and
biological applications: Analytical, modelling and computational aspects” of the Italian Ministry of
Higher Education and Research (M. U. R. S. T.).
§Faculteit Wiskunde en Informatica, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV

Amsterdam, The Netherlands (ran@cs.vu.nl).
¶Department of Mathematics, The Catholic University of America, Washington, DC 20064.
‖Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795

(lxrodm@mail.wm.edu). The work of this author was partially supported by NSF grant DMS
9500924.

752



EXTENSION OF ISOMETRIES 753

or, equivalently, U∗HU = H. Observe that for every H-unitary matrix U we have
| detU | = 1; in particular, detU = ±1 if F = R.

This article is the third of a series of four articles on decompositions of an n× n
matrix X over F of the form

X = UA,(1.1)

where U is H-unitary and A is H-self-adjoint (with or without additional restric-
tions). We call the decomposition (1.1) an H-polar decomposition of X. Our first
article, henceforth called [BMRRR1], is devoted to the existence, uniqueness (up to
equivalence), and basic properties of decompositions (1.1) and to the existence of
H-polar decompositions of H-normal matrices. In our second article, subsequently
referred to as [BMRRR2], we studied decompositions of the type (1.1), where vari-
ous constraints are imposed on the matrices X, U , A, and H, and discussed their
applications in linear optics.

In studying H-polar decompositions, we often face the problem of extending H-
isometries between linear subspaces to H-isometries defined on the whole space. The
theorem stating the existence of such extensions is a classical result in geometry called
Witt’s theorem (see, e.g., [A, Theorem III.3.9.], or [D]). However, the classical results
are concerned with the existence of a Witt extension and do not address the problems
of listing all possible Witt extensions and describing their topological and algebraic
structure. In the present paper, we give a detailed proof of Witt’s theorem in both the
real and the complex cases, detailed enough to yield all Witt extensions that exist.
This is the content of section 2. As a by-product, the connected components of the set
of all Witt extensions are described in section 3. Section 4 is devoted to the analogous
problem of finding real Witt extensions with respect to a real skew-symmetric scalar
product.

Another aspect of the present paper concerns a particular class of H-polar decom-
positions (1.1) in which the matrix A is H-nonnegative (i.e., HA is positive definite
Hermitian). Such decompositions will be called semidefinite H-polar decompositions.
In section 5 the semidefinite H-polar decompositions are described and characterized
in full detail using the general results of [BMRRR1] as a starting point and applying
the results on Witt extensions of section 2.

In section 6 the description of all Witt extensions is applied to a class of matrix
decompositions, namely, hyperbolic QR decompositions, which are crucial in certain
algorithms based on the generalized Schur method (see, e.g., [B, OSB, V]).

We remark in passing that the results of this paper concerning the description
of Witt’s extensions carry over to certain fields other than R or C. Indeed, our
description involves H-unitary matrices; normalization of vectors needed to construct
such matrices is only possible in number fields closed with respect to the square root
operation on positive numbers, such as the field of real algebraic numbers.

The following notation will be used. The number of positive (negative, zero)
eigenvalues of a Hermitian matrix A is denoted by π(A) (ν(A), δ(A)). The symbol
Fn (where F = R or F = C) stands for the vector space of n-dimensional columns
over F . We denote by Fm×n the vector space of m × n matrices over F . Im is the
m ×m identity matrix. The block diagonal matrix with matrices Z1, . . . , Zk on the
main diagonal is denoted by Z1⊕ · · ·⊕Zk or diag(Z1, . . . , Zk). The set of eigenvalues
(including nonreal eigenvalues for real matrices) of a matrix X is denoted by σ(X).
AT stands for the transpose of a matrix A. KerA and ImA stand for the null space
and range of a matrix A. The symbolM⊕N denotes the direct sum of the subspaces
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M and N . For a subspaceM⊂ Fn and an indefinite scalar product [x, y] = 〈Hx, y〉,
we call the subspace

M[⊥] = {x ∈ Fn|[x, y] = 0 for all y ∈M}

the H-orthogonal companion of M.

2. Witt’s theorem and its refinements. In this section we will derive a
version of Witt’s theorem which is suitable to our framework and describe all H-
isometries to which a given partial H-isometry can be extended.

We start with Witt’s theorem, which is a classical result (see, e.g., [A, D]). The
proofs given in [A, D] are algebraic and do not easily yield the parametrization that
we need. Although the proofs from [A, D] could be adapted, doing so would create
a portion of the paper at odds in style with the linear algebra methods of the rest of
the paper. On the other hand, results on extensions of isometries are well known in
the theory of operators in infinite-dimensional spaces with indefinite scalar products;
see, e.g., section 5.2 in [AI1] or section II.9 in [IKL].

Theorem 2.1. Let [ · , · ]1 and [ · , · ]2 be the two scalar products in Fn defined
by the invertible Hermitian n× n matrices H1 and H2, respectively:

[x, y]1 = 〈H1x, y〉, [x, y]2 = 〈H2x, y〉, x, y ∈ Fn.

Assume π(H1) = π(H2). Let U0 : V1 → V2, where V1 and V2 are subspaces in Fn, be
a nonsingular linear transformation that preserves the scalar products

[U0x, U0y]2 = [x, y]1 for every x, y ∈ V1.(2.1)

Then there exists a linear transformation U : Fn → Fn such that

[Ux,Uy]2 = [x, y]1 for every x, y ∈ Fn(2.2)

and

Ux = U0x for every x ∈ V1.(2.3)

It is easy to see that the condition π(H1) = π(H2), the nonsingularity of U0, and
the equality (2.1) are necessary for the existence of U with the asserted properties.
Note that any such U is necessarily invertible; however, a linear transformation U0

that satisfies (2.1) need not be invertible. A linear transformation (or its matrix
representation with respect to specified bases) U with the property (2.2) is called
H1-H2-unitary.

Given U0 as in Theorem 2.1, any linear transformation U satisfying (2.2) and
(2.3) will be called a Witt extension of U0.

The following well-known fact will be useful in the proof of Theorem 2.1.
Proposition 2.2. Let [x, y] = 〈Hx, y〉 be an indefinite scalar product on Fn.

The following statements are equivalent for the subspace M⊂ Fn:
(i) M is H-nondegenerate; i.e., x0 ∈ M, [x0, y] = 0 for all y ∈ M implies

x0 = 0.
(ii) The H-orthogonal companion M[⊥] is H-nondegenerate.

(iii) M[⊥] is a direct complement to M in Fn.
The proof is based on the simple observation that dimM + dim M[⊥] = n; see

[GLR] or [Bo] for complete details.
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Proof of Theorem 2.1. We give a proof of Theorem 2.1 which will also serve as
a basis for subsequent results concerning detailed descriptions of all Witt extensions.
Put m = m+ + m− + m0. Let {ei}i=1,2,...,m be a basis of V1 such that [ej , ej ]1 = 1
for j = m0 + 1,m0 + 2, . . . ,m0 + m+, [ek, ek]1 = −1 for k = m0 + m+ + 1, m0 +
m+ + 2, . . . ,m, and all the remaining indefinite scalar products of the basis vectors
are zero (thus the Hermitian matrix defining the H1-scalar product on V1 has m+

positive eigenvalues and m− negative eigenvalues and the multiplicity of zero is m0).
Introduce the m linear functionals αi on Fn as follows:

αi(x) = [x, ei]1, i = 1, 2, . . . ,m.

Since α1, . . . , αm are linearly independent, there exist vectors ẽi ∈ Fn such that
αi(ẽj) = δij , where δij = 1 if i = j and δij = 0 if i 6= j, i.e., such that [ei, ẽj ]1 = δij
for all i, j = 1, 2, . . . ,m. Let

Wk = span {ek, ẽk}, k = 1, 2, . . . ,m0.

Since [ek, ek]1 = 0 and [ek, ẽk]1 = 1, each Wk is H1-nondegenerate. Without loss of
generality we can assume that, for k = 1, 2, . . . ,m0, we have [ẽk, ẽk]1 = 0. (Indeed, we
can always replace the vector ẽk by the vector ẽk − 1

2 [ẽk, ẽk]1ek, which has the above
property.) Let

e′k =
1√
2

(ek − ẽk), e′′k =
1√
2

(ek + ẽk).

It is easy to see that

[e′k, e
′
k]1 = −1, [e′′k , e

′′
k ]1 = 1, [e′k, e

′′
k ]1 = 0.

The subspace W = W1 + · · ·+Wm0
+ span {ej}i=m0+1,...,m is H1-nondegenerate;

hence, W [⊥] is H1-nondegenerate by Proposition 2.2. Therefore, we can append the
vectors

es, s = 2m0 +m+ +m− + 1, 2m0 +m+ +m− + 2, . . . , n

to the set

{e′k, e′′k , em0+1, em0+2, . . . , em}k=1,2,...,m0

of 2m0 +m+ +m− vectors such that the resulting ordered set {g1, . . . , gn} will be a
basis in Fn with the property that [gi, gj ]1 = εiδij for i, j = 1, . . . , n, where εi = ±1.

Now let fi = U0ei, i = 1, 2, . . . ,m. We introduce vectors f ′k and f ′′k (k =
1, 2, . . . ,m) and vectors fs (s = 2m0 +m+ +m−+1, 2m0 +m+ +m−+2, . . . , n) in the
same way we introduced the vectors e′k, e′′k , and es but using [ · , · ]2 instead of [ · , · ]1,
resulting in a basis h1, . . . , hn in Fn. The hypotheses on H1 and H2 (π(H1) = π(H2))
and on U0 (U0 being an isometry) guarantee that [hi, hj ]2 = [gi, gj ]1 (i, j = 1, . . . , n).

Define the n× n matrix U by the equalities

Ue′k = f ′k, Ue
′′
k = f ′′k , k = 1, 2, . . . ,m0,

Ues = fs, s = 2m0 + 1, 2m0 + 2, . . . , n.

It is easy to see that the matrix U has all the properties required by the statement of
the theorem.
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We will use the bases

E = {e1, e2, . . . , em0
, em0+1, . . . , em, ẽ1, . . . , ẽm0

, e2m0+m++m−+1, . . . , en}(2.4)

and F (consisting of the vectors Ue, where e ∈ E) of Fn constructed in the proof
of Theorem 2.1. These bases will be more convenient than the ones we considered
above because the subspaces V1 and V2 are spanned by the first m vectors of the
corresponding bases. Recall that U0V1 = V2, as U0 is nonsingular. Thus, in particular,
dim V1 = dim V2. With respect to [ · , · ]1, the basis (2.4) has the Gramian matrix

0 0 I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 ,(2.5)

where I is the m0 ×m0 identity matrix and J1 is the diagonal (m+ +m−)× (m+ +
m−) matrix such that its first m+ diagonal elements are +1 and its remaining
m− diagonal elements are −1. Similarly, J2 is the Gramian matrix of the basis
{em0+m+1, em0+m+2, . . . , en} of the subspace spanned by these vectors; without loss
of generality we can (and do) assume that J2 is a diagonal matrix for which several
diagonal entries are +1 and the remaining diagonal entries are −1.

The matrix (2.5) is also the Gramian matrix of the basis F with respect to [ · , · ]2.
The matrix U (constructed in the proof of Theorem 2.2), when understood as a linear
transformation Fn → Fn, is the n× n identity matrix with respect to the basis E (in
Fn as the domain space of U) and the basis F (in Fn as the image space of U).

The Witt extensions of a given U0 are described by the following theorem. (We
represent the Witt extensions as linear transformations Fn → Fn with respect to the
bases E and F constructed above.)

Theorem 2.3 (extended Witt’s theorem). If a matrix Ũ is a Witt extension
of the matrix U0, then there exist a J2-unitary matrix P1 (of order n − m − m0),
an (n −m −m0) ×m0 matrix P2, and a skew-self-adjoint m0 ×m0 matrix P3 (i.e.,
P ∗3 = −P3) such that the matrix of Ũ has the form

Ũ =


Im0

0 − 1
2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 Im−m0
0 0

0 0 Im0
0

0 0 P2 P1

 .(2.6)

Here m = dim V1 and m0 is the number of zero eigenvalues of the Gramian matrix of
any basis in V1 with respect to [ · , · ]1.

Conversely, if P1 is an arbitrary J2-unitary matrix, P2 is an arbitrary (n −m −
m0)×m0 matrix, and P3 is an arbitrary skew-self-adjoint m0 ×m0 matrix, then the
matrix Ũ defined by (2.6) is a Witt extension of U0.

Proof. The proof is straightforward. Any extension Ũ of U0 in the above bases
has the matrix

Ũ =


I 0 A1 A2

0 I A3 A4

0 0 A5 A6

0 0 A7 A8

 .(2.7)

The necessary and sufficient condition for the matrix (2.7) to be H1-H2-unitary is the
identity H−1

1 Ũ∗H2Ũ = I. Taking into account (2.5) and (2.7) we can rewrite the last
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relation in block form as
A∗5 A∗3J1 u13 u14

0 I A3 A4

0 0 A5 A6

J2A
∗
6 J2A

∗
4J1 u43 u44

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,(2.8)

where

u13 = A∗5A1 +A∗3J1A3 +A∗1A5 +A∗7J2A7,

u14 = A∗5A2 +A∗3J1A4 +A∗1A6 +A∗7J2A8,

u43 = J2A
∗
6A1 + J2A

∗
4J1A3 + J2A

∗
2A5 + J2A

∗
8J2A7,

u44 = J2A
∗
6A2 + J2A

∗
4J1A4 + J2A

∗
2A6 + J2A

∗
8J2A8.

Equating the corresponding blocks in (2.8), we derive the theorem statement.
If V1 is H1-nondegenerate (i.e., m0 = 0), then necessarily V2 is H2-nondegenerate

and the result of Theorem 2.3 is obvious.
Observe also that the inverse of the matrix (2.6) is given by

Ũ−1 =


I 0 − 1

2 P̂
∗
2 J2P̂2 + P̂3 −P̂ ∗2 J2P̂1

0 I 0 0
0 0 I 0

0 0 P̂2 P̂1

 ,(2.9)

where

P̂1 = P−1
1 = J2P

∗
1 J2, P̂2 = −P−1

1 P2 = −J2P
∗
1 J2P2, P̂3 = −P3.

Note that a Witt extension Ũ has the form (2.6) with respect to different bases
in domain and image space, namely, with respect to the basis E given by (2.4) in
the domain space and the basis F consisting of the vectors Ue in the image space.
Keeping this in mind, we can easily reformulate Theorem 2.3 in the following way
with respect to one basis E (the same for both the domain and the range of Ũ). It is
this form of the theorem that we shall apply later in Theorems 5.6 and 6.1.

Theorem 2.4 (extended Witt’s theorem, second version). Let U be a fixed Witt
extension of U0 as constructed in Theorem 2.1. Then any Witt extension Ũ of U0 is
given by Ũ = UM , where M has the form of the right-hand side of (2.6) with respect
to the basis E in (2.4).

Proof. Observe that U maps the elements of the basis E into the corresponding
elements of the basis F and that (2.6) is the matrix representation of U with respect
to the basis E in the domain space and the basis F in the image space.

It is of interest to compute the number of independent real parameters that de-
scribe all Witt extensions. Assume first F = C. Then the formula (2.6), combined
with the real analytic description of the group of J2-unitary matrices (see, e.g., The-
orem IV.3.1 in [GLR]), produces the following result.

Theorem 2.5 (F = C). The set W (U0) of all Witt extensions of a given isometry
U0 : V1 → V2 is parametrized by (n − m)2 independent real variables, where m =
dim V1. More precisely, let

p = π(H1)−m+ −m0, q = ν(H1)−m− −m0,(2.10)
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where m+, m−, and m0 are the numbers of positive, negative, and zero eigenvalues,
respectively, of the Gramian matrix of any basis in V1 with respect to [ · , · ]1. Then
W (U0) is diffeomorphic (as a real analytic manifold) to

SU(p)× SU(q)× T × T ×Rw, w = 2pq + 2(n−m−m0)m0 +m2
0

if both p and q are positive, and W (U0) is diffeomorphic to

SU(p+ q)× T ×Rw

if exactly one of p and q is zero. Finally, W (U0) is diffeomorphic to Rw if p = q = 0.
Here T is the unit circle and

SU(k) = {X ∈ Ck×k| X unitary, det X = 1}

is the k × k special unitary group.
Proof. We use the notation of Theorem 2.3. The matrix Ũ is parametrized

by (P1, P2, P3), where P2 and P3 are in turn parametrized by 2(n − m − m0)m0

and m2
0 independent real variables, respectively. Observe that p = π(J2) and q =

ν(J2). Thus, the group of all J2-unitary matrices is diffeomorphic (as a real analytic
manifold) either to SU(p)×SU(q)×T ×T ×R2pq (if both p and q are positive) or to
SU(p+q)×T (if exactly one of p and q is zero); see, e.g., Theorem IV.3.1 in [GLR]. In
fact, explicit charts for the group of all J2-unitary matrices can be constructed using
the diffeomorphism mentioned above and the following two charts for SU(p), namely,
the sets {

expK : K = −K∗, trace K = 0, σ(K) ⊂ ±
(
− π

2
i,

3π

2
i

]}
.

The number of real parameters describing the group of J2-unitary matrices is (p2 −
1)+(q2−1)+1+1+2pq = (p+q)2 if p, q > 0. (Here we use the fact that SU(k) has real
dimension k2 − 1, equal to the real dimension of the set of all skew-self-adjoint k × k
matrices with trace 0, which is the Lie algebra of SU(k).) The group of J2-unitary
matrices has real dimension (p+ q)2 also in the case where exactly one of p and q is
zero. Thus, the total number of real parameters describing Ũ is

(p+ q)2 + 2(n−m−m0)m0 +m2
0 = (p+ q +m0)2

= (π(H1) + ν(H1)−m+ −m− −m0)2

= (n−m)2.

An analogous proof also works in the case p = q = 0.
The real analogue of Theorem 2.5 runs as follows.
Theorem 2.6 (F = R). Let m = dim V1, and let p and q be defined by (2.10).

Then the set W (U0) of all Witt extensions of an isometry U0 : V1 → V2 is connected if
p = q = 0, has two connected components if exactly one of p and q is positive, and has
four connected components if both p and q are positive. Every connected component
of W (U0) is diffeomorphic (as a real analytic manifold) to

SO(p)× SO(q)×Rv, v = pq + (n−m−m0)m0 +
1

2
m0(m0 − 1),

where SO(k) is the group of real unitary (i.e., real orthogonal) k × k matrices with
determinant 1 if both p and q are positive; every connected component of W (U0) is
diffeomorphic to

SO(p+ q)×Rv
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if exactly one of p and q is zero. Finally, W (U0) is diffeomorphic to Rv if p =
q = 0. In all cases, every connected component of W (U0) can be parametrized by
1
2 (n−m)(n−m− 1) independent real variables.

The part of Theorem 2.6 concerning the number of connected components follows
immediately from Theorems 2.3 and 3.1. (The latter is stated and proved in the next
section.) The remainder of the proof of Theorem 2.6 is analogous to that of Theorem
2.5: one should use the real analogue of Theorem IV.3.1 in [GLR] and the fact that
SO(k) has (real) dimension 1

2k(k − 1); this is the dimension of the Lie algebra of
SO(k) which consists of all real skew-symmetric k × k matrices.

It is a curious observation that the number of real parameters describing W (U0)
depends only on n (the order of H1) and on m (the dimension of V1) and does not
depend on m0 (the degree of degeneracy of V1 in the indefinite scalar product induced
by H1).

In particular, Theorems 2.5 and 2.6 allow one to identify the fundamental group
of the set W (U0) using the well-known fact that SU(k) and Rn are simply connected;
the fundamental group of SO(k) is of order 2 if k ≥ 3, the infinite cyclic group Z
if k = 2, and the trivial group if k = 1; and the fundamental group of the product
of two arcwise connected topological spaces X and Y is the direct product of the
fundamental groups of X and Y (see, e.g., sections II.VIII, II.X, and II.XI in [C]).
Thus the fundamental group of W (U0) is Gp ×Gq if both p and q are positive, Gp+q
if one of p, q is positive and the other vanishes, and trivial if p = q = 0; here Gp = Z
if F = C, whereas Gp = Z2 if p ≥ 3, G2 = Z, and G1 is trivial if F = R.

We conclude this section with two illustrative examples.

Example 2.1. Let H =
[

0 1
1 0

]
; V = span

{[
1
0

]}
. Any linear transformation

U0 : V → V is an isometry. The linear transformation U0 : V → V is defined

by U0

[
1
0

]
=
[
α
0

]
, where α 6= 0 is a given complex number. We shall find the

Witt extensions U of U0. An elementary calculation shows that all such U have

the form
[
α x
0 ᾱ−1

]
, where x ∈ C is any number such that ᾱx + x̄α = 0. If we

consider F = R, then α is real and the unique Witt extension of U0 is given by
diag (α, α−1).

Example 2.2. Let H =
[

1 0
0 −1

]
; V = span

{[
1
0

]}
. A linear transformation

U0 : V → V defined by U0

[
1
0

]
=
[
α
0

]
, α 6= 0, is an H-isometry if and only

if |α| = 1. The Witt extensions U of U0 are described by U = diag (α, y), where
|y| = 1. In the real case we have exactly two Witt extensions (corresponding to y =
±1).

3. Connectivity of the H-unitary groups. Let H be an invertible Hermitian
n × n matrix over F (F = R or F = C). The set of H-unitary matrices (over F ) is
easily seen to be a group, denoted U(H;F ). Its connected components are described
as follows.

Theorem 3.1.

(a) The group U(H; C) is connected.

(b) If F = R and H is definite (positive or negative), then the group U(H; R) has
two connected components. One of them contains all X ∈ U(H; R) with det X = 1;
the other contains all X ∈ U(H; R) with det X = −1.

(c) If F = R and H is indefinite, then U(H,R) has four connected components
which can be described as follows. We can assume H = Ip ⊕ −Iq, where p, q > 0.
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Then, for every choice of signs δ1 = ±1, δ2 = ±1, a connected component of U(H,R)
is given by

U(H; δ1, δ2) =

{
V =

[
V1 V2

V3 V4

]
∈ U(H; R)| δ1 det V1 > 0, δ2 det V4 > 0

}
,

where V1 is a p× p matrix and V4 is a q × q matrix. In particular,

{X ∈ U(H; R)| det X = 1} = U(H; 1, 1) ∪ U(H;−1,−1),(3.1)

and this set consists of two connected components.
In all cases, each connected component of U(H;F ) is arcwise connected.
Proof. This result is known; for the proof of (a) and (b) see Lemma I.3.8 and

Theorem I.5.8, respectively, in [GLR].

For completeness, we provide a proof of (c). Let V =
[
V1 V2

V3 V4

]
belong to

U(H; R). Then the equation V THV = H = Ip ⊕−Iq gives

V T1 V1 = I + V T3 V3, V T4 V4 = I + V T2 V2, V T2 V1 = V T4 V3.(3.2)

It follows that | det V1| ≥ 1, | det V4| ≥ 1, and therefore the H-unitary matrices

(over R) V =
[
V1 V2

V3 V4

]
and W =

[
W1 W2

W3 W4

]
(here W1 is p × p and W4 is q × q)

belong to different connected components in U(H; R), provided at least one of the
inequalities det V1 · det W1 < 0, det V4 · det W4 < 0 is valid. It remains to show that
if det V1 · det W1 > 0 and det V4 · det W4 > 0, then V and W belong to the same
connected component in U(H,R). It suffices to show that if det V1 > 0, det V4 > 0,
then V can be continuously connected to I in U(H; R). As V is H-unitary, V T is
H-unitary as well (indeed, V THV = H implies V −1 = H−1V TH = HV TH, and
therefore V HV TH = I, or V HV T = H). Thus, we also have

I + V3V
T
3 = V4V

T
4 .(3.3)

Observe from (3.2) and (3.3) that V1(I+V T3 V3)−
1
2 and V T4 (I+V3V

T
3 )−

1
2 are real and

unitary (with respect to I). Moreover, they both have determinant 1, as det V1 > 0
and det V4 > 0. So, by part (b), there is a continuous family of unitary matrices
U1(t), U4(t) for t ∈ [0, 1] such that

U1(0) = I, U4(0) = I,

U1(1) = V1(I + V T3 V3)−
1
2 , U4(1) = V T4 (I + V3V

T
3 )−

1
2 .

Let

V1(t) = U1(t)(I + t2V T3 V3)
1
2 , V4(t) = (I + t2V3V

T
3 )

1
2U4(t)T ,

V3(t) = tV3, V2(t) = tV1(t)−TV T3 V4(t),

and

V (t) =

[
V1(t) V2(t)

V3(t) V4(t)

]
.
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Then V (0) = I and V (1) = V , and one easily verifies that V (t) is H-unitary for all
t ∈ [0, 1].

A basis independent description of the connected components of U(H; R), where
H is indefinite, runs as follows. Let M+ and M− be subspaces in Rn which are
H-orthogonal complements of each other and such that M+ is H-positive and M−
is H-negative. Denote by P+ (resp., P−) the projector onto M+ (resp., M−) along
M− (resp., M+). Then X ∈ U(H; δ1, δ2) if and only if

δ1 det(P+X|M+) > 0, δ2 det(P−X|M−) > 0.(3.4)

The proof of this statement is analogous to the proof of Theorem 3.1 (part (c)) and
therefore is omitted.

Observe that the inequalities (3.4) are independent of the choice of the pair of
subspaces M+, M− with the above properties.

Theorem 3.2. For any real invertible matrix S and any X ∈ U(H; δ1, δ2) the
matrix S−1XS belongs to the connected component U(S∗HS; δ1, δ2) determined by
the same δ1, δ2.

Proof. The proof follows easily from the description of U(H; δ1, δ2) given by
formula (3.4). Indeed, assume that X ∈ U(H; δ1, δ2). Choose a pair of subspaces
M+ and M− that are H-orthogonal complements to each other and such that M+

(resp.,M−) is H-positive (resp., H-negative). Then S−1M+ and S−1M− are S∗HS-
orthogonal complements to each other and S−1M+ (resp., S−1M−) is S∗HS-positive
(resp., S∗HS-negative). We conclude the proof by applying the formula (3.4) with
X, P+, P− replaced by S−1XS, S−1P+S, S

−1P−S, respectively, and with M±
replaced by S−1M±.

4. Witt’s theorem for real skew-symmetric scalar products. Let F = R
and let K be a real invertible skew-Hermitian n× n matrix (in particular, n is even).
Define the skew-symmetric scalar product {·, ·} on Rn by

{x, y} = 〈Kx, y〉.

If A is an n × n matrix, its K-adjoint A{∗} is defined by the identity {Ax, y} =
{x,A{∗}y}, where x, y ∈ Rn. It is easy to see that A{∗} = K−1A∗K. A matrix A is
called K-self-adjoint if A{∗} = A, and it is called K-skew-self-adjoint if A{∗} = −A. A
K-unitary matrix A is defined by the property that it preserves the skew-symmetric
scalar product, i.e., if, for any two vectors x, y ∈ Rn, {Ax,Ay} = {x, y}. It is easy
to verify that A is K-self-adjoint if and only if KA = A∗K, is K-skew-self-adjoint
if and only if KA = −A∗K, and is K-unitary if and only if it is nonsingular and
K−1A∗KA = I.

Example 4.1. Consider the skew-Hermitian matrix

H =

[
0 1
−1 0

]
.

We have H∗ = H−1 = −H. Moreover, X{∗} = H−1X∗H is the cofactor matrix of
X, so that X{∗}X = (detX) I. Hence A is H-self-adjoint if and only if A = cI for
some c ∈ R, and A is H-skew-self-adjoint (i.e., HA = −A∗H) if and only if TrA = 0.
Furthermore, U is H-unitary (i.e., U∗HU = H) if and only if detU = +1.

Lemma 4.1. Let {., .} be a skew-symmetric scalar product on Rn defined by the
real invertible skew-symmetric n×n matrix K and let V be an m-dimensional subspace
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of Rn. Let the defect of the restriction of {., .} to V be m0 (so that the rank of the
above restriction is m−m0 ). Then

(a) There exists a basis

{e1, . . . , em0 , em0+1, . . . , em+m0
2

, fm0+1, . . . , fm+m0
2
}(4.1)

of V such that

{ek, fk} = −{fk, ek} = 1, k = m0 + 1,m0 + 2, . . . ,
m+m0

2
,(4.2)

while the scalar product of any other two vectors in (4.1) is zero.
(b) There exist vectors

{f1, f2, . . . , fm0
, em+m0

2 +1
, em+m0

2 +2
, . . . , en

2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
}(4.3)

such that the union of the sets (4.1) and (4.3) is a canonical basis for Rn; i.e.;

{ek, fk} = −{fk, ek} = 1, k = 1, 2, . . . ,
n

2
,(4.4)

while the scalar product of any other two vectors from the union of (4.1) and (4.2) is
zero.

Proof. This is an elementary exercise in linear algebra. Namely, if m = m0 then V
is isotropic and any basis of V does the job. If m > m0 there exist vectors em0+1 and
fm0+1 such that {em0+1, fm0+1} = 1. If m−m0 = 2 then the orthogonal companion V1

of the subspace span{em0+1, fm0+1} in V is isotropic and any basis of V1 appended to
vectors em0+1, fm0+1 produces a desired basis. If m−m0 > 2 then V1 is not isotropic
and we can find vectors em0+2, fm0+2 ∈ V1 such that {em0+2, fm0+2} = 1. Continuing
this process we will find a desired basis of V . This proves (a). To prove (b) we first
introduce the (n −m + m0)-dimensional subspace W of Rn, which is K-orthogonal
to the subspace

span{em0+1, fm0+1, em0+2, fm0+2, . . . , em+m0
2

, fm+m0
2
}.

Obviously, W is nondegenerate and e1, e2, . . . , em0
∈ W . Since W is nondegener-

ate, there exists a vector f1 ∈ W such that {e1, f1} = 1 and {ek, f1} = 0 for
k = 2, 3, . . . ,m0. Let W1 be the K-orthogonal complement of span{e1, f1} in W .
If m0 = 1 then any basis of W1 appended to vectors e1 and f1 already found will
produce a desired basis. If m0 > 1 then e2 ∈ W1 and we can find a vector f2 ∈ W1

such that {e2, f2} = 1 and {ek, f2} = 0 for k = 1, 3, 4, . . . ,m0. Continuing this process
we will finally find a basis of Rn that satisfies all the requirements of (b).

Theorem 4.2. Let {·, ·}1 and {·, ·}2 be two skew-symmetric scalar products on
Rn defined by the skew-symmetric n× n matrices K1 and K2, respectively:

{x, y}1 = 〈K1x, y〉, {x, y}2 = 〈K2x, y〉, x, y ∈ Rn.

Let U0 : V1 → V2, where V1 and V2 are subspaces in Rn, be a nonsingular linear
transformation that preserves the scalar products; namely,

{U0x, U0y}2 = {x, y}1

for every x, y ∈ V1. Then there exists a linear transformation U : Rn → Rn such that

{Ux,Uy}2 = {x, y}1
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for every x, y ∈ V1 and

Ux = U0x

for every x ∈ V1.
Proof. Let the vectors

{e1, . . . , em0
, em0+1, . . . , em+m0

2
, fm0+1, . . . , fm+m0

2
}(4.5)

be as in (a) of Lemma 4.1 and let

gt = U0et, hs = U0fs, t = 1, 2, . . . ,
m+m0

2
, s = m0 + 1,m0 + 2, . . . ,

m+m0

2
.

(4.6)
Next, let the vectors

f1, f2, . . . , fm0 , em+m0
2 +1

, em+m0
2 +2

, . . . , en
2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
(4.7)

be as in (b) of Lemma 4.1; i.e., combined with the vectors (4.1) they produce a
canonical basis

{e1, e2, . . . , em0
, em0+1, em0+2, . . . , em+m0

2
, fm0+1, fm0+2, . . . , fm+m0

2
,

f1, f2, . . . , fm0 , em+m0
2 +1

, em+m0
2 +2

, . . . , en
2
, fm+m0

2 +1
, fm+m0

2 +2
, . . . , fn

2
}(4.8)

of Rn,

{es, fs}1 = −{fs, es}1 = 1, s = 1, 2, . . . ,
n

2
.(4.9)

The remaining scalar products of the basis are zero. Similarly, let the vectors

h1, h2, . . . , hm0 , gm+1, gm+2, . . . , gn2 , hm+1,, hm+2, . . . , hn2(4.10)

be as in (b) of Lemma 4.1; i.e., combined with the vectors (4.6) they produce a
canonical basis

{g1, g2, . . . , gm0 , gm0+1, gm0+2, . . . , gm+m0
2

, hm0+1, hm0+2, . . . , hm+m0
2

,

h1, h2, . . . , hm0 , gm+m0
2 +1

, gm+m0
2 +2

, . . . , gn
2
, hm+m0

2 +1
, hm+m0

2 +2
, . . . , hn

2
}(4.11)

of Rn,

{gs, hs}2 = −{hs, gs}2 = 1, s = 1, 2, . . . ,
n

2
.(4.12)

The remaining scalar products of the basis are zero. Define the linear transformation
U as follows:

Ues = gs, Ufs = hs, s = 1, 2, . . . ,
n

2
.(4.13)

It is easy to see that the matrix defined by (4.13) satisfies all the conditions of the
theorem.
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We will use the bases (4.8) and (4.11) constructed in the proof of Theorem 4.2.
With respect to {., .}1, the basis (4.8) has the skew-symmetric Gramian matrix

K =


0 0 −I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 .(4.14)

Here I is the m0 ×m0 identity matrix, J1 is an (m−m0)× (m−m0) matrix of the

form J1 =
[

0 −I
I 0

]
, and J2 is an (n−m−m0)× (n−m−m0) matrix of the same

form as J1.
As in previous sections, any linear transformation (or its matrix representation

with respect to fixed bases) U from Theorem 4.2 will be called a Witt extension of
U0. All the Witt extensions of a given U0 are described by the following theorem (we
represent the Witt extensions as linear transformations Rn → Rn with respect to the
bases (4.8) and (4.11) above).

Theorem 4.3 (extended Witt’s theorem for a skew-symmetric scalar product). If
a matrix Ũ is a Witt extension of the matrix U0, then there exist a J2-unitary matrix
P1 (of order n−m−m0), a real (n−m−m0)×m0 matrix P2, and a real symmetric
m0 ×m0 matrix P3 (i.e., P ∗3 = P3) such that the matrix of Ũ has the form

Ũ =


I 0 − 1

2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 I 0 0
0 0 I 0
0 0 P2 P1

 .(4.15)

Conversely, if P1 is an arbitrary J2-unitary matrix, P2 is an arbitrary real (n−m−
m0) × m0 matrix, and P3 is an arbitrary real symmetric m0 × m0 matrix, then the
matrix Ũ defined by (4.15) is a Witt extension of U0.

Proof. The proof is similar to that of Theorem 2.3. Namely, any extension Ũ of
U0 in the bases (4.8), (4.11) has the matrix

Ũ =


I 0 A1 A2

0 I A3 A4

0 0 A5 A6

0 0 A7 A8

 .(4.16)

The necessary and sufficient condition for the matrix Ũ to be K1-K2-unitary is the
identity K−1

1 Ũ∗K2Ũ = I. Taking into account (4.14), (4.16), and the facts that
K1 = K2 = K and that K−1 = −K, we can rewrite the last relation in block form as

A∗5 A∗3J1 u13 u14

0 I A3 A4

0 0 A5 A6

−J2A
∗
6 −J2A

∗
4J1 u43 u44

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,(4.17)

where

u13 = −A∗1A5 +A∗3J1A3 +A∗5A1 +A∗7J2A7,

u14 = −A∗1A6 +A∗3J1A4 +A∗5A2 +A∗7J2A8,

u43 = J2A
∗
2A5 − J2A

∗
4J1A3 − J2A

∗
6A1 − J2A

∗
8J2A7,

u44 = J2A
∗
2A6 − J2A

∗
4J1A4 − J2A

∗
6A2 − J2A

∗
8J2A8.
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Equating the corresponding blocks in (4.17), we easily derive the statement of the
theorem. The only appropriate clarification to make is the following. After we estab-
lish that A3 = A4 = A6 = 0 and that A5 = I we can rewrite the equation u13 = 0
as

A1 −A∗1 +A∗7J2A7 = 0.(4.18)

Having represented the matrix A1 as a sum of symmetric and skew-symmetric matri-
ces, we get A1 = A+ +A−, where A∗+ = A+ and A∗− = −A−. Substituting A+ +A−
for A1 and A+ −A− for A∗1 into (4.18) we conclude that

A− = −1

2
A∗7J2A7

and that, for an arbitrary self-adjoint matrix P3, the matrix A1 = P3 − 1
2A
∗
7J2A7

satisfies the equation (4.18).
The formula (2.9) for the inverse of Ũ is valid here as well.
Note that a Witt extension Ũ has the form (4.17) with respect to different bases

in domain and image space, namely, with respect to the basis (4.8) in the domain
space and the basis (4.11) consisting of the vectors Ue, in the image space. Keeping
this in mind, we can easily reformulate Theorem 4.2 in the following way with respect
to one basis (4.8) (the same for both the domain and the range of Ũ) and obtain a
statement similar to Theorem 2.4.

Theorem 4.4 (extended Witt’s theorem, second version). Let U be a fixed Witt
extension of U0 as constructed in Theorem 4.1. Then any Witt extension Ũ of U0 is
given by Ũ = UM , where M has the form of the right-hand side of (4.16) with respect
to the basis (4.8).

Proof. Observe that U maps the elements of the basis (4.8) into the correspond-
ing elements of the basis (4.11) and that (4.15) is the matrix representation of U
with respect to the basis (4.8) in the domain space and the basis (4.11) in the image
space.

The set of all Witt extensions of an isometry between two real skew-symmetric
scalar product spaces is described as follows.

Theorem 4.5. Let H1, H2, V1, and U0 be as in Theorem 4.2. Then the set
W (U0) of all Witt extensions of U0 is connected and can be parametrized by 1

2 (n −
m)(n−m+ 1) real variables. More precisely, let

m0 = δ
[
zTj (iH1)zk

]m
j,k=1

for some (every) basis {z1, . . . , zm} in V1; in other words, m0 is the defect of the
restriction of H1 to V1. Then W (U0) is diffeomorphic (as a real analytic manifold) to

SU

(
n−m−m0

2

)
× T ×Ru,

where

u =
n−m−m0

2

(
n−m+ 3m0

2
+ 1

)
+
m0(m0 + 1)

2
.

The proof is obtained by combining Theorem 4.3 and the parametrization of the
group of all real matrices that are orthogonal with respect to a skew-symmetric scalar
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product (see Theorem II.1.7 in [GLR]). Observe that this group is connected (see
the same theorem in [GLR]). Also observe that the set of (real) J2-unitary matrices
is diffeomorphic (as a real analytic manifold) to Rk(k+1) × SU(k) × T , where k =
n−m−m0

2 , and hence can be described by 2k2 + k real parameters; a detailed proof is
found in section II.1.5 of [GLR].

As in Theorems 2.5 and 2.6, the number of independent parameters that describe
the set of Witt extensions in Theorem 4.5 depends only on n and m and does not
depend on m0.

5. Polar decompositions. Let F = C or F = R, and let H be an invertible
Hermitian n×n matrix over F . A factorization X = UA will be called a semidefinite
H-polar decomposition if U is H-unitary, A is H-nonnegative, and both U and A are
over F . Recall that an n× n matrix A is said to be H-nonnegative if HA is positive
semidefinite Hermitian.

More general classes and concepts of polar decompositions in indefinite scalar
product spaces are studied in [BMRRR1]. If H is positive definite, then the concept
of semidefinite H-polar decomposition reduces to the well-known and widely used
notion of polar decompositions for real and complex matrices. For an indefinite H,
polar decompositions have been studied in [P1, P2, AI1, AI2, BMRRR2] in connection
with Potapov’s theory of H-nonexpansive operators, in [KS1, KS2] in connection with
plus operators, and in [BR] in connection with H-unitary equivalence. Such polar
decompositions play an important role in certain applications in linear optics [M,
MH, BMRRR2]. A general approach to polar decompositions is developed in [K].
Other variants of factorizations of matrices of the polar decomposition type have also
been studied extensively in the literature; see, e.g., [HM1, HM2, CH].

In this section we characterize the matrices X which admit semidefinite H-polar
decompositions (note that in contrast to the standard polar decompositions not ev-
ery real or complex matrix admits H-polar decompositions if H is indefinite; see
[BMRRR1] for examples). Furthermore, in the case when semidefinite H-polar de-
compositions exist, we provide a full description of the H-nonnegative and H-unitary
factors.

We start by recalling the canonical forms of H-self-adjoint matrices (more pre-
cisely, of the pairs {A,H}, where A is H-self-adjoint). We denote by Jk(λ) the k × k
upper triangular Jordan block with λ ∈ C on the main diagonal and by Jk(λ± iµ) the
k×k almost upper triangular real Jordan block with eigenvalues λ± iµ (here λ, µ are
real and µ > 0; k is necessarily even). We also use the notation Qm = [δi+j,m+1]mi,j=1

for the m×m matrix with ones on the southwest–northeast diagonal and zeros else-
where.

Theorem 5.1. Let H be an n × n invertible Hermitian matrix (over F ), and
let A ∈ Fn×n be H-self-adjoint. Then there exists an invertible S over F such that
S−1AS and S∗HS have the form

S−1AS = Jk1(λ1)⊕ · · · ⊕ Jkα(λα)⊕
[
Jkα+1(λα+1)⊕ Jkα+1

(λ̄α+1)
]

(5.1)

⊕ · · · ⊕
[
Jkβ (λβ)⊕ Jkβ (λ̄β)

]
if F = C, where λ1, . . . , λα are real and λα+1, . . . , λβ are nonreal with positive imag-
inary parts;

S−1AS = Jk1(λ1)⊕ · · · ⊕ Jkα(λα)⊕ J2kα+1(λα+1 ± iµα+1)(5.2)

⊕ · · · ⊕ J2kβ (λβ ± iµβ)
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if F = R, where λ1, . . . , λβ are real and µα+1, . . . , µβ are positive;

S∗HS = ε1Qk1 ⊕ · · · ⊕ εαQkα ⊕Q2kα+1
⊕ · · · ⊕Q2kβ(5.3)

for both cases (F = R or F = C), where ε1, . . . , εα are ±1. For a given pair {A,H},
where A is H-self-adjoint, the canonical form (5.1), (5.2), (5.3) is unique up to per-
mutation of orthogonal components in (5.3), and the same simultaneous permutation
of the corresponding blocks in (5.1) or (5.2), as the case may be.

Theorem 5.1 is well known and goes back to Weierstrass and Kronecker. A com-
plete proof of this theorem can be found in many sources; see, e.g., [GLR, T].

The signs εj in (5.3) form the sign characteristic of the pair {A,H}. Thus, the
sign characteristic consists of signs +1 or −1 attached to every partial multiplicity (=
size of a Jordan block in the Jordan form) of A corresponding to a real eigenvalue.

An existence result concerning general classes of polar decompositions with re-
spect to indefinite scalar products was proved in [BMRRR1, Theorem 4.1]. In partic-
ular, this theorem contains the following statement.

Proposition 5.2. An n × n matrix X (over F ) admits a semidefinite H-polar
decomposition if and only if X [∗]X = A2 for some H-nonnegative matrix A such
that Ker A = Ker X; moreover, for any such A there is an H-unitary U such that
X = UA.

This existence result can be given a much more tractable formulation.

Theorem 5.3 (F = C or F = R). An n× n matrix X admits a semidefinite H-
polar decomposition if and only if X [∗]X has eigenvalues only in {λ ∈ R| λ ≥ 0} and
is diagonalizable and moreover, if KerX contains a k-dimensional H-nonpositive sub-
space, where k is the number of negative signs in the sign characteristic of
{X [∗]X,H} corresponding to the zero eigenvalue, and KerX contains a p-dimensional
H-nonnegative subspace, where p is the number of positive signs of H corresponding
to the zero eigenvalue of X [∗]X. Moreover, A can be chosen as to satisfy Ker (A2) =
KerA if and only if the subspace KerX [∗]X = KerX is H-nondegenerate.

Proof. Suppose X admits a semidefinite H-polar decomposition X = UA. Then

X [∗]X = A2.(5.4)

Since A is H-nonnegative, the canonical form (Theorem 5.1) for {A,H} implies that
there is an invertible matrix S (over F ) such that

S−1AS = diag(λi)
ν1
i=1 ⊕ 0ν2 ⊕ diag

([
0 1
0 0

])ν3
i=1

⊕ diag(µi)
ν4
i=1,(5.5)

where λi are negative, µi are positive, and

S∗HS = −Iν1 ⊕ diag(εi)
ν2
i=1 ⊕ diag

([
0 1
1 0

])ν3
i=1

⊕ Iν4 ,(5.6)

where εi = ±1. Then

S−1A2S = diag(λ2
i )
ν1
i=1 ⊕ 0(ν2+2ν3) ⊕ diag(µ2

i )
ν4
i=1,

and thus A2 is diagonalizable with nonnegative eigenvalues. In view of (5.4) the same
thing is true of X [∗]X. Now we show that KerX = KerA contains a k-dimensional
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H-nonpositive subspace and a p-dimensional H-nonnegative subspace. This follows
easily from (5.5), (5.6), as in the notation introduced there:

p = ν3 + #{εi| εi = +1, i = 1, . . . , ν2},
k = ν3 + #{εi| εi = −1, i = 1, . . . , ν2}.

To prove the converse part we will need the following lemma (its proof can be found
in [BMRRR1]).

Lemma 5.4. Let H = H∗ be an invertible n × n matrix, and let X be an n × n
matrix. Let S be an invertible n× n matrix such that

S−1X [∗]XS = diag (Zi)
ν
i=1, S∗HS = diag (Hi)

ν
i=1,

with σ(Zi) ∩ σ(Zj) = ∅ for i 6= j. Then there exists an H-self-adjoint, respectively,
H-nonnegative, matrix A such that X [∗]X = A2 if and only if for each i there exists
an Hi-self-adjoint, respectively, Hi-nonnegative, matrix Ai such that Zi = A2

i .
To prove the “if” part of Theorem 5.3, we now only have to consider the case

where X [∗]X has a single eigenvalue, σ(X [∗]X) = {λ}. The cases λ > 0 and λ = 0
will be considered separately.

Suppose X [∗]X is diagonalizable and σ(X [∗]X) = {λ}, λ > 0. Let S be an
invertible matrix such that

S−1X [∗]XS =

[
λIn1 0

0 λIn2

]
, S∗HS =

[
In1 0
0 −In2

]
.

The existence of S is guaranteed; in fact, one brings the pair {X [∗]X,H} to the
canonical form in this way (Theorem 5.1). Let

A = S

[ √
λ In1 0

0 −
√
λ In2

]
S−1.

Then A is H-nonnegative and A2 = X [∗]X.
Finally, assume X [∗]X is diagonalizable, σ(X [∗]X) = {0} (then X [∗]X = 0),

and KerX contains a k-dimensional H-nonpositive subspace and a p-dimensional H-
nonnegative subspace. It is easy to see that k+ p = n in this case, so KerX contains
a maximal H-nonpositive subspace and a maximal H-nonnegative subspace. For the
sake of convenience write M = KerX. Put N = M ∩ (HM)⊥, and let M1 be such
that M = N ⊕M1, where this direct sum is orthogonal. This direct sum is also H-
orthogonal. Select a basis f1, . . . , fν0 in N and a basis e1, . . . , eν+ , eν++1, . . . , eν++ν−

in M1 such that

〈Hei, ej〉 = 0 for i 6= j,

〈Hei, ei〉 = 1 if i ≤ ν+, 〈Hei, ei〉 = −1 if i > ν+.

We shall construct a subspace K such that M ⊕K = Fn and (HK)⊥ = K ⊕M1.
We shall construct an H-nonnegative matrix A such that A2 = 0 and KerA =

KerX. The matrix A will be constructed so that N coincides with the linear span of
eigenvectors of A corresponding to Jordan blocks of length 2, while N ⊕K is spanned
by the eigenvectors, as well as by the generalized eigenvectors of A.
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As M contains a maximal H-nonnegative and a maximal H-nonpositive subspace
we have

ν+ + ν0 = k, ν− + ν0 = p,

and therefore dim M = ν0 + ν+ + ν− = k + p − ν0 = n − ν0. Consider (HM1)⊥.
The dimension of this subspace is n− ν+ − ν− = k + p− ν+ − ν− = 2ν0; moreover,
(HM1)⊥ contains N . Take any subspace K ′ such that (HM1)⊥ = N ⊕ K ′. Then
K ′ is a direct complement of M . Indeed, as ν0 = dim N = codimM we have
(HM)⊥ = N, (HN)⊥ = M . Therefore,

N = (HM)⊥ = (H(N ⊕M1))⊥ = (HN)⊥ ∩ (HM1)⊥ = M ∩ (HM1)⊥.

So K ′ ∩ M = (0). Also, dim K ′ = ν0. Take vectors g′1, . . . , g
′
ν0 in K ′ such that

〈Hfi, g′j〉 = δij for i, j = 1, . . . , ν0. Construct

gi = g′i −
1

2

ν0∑
ν=1

〈Hg′i, g′ν〉fν , i = 1, . . . , ν0,

and let K = span {g1, . . . , gν0}. Then

〈Hgi, gj〉 = 0 for all i, j,

〈Hfi, gj〉 = δij for all i, j,

and K ⊂ N⊕K ′ = (HM1)⊥. By construction, K is H-neutral, so (HK)⊥ = K⊕M1.
Consider the vectors

e1, . . . , eν+ , eν++1, . . . , eν++ν− , f1, g1, f2, g2, . . . , fν0 , gν0

as a basis for Fn, and let S be the matrix with these basis vectors as its columns in
the order in which they appear here. Then

S∗HS = Iν+ ⊕−Iν− ⊕ diag

([
0 1
1 0

])ν0

i=1

.

Construct A as follows:

S−1AS = 0(ν++ν−) ⊕ diag

([
0 1
0 0

])ν0

i=1

.

Then, A is H-nonnegative, A2 = 0, and

KerA = span {e1, . . . , eν+ , eν++1, . . . , eν++ν− , f1, . . . , fν0} = KerX.

By Proposition 5.2 X admits a semidefinite H-polar decomposition.
The statement on choosing A to satisfy Ker (A2) = KerA is clear because it is

equivalent to the nondegeneracy of KerA. Further, when constructing such A as
above, one has ν0 = 0, which implies Ker (A2) = KerA.

We now give a description of all semidefinite H-polar decompositions (when they
exist). The description of all possible H-nonnegative factors A is as follows.
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Theorem 5.5. Let X be an n × n matrix that admits a semidefinite H-polar
decomposition. Let S be an invertible matrix (over F ) such that

S−1(X [∗]X)S = diag (λi)
τ1
i=1 ⊕ 0p ⊕ diag (µi)

τ2
i=1,(5.7)

S∗HS = −Iτ1 ⊕H0 ⊕ Iτ2 ,(5.8)

where λi > 0, µi > 0, and

H0 =

 0 0 I
0 H2 0
I 0 0

 ,(5.9)

with respect to the decomposition

F p = (KerX ∩ (H KerX)⊥)⊕M1 ⊕K,(5.10)

where KerX = (KerX ∩ (HKerX)⊥)⊕M1. (Such S exists by the proof of Theorem
5.3.) Then X = UA for some H-unitary U and H-nonnegative A if and only if A has
the form

A = S
(

diag
(
−
√
λi

)τ1
i=1
⊕A0 ⊕ diag (

√
µi)

τ2
i=1

)
S−1,

where

A0 =

 0 0 Y
0 0 0
0 0 0

 ∈ F p×p,(5.11)

with respect to the decomposition (5.10), and where Y is positive definite.
Observe that by Theorem 5.3 the existence of S such that S−1(X [∗]X)S and

S∗HS have the forms (5.7) and (5.8), respectively, is necessary for X to have a
semidefinite H-polar decomposition.

Proof. By Proposition 5.2, X = UA for some H-unitary U if and only if the H-
nonnegative matrix A is such that X [∗]X = A2 and KerX = KerA. These conditions
are easily translated (using the invertibility of H0 and H2) into the statement of
Theorem 5.5.

For a fixed A, all possible H-unitary matrices U in the semidefinite H-polar
decompositions X = UA are given by an application of Theorem 2.4. This works as
follows. Consider the decomposition of Fn,

Fn = N1 ⊕N2 ⊕N3 ⊕N4 ⊕N5,(5.12)

into five components as indicated in Theorem 5.5. With respect to this decomposition,
let us write S−1US = [Uij ]

5
i,j=1, S−1XS = [Xij ]

5
i,j=1, S−1AS = A1⊕A0⊕A5. Assume

that X = UA and X = ŨA are semidefinite H-polar decompositions of X. Also write
S−1ŨS = [Ũij ]

5
i,j=1. Observing that A1, A5, and Y are invertible, we obtain from

X = UA = ŨA that

Uj1 = Ũj1 = Xj1A
−1
1 , Uj2 = Ũj2 = Xj2Y

−1, Uj5 = Ũj5 = Xj5A
−1
5 .
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Let Û = col [Uj1 Uj2 Uj5]
5
j=1. Take V1 = N1 ⊕N2 ⊕N5 and V2 = UV = ŨV = ÛV .

Then for all x, y ∈ V1 we have

〈HÛx, Ûy〉 = 〈Hx, y〉.

We see that both U and Ũ are Witt extensions of Û : V1 → V2. Conversely, for any
Witt extension V of Û we have X = V A. Applying Theorem 2.4 to this situation
gives the following.

Theorem 5.6. Suppose X = UA is a semidefinite H-polar decomposition of X,
and let A have the form as described in Theorem 5.5, with respect to the decomposition
(5.12) of Fn. Then any H-unitary Ũ such that X = ŨA is given by Ũ = UM , where

M =


I 0 0 0 0
0 I −P ∗2H2P1 P3 − 1

2P
∗
2H2P2 0

0 0 P1 P2 0
0 0 0 I 0
0 0 0 0 I

 ,
with respect to the decomposition (5.12). Here P2 is arbitrary, P3 = −P ∗3 , and P1 is
an arbitrary H2-unitary matrix.

In the real case, Theorem 2.6, together with Theorem 5.6, describes the number of
connected components of U(H; R) from which the H-unitary factor in the semidefinite
H-polar decompositions of X may be chosen.

Corollary 5.7 (F = R). Let X be an n × n matrix that admits a semidef-
inite H-polar decomposition. If (H KerX)⊥ ⊃ Ker X, then all possible H-unitary
factors in the semidefinite H-polar decompositions of X belong to the same con-
nected component of U(U ; R). Otherwise, let M1 be the H-orthogonal complement of
Ker X ∩ (HKer X)⊥ in Ker X. Then the H-unitary factors belong to two connected
components of U(H; R) having determinants of opposite signs if H|M1 is definite and
to all four connected components of U(H; R) if H|M1 is indefinite.

The descriptions of the H-nonnegative and H-unitary factors in the polar de-
compositions of X obtained in Theorems 5.5 and 5.6, together with the real analytic
structure of all Witt extensions (Theorems 2.5 and 2.6), allow one to describe the set
of all possible H-polar decompositions of a given X in terms of a diffeomorphism (as
a real analytic manifold). Using the results mentioned above, such a description is
routine and is left to the interested readers.

6. Applications: Hyperbolic QR decompositions. The results of sections
2 and 4 have obvious applications to matrix equations of the form

A = UX,(6.1)

where A is a given matrix, and X and U are matrices to be found such that U is
H-unitary (usually additional requirements are imposed on X and/or U as well).
Here A and X are m × n matrices over F (as usual, we assume that either F = C
or F = R), and H is an invertible m ×m matrix over F which is either Hermitian
or skew-symmetric (in the latter case we assume F = R). Indeed, if U and V are
solutions of (6.1) with the same A and X, then obviously Ux = V x for all x in the
range of X. Thus, all H-unitary solutions of (6.1) can be treated as Witt extensions
of U |Range X, where U is one fixed H-unitary solution of (6.1). We will not explicitly
present the straightforward statements that are obtained in this way. We focus instead
on an important special case of equations (6.1) which is fundamental for a certain class
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of algorithms for computing the eigenvalues of a matrix using the generalized Schur
method, namely, hyperbolic QR decompositions (see, e.g., [B, OSB, V] and references
therein).

In a typical version of hyperbolic QR decompositions, one seeks factorizations of
the form (6.1), where m ≥ n and X is an upper triangular matrix

X =

[
X1

0

]
with invertible n × n matrix X1. The factor U is H-unitary, where H is a fixed
invertible Hermitian m×m matrix. Factorizations (6.1) of a given matrix A with the
above properties will be called hyperbolic QR decompositions in this paper.

In what follows, we will use a basis {f1, . . . , fm} in Fm such that {f1, . . . , fn}
forms a basis in

[
Fn

0

]
and with respect to which the indefinite scalar product [x, y] =

〈Hx, y〉, x, y ∈ Fm, induced by H has the Gramian matrix
0 0 I 0
0 J1 0 0
I 0 0 0
0 0 0 J2

 ,(6.2)

where I is the n0 × n0 identity matrix and J1 is the diagonal (n+ + n−)× (n+ + n−)
matrix having the first n+ diagonal elements equal to +1 and the remaining n−
diagonal elements equal to −1; here n0 + n+ + n− = n. Similarly, J2 is a diagonal
matrix with entries +1 and −1 on the main diagonal. (Compare with (2.5).) A basis
{f1, . . . , fm} with the above properties will be called admissible.

Theorem 6.1. Let A = U0X0 be a hyperbolic QR decomposition of a given m×n
matrix A. Then every hyperbolic QR decomposition A = ŨX0 of A with the same
factor X0 is given by the following formula, written as a block 4×4 matrix (compatible
with (6.2) ) with respect to an admissible basis: Ũ = U0M , where

M =


I 0 − 1

2P
∗
2 J2P2 + P3 −P ∗2 J2P1

0 I 0 0
0 0 I 0
0 0 P2 P1

 .
Here P1 is J2-unitary, P3 is a skew-self-adjoint n0×n0 matrix, and P2 is an arbitrary
(m− n− n0)× n0 matrix.

The proof is a straightforward application of Theorem 2.4.
Applying Theorem 2.6, we have the following corollary in the real case.
Corollary 6.2. The set of all hyperbolic QR decompositions A = ŨX0 of a

given m× n matrix A with a given m× n factor X0 is connected if

π(H) = n+ + n0, ν(H) = n− + n0

has two connected components if exactly one of the numbers p = π(H)− n+− n0 and
q = ν(H)−n−−n0 is positive and has four connected components if both p and q are
positive.

We do not discuss here the problem of existence of hyperbolic QR decompositions
for a given m × n matrix A and a given invertible Hermitian m ×m matrix H and
only mention that the obvious necessary condition for A to have full column rank is
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not sufficient. A characterization of all square matrices A that admit a decomposition
A = UX, where U is H1-H2-unitary and X is upper triangular and nonsingular, is
given in Theorem 2.3 of [B]. (The paper [B] considers only diagonal matrices H1 and
H2, which is the most important case for the development of algorithms based on
the generalized Schur method.) An extension to the case of rectangular matrices is
presented in [V].
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[Bo] J. Bognár, Indefinite Inner Product Spaces, Springer, Berlin, 1974.
[BMRRR1] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L.

Rodman, Polar decompositions in finite dimensional indefinite scalar product
spaces: General theory, Linear Algebra Appl., to appear.

[BMRRR2] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L.

Rodman, Polar decompositions in finite dimensional indefinite scalar product
spaces: Special cases and applications, in Recent Developments in Operator
Theory and its Applications, Operator Theory, Vol. 87, I. Gohberg, P. Lan-
caster, and P. N. Shivakumar, eds., Birkhäuser, Basel, 1996, pp. 61–94. Errata,
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Abstract. This paper gives perturbation analyses for Q1 and R in the QR factorization A =
Q1R, QT1 Q1 = I for a given real m × n matrix A of rank n and general perturbations in A which
are sufficiently small in norm. The analyses more accurately reflect the sensitivity of the problem
than previous such results. The condition numbers here are altered by any column pivoting used in
AP = Q1R, and the condition number for R is bounded for a fixed n when the standard column
pivoting strategy is used. This strategy also tends to improve the condition of Q1, so the computed
Q1 and R will probably both have greatest accuracy when we use the standard column pivoting
strategy.

First-order perturbation analyses are given for both Q1 and R. It is seen that the analysis for R
may be approached in two ways—a detailed “matrix–vector equation” analysis which provides a tight
bound and corresponding condition number, which unfortunately is costly to compute and not very
intuitive, and a simpler “matrix equation” analysis which provides results that are usually weaker
but easier to interpret and which allows the efficient computation of satisfactory estimates for the
actual condition number. These approaches are powerful general tools and appear to be applicable
to the perturbation analysis of any matrix factorization.

Key words. QR factorization, perturbation analysis, condition estimation, matrix equations,
pivoting

AMS subject classifications. 15A23, 65F35

PII. S0895479896297720

1. Introduction. The QR factorization is an important tool in matrix compu-
tations (see, for example, [5]): given an m × n real matrix A with full column rank,
there exists a unique m× n real matrix Q1 with orthonormal columns and a unique
nonsingular upper triangular n× n real matrix R with positive diagonal entries so

A = Q1R.

The matrix Q1 is referred to as the orthogonal factor and R the triangular factor.
Whenever Q1 or R has meaning in its own right, we will be interested in how

sensitive it is to changes in the original matrix A. Some practical examples where
this sensitivity is important are described in [3]. Here we give perturbation analyses
leading to condition numbers. Since a condition number (as a function of a matrix of
a certain class) must be from a bound which is attainable (for any matrix in the given
class) we will use this rigorous terminology and use qualified terms (e.g., “condition
estimate,” “condition bound”) when this criterion is not met.

Suppose A(t) ≡ A+ tG has the unique QR factorization A(t) = Q1(t)R(t). If we
differentiate R(t)TR(t) = A(t)TA(t) with respect to t and set t = 0 we have

RT Ṙ(0) + ṘT (0)R = AT Ȧ(0) + Ȧ(0)TA = RTQT1 G+GTQ1R,(1.1)
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which with given A and G is a linear equation for the upper triangular matrix Ṙ(0).
But Ṙ(0) determines the sensitivity of R(t) at t = 0, and so the core of any first-order
perturbation analysis for the QR factorization is the use of (1.1) to determine, or to
bound, Ṙ(0). We first discuss two main ways of approaching this problem.

Chang [1] pointed out that most of the published results on the sensitivity of
factorizations, such as LU, Cholesky, and QR, were extremely weak for certain classes
of matrices and showed why the condition was often significantly improved by pivoting.
To do this he created a general approach for obtaining provably tight results and
corresponding condition numbers for such problems. We will call this the “matrix–
vector equation” approach. For the QR factorization this involves expressing (1.1) as
a matrix–vector equation of the form

WRuvec(Ṙ(0)) = ZRvec(QT1 G),

where WR and ZR are matrices involving the elements of R and vec(·) transforms
its argument into a vector of its elements. The notation uvec(·) denotes a variant
of vec(·) defined in section 5.2. Previously, the most used approach to perturbation
analyses of factorizations was what we will call the “matrix equation” approach, which
keeps equations like (1.1) in their matrix–matrix form. Stewart [13] used a construct,
partly illustrated by the “up” and “low” notation in section 2, which makes the matrix
equation approach a more usable and intuitive tool. He combined this with scaling to
produce new matrix equation analyses which are straightforward and provide greater
insight into the sensitivities of the problems. These new matrix equation analyses
do not in general provide tight results like the matrix–vector equation analyses do,
but they are usually more simple and provide practical estimates for the condition
numbers obtained from the latter. A combination of the two approaches provides a
full understanding of the cases we have examined so far and is a powerful general tool
that appears to be applicable to the perturbation analysis of any matrix factorization.

The perturbation analysis for the QR factorization has been considered by several
authors. The first norm-based result for R was presented by Stewart [11]. That was
further modified and improved by Sun [15]. Using different approaches Sun [15]
and Stewart [12] gave first-order norm-based perturbation analyses for R. A first-
order so-called “componentwise” perturbation analysis for R was given by Zha [19]
(this assumes ∆A has the form of the equivalent backward rounding error from a
numerically stable computation of the QR factorization), and a strict analysis for the
components of R was given by Sun [16]. These papers also gave analyses for Q1. More
recently Sun [17] gave strict perturbation bounds for Q1 alone.

The purpose of this paper is to establish new first-order perturbation bounds
which are generally sharper than the equivalent results for the R factor in [12, 15],
and more straightforward than the sharp result in [17] for the Q1 factor.

In section 2 we define some notation and give a result we will use throughout the
paper. In section 3 we survey important key results on the sensitivity of R and Q1

which will be useful later. In section 4 we give a refined perturbation analysis for
Q1, showing in a simple way why the standard column pivoting strategy for A can
be beneficial for certain aspects of the sensitivity of Q1. In section 5 we analyze the
perturbation in R, first by the straightforward matrix equation approach, then by
the more detailed and tighter matrix–vector equation approach. We give numerical
results and suggest practical condition estimators in section 6, and summarize and
comment on our findings in section 7.
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2. Notation and basics. To simplify the presentation, for any n×n matrix X,
we define the upper and lower triangular matrices

up(X) ≡


1
2x11 x12 · x1n

0 1
2x22 · x2n

· · · ·
0 0 · 1

2xnn

 , low(X) ≡ up(XT )T ,(2.1)

so that X = low(X) + up(X). For general X

‖low(X)− [low(X)]T ‖F ,≤
√

2‖X‖F .(2.2)

For symmetric X

2‖low(X)‖2F = 2‖up(X)‖2F = ‖X‖2F −
1

2
(x2

11 + x2
22 + · · ·+ x2

nn) ≤ ‖X‖2F .(2.3)

To illustrate a basic use of “up,” we show that for any given n×n nonsingular upper
triangular R and any given n× n symmetric M , the equation of the form (cf. (1.1))

RTU + UTR = M(2.4)

always has a unique upper triangular solution U . Since UR−1 is upper triangular
in UR−1 + (UR−1)T = R−TMR−1 symmetric, we see immediately that UR−1 =
up(R−TMR−1), so UR−1 and therefore U is uniquely defined. We will describe other
uses later.

Our perturbation bounds for Q1 will be tighter if we bound separately the pertur-
bations along the column space of A and along its orthogonal complement. Thus we
introduce the following notation. For real m×n A, let P1 be the orthogonal projector
onto R(A) and P2 be the orthogonal projector onto R(A)⊥. For real m×n ∆A define

ε ≡ ‖∆A‖F /‖A‖2, ε1 ≡ ‖P1∆A‖F /‖A‖2, ε2 ≡ ‖P2∆A‖F /‖A‖2,(2.5)

so ε2 = ε21 + ε22. When ε > 0 in (2.5) we also define

G ≡ ∆A/ε,(2.6)

so for the QR factorization A = Q1R

‖G‖F = ‖A‖2 = ‖R‖2.(2.7)

We will use the following standard result.
Lemma 2.1. For real m× n A with rank n, real A+ ∆A has rank n if

κ2(A)
‖P1∆A‖2
‖A‖2

< 1,(2.8)

where κ2(A) ≡ ‖A†‖2‖A‖2 and P1 is the orthogonal projector onto R(A).
Proof. Let A have the QR factorization

A = Q

(
R
0

)
= (Q1, Q2)

(
R
0

)
; then QT (A+ ∆A) =

(
R+QT1 ∆A
QT2 ∆A

)
,

which necessarily has full column rank if ‖QT1 ∆A‖2 < σmin(A), the smallest singular
value of A. But this inequality is just (2.8). 2

Corollary 2.2. If nonzero ∆A satisfies (2.8), then for ε and G defined in (2.5)
and (2.6) A+ tG has full column rank and therefore a unique QR factorization for all
|t| ≤ ε. 2
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3. Previous norm-based results. In this section we summarize the strongest
norm-based results by previous authors. We first give a derivation of what is essen-
tially Sun’s [15] and Stewart’s [12] first-order norm-based perturbation result for R,
since the techniques, intermediate equations, and results will be useful later.

Theorem 3.1 (see [15]). Let A ∈ Rm×n have full column rank and QR factor-
ization A = Q1R, and let ∆A be a real m × n matrix. Define ε ≡ ‖∆A‖F /‖A‖2
and ε1 ≡ ‖QT1 ∆A‖F /‖A‖2; see (2.5). If (2.8) holds then A + ∆A has a unique QR
factorization

A+ ∆A = (Q1 + ∆Q1)(R+ ∆R),(3.1)

where

‖∆R‖F
‖R‖2

≤
√

2κ2(A)ε1 +O(ε2).(3.2)

Proof. Let G ≡ ∆A/ε (if ε = 0 the theorem is trivial). From Corollary 2.2 A+ tG
has the unique QR factorization

A(t) ≡ A+ tG = Q1(t)R(t) for all |t| ≤ ε, where(3.3)

QT1 (t)Q1(t) = I.(3.4)

Notice that R(0) = R and R(ε) = R+ ∆R.
It is easy to verify that Q1(t) and R(t) are twice continuously differentiable for

|t| ≤ ε from the algorithm for the QR factorization. Thus as in (1.1) we have

RT Ṙ(0) + ṘT (0)R = RTQT1 G+GTQ1R,(3.5)

which (see (2.4)) is a linear equation uniquely defining the elements of Ṙ(0) in terms
of the elements of QT1 G. From upper triangular Ṙ(0)R−1 in

Ṙ(0)R−1 + (Ṙ(0)R−1)T = QT1 GR
−1 + (QT1 GR

−1)T ,(3.6)

we see with (2.1) that

Ṙ(0) = up[QT1 GR
−1 + (QT1 GR

−1)T ]R,(3.7)

so with (2.3)

‖Ṙ(0)‖F ≤
1√
2
‖QT1 GR−1 + (QT1 GR

−1)T ‖F ‖R‖2

≤
√

2‖QT1 GR−1‖F ‖R‖2 ≤
√

2κ2(R)‖QT1 G‖F ,

and since from (2.5)–(2.7) ‖QT1 G‖F = ‖A‖2ε1/ε, and ‖R−1‖2 = ‖A†‖2,

‖Ṙ(0)‖F
‖R‖2

≤
√

2κ2(A)ε1/ε.(3.8)

The Taylor expansion for R(t) about t = 0 gives at t = ε

R+ ∆R = R(ε) = R(0) + εṘ(0) +O(ε2),(3.9)

so that

‖∆R‖F
‖R‖2

≤ ‖Ṙ(0)‖F
‖R‖2

ε+O(ε2),
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which, combined with (3.8), gives (3.2). 2

This proof shows that the key point in deriving a first-order perturbation bound
for R is the use of (3.5) to give a good bound on the sensitivity ‖Ṙ(0)‖F /‖R‖2. Since
we obtained the bounds directly from (3.7), this was a “matrix equation” analysis.

We now show how a recent perturbation result for Q1 given by Sun [17] can be
obtained in the present setting, since the analysis can easily be extended to obtain a
more refined result in a simple way. Note that the hypotheses of the following theorem
are those of Theorem 3.1, so we can use results from the latter theorem.

Theorem 3.2 (see [17]). Let A ∈ Rm×n be of full column rank, with the QR
factorization A = Q1R, and let ∆A be a real m× n matrix. If ε ≡ ‖∆A‖F /‖A‖2 and
(2.8) holds, then A+ ∆A has a unique QR factorization

A+ ∆A = (Q1 + ∆Q1)(R+ ∆R),

where

‖∆Q1‖F ≤
√

2κ2(A)ε+O(ε2).(3.10)

Proof. Let G ≡ ∆A/ε (if ε = 0 the theorem is trivial). From Corollary 2.2 A+ tG
has the unique QR factorization A(t) ≡ A + tG = Q1(t)R(t) with Q1(t)TQ1(t) = I
for all |t| ≤ ε. Differentiating these at t = 0 gives

G = Q1Ṙ(0) + Q̇1(0)R, QT1 Q̇1(0) skew symmetric.

It follows that

Q̇1(0) = GR−1 −Q1Ṙ(0)R−1,

so with any Q2 such that Q ≡ (Q1, Q2) is square and orthogonal,

QT2 Q̇1(0) = QT2 GR
−1,(3.11)

QT1 Q̇1(0) = QT1 GR
−1 − Ṙ(0)R−1.

Now using (2.1), we have with (3.7) in the proof of Theorem 3.1 that

QT1 Q̇1(0) = low(QT1 GR
−1) + up(QT1 GR

−1)

−up[QT1 GR
−1 + (QT1 GR

−1)T ]

= low(QT1 GR
−1)− [low(QT1 GR

−1)]T .(3.12)

We see from this, (2.2), (3.11), and ‖G‖F = ‖A‖2 from (2.7) that

‖Q̇1(0)‖2F = ‖QT1 Q̇1(0)‖2F + ‖QT2 Q̇1(0)‖2F
≤ 2‖QT1 GR−1‖2F + ‖QT2 GR−1‖2F ≤ 2‖GR−1‖2F ,

‖Q̇1(0)‖F ≤
√

2‖R−1‖2‖G‖F =
√

2κ2(A),(3.13)

and from the Taylor expansion for Q1(t) about t = 0 at t = ε,

Q1 + ∆Q1 = Q1(ε) = Q1(0) + εQ̇1(0) +O(ε2),(3.14)

so that ‖∆Q1‖F ≤ ε‖Q̇1(0)‖F +O(ε2), which with (3.13) gives (3.10). 2
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4. Refined analysis for Q. The results of Sun [17] give about as good as
possible overall bounds on the change ∆Q1 in Q1. But by looking at how ∆Q1 is
distributed between R(Q1) and its orthogonal complement, and following the ideas
in Theorem 3.2, we are able to obtain a result which is tight but, unlike the related
tight result in [17], easy to follow. It makes clear exactly where any ill conditioning
lies. From (3.14) with Q = (Q1, Q2) square and orthogonal,

∆Q1 = εQ1Q
T
1 Q̇1(0) + εQ2Q

T
2 Q̇1(0) +O(ε2),

and the key is to bound the first term on the right separately from the second. Note
from (3.11) with (2.5)–(2.7) that

‖QT2 Q̇1(0)‖F = ‖QT2 GR−1‖F ≤ ‖R−1‖2‖QT2 G‖F = κ2(A)ε2/ε,

where G can be chosen to give equality here for any given A. Hence κ2(A) is the
condition number for that part of ∆Q1 in R(Q2):

‖QT2 ∆Q1‖F ≤ κ2(A)ε2 +O(ε2).(4.1)

Now we turn to the part of ∆Q1 in R(Q1). We see from (3.12) that n× n
S ≡ QT1 Q̇1(0) = low(QT1 GR

−1)− [low(QT1 GR
−1)]T ,(4.2)

which is skew symmetric with clearly zero diagonal. Thus if n = 1, S = QT1 Q̇1(0) = 0.
For n > 1 let Rj and Sj denote the leading j × j blocks of R and S, respectively, Gj
the matrix of the first j columns of G and Q1 = [q1, . . . , qn]. If we write

S1 = 0, Sj =

(
Sj−1 −sj
sTj 0

)
, j = 2, . . . , n,

where sj has j–1 elements, then from the upper triangular form of R in (4.2)

sTj = qTj Gj−1R
−1
j−1,

1

2
‖S‖2F = ‖s2‖22 + · · ·+ ‖sn‖22

≤ ‖R−1
1 ‖22‖GT1 q2‖22 + · · ·+ ‖R−1

n−1‖22‖GTn−1qn‖22
≤ ‖R−1

n−1‖22‖GTn−1Q1‖2F ≤ ‖R−1
n−1‖22‖QT1 G‖2F .

Clearly for any Rn−1 equality is obtained by taking G = (qny
T , 0), with y nonzero

such that ‖R−Tn−1y‖2 = ‖R−1
n−1‖2‖y‖2. It follows that the bound is tight in

‖QT1 Q̇1(0)‖F = ‖S‖F ≤
√

2‖R−1
n−1‖2‖A‖2ε1/ε,

‖QT1 ∆Q1‖F ≤
√

2‖R−1
n−1‖2‖A‖2ε1 +O(ε2),(4.3)

so the condition number for that part of ∆Q1 in R(Q1) is not
√

2κ2(A) but

κQ1
(A) ≡

√
2‖R−1

n−1‖2‖A‖2.(4.4)

In some problems we are mainly (in fact only, if A is square and nonsingular)
interested in the change in Q1 lying in R(Q1), and this result shows its bound can be
smaller than we previously thought. In particular, if A has only one small singular
value and we use the standard column pivoting strategy in computing the QR factor-
ization, then Rn−1 will usually be quite well conditioned compared with R and we
will have ‖R−1

n−1‖2‖A‖2 � κ2(A). However, for some special cases this may not be
true (for example, the Kahan matrix in section 6), and then a rank revealing pivoting
strategy such as in [8] would be required to obtain such an improvement.
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5. Perturbation analyses for R. In section 3 we saw that the key to deriving
first-order perturbation bounds for R in the QR factorization of full column rank A is
equation (3.5), which has the general form of finding (bounding) X in terms of given
R and F in the matrix equation

RTX +XTR = RTF + FTR, X and R upper triangular, R nonsingular.(5.1)

Sun [15] and Stewart [12] originally analyzed this using the matrix equation approach
to give the result in Theorem 3.1. We will now analyze it in two new ways. The first,
the refined matrix equation approach, gives a clear improvement to Theorem 3.1,
while the second, the matrix–vector equation approach, gives a further improvement
still—provably tight bounds leading to the condition number κR(A) for R in the
QR factorization of A. Both approaches provide efficient condition estimators (see
[2] for the matrix–vector equation approach) and nice results for the special case of
AP = Q1R, where P is a permutation matrix giving the standard column pivoting,
but we will derive only the matrix equation versions of these. The tighter but more
complicated matrix–vector equation analysis for the case of pivoting is given in [2],
and only the results will be quoted here.

5.1. Refined matrix equation analysis for R. Our proof of Theorem 3.1
used (3.5) to produce the matrix equation (3.7) and derived the bounds directly from
this. We now look at this approach more closely, but at first using the general form
(5.1) to keep our thinking clear. From this we see that

X = up(FR−1 +R−TFT )R.

Let Dn be the set of all n × n real positive-definite diagonal matrices. For any
D = diag(δ1, . . . , δn) ∈ Dn, let R = DR̄. Note that for any matrix B we have
up(B)D = up(BD). Hence if we define B ≡ FR̄−1, then

X = up(FR̄−1 +D−1R̄−TFTD)R̄ = [up(B) +D−1up(BT )D]R̄.(5.2)

With obvious notation, the upper triangular matrix up(B) +D−1up(BT )D has (i, j)
element βij + βjiδj/δi for i < j and (i, i) element βii. To bound this, we use the
following lemma.

Lemma 5.1. For n× n B and D ∈ Dn,

φ ≡ ‖up(B) +D−1up(BT )D‖F ≤
√

1 + ζ2
D‖B‖F ,(5.3)

where

ζD ≡ max
1≤i<j≤n

{δj/δi}.(5.4)

Proof. Clearly,

φ2 =
n∑
i=1

β2
ii +

n∑
j=2

j−1∑
i=1

(
βij +

δj
δi
βji

)2

.

But by the Cauchy–Schwarz theorem, (βij +
δj
δi
βji)

2 ≤ (β2
ij + β2

ji)(1 + (
δj
δi

)2), so

φ2 ≤
n∑
i=1

β2
ii +

n∑
j=2

j−1∑
i=1

(β2
ij + β2

ji)

(
1 +

(
δj
δi

)2
)
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= ‖B‖2F +
n∑
j=2

j−1∑
i=1

(β2
ij + β2

ji)

(
δj
δi

)2

≤ ‖B‖2F + ζ2
D‖B‖2F . 2(5.5)

We can now bound the solution X of (5.1):

‖X‖F ≤ φ · ‖R̄‖2 ≤
√

1 + ζ2
D‖B‖F ‖R̄‖2 =

√
1 + ζ2

D‖FR̄−1‖F ‖R̄‖2(5.6)

≤
√

1 + ζ2
Dκ2(R̄)‖F‖F .(5.7)

But this is true for all D ∈ Dn, so for the upper triangular solution X of (5.1)

‖X‖F ≤ κME(A)‖F‖F ,(5.8)

κME(A) ≡ inf
D∈Dn

κ(R,D),(5.9)

κ(R,D) ≡
√

1 + ζ2
Dκ2(D−1R),(5.10)

where ζD is defined in (5.4). This gives the encouraging result

κME(A) ≤ κ(R, I) =
√

2κ2(R) =
√

2κ2(A).(5.11)

Comparing (3.5) with (5.1), we see for the QR factorization, with (2.5)–(2.7),

‖Ṙ(0)‖F ≤ κME(A)‖QT1 G‖F = κME(A)‖A‖2ε1/ε.

Hence

‖Ṙ(0)‖F
‖R‖2

≤ κME(A)ε1/ε,(5.12)

and from (3.9) for a change ∆A = εG in A we have

‖∆R‖F
‖R‖2

≤ κME(A)ε1 +O(ε2),(5.13)

where from (5.11) these are never worse than the bound in Theorem 3.1.
With the standard column pivoting strategy in AP = Q1R, P a permutation

matrix, this analysis leads to a very nice result. Here the elements of R satisfy

r2ii ≥
j∑
k=i

r2kj , i = 1, . . . , n, j = i, . . . , n,

so r211 ≥ r222 ≥ · · · ≥ r2nn. If D is the diagonal of R then ζD ≤ 1, and from (5.9) and
(5.10)

κME(AP ) ≤ κ(R,D) ≤
√

2κ2(R̄), R̄ = D−1R.

But then 1 = |r̄ii| ≥ |r̄ij | for all j ≥ i, and it follows from [7, Theorem 8.13] that

1 ≤ ‖R̄−1‖2 ≤ 2n−1,

so since ‖R̄‖22 ≤ ‖R̄‖2F ≤ n(n+ 1)/2,

κ2(R̄) ≤ 2n−1 ·
√
n(n+ 1)/2,

κME(AP ) ≤
√

2κ2(R̄)≤ 2n−1
√
n(n+ 1).(5.14)
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So with the standard pivoting strategy, the sensitivity of R is bounded for any n.
Remark 5.1. Clearly κME(A) is a potential candidate for the condition number

of R in the QR factorization. From (5.9), κME(A) depends solely on R, but it will
only be the condition number if for any nonsingular upper triangular R we can find
an F in (5.1) giving equality in (5.8). From (5.7) this can only be true if every column
of FT lies in the space of the right singular vectors corresponding to the maximum
singular value of R̄−T . Such a restriction is in general too strong for (5.6) to be made
an equality as well (see the lead up to (5.5)). But for a class of R this is possible.
If R is diagonal, we can take D = R giving R̄ = I, and the first restriction on F
disappears. Let i and j be such that ζD = δj/δi, j > i. If F = eje

T
i , from (5.2)

X = up(eje
T
i + ζDeie

T
j ),

‖X‖F =
√

1 + ζ2
D =

√
1 + ζ2

Dκ2(R̄)‖F‖F .

So we see that, at least for diagonal R, the bounds are tight, and in this restricted
case κME(A) is the condition number.

This refined matrix equation analysis shows to what extent the solution X of
(5.1), and so the sensitivity of R in the QR factorization, is dependent on the row
scaling in R = DR̄. From the term D−1up(R̄−TFT )D in (5.2), we saw that multipliers
δj/δi occurred only with j > i. As a result we obtained ζD in our bounds rather than
κ2(D), where

ζD ≤ κ2(D),

with equality if and only if the minimum element comes before the maximum on the
diagonal. Thus we obtained full cancellation of D−1 with D in the first term on the
right-hand side of (5.2) and partial cancellation in the second.

This gives some insight as to why R in the QR factorization is less sensitive than
the earlier condition estimator

√
2κ2(A) indicated. If the ill conditioning of R is

mostly due to the bad scaling of its rows, then the correct choice of D in R = DR̄ can
give κ2(R̄) very near one. If at the same time ζD is not large, then κ(R,D) in (5.10)
can be much smaller than

√
2κ2(R); see (5.11). Standard pivoting always ensures

that such a D exists, and in fact gives (5.14). However, if we do not use any pivoting,
then Remark 5.1 suggests that any relatively small earlier elements on the diagonal
of R could correspond to poor conditioning of the factorization.

We will return to κME(A) and κ(R,D) when we seek practical estimates of the
condition number that we derive in the next section.

5.2. Matrix–vector equation analysis for R. We can now obtain provably
sharp, but less intuitive, results by viewing the matrix equation (5.1) as a large matrix–

vector equation. For any matrix C ≡ (cij) ≡ [c1, . . . , cn] ∈ Rn×n, denote by c
(i)
j the

vector of the first i elements of cj . With this, we define (“u” denotes “upper”)

uvec(C) ≡


c
(1)
1

c
(2)
2

·
c
(n)
n

 .
It is the vector formed by stacking the columns of the upper triangular part of C into
one long vector.
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To analyze (3.5) we again consider the general form (5.1), repeated here for clarity:

RTX +XTR = RTF + FTR, X and R upper triangular, R nonsingular,(5.15)

which we saw via (2.4) has a unique upper triangular solution X. The upper and
lower triangular parts of (5.1) contain identical information, and we now write the
upper triangular part in matrix–vector, rather than matrix–matrix, format. The first
j elements of the jth column of (5.15) are given by

RTjjx
(j)
j +XT

jjr
(j)
j = RTjjf

(j)
j +


f

(j)T
1

f
(j)T
2

·
f

(j)T
j

 r(j)j ,

and by rewriting this, we can see how to solve for x
(j)
j , j = 1, . . . , n:

(RTjj + ejr
(j)T
j )x

(j)
j +


r
(1)T
j x

(1)
1

r
(2)T
j x

(2)
2

·
r
(j−1)T
j x

(j−1)
j−1

0

 = (RTjj + ejr
(j)T
j )f

(j)
j +


r
(j)T
j f

(j)
1

r
(j)T
j f

(j)
2

·
r
(j)T
j f

(j)
j−1

0

 ,

which, upon dividing the last row of this by 2, gives

WRuvec(X) = ZRvec(F ),(5.16)

where WR ∈ R
n(n+1)

2 ×n(n+1)
2 is

r11
r12 r11

r12 r22
r13 r11

r13 r23 r12 r22
r13 r23 r33

· · · · · · ·
r1n r11

r1n r2n r12 r22
r1n r2n r3n r13 r23 r33

· · · · ·
r1n r2n r3n · rnn


and ZR ∈ R

n(n+1)
2 ×n2

is

r11
r12 r22 r11

r12 r22
· · · · · · ·
r1n r2n · rnn r11

r1n r2n · rnn r12 r22
· · · ·
r1n r2n · rnn


.
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Since R is nonsingular, WR is also, and from (5.16)

uvec(X) = W−1
R ZRvec(F ).(5.17)

Remembering X is upper triangular, we see that

‖X‖F = ‖uvec(X)‖2 = ‖W−1
R ZRvec(F )‖2

≤ ‖W−1
R ZR‖2‖vec(F )‖2 = ‖W−1

R ZR‖2‖F‖F ,(5.18)

where for any nonsingular upper triangular R equality can be obtained by choosing
vec(F ) to lie in the space spanned by the right singular vectors corresponding to the
largest singular value of W−1

R ZR. It follows that (5.18) is tight, so from (5.8), derived
from the matrix equation approach, and (5.11)

‖W−1
R ZR‖2 ≤ κME(A) ≤

√
2κ2(A).(5.19)

Remark 5.2. Usually the first and second inequalities are strict. For example,

let R =
(

1 1
0 1

)
. Then we obtain ‖W−1

R ZR‖2 = 1.7321, κME(A) = 2.8679, and
√

2κ2(A) = 3.7025 by MATLAB (κME(A) = 2.8679 was obtained via an optimization
problem). But from Remark 5.1 the first inequality becomes an equality if R is
diagonal. The second also becomes an equality if R is an n× n identity matrix with
n ≥ 2.

The structure of WR and ZR reveals that each column of WR is one of the columns
of ZR, and so W−1

R ZR has an n(n+ 1)/2 square identity submatrix, giving

‖W−1
R ZR‖2 ≥ 1.(5.20)

Remark 5.3. We can obtain no better constant lower bound than this, as can be
seen by taking R = diag(1, δ, . . . , δn−1), 0 < δ ≤ 1, for by taking D = R in (5.19),
(5.9), and (5.10), we see from Remark 5.1 that

1 ≤ ‖W−1
R ZR‖2 = κME(A) = κ(R,D) =

√
1 + δ2 → 1 as δ → 0.(5.21)

These results, and the analysis in section 4 for Q1, lead to our new first-order
norm-based perturbation theorem.

Theorem 5.2. Let A = (Q1, Q2)

(
R

0

)
be the QR factorization of A ∈ Rm×n

with full column rank, and let ∆A be a real m × n matrix. Let ε ≡ ‖∆A‖F /‖A‖2,
ε1 ≡ ‖QT1 ∆A‖F /‖A‖2, and ε2 ≡ ‖QT2 ∆A‖F /‖A‖2. If (2.8) holds, then there is a
unique QR factorization satisfying

A+ ∆A = (Q1 + ∆Q1)(R+ ∆R),(5.22)

‖∆R‖F
‖R‖2

≤ κR(A)ε1 +O(ε2),(5.23)

where with WR and ZR as in (5.16) and κME(A) as in (5.9) and (5.10),

1 ≤ κR(A) ≡ ‖W−1
R ZR‖2 ≤ κME(A) ≤

√
2κ2(A),(5.24)

and with

κQ1(A) ≡
√

2‖R−1
n−1‖2‖A‖2 ≤

√
2κ2(A),
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‖QT2 ∆Q1‖F ≤ κ2(A)ε2 +O(ε2),

‖QT1 ∆Q1‖F ≤ κQ1
(A)ε1 +O(ε2).

Proof. From Corollary 2.2 A+ ∆A has the unique QR factorization (5.22). From
(3.5), (5.15), (5.17) with G ≡ ∆A/ε, and (2.5) we have

uvec(Ṙ(0)) = W−1
R ZRvec(QT1 G),

so taking the 2-norm gives

‖Ṙ(0)‖F ≤ ‖W−1
R ZR‖2‖QT1 G‖F = ‖W−1

R ZR‖2‖A‖2ε1/ε.

With ‖A‖2 = ‖R‖2, ‖A†‖2 = ‖R−1‖2, (5.19), and (5.20), this gives (5.24) and

‖Ṙ(0)‖F
‖R‖2

≤ κR(A)ε1/ε.(5.25)

Thus, from the Taylor series (3.9) of R(t), (5.23) follows. The remaining results are
restatements of (5.20), (5.19), (4.1), and (4.3). 2

Remark 5.4. From (5.24) we know that the first-order perturbation bound (5.23)
is at least as good as (3.2). In fact, it can be better by an arbitrary factor. Consider
the example in Remark 5.3, where taking D = R,

κR(A) = κME(A) = κ(R,D) =
√

1 + δ2, κ2(A) = 1/δ

and
√

2κ2(A)

κR(A)
∼
√

2

δ
as δ → 0.

We see that the first-order perturbation bound (3.2) can severely overestimate the
effect of a perturbation in A.

Remark 5.5. If we take R = diag(δ1−n, . . . , δ, 1), 0 < δ ≤ 1, we see that κ2(R) =
κ2(A) = δ1−n, while

κR(A) = κME(A) = κ(R,D) =
√

1 + δ2−2n,

which is close to the upper bound
√

2κ2(A) for small δ. This shows that relatively
small early diagonal elements of R cause poor condition and suggests that if we do
not use pivoting, then there is a significant chance that the condition of the problem
will approach its upper bound, at least for randomly chosen matrices.

When we use standard pivoting, we see from (5.24) and (5.14) that

1 ≤ κR(AP ) ≡ ‖W−1
R ZR‖2 ≤ κME(AP ) ≤ 2n−1

√
n(n+ 1),

but the following tighter result is shown in [2, Theorem 2.2].
Theorem 5.3. Let A ∈ Rm×n be of full column rank, with the QR factorization

AP = Q1R when the standard column pivoting strategy is used. Then

1 ≤ κR(AP ) = ‖W−1
R ZR‖2 ≤ ‖W−1

R ZR‖F ≤
√

1

27
4n+1 +

1

3
n2 +

2

9
n− 4

27
.(5.26)
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There is a parametrized family of matrices A(θ), θ ∈ (0, π/2], for which

‖W−1
R ZR‖F →

√
1

27
4n+1 +

1

3
n2 +

2

9
n− 4

27
as θ → 0. 2

Theorem 5.3 shows that when the standard column pivoting strategy is used, κR(AP )
is bounded for fixed n no matter how large κ2(A) is. Many numerical experiments
with this strategy suggest that κR(AP ) is usually close to its lower bound of 1, but
we give an extreme example in section 6 where it is not.

When we do not use pivoting, we have no such simple result for κR(A), and it
is, as far as we can see, unreasonably expensive to compute or approximate κR(A)
directly with the usual approach. Fortunately, κME(A) is apparently an excellent
approximation to κR(A), and κME(A) is quite easy to estimate. All we need to do is
choose a suitable D in κ(R,D) in (5.10). We now consider how to do this.

6. Numerical experiments and condition estimators. In section 5 we pre-
sented new first-order perturbation bounds for the R factor of the QR factorization
using two different approaches, defined κR(A) ≡ ‖W−1

R ZR‖2 as the condition number
for the R factor, and suggested κR(A) could be estimated in practice by κ(R,D). Our
new first-order results are sharper than previous results for R and at least as sharp for
Q1, and we give some numerical tests to illustrate both this and possible estimators
for κR(A).

We would like to choose D such that κ(R,D) is a good approximation to the
minimum κME(A) in (5.9) and show that this is a good estimate of the condition
number κR(A). Then a procedure for obtaining an O(n2) condition estimator for R
in the QR factorization (i.e., an estimator for κR(A)) is to choose such a D, use a
standard condition estimator (see, for example, [6]) to estimate κ2(D−1R), and take
κ(R,D) in (5.10) as the appropriate estimate.

By a well-known result of van der Sluis [18], κ2(D−1R) will be nearly minimal
when the rows of D−1R are equilibrated. But this could lead to a large ζD in (5.10).
There are three obvious possibilities for D. The first one is choosing D to equilibrate

R precisely. Specifically, take δi =
√∑n

j=i r
2
ij for i = 1, . . . , n. The second one is

choosing D to equilibrate R as far as possible while keeping ζD ≤ 1. Specifically,

take δ1 =
√∑n

j=1 r
2
1j , δi =

√∑n
j=i r

2
ij if

√∑n
j=i r

2
ij ≤ δi−1; otherwise δi = δi−1

for i = 2, . . . , n. The third one is choosing δi = rii. Computations show that the
third choice can sometimes cause unnecessarily large estimates, so we will not give
any results for that choice. We specify the diagonal matrix D obtained by the first
method and the second method by D1 and D2, respectively, in the following.

We give three sets of examples. The first set of matrices are n×n Pascal matrices
(with elements a1j = ai1 = 1, aij = ai,j−1 + ai−1,j), n = 1, 2, . . . , 15. The results are
shown in Table 6.1 without pivoting, giving A = Q1R, and in Table 6.2 with pivoting,
giving AP = Q̃1R̃. Note in Table 6.1 how the upper bound

√
2κ2(A) can be far worse

than the condition number κR(A), which itself can be much greater than its lower
bound of 1. In Table 6.2 pivoting is seen to give a significant improvement to κR(A),
bringing κR(AP ) very close to its lower bound, but of course

√
2κ2(AP ) =

√
2κ2(A)

still. Also, we observe from Table 6.1 that both κ(R,D1) and κ(R,D2) are very
good estimates for κR(A). The latter is a little better than the former. In Table 6.2
κ(R̃,D1) = κ(R̃,D2) (in fact D1 = D2), and they are also good estimates for κR(AP ).
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Table 6.1

Results for Pascal matrices without pivoting, A = Q1R.

n κR(A) κ(R,D1) κ(R,D2) κQ1
(A)

√
2κ2(A)

1 1.0e+00 1.4e+00 1.4e+00 — 1.4e+00
2 1.9e+00 3.4e+00 1.9e+00 2.6e+00 9.7e+00
3 4.6e+00 1.4e+01 1.4e+01 1.9e+01 8.8e+01
4 1.4e+01 6.1e+01 6.1e+01 1.6e+02 9.8e+02
5 5.0e+01 2.6e+02 2.6e+02 1.6e+03 1.2e+04
6 1.8e+02 1.1e+03 1.1e+03 1.8e+04 1.6e+05
7 6.7e+02 4.5e+03 4.2e+03 2.2e+05 2.1e+06
8 2.5e+03 1.8e+04 1.7e+04 2.8e+06 2.9e+07
9 9.4e+03 7.4e+04 6.6e+04 3.6e+07 4.1e+08
10 3.6e+04 3.0e+05 2.6e+05 4.8e+08 5.9e+09
11 1.4e+05 1.2e+06 1.1e+06 6.6e+09 8.5e+10
12 5.2e+05 4.9e+06 4.2e+06 9.1e+10 1.2e+12
13 2.0e+06 2.0e+07 1.7e+07 1.3e+12 1.8e+13
14 7.8e+06 8.0e+07 6.6e+07 1.8e+13 2.7e+14
15 3.0e+07 3.2e+08 2.6e+08 2.6e+14 4.0e+15

Table 6.2

Results for Pascal matrices with pivoting, AP = Q̃1R̃.

n κR(AP ) κ(R̃,D1) κ(R̃,D2) κQ1
(AP )

√
2κ2(A)

1 1.0e+00 1.4e+00 1.4e+00 — 1.4e+00
2 1.2e+00 1.8e+00 1.8e+00 1.7e+00 9.7e+00
3 1.3e+00 2.2e+00 2.2e+00 1.3e+01 8.8e+01
4 1.7e+00 3.4e+00 3.4e+00 1.1e+02 9.8e+02
5 1.8e+00 4.1e+00 4.1e+00 1.0e+03 1.2e+04
6 2.2e+00 4.7e+00 4.7e+00 7.5e+03 1.6e+05
7 2.1e+00 5.1e+00 5.1e+00 8.5e+04 2.1e+06
8 2.6e+00 6.5e+00 6.5e+00 1.2e+06 2.9e+07
9 3.5e+00 8.8e+00 8.8e+00 1.5e+07 4.1e+08
10 3.4e+00 9.4e+00 9.4e+00 2.4e+08 5.9e+09
11 3.4e+00 9.2e+00 9.2e+00 2.3e+09 8.5e+10
12 3.3e+00 9.7e+00 9.7e+00 3.0e+10 1.2e+12
13 3.3e+00 1.1e+01 1.1e+01 3.5e+11 1.8e+13
14 3.6e+00 1.2e+01 1.2e+01 5.4e+12 2.7e+14
15 3.3e+00 1.2e+01 1.2e+01 8.6e+13 4.0e+15

The second set of matrices are 10 × 8 Aj , j = 1, 2, . . . , 8, which are all obtained
from the same random 10×8 matrix (produced by the MATLAB function randn), but
with its jth column multiplied by 10−8 to give Aj . The results without pivoting are
shown in Table 6.3. All the results with pivoting are similar to that for j = 8 in Table
6.3, and so are not given here. For j = 1, 2 . . . , 7, κR(A) and κQ1(A) are both close to
their upper bound

√
2κ2(A), but for j = 8, both κR(A) and κQ1(A) are significantly

smaller than
√

2κ2(A). All these results are what we expected, since the matrix R
is ill conditioned because rjj is very small, but for j = 1, 2, . . . , 7 the rows of R are
already essentially equilibrated, and we do not expect κR(A) to be much better than√

2κ2(A). Also, for the first seven cases the smallest singular value of the leading part
Rn−1 is close to that of R, so that κQ1(A) could not be much better than

√
2κ2(A).

For j = 8, even though R is still ill conditioned because r8,8 is very small, it is not at
all equilibrated and becomes well conditioned by row scaling. Notice at the same time
that ζD is close to 1, so κ(R,D1), κ(R,D2), and therefore κR(A) are much better
than

√
2κ2(A). In this case, the smallest singular value of R is significantly smaller

than that of Rn−1. Thus κQ1(A), the condition number for the change in Q1 lying in
the range of Q1, is spectacularly better than

√
2κ2(A). This is a contrived example,



PERTURBATION ANALYSES FOR THE QR FACTORIZATION 789

but it serves to emphasize the benefits of pivoting for the condition of both Q1 and
R.

Table 6.3

Results for 10× 8 matrix Aj , j = 1, . . . , 8, without pivoting.

j κR(A) κ(R,D1) κ(R,D2) κQ1 (A)
√

2κ2(A)
1 1.9e+08 4.0e+08 3.0e+08 3.0e+08 4.8e+08
2 1.3e+08 2.9e+08 2.7e+08 2.6e+08 3.8e+08
3 1.9e+08 4.5e+08 3.9e+08 4.7e+08 5.5e+08
4 1.4e+08 3.1e+08 2.6e+08 2.9e+08 4.5e+08
5 1.2e+08 3.1e+08 2.4e+08 3.9e+08 4.2e+08
6 8.8e+07 2.2e+08 1.7e+08 3.5e+08 3.9e+08
7 9.3e+07 2.1e+08 1.7e+08 4.4e+08 5.5e+08
8 2.3e+00 5.5e+00 4.9e+00 6.6e+00 6.2e+08

The third set of matrices is n× n upper triangular

R = diag(1, s, . . . , sn−1)


1 −c −c · −c

1 −c · −c
1 · −c
· ·

1

 ,

where c = cos(θ), s = sin(θ). These matrices were introduced by Kahan [9]. Of course
Q1 = I here, but the condition numbers depend on R only, and these are all we are
interested in. The results for n = 5, 10, 15, 20, 25 with θ = π/8 are shown in Table
6.4. Again we found D1 = D2 and list only the results corresponding to D1.

Table 6.4

Results for Kahan matrices, θ = π/8.

n κR(A) κ(R,D1) κQ1 (A)
√

2κ2(A)
5 8.0e+00 1.7e+01 2.2e+02 1.1e+03
10 2.1e+02 6.1e+02 1.0e+06 5.1e+06
15 5.5e+03 2.1e+04 4.0e+09 2.0e+10
20 1.5e+05 6.5e+05 1.5e+13 7.5e+13
25 4.3e+06 2.0e+07 5.4e+16 2.7e+17

In all these examples we see that κ(R,D1) and κ(R,D2) gave excellent estimates
for κR(A), with κ(R,D2) being marginally preferable. For the Kahan matrices, which
correspond to correctly pivoted A, we see that in extreme cases, with large enough
n, κR(A) can be large even with standard pivoting. This is about as bad a result as
we can get with standard pivoting (it gets a bit worse as θ → 0 in R), since the Ka-
han matrices are the parameterized family mentioned in Theorem 5.3. Nevertheless,
κ(R,D1) and κ(R,D2) still estimate κR(A) excellently.

7. Summary and conclusions. The first-order perturbation analyses presented
here show just what the sensitivity (condition) of both Q1 and R is in the QR fac-
torization of full column rank A, and in so doing provide their condition numbers
(with respect to the measures used and for sufficiently small ∆A), as well as efficient
ways of approximating these. The key norm-based condition numbers we derived for
A+ ∆A = (Q1 + ∆Q1)(R+ ∆R) are as follows:

• κ2(A) for that part of ∆Q1 in R(A)⊥ (see (4.1)),
• κQ1(A) ≡

√
2‖R−1

n−1‖2‖A‖2 for that part of ∆Q1 in R(A) (see (4.3)),

• κR(A) ≡ ‖W−1
R ZR‖2 for R (see Theorem 5.2),
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• the estimate for κR(A), that is, κME(A) ≡ infD∈Dn κ(R,D),
where κ(R,D) ≡

√
1 + ζ2

Dκ2(D−1R) (see (5.13)).
The condition numbers obey

√
2‖R−1

n−1‖2‖A‖2 ≤
√

2κ2(A)

for Q1, while for R

1 ≤ κR(A) ≡ ‖W−1
R ZR‖2 ≤ κME(A) ≤

√
2κ2(A);

see (5.24). The numerical examples and an analysis of the n = 2 case (not given here)
suggest that κ(R,D), with D chosen to equilibrate R̄ ≡ D−1R subject to ζD ≤ 1,
gives an excellent approximation to κR(A) in the general case. In the special case
of A with orthogonal columns, so R is diagonal, Remark 5.1 showed that by taking
D = R

κR(A) = κME(A) = κ(R,D) =
√

1 + ζ2
D ≤

√
2κ2(D) =

√
2κ2(A).

For general A when we use the standard column pivoting strategy in the QR factor-
ization, AP = Q1R, we saw from (5.14) and [2] that

κME(AP ) ≤ 2n−1
√
n(n+ 1),

κR(AP ) ≤
√

1

27
4n+1 +

1

3
n2 +

2

9
n− 4

27
.

As a result of these analyses we see that both R and in a certain sense Q1 can
be less sensitive than was thought from previous analyses. The condition numbers
depend on any column pivoting of A and show that the standard pivoting strategy
often results in a much less sensitiveR, and sometimes leads to a much smaller possible
change of Q1 in the range of Q1, for a given size of perturbation in A.

The matrix equation analysis of section 5.1 also provides a nice analysis of an
interesting and possibly more general matrix equation (5.1). The approaches used
here are not restricted to this particular analysis, but are powerful general tools and
appear to be applicable to any matrix factorization.

All of the new bounds here are first-order bounds. They are asymptotically cor-
rect, but it is possible that for ‖QT1 ∆Q1‖F the second-order term in (4.3) will blow up
when ε is significant. This is addressed in [3]. For ‖QT2 ∆Q1‖F , the second-order term
cannot blow up under condition (2.8) by the result of Sun [17]. For ‖∆R‖F /‖R‖2,
according to the result of Stewart [11], the second-order term in (5.23) will not blow
up when

‖R−T (AT∆A+ ∆ATA+ ∆AT∆A)R−1‖F < 1/2.

By following the approach of Stewart [10, Theorem 3.1] (see also [14, Theo-
rem 2.11]), it would be straightforward, but detailed and lengthy, to extend our first-
order results to provide strict perturbation bounds, as was done in [4]. We could also
provide new bounds on the components of ∆R, but we chose not to do either of these
here in order to keep the material and the basic ideas as brief and approachable as
possible. Our condition numbers and resulting bounds are asymptotically sharp, so
there is less need for strict bounds. A new bound on the components of ∆R is given
in [2].
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Abstract. Let A be a complex matrix with arbitrary Jordan structure and λ an eigenvalue
of A whose largest Jordan block has size n. We review previous results due to Lidskii [U.S.S.R.
Comput . Math. and Math. Phys., 1 (1965), pp. 73–85], showing that the splitting of λ under a
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approach clarifies certain difficulties which arise in the nongeneric case and leads, in some situations,
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1. Introduction. Given a square complex matrix A, it is an important ques-
tion from both the theoretical and the practical points of view to know how the
eigenvalues and eigenvectors change when the elements of A are subjected to small
perturbations. The usual formulation of the problem introduces a perturbation pa-
rameter ε, belonging to some neighborhood of zero, and writes the perturbed matrix
as A + εB for an arbitrary matrix B. In this situation, it is well known [1, section
9.3.1], [7, section II.1.2] that each eigenvalue or eigenvector of A + εB admits an
expansion in fractional powers of ε, whose zero-th order term is an eigenvalue or
eigenvector of the unperturbed matrix A.

In this paper we address the question of determining the first-order term of this
expansion or, more precisely, the first nonzero perturbation term. No restriction is
imposed on the Jordan structure of A, although we assume that this Jordan structure
is known from the outset. In section 2 we present two results, due to Lidskii [10], which
provide, under certain nondegeneracy conditions, the leading exponents and leading
coefficients of both eigenvalue and eigenvector perturbations. The central idea of the
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proof is simply to transform the characteristic equation det (ωI − A − εB) = 0 into
an equivalent one Q(µ, z) = 0 through a change of variables

z = ε1/n,

µ =
ω − λ
z

for a suitable n, where λ is an eigenvalue of A. An appropriate factorization of
Q(µ, 0) leads to the final result.

A specific example may be helpful to give a better idea of these results: take
a 9 × 9 Jordan matrix J with a unique zero eigenvalue and four Jordan blocks
with respective dimensions 3, 3, 2, and 1. Lidskii’s results show that, given a small
perturbation J+εB, every Jordan block of J of dimension n gives rise, generically,
to n eigenvalues of the perturbed matrix with leading term O(ε1/n). In this particular
case, this amounts to six eigenvalues of order ε1/3, two of order ε1/2, and one of
order ε. As for the coefficients of these leading terms, we will show that they depend
exclusively on the elements of B marked with a box in the matrix below:

B =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


.

More specifically, let Φ1 denote the 2× 2 matrix given by the four boxes at the top
left, i.e.,

Φ1 =

[
B31 B34

B61 B64

]
,

and let ξ11 , ξ
2
1 be the eigenvalues of Φ1. Then the perturbed matrix J + εB has six

eigenvalues with leading terms

(ξk1 )1/3ε1/3, k = 1, 2,

using all three cube roots of each ξk1 . Now, let

Φ2 =

 B31 B34 B37

B61 B64 B67

B81 B84 B87


and let ξ2 denote the Schur complement of Φ1 in Φ2, i.e.,

ξ2 = B87 − [B81 B84] Φ−1
1

[
B37

B67

]
.
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Then the two O(ε1/2) eigenvalues of J + εB have leading terms

(ξ2)1/2ε1/2.

Finally, the leading coefficient of the O(ε) eigenvalue is the Schur complement of Φ2

in the 9× 9 matrix formed by all boxes, i.e.,

ξ3 = B99 − [B91 B94 B97] Φ−1
2

 B39

B69

B89

 .
In the most general case when A is not in Jordan form, one must replace the

elements of B marked with the boxes by products yBx, where x (resp., y) is a right
(resp., left) eigenvector of A.

The first results in this direction were obtained by Vishik and Lyusternik [13], mo-
tivated by applications to differential operators. Lidskii [10] generalized their results
in the finite-dimensional case, obtaining simple explicit formulas for the perturbation
coefficients and providing, at the same time, a much more elementary proof (which
is essentially the one we present in section 2). The results in both [13] and [10]
were later refined by Baumgärtel [1, section 7.4] in the sense of dealing not only with
perturbation series for eigenvalues and eigenvectors, but also with the corresponding
eigenprojections as functions of ε. Vainberg and Trenogin [12, section 32], on the
other hand, offer a fairly thorough account of similar results, obtained for Fredholm
operators by applying the techniques of branching theory. Langer and Najman [9]
recently generalized Lidskii’s results to matrix pencils M(λ) +N(λ, ε), using the lo-
cal Smith normal form of parameter-dependent matrices (Lidskii’s results follow from
choosing M ≡ A−λI, N ≡ εB). The fundamental results of Lidskii remain, however,
almost completely unknown in the Western literature. The only references to [10] ap-
pearing in the Science Citation Index are [3] and [9], and both of these continue earlier
work [2], [8] in which the authors were unaware of [10]. The main purpose of this pa-
per is, therefore, to bring Lidskii’s results to the attention of the broad linear algebra
community. See [11] for an application to stability theory for Hamiltonian systems.

Section 2 is devoted to reviewing both the results and the proofs given in [10].
We should stress here that, although Lidskii stated his results as being valid for
analytic perturbations, we will see that they hold in fact for a more general class
of perturbations, including those of class C1 (see Remark 4 in section 2). Lidskii’s
results, however, depend on certain nondegeneracy assumptions, and no information
about the leading exponents or coefficients is available in the degenerate case from
the approach taken in section 2. Consider, for instance, the following example taken
from Wilkinson [14, section 2.22]: let A be a Jordan matrix with two Jordan blocks
of sizes 3 and 2, which is perturbed only in the positions (3,4) and (5,1), i.e.,

A+ εB =


0 1

0 1
0 ε

0 1
ε 0

 .(1.1)

One can easily check that the characteristic polynomial of A+ εB is ε2−λ5. Hence,
the eigenvalues of A+εB are O(ε2/5), an order which Lidskii’s results are unable to
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predict. We present in section 3 a different approach which will, in particular, reveal
the origin of this exponent. Apart from providing an alternative proof of Lidskii’s
main theorem, the new point of view identifies the difficulties which arise in the
degenerate case and, in some situations, leads to extensions of the results in section
2. This alternative approach is much in the spirit of [12] since our main tool is the
Newton diagram.

We end by proposing in section 4 a new notion of Hölder condition number for
multiple eigenvalues, suggested by Lidskii’s results. Although it is closely related to
previous Hölder condition numbers in the literature [4, p. 156] its main difference
is that it depends only on the associated left and right eigenvectors, appropriately
normalized, not on the Jordan vectors.

2. Lidskii’s perturbation theory. Let A be a complex matrix with Jordan
form

 J

Ĵ

 =

 Q

Q̂

 A [ P P̂
]

(2.1)

with

 Q

Q̂

[ P P̂
]

= I,(2.2)

where J corresponds to a multiple eigenvalue λ and Ĵ is the part of the Jordan
form containing the other eigenvalues of A. Let

J = Diag(Γ1
1, . . . ,Γ

r1
1 , . . . ,Γ

1
q, . . . ,Γ

rq
q ),(2.3)

where, for j = 1, . . . , q,

Γ1
j = · · · = Γ

rj
j =


λ 1
· ·
· ·
· 1
λ


is a Jordan block of dimension nj , repeated rj times, and ordered so that

n1 > n2 > · · · > nq.

The nj are called the partial multiplicities for λ. The eigenvalue λ is semisimple
(nondefective) if q = n1 = 1 and nonderogatory if q = r1 = 1. The algebraic and
geometric multiplicities of λ are, respectively,

m =

q∑
j=1

rjnj and g =

q∑
j=1

rj .
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We further partition

P =

 P 1
1 . . . P r11 . . . P 1

q . . . P
rq
q


conformally with (2.3). The columns of each P kj form a right Jordan chain of A with

length nj corresponding to λ. If we denote by xkj the first column of P kj , each xkj
is a right eigenvector of A associated with λ. Analogously, we split

Q =



Q1
1

...
Qr11

...

Q1
q

...

Q
rq
q


also conformally with (2.3). The rows of each Qkj form a left Jordan chain of A of

length nj corresponding to λ. Hence, if we denote by ykj the last (i.e., njth) row

of Qkj , each ykj is a left eigenvector corresponding to λ. With these eigenvectors we
build up matrices

Yj =

 y1
j
...
y
rj
j

 , Xj = [x1
j , . . . , x

rj
j ],

for j = 1, . . . , q,

Ws =

 Y1

...
Ys

 , Zs = [X1, . . . , Xs],

for s = 1, . . . , q, and define square matrices Φs and Es of dimension fs =
∑s

j=1
rj

by

Φs = WsBZs, s = 1, . . . , q,

E1 = I, Es =

[
0 0
0 I

]
for s = 2, . . . , q,

where the identity block in Es has dimension rs. Note that, due to the cumulative
definitions of Ws and Zs, every Φs−1, s = 2, . . . , q, is the upper left block of Φs.
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Theorem 2.1 (due to Lidskii [10]). Let j ∈ {1, . . . , q} be given and assume
that, if j > 1, Φj−1 is nonsingular. Then there are rjnj eigenvalues of the perturbed
matrix A+ εB admitting a first-order expansion

λklj (ε) = λ+ (ξkj )1/nj ε1/nj + o(ε1/nj )(2.4)

for k = 1, . . . , rj , l = 1, . . . , nj , where
(i) the ξkj , k = 1, . . . , rj , are the roots of equation

det (Φj − ξ Ej) = 0(2.5)

or, equivalently, the eigenvalues of the Schur complement of Φj−1 in Φj (if j = 1,
the ξk1 are just the r1 eigenvalues of Φ1),

(ii) the different values λklj (ε) for l = 1, . . . , nj are defined by taking the nj
distinct njth roots of ξkj .

If, in addition, the rj solutions ξkj of (2.5) are all distinct, then the eigenvalues
(2.4) can be expanded locally in a power series of the form

λklj (ε) = λ+ (ξkj )1/nj ε1/nj +
∞∑
s=2

akljs ε
s/nj ,(2.6)

k = 1, . . . , rj , l = 1, . . . , nj .
Remark. Two special cases of Theorem 2.1 are well known. In the case in which

λ is semisimple, i.e., q = n1 = 1 with multiplicity r1, equation (2.4) reduces to

λk11 (ε) = λ+ ξk1 ε+ o(ε),

where the ξk1 are the eigenvalues of the r1×r1 matrix Y1BX1 (cf. [7, section II.2.3]).
In the case in which λ is nonderogatory, i.e., q = r1 = 1 with multiplicity n1,
equation (2.4) reduces to

λ1l
j (ε) = λ+ (ξ11)1/n1 ε1/n1 + o(ε1/n1),

where ξ11 = y1
1Bx

1
1. These two cases coincide when λ is simple.

Theorem 2.2 (due to Lidskii [10]). Let Φs be nonsingular for s = 1, . . . , q
and let j ∈ {1, . . . , q} be such that the rj roots of ( 2.5) are different. Then the
corresponding eigenvalues (2.6) of A + εB are simple for ε small enough and the
associated right eigenvectors admit a power series expansion

vklj (ε) = ukj +
∞∑
s=1

wkljs ε
s/nj ,(2.7)

k = 1, . . . , rj , l = 1, . . . , nj , where

ukj =

fj∑
p=1

ckpj xpj , k = 1, . . . , rj
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and the column vector

ckj =

 ck1j
...

c
kfj
j


satisfies

(Φj − ξkj Ej) ckj = 0.(2.8)

Proof of Theorem 2.1. We may suppose, for the sake of simplicity, that A has
only one eigenvalue λ; i.e., Ĵ is empty. The general case may be reduced to this one
using appropriate Riesz projections (we refer to Lidskii’s original paper [10, pp. 83–84]
or [1, section 3.9.1] for the details). Thus, we are interested in the roots ω of the
characteristic equation

det C(ω, ε) ≡ det (ωI − J − εB̃) = 0, B̃ = P−1BP.(2.9)

As announced in section 1, we perform on C(ω, ε) the change of variables

z = ε1/nj ,

µ =
ω − λ
z

,

where nj is the partial multiplicity corresponding to j. This leads to a polynomial
equation

det P(µ, z) = det[(λ+ µz)I − J − znj B̃] = 0

in the new variables, where P(µ, z) = C(λ+ µz, znj ). Since we are mainly concerned
with solutions which are close to z = 0, it will prove convenient to multiply P(µ, z)
by the following diagonal matrices L(z) and R(z), partitioned conformally with J :

L(z) = Diag [L1
1, . . . , L

r1
1 , . . . , L

1
q, . . . , L

rq
q ],

R(z) = Diag [R1
1, . . . , R

r1
1 , . . . , R

1
q , . . . , R

rq
q ],

where

L1
i (z) = · · · = Lrii (z) = diag [z−1, z−2, . . . , z−ni ] if i ≥ j,

L1
i (z) = · · · = Lrii (z) = diag [1, . . . , 1︸ ︷︷ ︸

ni−nj

, z−1, z−2, . . . , z−nj ] if i < j

and

R1
i (z) = · · · = Rrii (z) = diag [1, z, z2, . . . , zni−1] if i ≥ j,

R1
i (z) = · · · = Rrii (z) = diag [1, . . . , 1︸ ︷︷ ︸

ni−nj

, 1, z, z2, . . . , znj−1] if i < j
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for i = 1, . . . , q (note that ni ≥ nj if and only if i ≤ j). We now introduce the
matrix F (µ, z) = L(z)P(µ, z)R(z) and define

Q(µ, z) = det F (µ, z).

The nonsingularity of both L(z) and R(z) implies that, for any given z 6= 0,

det P(µ, z) = 0 ⇔ Q(µ, z) = 0,

although of course the condition numbers of L(z), R(z) diverge to ∞ as z → 0.
Let us show that Q is a polynomial in µ and z. For this, we split F (µ, z) =

G(µ, z) +H(z), where

G(µ, z) = L(z) [(λ+ µz) I − J ]R(z)

is block diagonal and

H(z) = −znj L(z) B̃ R(z).

We write Γks = λ I +Ns, k = 1, . . . , rs, where

Ns =


0 1
· ·
· ·
· 1

0


for s = 1, . . . , q, and use two straightforward properties of the matrices Lki and Rki ,
namely, that

Lki (z)NiR
k
i (z) = Ni, i = 1, . . . , q, k = 1, . . . , ri,

Lki (z)Rki (z) = z−1 I whenever ni ≤ nj ,

to check that the diagonal blocks Gki (µ, z) = Lki (µz I −Ni)Rki of G(µ, z) are

Gki (µ, z) =


µ I −Ni if i ≥ j,

diag [µz, . . . , µz︸ ︷︷ ︸
ni−nj

, µ, . . . , µ]−Ni if i < j.(2.10)

Hence, all powers of z in G are nonnegative, and the same applies to H since no
negative powers appear in either znj Lki or Rki . This proves our claim that Q(µ, z)
is a polynomial.

Let us now examine F (µ, 0) = G(µ, 0)+H(0). The block diagonal matrix G(µ, 0)
is given by equations (2.10) with z = 0. To give a careful description of H(0) we

need to partition B̃, F , and H conformally with J. We denote by

B̃ k1k2
j1j2

, ji = 1, . . . , q, ki = 1, . . . , rji , i = 1, 2
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the nj1 × nj2 block of B̃ lying on the same rows as Γk1j1 and on the same columns

as Γk2j2 (the corresponding blocks of H and F are defined likewise). Following this
notation, we have

Hk1k2
j1j2

(z) = −znjLk1j1 (z) B̃k1k2j1j2
Rk2j2 (z),

which implies, in the first place, that

Hk1k2
j1j2

(0) = 0 if nj1 < nj(2.11)

due to the vanishing of znj Lk1j1 at z = 0. On the other hand, if j1 ≤ j and j2 ≤ j,
an elementary calculation shows that

Hk1k2
j1j2

(0) =


0 0 · · · 0 0 · · · 0
· · · · · · · · · · ·
0 0 · · · 0 0 · · · 0

−βk1k2j1j2
∗ · · · ∗ 0 · · · 0

 ,(2.12)

where the nj2−nj elements marked with an asterisk are irrelevant to our argument and

βk1k2j1j2
is the element in the lower left corner of the block B̃k1k2j1j2

. The same structure
(2.12) applies to the case j1 ≤ j, j2 > j, but with zeros instead of asterisks. The
main point of (2.12) is that every βk1k2j1j2

= yk1j1 B x
k2
j2

is an element of Φs = YsBXs

for s=max{j1, j2}. In other words, we may find all the elements of the matrix Φj by
looking at the lower left corners of the blocks (2.12) for j1, j2 ≤ j (or, equivalently,
for nj1 , nj2 ≥ nj).

Before our final examination of Q(µ, 0), let us briefly turn to the diagonal blocks
of F (µ, 0) of size nj , i.e.,

F kkjj (µ, 0) =


µ −1 0 · · · 0
0 µ −1 · · · 0
· · · · · · ·

−βkkjj 0 0 · · · µ

 .
The determinant of this block does not change if we add to its first column the
products of its second column by µ, of its third column by µ2, . . . , and of its last
column by µnj−1. Neither does the whole determinant Q(µ, 0) if we perform identical
operations on the same columns of the whole matrix F (µ, 0) since, according to (2.11)
and (2.12), the nj−1 columns of F which are being multiplied by powers of µ have
no nonzero elements outside F kkjj . This amounts to replacing every block F kkjj with
the block


0 −1 0 · · · 0
0 µ −1 · · · 0
· · · · · · ·

−βkkjj + µnj 0 0 · · · µ

 .
Let us now prove that the determinant Q(µ, 0) of the matrix we finally obtain can
be written in the form
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Q(µ, 0) = ±µα det (Φj − µnj Ej)(2.13)

for a suitable α ≥ 0. Although elementary, the proof is quite messy in the general
case, so we will instead illustrate the strategy on a specific example. Take, for instance,
the case q = 3, j = 2, n1 = 4, n2 = 3, n3 = 2, r1 = 1, r2 = 2, r3 = 1; i.e., Q(µ, 0)
is the determinant of the 12× 12 matrix



0 −1 0 0 0 0 0 0 0 0 0 0
0 µ −1 0 0 0 0 0 0 0 0 0
0 0 µ −1 0 0 0 0 0 0 0 0
−β11

11 ∗ 0 µ −β11
12 ∗ 0 −β12

12 0 0 −β11
13 0

0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 µ −1 0 0 0 0 0
−β11

21 0 0 µ −β11
22 + µ3 0 µ −β12

22 0 0 −β11
23 0

0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 µ −1 0 0
−β21

21 0 0 µ −β21
22 0 0 −β22

22 + µ3 0 µ −β21
23 0

0 0 0 0 0 0 0 0 0 0 µ −1
0 0 0 0 0 0 0 0 0 0 0 µ



.

There are four rows in this matrix (first, fifth, eighth, and twelfth) containing one sin-
gle nonzero element. In calculating the determinant of the matrix we may, therefore,
remove the rows and columns corresponding to these four elements. This leaves an
8×8 matrix M1(µ) such that Q(µ, 0) = µ det M1(µ). Because of the previous dele-
tions, there are again four rows in M1 with one single nonzero element. Eliminating
the appropriate rows and columns of M1, we get a 4×4 matrix M2 and, finally,
deleting one row and one column of M2, a 3×3 matrix

M3 =

 −β11
11 −β11

12 −β12
12

−β11
21 −β11

22 + µ3 −β12
22

−β21
21 −β21

22 −β22
22 + µ3


such that Q(µ, 0) = µ2 det M3(µ). But we know from (2.12) that the βk1k2j1j2

are just

the elements of Φ2. Hence, M3(µ) = −Φ2 + µ3E2 and we obtain (2.13) with α = 2.
The same procedure goes through to the general case, exploiting in much the same
way our knowledge of the block structure of the modified matrix F (µ, 0).

Once we have Q(µ, 0) factorized as in (2.13), we note that its second factor
det (Φj − µnj Ej) is a polynomial of degree rj in µnj . This is trivial if j = 1
and a consequence of the nonsingularity of Φj−1 if j > 1. We now take Q(µ, z)
as a polynomial in µ whose coefficients are continuous z-dependent functions. The
continuous dependence of the roots of Q upon its coefficients guarantees the existence
of exactly rjnj continuous functions

µklj (z) = (ξkj )1/nj + o(1), k = 1, . . . , rj , l = 1, . . . , nj ,

describing all solutions of Q(µ(z), z) = 0 for z small enough (recall that some roots
ξkj of (2.5) might be zero if Φj is singular). Expansion (2.4) is obtained by returning
to the original variables (λ, ε).
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Finally, if all rj roots ξkj of equation (2.5) are known to be distinct, we may

apply the implicit function theorem to (2.13) to show that the µklj (z) are in fact
analytic functions of z, thus giving rise to the power series (2.6).

Proof of Theorem 2.2. In the conditions of Theorem 2.2 it is clear that, for ε
small enough, no eigenvalue (2.6) corresponding to j can possibly coincide with any
of the eigenvalues (2.4) corresponding to Jordan blocks of different dimensions.

Furthermore, given one of these simple eigenvalues λklj (ε), a right eigenvector
associated with it may be constructed by taking as its components the m cofactors
of the elements of a row of A+εB−λklj I. This implies the analyticity of the eigenvector
since the elements of this latter matrix are analytic functions of ε and the cofactors
are simply sums of products of these elements (we recall that the eigenvector is unique
up to constant multiples due to the simplicity of the eigenvalue).

Finally, let eklj (z) be a vector in the null space of F klj (z) = F (µklj (z), z), where

µklj (z) = (λklj (z)− λ)/z. Dropping for simplicity both sub- and superscripts, we have

F (z)e(z) = L(z)P(µ(z), z)R(z)e(z) = 0,

which, due to the nonsingularity of L(z) for z 6= 0, shows that R(z)e(z) is a right

eigenvector of J+znj B̃ associated with λklj . Hence, the first term R(0)e(0) of its ε-

expansion must be, up to a constant, equal to the zero-th order term ukj of expansion
(2.7). Equation (2.8) is finally obtained by applying to the linear system F (0)e = 0
the same ideas we used to simplify Q(µ, 0) in the proof of Theorem 2.1.

Remarks.
1. A proof of the existence of power series expansions ( 2.6) and ( 2.7) under

the conditions of Theorem 2.2 goes back to Vishik and Lyusternik [13, Theorem 6,
Appendix I]. Their approach, however, is radically different from Lidskii’s, since they
impose both expansions (2.6) and (2.7) as formal series at the outset, recursively
find all coefficients, and finally prove the convergence of the series on some nontrivial
interval around ε = 0. In their setting, the assumption that all Schur complements
have nonzero distinct eigenvalues arises as a solvability condition on the system of
infinitely many equations determining the coefficients of the series. Lidskii’s approach
in [10], on the other hand, concentrates only on the leading term, regardless of the rest
of the expansion. This allows him to get more general results, avoiding at the same
time the issue of convergence of the series: in those cases in which a power series
expansion is obtained, its convergence is a consequence of the function theoretical
results invoked in the proof.

2. The computation of Schur complements is equivalent to (and may be replaced
by) choosing the eigenvector matrices Xj and Yj in a special way. Suppose, for
instance, that j = 2 and Φ1 = Y1BX1 is nonsingular. A straightforward calculation
shows that the columns of

X̃2 = X2 −X1Φ−1
1 Y1BX2(2.14)

and the rows of

Ỹ2 = Y2 − Y2BX1Φ−1
1 Y1(2.15)

are, respectively, right and left eigenvectors of A, corresponding to Jordan chains of
the same length as the eigenvectors given by the rows and columns of X2 and Y2.
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Furthermore, we have Y1BX̃2 = 0 and Ỹ2BX1 = 0. Hence, it suffices to define

W̃2 =

[
Y1

Ỹ2

]
, Z̃2 =

[
X1, X̃2

]
, and Φ̃2 = W̃2BZ̃2

to obtain a block diagonal matrix Φ̃2 whose lower right block Ỹ2BX̃2 is precisely
the Schur complement of Φ1 in the old matrix Φ2. The replacement of X3 and Y3

by suitable matrices leads to the block diagonalization of Φ3, provided that Φ̃2 is
nonsingular. It should be noted that, although only one of the two matrices (2.14)
or (2.15) is required to reproduce the Schur complement for j = 2 (by block trian-
gularizing Φ2), both of them are needed to continue to the following step j = 3.

3. Both matrices Φj−1 and Φj must be nonsingular to obtain the leading nonzero
terms in all expansions (2.4). That is probably why Lidskii’s original statement of
Theorem 2.1 imposed nonsingularity of both Φj−1 and Φj . Nevertheless, as we have
seen in the proof of the theorem, only Φj−1 need be nonsingular for the eigenvalue
expansions (2.4) to hold: suppose that Φj−1 is nonsingular and Φj is singular. Then
we have

det (Φj − ξEj) = ξβ q(ξ), q(0) 6= 0,

for a certain β > 0; i.e., (2.5) has β zero and rj − β nonzero solutions. Hence,
(rj − β)nj expansions (2.4) have a nonzero first-order term, while all we can say
about the remaining βnj eigenvalues is that they are of the form λkj (ε) = λ+o(ε1/nj ).
This strongly suggests the possibility of interaction with eigenvalues associated with
Jordan blocks of size less than nj . These interactions will become much clearer in
the next section with the use of the Newton diagram.

4. An important advantage of Lidskii’s proof technique is that it does not require
the analyticity of the perturbation. Consequently, Lidskii’s approach can be used to
investigate the variational behavior of eigenvalues under very weak differentiability
hypotheses. For example, Theorem 2.1 remains valid for perturbations of class C1.
More generally, one can even obtain one-sided or directional versions of Theorem 2.1.
For example, if A : R→ Cn×n is continuous at the origin with

A(ε) = A+ εB + o(ε) for ε > 0,

then the expansion (2.4) in Theorem 2.1 remains valid for ε ≥ 0. In fact, the same
proof holds with minor changes. First observe that the continuity of the Riesz pro-
jections depends only on the continuity of the perturbation [7, Theorem 5.1]. Next,
using a bar to denote matrices arising in this new setting, we find that

det C(ω, ε) ≡ det (ωI −A− εB − o(ε)) = det C(ω, ε) + o(ε) for ε ≥ 0,

where C(ω, ε) is given by (2.9). After changing to variables µ, z, we have

det P(µ, z) = det P(µ, z) + o(znj ),

so, multiplying by L(z) and R(z), we obtain

F (µ, z) = L(z)P(µ, z)R(z) = F (µ, z) + S(z)

for S(z) = L(z)M R(z), where M is o(znj ). Now, recall that no negative power of
z in L(z) has absolute value larger than nj . This means that S(z) = o(1), so

Q(µ, 0) = det F (µ, 0) = Q(µ, 0)
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and the factorization ( 2.13) still holds. Finally, although in this case Q(µ, z) is
no longer a polynomial in both variables µ and z, it is a polynomial in µ, whose
coefficients are continuous functions of z. Thus, we may still guarantee that the roots
of Q(µ, z) depend continuously on z to conclude the proof.

Example. We consider the simplest case of a matrix having an eigenvalue which is
neither semisimple nor nonderogatory: let A be a 3×3 matrix with a triple eigenvalue
λ of geometric multiplicity two (in our notation, q = 2, n1 = 2, n2 = 1, r1 = r2 = 1).
Dropping the superscripts, we denote the two left eigenvectors by y1, y2 and the two
right eigenvectors by x1, x2. We find that Φ1 = β11 = y1Bx1 and

Φ2 =

[
β11 β12

β21 β22

]
, βij = yiBxj , i, j = 1, 2.

We have two eigenvalues

λl1(ε) = λ±
√
β11 ε

1/2 + o(ε1/2), l = 1, 2.

Furthermore, if both Φ1 and det Φ2 are different from zero, the third eigenvalue is
λ+ ξ2ε+ o(ε), where ξ2 = (det Φ2)/Φ1 is the solution of

det(Φ2 − ξE2) = det Φ2 − Φ1 ξ = 0.

Note that, if Φ1 is zero, we know only that two of the eigenvalues are o(ε1/2)
perturbations of λ, without any further indication of their asymptotic order.

Note that even in this simple example it is unclear which leading powers of ε are
to be expected when some Φj is singular. Lidskii [10] gives an example where all three
eigenvalues above are perturbed by order ε2/3, and we have seen in (1.1) a similar
example of a 5 × 5 matrix A with Jordan blocks of sizes 3 and 2, whose perturbed
eigenvalues are of order ε2/5 for a conveniently chosen perturbation. None of these
leading exponents can be explained, in principle, by any of the above results. It
seems that the information that Q(µ, 0) provides in the case of singular Φj is helpful
only in predicting which powers of ε cannot appear in the eigenvalue expansions.
In the following section we present an alternative approach that will improve our
understanding of Theorem 2.1, giving us a global picture of what happens in the
degenerate case when some Φj is singular.

3. Application of Newton’s diagram. In this section the symbol λ is used
as a parameter, not as a fixed value as earlier. We consider a complex polynomial
equation

P (λ, ε) = λm + α1(ε)λm−1 + · · ·+ αm−1(ε)λ+ αm(ε) = 0(3.1)

in λ, with analytic coefficients

αk(ε) = α̂kε
ak + · · · , k = 1, . . . ,m,

where ak is the leading exponent and α̂k the leading coefficient of αk(ε) (i.e., α̂k 6= 0
and no term of order lower than ak appears in the expansion of αk(ε)). It is well
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known [1], [7] that the roots of (3.1) are given by expansions in fractional powers of ε.
The leading exponents of these expansions can be easily found through the following
elementary geometrical construction: we plot the values ak versus k for k = 1, . . . ,m
together with the point (0, 0) corresponding to λm (if αj(ε) ≡ 0, the corresponding
point is disregarded). Then we draw the segments on the lower boundary of the convex
hull of the plotted points. These segments constitute the so-called Newton diagram
associated with P (λ, ε) (see Fig. 3.1 for two specific examples). One can prove [1,

(a) (b)

Fig. 3.1. Newton diagrams associated with the polynomials: (a)λ4 + (2ε− ε2)λ3 + ε2λ2 + (ε−
ε3)λ+ ε2, (b) λ5 − ε2λ4 + (ε− 3ε2)λ3 + ε2λ− ε3.

Appendix A7], [2], [12] that the slopes of the different segments of the Newton diagram
are precisely the leading powers of the ε-expansions of the roots λ = λ(ε) of (3.1).
The number of roots corresponding to each slope equals the length of the projection
on the horizontal axis of the segment with that particular slope. The underlying idea
is to substitute an Ansatz

λ(ε) = µεβ + · · ·(3.2)

into (3.1), with µ, β to be determined. Every point (k, ak) plotted in the diagram
produces an εak+(m−k)β term. If λ(ε) is a root of (3.1), all the terms we obtain
from this substitution must cancel each other. Hence, at least two terms of the lowest
order in ε must be present, and this lowest order is clearly to be found among the
exponents {a1 + (m − 1)β, a2 + (m − 2)β, . . . , am}. Consider the segment S of the
Newton diagram with the smallest slope s and choose β = s in (3.2). All points
(k, ak) lying on S give rise to terms with the same exponent since ak + (m − k)s
is constant on S. The fact that no point (k, ak) lies below S implies that no other
term of the expansion can be of a lower order in ε. Hence, the leading coefficients µ
are determined as the solutions of

∑
(k,ak)∈S

µm−kα̂k = 0.(3.3)

We get the leading terms of the remaining roots of ( 3.1) by repeating the same
argument for the increasingly larger slopes appearing in the Newton diagram.

Returning to the eigenvalue problem, our main goal in this section is to establish
the relationship between the quantities det Φj , j = 1, . . . , q, and the Newton diagram
associated with the characteristic polynomial of A+εB. We recall that A is a matrix
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with only one eigenvalue (previously denoted by λ) of multiplicity m, with partial
multiplicities nj , each repeated rj times for j = 1, . . . , q. With no loss of generality,
we may assume that this eigenvalue is zero. In this case, the characteristic polynomial
p(λ, ε) = det(λI −A− εB) = det(λI −J − εB̃) can be written in the form (3.1), with
m =

∑q
1 rjnj (recall that λ is no longer an eigenvalue of A, but the unknown in the

characteristic polynomial). To draw the Newton diagram associated with p(λ, ε), we
must know the exponents ak for k = 1, . . . ,m. This is quite easy if the eigenvalue
is semisimple, since the Jordan form J of A is zero and each αk(ε) equals εm−k

multiplied by a certain sum of minors of B̃ of dimension m − k. In this case, the
Newton diagram is formed by one single segment of slope s = 1. If the eigenvalue is
not semisimple, some nontrivial Jordan block appears in J, which means that, apart
from the O(εm−k) terms, each αk(ε) will typically contain terms of lower order
generated by the ones appearing above the diagonal of J . This clearly shows that the
effect of nontrivial Jordan blocks is to introduce in the Newton diagram line segments
with slopes less than 1, with the smallest possible slope corresponding to the case of a
nonderogatory eigenvalue (one single segment of slope 1/m) and the largest possible
one to the semisimple case. All possible Newton diagrams for the given multiplicity
m lie between these two extremal segments.

We must now carefully determine which points (k, ak) may appear on the Newton
diagram for a particular Jordan structure. To this purpose, it will be useful to find
the lowest possible diagram compatible with the given Jordan structure. To do this,
we fix every exponent l of ε and find the largest possible k = k(l) such that there
exists a perturbation matrix B for which ak(l) = l. This amounts to fixing a height
l on the vertical axis of the Newton diagram and determining the rightmost possible
point (k(l), l) in the diagram. The following theorem gives us the values k(l) for
the exponents l = 1, . . . , fq which are relevant to our argument (we recall that fj =
r1+· · ·+rj) and, more importantly, also provides some coefficients of the characteristic
polynomial which are crucial to determine the Newton diagram.

Theorem 3.1. For every l, l = 1, . . . , fq, the corresponding k(l) is equal to
the sum of the dimensions of the l largest Jordan blocks of J. More precisely, write
f0 = 0 and suppose l = fj−1 + ρ for some j = 1, . . . , q and 0 < ρ ≤ rj . Then

k(l) = r1n1 + · · ·+ rj−1nj−1 + ρnj

and the coefficient of εl in αk(l) is equal to (−1)l multiplied by the sum of all
principal minors of Φj corresponding to submatrices of dimension l that contain the
upper left block Φj−1 of Φj (if j = 1, all principal minors of dimension l are to be
considered). If, in particular, l = fj for some j ∈ {1, . . . , q}, then the coefficient of
εfj in αk(fj) is (−1)fj det Φj .

Proof. The characteristic polynomial of A + εB is a linear combination with
coefficients ±1 of all possible products of m elements of the matrix λI − J − εB̃,
with the restriction that no two factors can be on the same row or the same column.

It is clear that the only way to obtain a product of order εl is to choose exactly
m − l factors containing ε-independent terms (i.e., “lambdas” or “minus ones”).
Furthermore, we should try to include as few lambdas as possible among these factors,
since we are looking for the smallest possible power of λ. However, we are not free
to make whatever choices we want. Due to the special position of the ε-independent
terms, every time we choose a minus one we are, at the same time, excluding from
the product those lambdas which lie on the same row or the same column. Let us
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examine the restrictions. Suppose an admissible choice (i.e., a choice producing a
term of order εl) contains β minus ones. These β choices remove a certain number
of lambdas, which depends on the number of Jordan blocks these β minus ones are
sampled from. This is due to the fact that the first minus one we choose from a
particular block excludes two lambdas, while any further minus one from the same
block removes only one. Suppose the β minus ones were taken from γ different
blocks. These β choices exclude β + γ lambdas, which, together with the m− l− β
lambdas which were actually chosen in the product, cannot exceed the total number
m of available lambdas. We conclude that γ ≤ l; i.e., we are allowed to sample minus
ones from at most l Jordan blocks. Hence, to produce the lowest possible power of λ
we must exhaust all minus ones from the l largest possible Jordan blocks of J, and
only then complete with lambdas until we have the m− l factors.

Suppose, in the first place, that l = fj for some j = 1, . . . , q. Then there is
only one way of choosing these m− l factors: we must choose the β = r1(n1 − 1) +
· · · + rj(nj − 1) minus ones from the l largest Jordan blocks, plus the m − l − β =
rj+1nj+1 + · · ·+ rqnq diagonal lambdas from the remaining Jordan blocks. Thus, we

get k(l) = l+β = r1n1 + · · ·+rjnj . Note that if we delete from λI−J−εB̃ the rows
and columns corresponding to these m− l elements, the fj × fj remaining matrix is
precisely −εΦj , which proves our claim.

The same argument is valid in the case ρ < rj+1, although in this case there is
more than one way of building up the products: each one corresponds to a different
choice of ρ blocks among the rj+1 Jordan blocks of dimension nj+1, generating a
different principal minor of Φj to be included in the sum.

Let us now introduce the following definition.

Definition 3.2. Denote Pj ≡ (k(fj), fj), and let Sj be the segment of slope
1/nj connecting Pj−1 with Pj for j = 1, . . . , q. We define the Newton envelope
corresponding to the Jordan structure of J as the diagram obtained by successively
joining the segments S1, S2, . . . , Sq.

As a first consequence of Theorem 3.1, note that all points (k(l), l) for l between
fj−1 and fj lie along the corresponding segment Sj . Hence, the Newton envelope
is indeed the lowest Newton diagram we were looking for. This is not, however,
its most interesting feature. Keep in mind that, given a particular B, only those
points (k(l), l) from the envelope such that ak(l) = l will actually be plotted in the
Newton diagram. This means, in particular, that a corner point Pj of the Newton
envelope appears on the Newton diagram only if the perturbation B is such that the
corresponding coefficient ± det Φj is nonzero. In other words, the Newton envelope
displays the generic behavior of the eigenvalues of A under perturbation, in the sense
that it coincides with the Newton diagram in all situations except in those nongeneric
cases in which the perturbation B causes one of the Φj to be singular.

Theorem 3.1 largely explains the importance of the det Φj in obtaining the
exponents 1/nj in the eigenvalue expansions. Furthermore, it clears the way for an
independent proof of Lidskii’s Theorem 2.1.

Proof of Theorem 2.1. Let us suppose first that j ∈ {2, . . . , q} is such that Φj−1

and Φj are nonsingular (the case j = 1 is completely analogous). Then both Pj−1

and Pj are among the points plotted to construct the Newton diagram and Sj is
one of the segments in the diagram (no point (k, ak) can lie below Sj). Thus, we
obtain the leading exponent of expansion (2.4). We also get the leading coefficient by
carefully examining, for the segment Sj , equation (3.3). We first note that the only
candidates (k, ak) to lie on Sj are the intermediate points Qt ≡ (k(fj−t), fj−t), t =
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1, . . . , rj − 1. The fact that the Qt are separated from each other by a distance nj
on the horizontal axis implies that equation (3.3) depends on µ only through µnj .
More precisely, let T be the set of values t∈{1, . . . , rj−1} such that Qt appears in
the Newton diagram. Then∑

(k,ak)∈Sj

µm−kα̂k = µm−k(fj)

[
µnjrj α̂k(fj−1) +

∑
t∈T

α̂k(fj−t)µ
t nj + α̂k(fj)

]
= 0,

where the expression in brackets is a polynomial in µnj . Now, we recall from Theorem
3.1 that for each l = fj−t with t ∈ T, the corresponding α̂k(l) is (up to the sign) the
sum of all principal minors of Φj of dimension l containing Φj−1, which is precisely
the way the coefficients of the powers of ξ are obtained in det(Φj−ξEj). This implies
that we get the nonzero solutions of (3.3) by solving det(Φj − µnjEj) = 0.

Now suppose that Φj is singular. Then the corresponding point Pj no longer
belongs to the diagram, implying the loss of some of the expansions (2.4) or, equiv-
alently, the loss of part of the segment Sj . The part of Sj that actually remains
depends upon the nullity of Φj . If rank Φj = fj − β, there are β rows or columns
of Φj that depend linearly on the remaining ones. This means, on one hand, that
no point Qt ≡ (k(fj − t), fj − t) appears in the diagram for 1 ≤ t < β and, on the
other hand, that Qβ does appear (each principal minor of Φj of dimension fj − β
either vanishes or takes a common nonzero value, since only fj − β columns of Φj
are linearly independent). We conclude that the part of Sj remaining in the New-
ton diagram is the segment connecting Pj−1 to Qβ = (k(fj − β), fj − β) (see Fig.
3.2). This accounts for (rj − β)nj expansions (2.4), whose leading coefficients are,

Q
β

f

Pj

Pj+1

P
j-1

j-1

fj -

k(f j-1 ) k(f j - β ) k(f 

fj+1

β

j+1 )

Fig. 3.2. The Newton diagram is shown as a solid line and the envelope as a dashed line.

reasoning as above, the njth roots of the rj − β nonzero solutions of equation (2.5).
As for the βnj remaining eigenvalues, they correspond to segments whose slope is
strictly larger than 1/nj . Hence, the remaining expansions (2.4) are still valid since
they correspond to the β null solutions of equation (2.5).
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A further consequence of this Newton diagram approach is that the hypotheses of
Theorem 2.2 can be weakened in the sense that, if j is such that all roots of (2.5) are
distinct, we only need Φ1, . . . ,Φj to be nonsingular to guarantee the simplicity of the
rjnj eigenvalues λklj (ε): the slope of any segment of the diagram lying to the right of
Pj is strictly larger than 1/nj regardless of the singularity of Φs, s = j + 1, . . . , q.
Hence, no eigenvalue corresponding to a Jordan block of size less than nj can coincide
with any λklj (ε) if ε is small enough.

Apart from recovering the results of section 2, the approach through the Newton
diagram is quite helpful in getting a better understanding of the nongeneric case when
some Φj is singular. The fact that in this case Pj does not belong to the Newton
diagram implies that neither the complete segment Sj nor the complete segment Sj+1

appears on the Newton diagram. This indicates some kind of interaction between the
eigenvalues associated with blocks of size nj and those associated with blocks of size
nj+1. We may, in fact, use the Newton diagram as a tool to quantify this interaction,
actually finding both leading exponents and coefficients of the missing eigenvalue
expansions in simple situations. The range of possibilities is easily visualized with the
aid of the Newton envelope. For example, if (h1, k1) and (h2, k2) are two points that
are known to lie on both the Newton diagram and the Newton envelope, then the
segment of the Newton diagram between h1 and h2 must necessarily lie between the
chord connecting (h1, k1) to (h2, k2) and the Newton envelope. Thus, to determine the
Newton diagram one need only focus on the integer lattice points trapped between this
chord and the Newton envelope. As an illustration of the power of this observation in
the nongeneric case, we provide the following corollary. In this corollary, we identify
a case in which no integer lattice points can lie between the chord and the Newton
envelope.

Corollary 3.3. Let 0 ≤ β ≤ rj and 0 ≤ α ≤ rj+1. Suppose that Qjβ =

(k(fj − β), fj − β) and Q̂jα = (k(fj + α), fj + α) are two points lying on the Newton

diagram, while the points Qjs for s = β− 1, . . . , 1, Pj and Q̂jt for t = 1, 2, . . . , α− 1

do not lie on the Newton diagram. Set p = βnj + αnj+1 and σ = β+α
p . If

(σnj − 1)β ≤ min(σ, 1− σ),(3.4)

then there are p eigenvalues of A+ εB of the form

λl(ε) = λ+ η1/pεσ + o(εσ), l = 1, 2, . . . , p,(3.5)

where η 6= 0. Moreover, if either
(i) the inequality in (3.4) is strict or
(ii) (σnj − 1)β < σ and α = nj+1 = 1,

then

η = −
α̂k(fj+α)

α̂k(fj−β)
.(3.6)

Proof. As noted above, the Newton diagram must lie between the chord connect-
ing Qjβ to Q̂jα and the Newton envelope on the interval [k(fj−β), k(fj +α)]. Further-

more, since none of the points Qjs for s = β−1, . . . , 1, Pj and Q̂jt for t = 1, 2, . . . , α−1
lie on the Newton diagram, the Newton envelope and diagram coincide only at the
end points of this interval. Thus, the expansions (3.5) will be valid if we can show
that there are no integer lattice points strictly between the chord and the Newton
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diagram on the interval [k(fj − β), k(fj + α)]. To do this we need only show that
the lattice points (k(fj) − 1, fj) and (k(fj) + 1, fj + 1) lie on or above the chord.
The condition that (k(fj) − 1, fj) lies on or above the chord yields the inequality
(σnj − 1)β ≤ σ, while the condition that (k(fj) + 1, fj + 1) lies on or above the chord
yields the inequality (σnj − 1)β ≤ 1−σ. Note that this second condition is no longer

needed if α = nj+1 = 1, since in this case (k(fj)+1, fj +1) coincides with Q̂jα. Thus,

under either condition (i) or (ii) , Qjβ and Q̂jα are the only integer lattice points on
the chord and so (3.6) follows from (3.3).

It is interesting to consider a few special cases of the above result. Note that if
β = 0, then α can take any of the values 0, 1, . . . , rj+1, and if α = 0, then β can take
any of the values 0, 1, . . . , rj . The case β = 0 reaffirms the third remark at the end
of section 2, while the case α = 0 illustrates that expansions with power 1/nj are
possible even if Φj−1 is singular. Finally, if one is given a fixed value for either α or β,
then simple bounds on the other value are easily obtained from (3.4). For example, if
α = 1, then the restriction (3.4) yields the inequality β(nj − nj+1 − 1) ≤ 1. That is,
if nj = nj+1 + 1, then β can take on any of the values 0, 1, . . . , rj ; if nj = nj+1 + 2,
then β can take only the values 0 and 1; and if nj > nj+1 + 2, then β must be zero.

Corollary 3.3 also explains the exponent appearing in the eigenvalues of Wilkin-
son’s example (1.1). In that case, the point P1 = (3, 1) does not lie on the Newton
diagram since Φ1 = 0. On the other hand, P2 = (5, 2) does appear, due to the
nonsingularity of

Φ2 =

[
0 1
1 0

]
.

Thus, an application of Corollary 3.3 with j = 1, α = β = 1 shows that there are
p = 5 eigenvalues of order σ = 2/5.

The situation becomes more complicated with the introduction of more integer
lattice points between the chord and the Newton envelope, since more possibilities for
the Newton diagram arise. But, in many cases, these possibilities can be delineated by
considering certain key lattice points as was done in the proof of the above corollary.
Indeed, this approach can provide a fairly complete picture in many particular cases.
Let us conclude by applying the ideas of this section to some specific examples.

Example 1. We first turn to our example in the preceding section of a 3×3 matrix
with q = 2, n1 = 2, n2 = 1, r1 = r2 = 1. The expansions we obtained in the previous
section correspond to a Newton diagram with two segments: S1 connecting (0, 0)
with P1 = (2, 1) and S2 joining P1 and P2 = (3, 2). Note that this is precisely the
Newton envelope corresponding to the given Jordan structure (see Fig. 3.3(a)). Now
suppose that Φ1 = 0 with det Φ2 6= 0. This means that P1 no longer is plotted, so
the diagram consists of a single segment of slope 2/3 joining (0, 0) with P2 (see Fig.
3.3(b)). If both Φ1 and Φ2 are singular, we obtain one single segment of slope 1 as
long as B is nonsingular.

Example 2. We consider a 5×5 matrix with one zero eigenvalue and q = 2, n1 =
2, n2 = 1, r1 = 2, r2 = 1. We assume, for the sake of simplicity, that A is already
in Jordan form, i.e.,
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2

(a) (b)

P

P P

1

2

Fig. 3.3. Newton diagrams corresponding to Example 1. In (a) the Newton diagram and
envelope coincide. In (b) the diagram is shown as a solid line and the envelope as a dashed line.

A =


0 1

0
0 1

0
0

 .
If B = (bij)

5
i,j=1, then

Φ1 =

[
b21 b23
b41 b43

]
, Φ2 =

 b21 b23 b25
b41 b43 b45
b51 b53 b55

 .
We consider the different possibilities.
(i) Suppose det Φ1 6= 0, so that P1 = (4, 2) appears in the diagram. Then the

perturbed matrix has four eigenvalues

λkl1 (ε) = (ξk1 )1/2ε1/2 + o(ε1/2), k, l = 1, 2,

where ξ11 , ξ
2
1 are the eigenvalues of Φ1.

• If, additionally, det Φ2 6= 0, so that P2 = (5, 3) also appears in the diagram,
then the fifth eigenvalue of A+ εB is λ11

2 (ε) = ξ2ε+ o(ε) for

ξ2 = b55 −
[
b51 b53

]
Φ−1

1

[
b25
b45

]
.

In this case, the Newton diagram and envelope coincide (see Fig. 3.4 (a)).
• If, on the other hand, Φ2 is singular, P2 does not appear in the diagram.

In this case, the order of the fifth eigenvalue is at least O(ε2), corresponding to a
segment joining P1 = (4, 2) with (5, 4). However, higher slopes might appear in some
cases.

(ii) Suppose now that Φ1 is singular. Then the point P1 no longer appears in the
Newton diagram, and to determine the order of the perturbations we need to know
whether or not the coefficient

δ = −tr Φ1 = −b21 − b43
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(c)
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P

P

1

2

1

2

Fig. 3.4. Newton diagrams corresponding to Example 2. In (a) the Newton diagram and
envelope coincide. In (b) and (c) the diagram is shown as a solid line and the envelope as a dashed
line.

of ε in αk(1) is different from zero, i.e., whether or not Q1 = (2, 1) is among the
points plotted in the Newton diagram.
• If δ 6= 0, then ak(1) = 1 and there is a segment of slope 1/2 in the Newton

diagram connecting (0, 0) and Q1. If, additionally, det Φ2 6= 0, there is a second
segment of slope 2/3 between Q1 and P2 = (5, 3) (see Fig. 3.4 (b)). Hence, two of
the eigenvalues are

λl1(ε) = δ1/2ε1/2 + o(ε1/2)

since δ = α̂k(1) is the unique nonzero eigenvalue of Φ1. The other three eigenvalues
of A+ εB may be expanded as

λl2(ε) = η1/3ε2/3 + o(ε2/3) for η =
det Φ2

δ

applying Corollary 3.3 (ii) (in this case α = n2 = 1 and (σn1−1)β = 1/3 < 2/3 = σ).
• If δ = 0, then ak(1) > 1 and Q1 does not appear in the diagram. In the

case when det Φ2 6= 0, the Newton diagram consists of a single segment of slope 3/5
connecting the origin withP2 (see Fig. 3.4(c)). The five eigenvalues are of the form

(det Φ2)1/5ε3/5 + o(ε3/5).

Finally, if both δ and det Φ2 are zero, the actual slopes of the Newton diagram
depend on the vanishing of the four-dimensional minors of B.
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4. Spectral condition numbers. The results of section 2 lead immediately to
the proposition of a new notion of condition number for multiple eigenvalues.

Definition 4.1. Define the Hölder condition number of the eigenvalue λ by

cond(λ) = (n1, α),

where, as before, n1 is the dimension of the largest Jordan block associated with λ and

α = max
||B||≤1

spr(Y1BX1),

where spr denotes the spectral radius and the r1 columns of X1 (rows of Y1) are
independent right (left) eigenvectors of λ, each corresponding to a Jordan chain of
greatest length n1 as defined in section 2.

The motivation for this definition is that 1/n1 is the smallest possible power of
ε in the expansion of the eigenvalues of any perturbation A+ εB, while α1/n1 is the
largest possible magnitude of the coefficient of ε1/n1 in such expansions. Clearly, it
follows from Theorem 2.1 that for all c > 1, the eigenvalues λ′ of A+ εB converging
to λ as ε ↓ 0 satisfy

|λ′ − λ| ≤ cα1/n1ε1/n1(4.1)

for all sufficiently small positive ε. In fact, this bound is sharp in the sense that
given A, there exists a perturbation B such that for all c < 1, (4.1) holds with the
inequality reversed for some perturbed eigenvalue λ′ when ε is sufficiently small.

Note that the definition depends on the choice of matrix norm || · ||. We shall
restrict our attention to unitarily invariant norms [6, p. 308].

Theorem 4.2. If the condition number cond(λ) = (n1, α) is defined by any
unitarily invariant matrix norm || · ||, then

α = ||X1Y1||2.

Proof. One has

max
||B||≤1

spr(Y1BX1) = max
||B||≤1

spr(BX1Y1)

≤ max
||B||≤1

||BX1Y1||2

≤ ||X1Y1||2,

where the final inequality follows because ||B||2 ≤ ||B|| for any unitarily invariant
norm. To see that equality holds, note the following. Let the scalar σ1, the row
vector u1, and the column vector v1 be, respectively, the largest singular value and
the corresponding left and right singular vectors ofX1Y1, so that ||u1|| = ||v1|| = 1 and
u1X1Y1v1 = σ1 = ||X1Y1||2. Setting B = v1u1 gives spr(BX1Y1) = spr(u1X1Y1v1) =
σ1.

Remarks.
1. In the case in which λ is simple, we have n1 = r1 = 1, so cond(λ) = (1, α),

where α = ||xy|| = ||x|| ||y||, with the column vector x and the row vector y, respec-
tively, right and left eigenvectors for λ, normalized so that yx = 1. Without loss of
generality, one can take ||x|| = 1, so α = ||y||. Thus the condition number reduces to
the standard definition [4, p. 152]; see also [5, p. 202], where the normalization used
is ||x|| = ||y|| = 1, giving the definition 1/(yx) for the condition number.
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2. In the case in which λ is nonderogatory, we have r1 = 1, so cond(λ) = (n1, α),
where α = ||xy|| = ||x|| ||y||, with x and y, respectively, right and left eigenvectors.
However, when n1 > 1, we have yx = 0 (directly from the Jordan form). The
normalization in this case is Q1

1P
1
1 = I, where the columns of P 1

1 (rows of Q1
1) are

right (left) Jordan chains for λ, x being the first column of P 1
1 and y the last row of

Q1
1. If A is in Jordan form, then P 1

1 = Q1
1 = I, so cond(λ) = (n1, 1).

For example, take

A =

[
δ 1
0 −δ

]
and consider the eigenvalue λ = δ. For δ > 0, one has x = [1 0]T , y = [1 1/(2δ)], so
cond(δ) = (1, α) with α = ||x|| ||y|| =

√
1 + 1/(4δ2). Since the eigenvalue is simple,

this condition number coincides with those given by [4] and [5]. As δ ↓ 0, the coefficient
α in cond(δ) diverges to +∞. For δ = 0, the eigenvalue λ = δ has multiplicity two,
so the definitions given in [4, p. 152] and [5] do not apply. In this case, A is in Jordan
form, so one has x = [1 0]T , y = [0 1], and cond(0) = (2, 1). Thus, although the
condition number is not a continuous function of δ in the conventional sense, the
divergence of α as δ ↓ 0 is reflected by the drop in the power 1/n1 at the limit point.

Chatelin [4, p. 156] also introduced a closely related Hölder condition number
in the more general context of clusters of eigenvalues. Let us restrict our attention
to the case in which the cluster consists of one multiple eigenvalue λ of multiplicity
n. Chatelin defines a Hölder condition number csp(λ) = (n, β), with a coefficient
β which depends on the conditioning of the transformation reducing the matrix to
Jordan form. Specifically, consider the matrices P and Q in (2.1), let P have a
“QR” factorization

P = UR, U∗U = I,

and define V = RQ. Thus, the columns of U form a unitary basis for the right
invariant subspace for λ, while the rows of V form a (nonunitary) basis for the left
invariant subspace, satisfying the normalization condition V U = RQPR−1 = I, since
QP = I from (2.2). Then the Chatelin condition number csp(λ) = (n1, β) has β
defined by

β = cond2(R) ‖V ‖
2
,

where cond2(R) is the ordinary condition number ‖R‖2‖R−1‖2 . (To see the equiv-

alence with Chatelin’s definition, note that U∗AU = RJR−1, using Q̂P = 0, again
from (2.2).)

An important advantage of cond(λ) = (n1, α) over csp(λ) = (n1, β) is that the
coefficient α depends only on the left and right eigenvectors, not on the Jordan
vectors. As a consequence, we obtain the following relation between both condition
numbers.

Lemma 4.3. If the condition number cond(λ) = (n1, α) is defined by any uni-
tarily invariant matrix norm, then it is related to csp(λ) = (n1, β) by

α ≤ β.
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Proof. First, note that

α = ‖X1Y1‖2 ≤ ‖X1‖2‖Y1‖2 ≤ ‖P‖2‖Q‖2

since the columns of X1 (resp., rows of Y1) are a subset of those of P (resp., Q).
Now, P = UR with U∗U = I and Q = R−1V, so

α ≤ ‖P‖2‖Q‖2 = ‖R‖
2
‖R−1V ‖

2
≤ cond2(R) ‖V ‖

2
= β.

Consider, for example,

A =

[
0 δ
0 0

]
with a double eigenvalue λ = 0. When δ > 0, the Jordan form of A is given by[

0 1
0 0

]
= P−1AP, P =

[
1 0
0 1/δ

]
with right eigenvector equal to the first column of P , i.e., x = [1 0]T , and left
eigenvector equal to the second row of P−1, y = [0 δ]. Thus, for δ > 0, cond(0) =
(2, α) with α = ||x|| ||y|| = δ. The Chatelin condition number is csp(0) = (2, β) with
β = max{δ, 1/δ}, the condition number of P in the 2-norm. As δ ↓ 0, the coefficient
α in cond(λ) = (2, α) converges to zero, as it should since at the limit point the power
1/n1 increases to 1, giving the perfect condition number cond(0) = (1, 1). However,
the coefficient β in csp(0) = (2, β) diverges to +∞, even though the condition number
in the limiting case δ = 0 is also csp(0) = (1, 1).

The condition number cond(λ) is trivially extended to clusters of eigenvalues by
defining it to be the lexicographic maximum of the ordered pairs defining the condition
number for each element of the cluster.
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Abstract. The dynamic programming (DP) technique rests on a very simple idea, the principle
of optimality due to Bellman. This principle is instrumental in solving numerous problems of optimal
control. The control law minimizes a cost functional and is determined by using the optimality
principle. However, applicability of the optimality principle requires that the cost functional satisfies
the property called “matrix dynamic programming (MDP) property.” A simple definition of this
property will be provided and functionals having it will be considered.
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1. Introduction. The DP technique rests on a very simple idea, the princi-
ple of optimality due to Bellman [1]. This principle simply asserts that if π∗ =
{µ∗0, µ∗1, . . . , µ∗n} is an optimal control law then [1] the truncated control law

{
µ∗i , µ

∗
i+1,

. . . , µ∗n} is optimal for the ith truncated control problem.
This principle is instrumental in solving numerous problems of optimal control of

a dynamic system over a finite number of stages (finite horizon). We refer to [1, 2]
for a thorough and motivated presentation of the DP technique.

The control law (or the strategy [2]) must minimize a cost functional. However,
to our knowledge, the authors always assume that the cost functional is additive over
time.

The problem we deal with consists of optimizing the trajectory of a passive re-
ceiver. For practical purposes, we must minimize a functional depending on the state
values and the control law. The functional is a functional of the Fisher information
matrix (FIM) since, roughly speaking, the FIM is a general measure of the estimability
problem [3, 4, 5]. A general presentation of our problem is given in [6, 7, 8].

Various choices of the FIM functional have been considered in the literature [9],
even if both theoretical and practical considerations advocate for the use of the deter-
minant [8, 10, 11]. At this point, it is necessary to stress that the determinant is not
linear so the cost functional additivity no longer holds. Actually, applicability of the
principle of optimality to the matrix case requires that the cost functional satisfies to
the matrix dynamic programming (MDP) property. A simple definition of the MDP
property will be provided, and we shall examine the functionals having it.

Then, it is shown that they are reduced to the functionals of the form f(A) =
g (tr(AM)) (cf. Proposition 2.2). Consequently, these functionals are “almost” linear
(obviously a linear functional yields an additive cost), which may be rather restrictive.

At this point, it is worth recalling the special structure of the FIMs. Actually, if
we restrict our attention to a very specific estimation problem (namely, target motion
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analysis (TMA)), which deals with the estimation of the kinematic parameters defining
a source trajectory, then the FIM matrices exhibit a very special structure [12] which
is very succinctly presented in the appendix. We shall then consider the applicability
of the optimality principle to this class of matrices for the det functional. Some results
are thus obtained, but they cannot be extended to the generic case.

Throughout the text, the following notations will be used:
• a capital letter denotes a matrix,
• a capital calligraphic letter denotes a subspace,
• the symbol (*) means transposition conjugation,
• the symbols det and tr stand, resp., for the determinant and the trace,
• Hn is the space of n-dimensional Hermitian matrices,
• Pn (resp., P+

n ) is the subset of positive semidefinite (resp., positive definite)
matrices,
• I is the identity matrix,
• A � B means that the matrix A−B is semidefinite positive.

The paper is organized as follows. The MDP property is introduced in section
2. General results are then obtained. The validity of the optimality principle for the
determinant of structured matrices is considered in section 3.

2. The MDP property and its implications. We shall say that the func-
tional f defined from Hn (the vector space of n-dimensional Hermitian matrix) to R
satisfies the MDP property if the following conditions are fulfilled.

Definition 2.1.

• f is smooth
(
C2
)
,

• let A and B in Hn be two matrices and assume that f(B) > f(A); then whatever
the matrix C in Hn, we have f(B + C) > f(A+ C).

An interpretation of this definition in terms of dynamic programming is the fol-
lowing type of inequality [6, 7]:1

minf

∑
j∈S

[Ci,j(d) + Fπ∗1 (k + 1, j)]pi,j(d)

 ≤ f
∑
j∈S

[Ci,j(d) + Fπ1(k + 1, j)]pi,j(d)

 ,

which must be valid for the strategy π∗1 , optimal up to k + 1.
The question we deal with consists of determining the functionals f having the

MDP property. An answer to this question is provided with the following result.
Proposition 2.2. Let f satisfy the MDP property; then

f(A) = g (tr(AR)) ,

where g is any monotone-increasing function and R is a fixed matrix.
Proof. Since it has been assumed that f is smooth, we can consider the first-order

expansion2 of f around A

f (A+ ρ C)
1
= f(A) + ρ tr[∇∗f(A) C] + 0(ρ)(1)

(ρ scalar).

1 F denotes an FIM matrix.
2 The symbol

1
= denotes a first-order expansion.
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In the above formula, ∇f(A) denotes the gradient vector of f in A. Actually,
the notation tr[∇∗f(A) C] replaces the true expression [13, 16] of the differential of
f,DfA(C) and corresponds to (see comments)

DfA(C) = tr[∇∗f(A) C].(2)

Assume now that the gradient vectors ∇f(A) are not colinear altogether. Then
there exist two matrices A and B s.t. ∇f(A) 6= ∇f(B). Denoting F⊥ as the subspace
orthogonal to F (for the classical scalar matrix product [14]), we thus have

(P1) (∇f(A))
⊥ 6= (∇f(B))

⊥
.(3)

At this point, stress that the matrices A and B satisfying (P1) may be chosen as
close (for the Frobenius norm [15]) as we want.

As a consequence of (P1) there exists a matrix C such that

tr[∇∗f(A) C] 6= 0 and tr[∇∗f(B) C] = 0.

If tr[∇∗f(A) C] < 0, then tr[∇∗f(A) (−C)] > 0, so we can assume that

tr[∇∗f(A) C] > 0 and tr[∇∗f(B) C] = 0.(4)

Now consider the function g(ρ)

g(ρ)
∆
= f (B + ρ C)− f (A+ ρ C)

and its first-order expansion around 0, i.e.,

g(ρ) = f(B)− f(A)− ρ tr[∇∗f(A) C] + 0(ρ).(5)

Since the functional f is continuous on Hn, we may choose (A,B) such that

f(B)− f(A) =
ρ

2
tr[∇∗f(A) C],

and, consequently,

f(B + ρ C)− f(A+ ρ C) = −ρ
2

tr[∇∗f(A) C] + 0(ρ)

(tr[∇∗f(A) C] > 0) .
(6)

The above equality implies that f does not satisfy the MDP property.
Therefore, if f has the MDP property then all its gradients are colinear and

proportional to a unique vector. Denote this vector by G; we thus have

∇f(A) = λ(A)G ∀A ∈ Hn
(λ(A) scalar ) .

(7)

Now if we recall the intermediate value theorem and the differentiation chain rule
[16]

∇g [h(A)] = g′ (h(A))∇h(A)

(g : R −→ R, h : Hn −→ R) ,

we conclude that f is the composition of a scalar function g and a linear form h. Such
a linear form h may always be written h(A) = tr(AR), where R is a fixed matrix.

Reciprocally, it is a trivial matter to show that f(A) = g (tr(AR)) with a g
monotone increasing function that satisfies the MDP property. The proof is thus
complete.
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Comments.
1. Consider for instance f(A) = log detA; then [14]

DfA(C) = tr
(
A−1C

)
= tr[∇∗f(A) C]

(A invertible),
and we see immediately that f does not have the MDP property.

2. The same remark is valid for functionals as simple as f(A) = tr
(
A−1

)
.

But actually we only need the following condition on f .
Definition 2.3. The functional f has the MDP1 property if the following con-

ditions are satisfied.
For all positive definite matrices A and B and positive semidefinite matrix C, the

following property holds:

f(B) > f(A)⇒ f(B + C) > f(A+ C)(8)(
f : C2

)
.

Note that MDP1 is a refinement of the MDP property and may, possibly, be less
demanding than MDP. At this point, it is worth mentioning the following lower bound
of det(A+B). We refer, for instance, to [17, pp. 229–230, 18] for a proof.

Lemma 2.4. Let A,B be Hermitian n×n matrices, and suppose that A is positive
definite and that B is nonnegative definite. Then

det(A+B) ≥ det(A) +
det(A)

nλmax
tr(B).(9)

Here λmax denotes the maximum eigenvalue of A.
However, the following counterexample shows that MDP1 is not satisfied by the

“ det ” functional.
Counterexample.

Aε =

(
1 + ε 0

0 5

)
, B =

(
3 2
2 3

)
,

det(B) = 5, det (Aε) = 5(1 + ε), Aε and B � 0 ( ε suff. small),

C =

(
1 1
1 1

)
and thus

det (Aε + C) = 11 + 6ε and det(B + C) = 7.

It is quite obvious that this (elementary) counterexample is not restricted to a rank
deficient C matrix since C may be slightly perturbed without changing the sign of
det(B + C)− det(A+ C). Therefore for ε sufficiently small (and negative) we have

det(B) > det (Aε) and det (Aε + C) > det(B + C).

Similarly, we can show that MDP1 is not satisfied by the functional f(A) =
tr
(
A−1

)
but is trivially satisfied by any functional f(A) = g (tr(AR)) (g: monotone

increasing). We thus consider the following problem.



822 J. P. LE CADRE AND O. TRÉMOIS

What are the functionals satisfying the MDP1? We may reasonably suspect that
they are reduced to those satisfying the MDP. However, the proof of Proposition 2.2
cannot be trivially extended since the subset of semidefinite matrices is not a subspace.
Actually, if C is in P+

n then −C is not in P+
n and the reasoning leading to (4) is not

valid. The difficulty comes from the fact that P+
n is a convex subset of Hn and not a

subspace.

3. Structured determinants and the MDP property. Our attention will
now be restricted to structured matrices. Various structures will be considered cor-
responding to various scenarios (see [6]) of target motion analysis. The statistical
motivations of such special matrix structures are beyond the scope of this paper, but
the true problems are thus conveniently described [12, 7].

Since the general MDP property is not satisfied by the determinant, we shall con-
sider special cases associated with particular matrix structures and specific definitions
of the “addition.” It will then be shown that the DP property may be extended, but
the validity of these extensions is limited.

3.0.1. One-leg scenario. In this case, the elementary FIM F (A,C) takes the
following form:

F (A,C) =

(
A iA
iA i2A

)
+

(
C jC
jC j2C

)
=

(
A+ C iA+ jC
iA+ jC i2A+ j2C

)
with

A,C ∈ P+
n , i, j ∈ N.

Then, the following result holds.
Proposition 3.1.

det (F (A,C)) = (j − i)2n
detA detC.

Proof. An elementary proof relies on the following factorization:

F =

(
A I
iA jI

) (
I iI
C jC

)
,

hence

detF = det

(
A I
iA jI

)
det

(
I iI
C jC

)
.(10)

Now using the classical lemma about the determinant of a partitioned matrix
[15, 19] we obtain directly

det

(
A I
iA jI

)
= detA det

(
jI − iAA−1

)
= detA det ((j − i)I)

and similarly

det

(
I iI
C jC

)
= detC det ((j − i)I) .(11)
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Using the proof of Proposition 3.2 (see below), Proposition 3.1 may be extended
to the case A ∈ P+

n , C ∈ Pn.
A direct consequence of Proposition 3.1 is

detB > detA > 0⇒ detF (B,C) > detF (A,C) (C � 0).(12)

Actually, as we shall see later, the simplicity of Res1 is a consequence of the rank
deficiency of the following matrix:(

A iA
iA i2A

)
=

(
1 i
i i2

)
⊗A

(⊗ : Kronecker product [15]).
Thus, the MDP property is verified for this particular matrix structure. However,

for practical applications, Proposition 3.1 should be extended to the following two
problems.

3.0.2. Problem 1. In fact, statistical considerations may lead us to consider a
slightly more general structure (

A αA
αA βA

)
.

This matrix is no longer rank deficient (in general) so that previous calculations are
not valid. However, the following result holds.

Proposition 3.2.

det

[(
A αA
αA βA

)
+

(
C jC
jC j2C

)]
= detA det

[(
β − α2

)
A+

(
β − 2jα+ j2

)
C
]
.

Proof. That A is positive definite admits a decomposition in triangular factors
(A = TT ∗) so that(

A+ C αA+ jC
αA+ jC βA+ j2C

)
=

(
T 0
0 T

)(
I + S αI + jS
αI + jS βI + j2S

)(
T ∗ 0
0 T ∗

)
with

S
∆
= T−1CT−1∗.(13)

Now

det

(
I + S αI + jS
αI + jS βI + j2S

)
= det

[
(I + S)

(
βI + j2S

)
− (αI + jS)

2
]

(where we have used the fact that (I + S) and (αI + jS) commute)

= det
((
β − α2

)
I +

(
β − 2jα+ j2

)
S
)
,(14)

which ends the proof.
If β = α2, then we have

detF (A,C) = detA det
[
(α− j)2

C
]

and therefore

detB > detA⇒ detF (B,C) > detF (A,C) (C � 0).(15)

If β 6= α2, then the previous implication does not hold and the MDP property is
not valid.
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3.0.3. Problem 2. Another important problem arises when we try to extend
the previous calculations to more than two matrices, i.e., to calculate the following
structured determinant:

det

(
A+ C1 + C2 A+ jC1 + kC2

A+ jC1 + kC2 A+ j2C1 + k2C2

)
.(16)

The previous simple results (Proposition 3.1 or 3.2) cannot be extended to this
structure. It seems impossible to obtain a simple expression of this determinant even
when using more sophisticated algebra [20]. This constitutes a major problem. A last
example considers a very special addition law where the dimension of the matrices is
increasing. As previously noted, this special structure may be justified by statistical
considerations [6, 7, 8] associated with multileg scenarios.

3.1. Multileg scenarios. Considering this type of scenario leads to increasing
the dimensionality of the state vector and thus to considering the following elementary
structure of the matrix F :

F(A,C) =

(
A 0
0 0

)
+

(
C iC
iC i2C

)
,

A ∈ P+
n , C ∈ P+

n , i ∈ N.

We then obtain the following result.
Proposition 3.3.

detF(A,C) = (i)
2n

detA detC.

Proof.

det (F(A,C)) = det
[
i2C − i2C(A+ C)

−1
C
]

det(A+ C)

= i2n(detC)
2

det
[
C−1(A+ C)− I

]
= i2n detC detA.(17)

In view of Proposition 3.3, the following property holds:

detB > detA⇒ detF(B,C) > detF(A,C).(18)

4. Conclusion. Applicability of the principle of optimality to matrix cost func-
tionals requires that the MDP property be satisfied. A simple definition of this prop-
erty has been given, and we have determined the functionals that have it. Since the
det functional does not satisfy the MDP property, various special structures have been
considered.

5. Appendix. The aim of this appendix is to provide a very succinct presenta-
tion of the calculation of the FIM matrices in the TMA context. For more details,
we refer to [8, 12]. First consider a rectilinear and uniform motion of the source. The
source, located at the coordinates (rxs, rys), moves with a constant velocity vector
v (vxs, vys) and is thus defined to have the state vector

Xs
∆
= [rxs, rys, vxs, vys]

∗
.(19)
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The receiver state is similarly defined as

Xrec
∆
= [rx rec, ry rec, vx rec, vy rec]

∗

so that, in terms of the relative state vector X defined by

X = Xs −Xrec
∆
= [rx, ry, vx, vy]

∗
,

the discrete time equation of the system (i.e., the equation of the relative motion)
takes the following form:

Xk+1 = FXk + Uk,

where

F = Φ (k, k + 1) =

(
Id αId
0 Id

)
, Id

∆
=

(
1 0
0 1

)
,

and

α
∆
= tk+1 − tk = cst .(20)

The measurement noise wk is usually modelled by an independently and identically
distributed (i.i.d.) zero-mean, Gaussian process.

The partial derivative matrix of the bearing vector Θ(X) with respect to the state
components is easily calculated [12] yielding

∂Θ(X)

∂X
=


cos θ1
r1

− sin θ1
r1

cos θ1
r1

− sin θ1
r1

...
cos θn
rn

− sin θn
rn

n cos θ1
rn

−n sin θn
rn

 ,

where {θi} represents the source bearing (angle) at the instant i, and {ri} is the
source-receiver distance.

Consider the case of a nonmaneuvering source (constant-velocity vector); then
the calculation of the FIM is a routine exercise yielding [12]

FIM =

(
∂Θ(X)

∂X

)∗
Σ−1

(
∂Θ(X)

∂X

)
(21)

∆
=

( ∑n
i=1 Ωi

∑n
i=1 iΩi∑n

i=1 iΩi
∑n
i=1 i

2Ωi

)
.

A realistic assumption consists of modelling the source trajectory by a sequence of
elementary rectilinear uniform motions (named “legs”). The previous calculation of
the FIM may be extended to this modelling, and the FIM then takes the following
form [7, 6] (l legs):

FIM =
l∑

m=1

mj∑
k=(m−1)+j

[dm−1,l+1(k)dm−1,l+1(k)
∗
]⊗ Ωk,

where d is a vector describing the index leg, consisting of 0 and 1, and Ωk is a 2× 2
elementary FIM.
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Abstract. In this paper we find formulas for group inverses of Laplacians of weighted trees.
We then develop a relationship between entries of the group inverse and various distance functions
on trees. In particular, we show that the maximal and minimal entries on the diagonal of the group
inverse correspond to certain pendant vertices of the tree and to a centroid of the tree, respectively.
We also give a characterization for the group inverses of the Laplacian of an unweighted tree to be
an M -matrix.

Key words. Laplacian matrix, generalized inverse, weighted tree
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1. Introduction. In this paper, for a weighted tree on n-vertices, we bring
into focus the relationship between the inverse weighted generalized distance function
which is defined on its vertices and the entries of the group inverse of the Laplacian
matrix associated with the tree. In so doing we generalize and extend results which
we have obtained in a previous paper for unweighted trees. We also shift the frame of
reference for what we termed in that paper as bottleneck numbers for the tree to the
inverse weighted distance function. Other results follow.

An undirected weighted graph on n vertices is a graph, G, each of whose edges e
has been labeled by a positive real number, w(e), which is called the weight of the
edge e. Taking the vertices of G to be 1, 2, . . . , n, the Laplacian matrix of the weighted
graph G is the n×n matrix L = (`i,j) whose ith diagonal entry equals the sum of the
weights of the edges incident to vertex i, and whose (i, j)th off-diagonal entry equals
0 if there is no edge joining vertices i and j and equals the negative of the weight of
the edge joining vertices i and j otherwise.

Suppose now that G is a weighted tree on n vertices and recall that any two
vertices i and j are joined by a unique path Pi,j . We define the inverse weighted
distance from vertex i to vertex j as the sum

d̃(i, j) =
∑
e∈Pi,j

1

w(e)
;(1.1)

that is, d̃(i, j) is the sum of the reciprocals of the weights of the edges on the path
Pi,j . We define d̃i,i = 0 for all i = 1, . . . , n. For any vertex i, we define the inverse
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status of vertex i as the sum

d̃i =
∑
u∈T

d̃(u, i).(1.2)

Our terminology follows that of Harary [6] for unweighted graphs.

Recall that for an n × n matrix A, the group inverse of A, when it exists, is the
unique n× n matrix satisfying the matrix equations

(i) AXA = A, (ii) XAX = X, and (iii) AX = XA.

It is known that for real square matrix, A, the group inverse exists if and only if the
Jordan blocks of A corresponding to the eigenvalue λ = 0 are all 1×1. It is customary
to denote the group inverse of A by A#.

Now let G be a weighted tree on n vertices. It is readily seen from the definition
of the Laplacian of G that L is a symmetric matrix with nonpositive off-diagonal
entries and zero row sums. It follows now from the Perron–Frobenius theory, see, for
example, Berman and Plemmons [1], that L is a positive semidefinite and irreducible
M -matrix. In particular, the group inverse L# of L exists.

In section 3 we shall show that for some constant c,(
L#

1,1, . . . , L
#
n,n

)
=

1

n
(d̃1, . . . , d̃n) + c1,

where 1 is the n-vector of all 1’s. Thus the maximal and minimal diagonal entries in
L# correspond to the vertices of maximal and minimal inverse status, respectively.
We shall further show that of necessity such vertices must be pendant and centroid
vertices of the tree, respectively. We also find a representation in terms of the inverse
status values for the off-diagonal entries of L# and show that its entries corresponding
to the edges along the same path emanating at any vertex decrease as we move away
from the vertex. This yields a characterization for L# to be an M -matrix itself, and
we analyze the unweighted trees whose Laplacian has a group inverse which is such a
matrix.

The development of distance formulas for the entries of the group inverse of the
Laplacian requires the preparation of some preliminary results for weighted trees of
certain parameters associated with the graph which, for unweighted trees, we called
bottleneck numbers. In section 2 we extend the notion and results on bottleneck
numbers in [7] to weighted graphs.

2. Formulas for L#. Recall that the Laplacian matrix of a weighted connected
graph is an irreducible singular M -matrix. In this section we establish general formu-
las for the group inverse of an irreducible singular M -matrix and then give combina-
torial descriptions in the case of weighted graphs.

We begin with the following block matrix description. Let A be an n × n irre-
ducible, singular M -matrix. Then there exists a positive vector x such that Ax = 0.
The vector x is called a right null vector of A. Similarly, a left null vector of A is a
positive vector y such that yTA = 0T . We also note, for k = 1, 2, . . . , n, that the prin-
ciple submatrix A[{k}, {k}] obtained from A by deleting its kth row and column is a
nonsingular M -matrix. The proof of the following is similar to that of Theorem 8.5.2
in [2].

Proposition 2.1. Let A be an irreducible singular M -matrix with right null
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vector x = (x1, x2, . . . , xn)T and left null vector y = (y1, y2, . . . , yn)T . Then

A# =
ŷTMx̂

(yTx)2
xyT +


M − 1

yT x
Mx̂ŷT − 1

yT x
x̂ŷTM −yn

yT x
Mx̂

−xn
yT x

ŷTM 0

 ,
where x̂ = (x1, x2, . . . , xn−1)T , ŷ = (y1, y2, . . . , yn−1)T , and M = A[{n}, {n}]−1.

If A is an n × n irreducible singular M -matrix, we call the nonnegative matrix
A[{i}, {i}]−1 the bottleneck matrix of A based at i. Proposition 2.1 describes A# in
terms of the bottleneck matrix of A based at n. If A is the Laplacian matrix of a
weighted graph G, then we also refer to A[{i}, {i}]−1 as the bottleneck matrix of G
based at vertex i. The following is an immediate consequence of Proposition 2.1 and
the fact that 1 is a left and right null vector of the Laplacian matrix of a weighted
graph.

Proposition 2.2. Let L be the Laplacian matrix of a connected weighted graph
with n vertices. Then

L# =
1TM1

n2
J +

 M − 1
nMJ − 1

nJM − 1
nM1

− 1
n1TM 0

 ,
where M = L[{n}, {n}]−1 is the bottleneck matrix based at vertex n.

If A is an m × n matrix, the submatrix of A whose rows have index in α and
whose columns have index in β is denoted by A[α, β]. We use α and β to denote the
complement of α in {1, 2, . . . ,m} and of β in {1, 2, . . . , n}, respectively.

We now develop a combinatorial description of the entries of the bottleneck matrix
of a weighted graph. Let L be the Laplacian matrix of a connected weighted graph
G with vertices 1, 2, . . . , n. By the cofactor formula for the inverse, the (i, j)th entry
of the bottleneck matrix of L based at n equals

(−1)i+j detL[{j, n}, {i, n}]
detL[{n}, {n}]

.(2.1)

Our description of the bottleneck matrix follows from (2.1) and a generalization of the
matrix-tree theorem obtained by Chaiken in [3]. The generalization is proven using
the Cauchy–Binet formulas and gives a combinatorial description of the determinants
of the square submatrices of a Laplacian matrix.

For the purpose of achieving the above, we need a few further graph theoretical
notions. A subgraph of G is a graph H whose vertices are a subset of 1, 2, . . . , n, and
whose edges are a subset of those of G. If G is a weighted graph and E is a subset of
edges of G, then the weight of E is denoted by w(e) and is the product of the weights
of the edges in E. The weight of a subgraph H is the weight of its set of edges and
the weight of a graph with no edges is defined to be 1. The set of all spanning trees
of G is denoted by S. We now define a special type of spanning forest. Let i, j,
and k be (not necessarily distinct) vertices of G. An ({i, j}, k)-spanning forest of G
is a spanning forest of G which has exactly two connected components, one of which
contains vertex k and the other of which contains the vertices i and j. The set of all

({i, j}, k)-spanning forests of G is denoted by S{i,j}k .
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Chaiken’s all minors matrix tree theorem in [3] implies that

detL[{n}, {n}] =
∑
T∈S

w(T )

and

detL[{j, n}, {i, n}] =
∑

F∈S{i,j}v

w(F ) for 1 ≤ i, j ≤ n− 1.

Therefore, (2.1) implies the following theorem.
Theorem 2.3. Let G be a connected weighted graph on vertices 1, 2, . . . , n. Let

v be a vertex of G. Then the bottleneck matrix M = [mi,j ] of G based at vertex v
satisfies

mi,j =

∑
F∈S{i,j}v

w(F )∑
T∈S w(T )

.

Theorem 2.3 has numerous consequences. The first, which is immediate, is a
combinatorial formula for the bottleneck matrix of an unweighted graph.

Corollary 2.4. Let G be an unweighted connected graph with n vertices. Then
the bottleneck matrix, M = [mi,j ], based at vertex v satisfies

mi,j =
|S{i,j}v |
|S| .

Let G be an unweighted connected graph with vertices 1, 2, . . . , n. Let i and j be

adjacent vertices. Adding the edge joining i and j to each forest in S{i,i}j establishes

a correspondence between S{i,i}n and the spanning trees of G which contain the edge
joining i and j. Hence, by Corollary 2.4, the (i, i)-entry of the bottleneck matrix of
G based at vertex j is equal to the fraction of spanning trees of G which contain the
edge joining i and j. An analogous result holds for weighted graphs and follows from
Theorem 2.3.

Let T be a weighted tree with vertices 1, 2, . . . , n. Let i and j be (not necessarily
distinct) vertices other than n of T . Each spanning forest F of T with exactly two
components can be obtained from T by removing exactly one edge e. Thus, a spanning
forest F of T is an ({i, j}, n)-spanning forest if and only if F is a spanning forest
obtained from T by removing one of the edges e which lies on the path from i to n

and on the path from j to n. Since w(F )
w(T ) = 1

w(e) , Theorem 2.3 implies the following.

Corollary 2.5. Let T be a weighted tree with vertices 1, 2, . . . , n. The bottle-
neck matrix, M = [mi,j ], of G based at vertex v satisfies

mi,j =
∑
e∈Pv

i,j

1

w(e)
,

where Pvi,j is the set of all edges e which lie on the path from i to v and on the path
from j to v.

A direct proof of Corollary 2.5 is given in [8]. Note that if T is an unweighted
tree, then by Corollary 2.5, mi,j = |Pvi,j |. This was shown in [7].
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Let A = [ai,j ] be an n × n matrix. The matrix A is combinatorially symmetric
provided ai,j = 0 whenever aj,i = 0. If A is combinatorially symmetric, then the
graph of A is the graph G with vertices 1, 2, . . . , n with an edge joining vertex i and
vertex j if and only if i 6= j and ai,j 6= 0. If A is symmetric, then the weighted graph
of A is the graph obtained from G by weighting the edge joining vertex i and j by
ai,j . The next result extends Corollary 2.5 to symmetric M -matrices whose graph is
a tree.

Corollary 2.6. Let A be a symmetric, singular M -matrix whose graph is a
tree T with n vertices. Let x be a right null vector of A. Then the bottleneck matrix,
M = [mi,j ], of A based at v satisfies

mi,j = xixj
∑

e={k,`}∈Pv
i,j

1

w(e)xkx`
.

Proof. Without loss of generality we take v = n. Let D be the n × n diagonal
matrix whose diagonal entries are the entries of x. Consider the matrix L = DAD. It
is easy to verify that L is the Laplacian matrix of the weighted tree obtained from T
by weighting the edge e by w(e) = w(e)xkx`, where k and ` are the vertices incident
to e. Hence, by Corollary 2.5,

(L[{n}, {n}])−1 =
∑
e∈Pn

i,j

1

w(e)
=

∑
e={k,`}∈Pn

i,j

1

w(e)xkx`
.

The corollary now follows from the observation that

A[{n}, {n}]−1 = D̂(L[{n}, {n}])−1D̂,

where D̂ is the diagonal matrix obtained from D by deleting row and column n.
Corollary 2.6 can be extended to combinatorially symmetric singular M -matrices

whose graph is a tree. First, it is shown that every such matrix is diagonally similar
to a symmetric matrix. This implies that in studying the diagonal entries of the group
inverse of a combinatorially symmetric singular M -matrix, one may assume that the
matrix is in fact symmetric. The following lemma is, essentially, due to Parter and
Youngs [10], though the proof below is different.

Lemma 2.7 (see Parter and Youngs [10, Lemma 3]). Let A be a combina-
torially symmetric, singular M -matrix of order n whose graph is a tree T . Let
x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be right and left null vectors of A,

respectively. Let D = diag(
√
x1√
y1
,
√
x2√
y2
, . . . ,

√
xn√
yn

). Then D−1AD is a symmetric, singu-

lar M -matrix whose graph is T .
Proof. The proof is by induction on n. The result is clearly true if n = 1 or n = 2.

Now assume that n ≥ 3, and the result is true for any combinatorially symmetric,
singular M -matrix of order n − 1 whose graph is a tree. Consider the n × n matrix
A = [ai,j ] and its graph T . Without loss of generality we may assume that vertex n
is a pendant vertex in T and is adjacent to vertex n− 1. Since Ax = 0 and yTA = 0,

yn−1

yn
an−1,n = −an,n =

xn−1

xn
an,n−1.

Thus, it follows that the last row and column of D−1AD are transposes of each other.
The matrix

Â = A[{n}, {n}]− xn
xn−1

an−1,nEn−1,n−1,
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where En−1,n−1 is the n− 1× n− 1 matrix with a 1 in position (n− 1, n− 1) and 0
elsewhere, is a singular M -matrix whose graph is the tree obtained from T by deleting
vertex n. In addition,

Â


x1

x2

...
xn−1

 = 0 and
[
y1 y2 · · · yn−1

]
Â = 0.

Thus, it follows by induction that D̂−1ÂD̂ is symmetric where

D̂ = diag

(√
x1√
y1
,

√
x2√
y2
, . . . ,

√
xn−1√
yn−1

)
.

Since D̂−1A[{n}, {n}]D̂ = (D−1AD)[{n}, {n}], we conclude that D−1AD is sym-
metric.

Corollary 2.8. Let A be an n × n combinatorially symmetric, singular M -
matrix whose graph is a tree T and whose right and left null vectors are x = (x1, x2, . . . , xn)T

and y = (y1, y2, . . . , yn)T , respectively. Then the bottleneck matrix M = [mi,j ] of A
based at v satisfies

mi,j = xjyi
∑

e={k,`}∈Pv
i,j

1

ak`x`yk
.

Proof. Without loss of generality we assume that v = n. Let B = D−1AD, where

D = diag(
√
x1√
y1
,
√
x2√
y2
, . . . ,

√
xn√
yn

). By Lemma 2.7, B = [bi,j ] is a symmetric, singular

M -matrix whose graph is T . It is easy to verify that

z = (
√
x1y1,

√
x2y2, . . . ,

√
xnyn)T

is a right null vector of B, and that the weight of an edge joining vertices k and `

equals ak`
√
x`yk√
xky`

. Hence by Corollary 2.6, the (i, j)-entry of (B[{n}, {n}])−1 equals

√
xiyi
√
xjyj

∑
e={k,`}∈Pi,j

1(
ak`
√
x`yk√
xky`

√
xkyk

√
x`y`

)
,

which simplifies to

√
xixjyiyj

∑
e={k,`}∈Pi,j

1

ak,`x`yk
.

Since B[{n}, {n}] = D̂−1A[{n}, {n}]D̂, where D̂ = D[{n}, {n}],

mi,j = xjyi
∑

e={k,`}∈Pi,j

1

ak,`x`yk
.

Next we derive a formula for the diagonal entries of Laplacians of trees. Let T
be a tree. If e is an edge, then T \ e denotes the graph obtained from T by removing
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e. If i is a vertex of T , then we define βi(e) to be the set of vertices in the connected
component of T \ e which does not contain vertex i.

Lemma 2.9. Let A = [ai,j ] be an n × n symmetric, singular M -matrix whose
graph is a tree T and let x = (x1, x2, . . . , xn)T be a null vector of A. Then, for
v = 1, 2, . . . , n,

A#
v,v =

(xv)
2

(xTx)2

∑
e={k,`}∈T

1

w(e)xkx`

 ∑
i∈βv(e)

x2
i

2

.

Proof. Without loss of generality we may assume that v = n. By Proposition 2.1,

A#
n,n =

(xn)2

(xTx)2
x̂TMx̂,

where x̂ is the vector obtained from x by deleting its last row. Therefore, by Corollary
2.6,

A#
n,n =

(xn)2

(xTx)2

 ∑
1≤i,j≤n−1

x2
ix

2
j

∑
e={k,`}∈Pn

i,j

1

w(e)xkx`



=
(xn)2

(xTx)2

∑
e∈T

1

w(e)xkx`

 ∑
1≤i,j≤n−1

e∈Pn
i,j

x2
ix

2
j


=

(xn)2

(xTx)2

∑
e∈T

1

w(e)xkx`

 ∑
i∈βn(e)

x2
i

2

.

The last equality follows from the fact that i and j are vertices such that e ∈ Pni,j if
and only if both i and j belong to βn(e).

We have the following immediate consequence for the Laplacian matrix of a
weighted tree. The analogous result for the Laplacian matrix of an unweighted tree
is contained in Theorem 3.3 of [7].

Corollary 2.10. If L is the Laplacian matrix of a weighted tree T with n
vertices, then

L#
v,v =

1

n2

∑
e∈T

|βv(e)|2
w(e)

(2.2)

for v = 1, 2, . . . , n.
The analogous result for nonsymmetric matrices follows by a similar argument.
Corollary 2.11. If A is an n×n combinatorially symmetric, singular M -matrix

whose graph is a tree and x and y are right and left null vectors, respectively, of A,
then

A#
v,v =

xvyv
(yTx)2

∑
e={k,`}∈T

1

ak,`x`yk

 ∑
i∈βv(e)

xiyi

2
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for v = 1, 2, . . . , n.
We now give a formula for the difference between certain diagonal entries.
Lemma 2.12. Let A = [aij ] be an n × n symmetric, singular M -matrix whose

graph is a tree T and let x = (x1, x2, . . . , xn)T be the null vector of A. Assume that
vertices i and j are joined by an edge e. Then

1

x2
i

A#
i,i −

1

x2
j

A#
j,j =

1

(xTx)2
1

w(e)xixj


 ∑
k∈βi(e)

x2
k

2

−

 ∑
k∈βj(e)

x2
k

2
 .

Proof. Let f be an edge of T with f 6= e. Then βj(f) = βi(f). The result now
follows from Lemma 2.9.

For weighted trees we have the following lemma.
Lemma 2.13. Let T be a weighted tree on n vertices with Laplacian matrix L.

Suppose that i and j are vertices of T joined by the edge e. Then

L#
i,i − L

#
j,j =

1

nw(e)
(|βi(e)| − |βj(e)|).(2.3)

In particular, L#
i,i > L#

j,j if and only if |βi(e)| > |βj(e)|.
Proof. Since 1 is a null vector of L, and |βi(e)| + |βj(e)| = n, the result follows

from Lemma 2.12.
Finally, in the next section we shall also require a formula for the off-diagonal

entries of the Laplacian of a weighted tree.
Lemma 2.14. Let T be a weighted tree on n vertices with Laplacian matrix L.

Then, for i, j = 1, . . . , n with i 6= j,

L#
i,j =

1

n2

∑
e∈T

|βj(e)|2
w(e)

− 1

n

∑
e∈Pi,j

|βj(e)|
w(e)

.(2.4)

Proof. Without loss of generality we can assume that j = n and i = 1, . . . , n− 1.
Then using the symmetry of L, it follows from Proposition 2.2 and Corollary 2.6 that

L#
n,i =

1

n2
1TM1− 1

n

n−1∑
k=1

∑
e∈Pn

i,k

1

w(e)

=
1

n2

∑
e∈T

|βj(e)|2
w(e)

− 1

n

∑
e∈Pi,n

|βi(e)|
w(e)

.

3. Inverse weighted distances. We begin with the following auxilliary lemma.
Lemma 3.1. Let T be a weighted tree on n vertices. Let v0 and vl be vertices in

T with v1, v2, . . . , vl−1 as intermediate vertices on the path α which joins v0 to vl. For
1 ≤ i ≤ l, let ei be the edge between vi−1 and vi having weight θi. For 0 ≤ i ≤ l, let ti
be the number of vertices, including vi whose shortest path to α has terminal vertex
vi. Then

d̃v0 − d̃vl =
l∑
i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.(3.1)
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Proof. For any one of the ti vertices u of T whose shortest path to α ends at vi,
we have that

d̃(u, v0)− d̃(u, vl) = d̃(vi, v0)− d̃(vi, vl).

Hence we find that

d̃v0 − d̃vl =
l∑
i=1

ti

[
d̃(vi, v0)− d̃(vi, vl)

]
.

The result now follows on observing that

d̃(vi, v0)− d̃(vi, vl) =

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.

Lemma 3.1 leads us to the following theorem.
Theorem 3.2. Under the assumptions and notations of Lemma 3.1 we have that

n
(
L#
v0,v0 − L

#
vl,vl

)
=

l∑
i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.(3.2)

Proof. From (2.2) we have that

n2L#
v0,v0 =

∑
e∈T

β2
v0(e)

w(e)

and that

n2L#
vl,vl

=
∑
e∈T

|β2
vl

(e)|
w(e)

.

Now if e 6∈ α, then |βv0(e)| = |βvl(e)| , while if e = em for some m = 1, 2, . . . , `, then

|βv0(em)| = tm + · · ·+ tl

and

|βvl(em)| = t0 + · · ·+ tm−1.

Hence,

n2
(
L#
v0,v0 − L#

vl,vl

)
=

∑l
m=1 (|βv0(em)|+ |βvl(em)|) |βv0 (em)|−|βvl (em)|

w(em)

= n
∑l
m=1

−t0−···−tm−1+tm+···+tl
θm

.

In the above sum, we collect terms in each ti to find that

n2
(
L#
v0,v0 − L

#
vl,vl

)
= n

l∑
i=0

ti

(
i∑

m=1

1

θm
−

l∑
m=i+1

1

θm

)
.
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Corollary 3.3. Let T be a weighted tree on n vertices and L be its Laplacian.
Then for some constant c,(

L#
1,1, . . . , L

#
n,n

)
=

1

n
(d̃1, . . . , d̃n) + c1.(3.3)

Proof. Let Z be the simple cycle permutation matrix sending 1 → n and i →
i− 1, i = 2, . . . , n. It follows from Lemma 3.1 and Theorem 3.2 that

(I − Z)

[(
L#

1,1, . . . , L
#
n,n

)T
− 1

n

(
d̃1, . . . , d̃n

)T ]
= 0

from which the conclusion easily follows.
This corollary shows that if i1, . . . , in are indices of entries in (L#

1,1, . . . , L
#
n,n)T

such that

L#
i1,i1

≥ L#
i2,i2

≥ · · · ≥ L#
in,in

,

then

d̃i1,i1 ≥ d̃i2,i2 ≥ · · · ≥ d̃in,in .

In particular we have the following conclusion.
Corollary 3.4. Let T be a weighted tree on n vertices and L its Laplacian.

Then a diagonal entry in L# occurs at an index which corresponds to an index of a
pendant vertex of T whose inverse status is maximal and a minimal diagonal entry in
L# occurs at an index which corresponds to vertex of T which is a centroid.

Proof. To prove the first part of the corollary, suppose that k is not a pendant
vertex, say with k adjacent to m, with edge e1 between them, and k is adjacent to l
with edge e2 between them. If L#

k,k − L#
m,m ≥ 0, then, by (2.3),

|βk(e1)| ≥ |βm(e1)|.

But as |βk(e1)|+ |βm(e1)| = n, we find that

|βk(e1)| ≥ n

2
.

Now, as k ∈ βk(e1) ∪ βk(e2), we find that

|βk(e2)| ≤ n− 2

n
,

so that L#
k,k − L

#
l,l < 0. Hence L#

k,k cannot be the maximal diagonal entry in L#. It
now follows that the maximal diagonal entry must occur at a pendant vertex.

To see that the minimal inverse status number occurs at a centroid, note first
that on the one hand vertex l is centroid if and only if

|βl(e)| ≤
n

2

for all edges e incident with l. On the other hand, because for any adjacent vertices
i and j, |βj(e)| + |βi(e)| = n, where e is the adjacent edge between i and j, in order
for vertex j to satisfy that

L#
j,j = min

1≤i≤n
L#
i,i,
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it is necessary, again by (2.3), that |βj(e)| ≤ n/2 for all edges incident with j. Our
proof is now complete.

For each edge e ∈ T , T \ {e} has two connected components, Je has je vertices
and N \ Je has n− je vertices.

Theorem 3.5.

n∑
i=1

d̃i = 2n
n∑
i=1

L#
i,i =

∑
e∈T

2je(n− je)
w(e)

.

Proof. From the definition of a inverse status number in (1.2) we have that

n∑
i=1

d̃i =
∑
v∈T

∑
u∈T

∑
e∈Pu,v

1

w(e)
.

For each edge e, there are 2je(n− je) unordered pairs of vertices u and v such that e
is on the path between them. Hence, each edge e contributes 2je(n− je)/w(e) to the
above sum so that

n∑
i=1

d̃i =
∑
e∈T

2je(n− je)
w(e)

.

Now from (2.2),

2n
n∑
i=1

L#
i,i =

2

n

∑
v∈T

∑
e∈T

|βv(e)|2
w(e)

=
2

n

∑
e∈T

∑
v∈T

|βv(e)|2
w(e)

.

If v ∈ Je, then

|βv(e)|2 = (n− je)2,

while if v ∈ N \ Je, then

|βv(e)|2 = j2e .

Consequently,∑
e∈T

∑
v∈T

|βv(e)|2
w(e) =

∑
e∈T

1
w(e)

(∑
v∈Je |βv(e)|

2 +
∑
v∈N\Je |βv(e)|

2
)

=
∑
e∈T

1
w(e)

(
(n− je)2je + j2e (n− je)

)
=

∑
e∈T

nje(n−je)
w(e) .

The result now follows.
We can now give a precise value to the constant c of (3.3).
Corollary 3.6.(

L#
1,1, . . . , L

#
n,n

)
=

1

n
(d̃1, . . . , d̃n)− 1

n2

∑
e∈T

je(n− je)
w(e)

1 =
1

n
(d̃1, . . . , d̃n)− 1

2n2

n∑
i=1

d̃i1.
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Proof.

c1 =
(
L#

1,1, . . . , L
#
n,n

)
− 1

n
(d̃1, . . . , d̃n),

so that

nc =
1

n

∑
e∈T

je(n− je)
w(e)

− 2

n

∑
e∈T

je(n− je)
w(e)

.

Solving for c now yields the result.
Remark. We comment that as the nonzero eigenvalues of the group inverse of the

Laplacian are the reciprocals of the nonzero eigenvalues of the Laplacian, Theorem
3.5 generalizes an equality for the Wiener index of an unweighted tree (see Merris [9,
Theorem 5.5] and references cited therein), namely, that

n∑
i=1

d̃i = n
∑

λ∈σ(L)\{0}

1

λ
,

where σ(·) denotes the spectrum of a matrix.
We next develop formulas, in terms of distances, for the off-diagonal entries in

L#.
Theorem 3.7. For i 6= j, 1 ≤ i, k ≤ n,

L#
i,n =

d̃i + d̃k
2n

− 1

2
d̃i,k −

1

2n2

n∑
j=1

d̃j .(3.4)

Proof. Without loss of generality we can take k = n and i = 1, . . . , n − 1. First
we claim that

L#
i,i − L#

n,n = d̃i,n −
2

n

∑
e∈Pi,n

βn(e)

w(e)
.

To see this note that if e 6∈ Pi,n, then its contribution to L#
i,i is the same as that to

L#
n,n. On the other hand, if e ∈ Pi,n, the contribution of e to L#

n,n is

1

n

βn(e)

w(e)
,

while its contribution to L#
i,i is

1

n

n− βn(e)

w(e)
.

Thus

L#
i,i − L#

n,n =
2

n

∑
e∈Pi,n

n− βn(e)

w(e)
= d̃i,n −

2

n

∑
e∈Pi,n

βn(e)

w(e)
,

as desired. Hence, for 1 ≤ j ≤ n, we have that

L#
j,j = d̃j,n −

2

n

∑
f∈Pi,n

βn(f)

w(f)
,
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and this yields that

L#
i,i − L

#
j,j = d̃(i, n)− d̃(j, n) + 2

 1

n

∑
f∈Pj,n

βn(f)

w(f)
− 1

n

∑
f∈Pi,n

βn(e)

w(e)


= d̃(i, n)− d̃(j, n) + 2

(
L#
i,n − L#

n,n

)
.

It now follows that for some constant α,

2L#
i,n = L#

i,i − d̃(i, n) + α, 1 ≤ i ≤ n− 1.

To find α, note that

(n− 1)α = 2

n−1∑
i=1

L#
i,n − 2

n−1∑
j=1

L#
j,n +

n−1∑
i=1

d̃(i, n)

= −2L#
n,n −

n−1∑
i=1

L#
i,i + d̃n = −L#

n,n −
n∑
i=1

L#
i,i + d̃n

= − 1

n
d̃n +

1

2n2

n∑
j=1

d̃j −
1

2n

n∑
j=1

d̃j + d̃n

=
n− 1

n
d̃n −

n− 1

2n2

n∑
j=1

d̃j .

Thus we have that

α =
1

n
d̃n −

1

2n2

n∑
j=1

d̃j ,

which yields

L#
i,n =

1

2

L#
i,i − d̃(i, n) +

1

n
d̃n −

1

2n2

n∑
j=1

d̃j


=

1

2

 1

n

(
d̃i + d̃n

)
− d̃(i, n)− 1

n2

n∑
j=1

d̃j

 ,
as desired.

In Deutsch and Neumann [5], the following problem was posed: characterize the
set of all n × n irreducible singular M -matrices whose group inverse is also an M -
matrix. In the circumstances of this paper we have the following result.

Corollary 3.8. Let L be the Laplacian of a weighted tree on n vertices. Then
L# is an M -matrix if and only if for every pair of adjacent vertices i and j we have
that

d̃i + d̃j ≤
n

w(ei,j)
+

1

n

n∑
k=1

d̃k.
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Proof. For vertices a and b with 1 ≤ a, b ≤ n− 1, we have from (2.4) that

L#
a,n − L

#
b,n =

1

n

 ∑
f∈Pb,n

βn(f)

w(f)
−
∑

e∈Pa,n

βn(e)

w(e)

 ,

so we see that, in the nth row of L#, the entries are decreasing along paths away from
n. Hence L# is an M -matrix if and only if for any adjacent vertices i and j we have
that L#

i,j ≤ 0. Imposing this condition in (3.4) now yields the result.
For unweighted trees we can determine precisely which trees admit a Laplacian

whose group inverse is an M -matrix. For this purpose we require the following lemma.
Proposition 3.9. Let T be an unweighted tree on n vertices. Then the maximum

of d̃i + d̃j over all pairs of adjacent vertices i and j occurs for the adjacent vertices
of some pendant edge.

Proof. Let i and j be adjacent vertices with d̃i+ d̃j maximal. Assume that neither
i nor j is a pendant vertex. Then there exist vertices h 6= j and k 6= i such that h
is adjacent to i and k is adjacent to j. Let α, β, γ, and δ, respectively, be the set of
vertices v for which the path from v to the path h—i—j—k ends at h, i, j, and k,
respectively.

Note that the distance from a vertex in γ to either i or k is equal, the distance
from a vertex in δ to i is 2 more than its distance to k, and the distance from a vertex
in α ∪ β to k is 2 more than its distance to i. Thus,

d̃i − d̃k = 2(|δ| − |α| − |β|).(3.5)

Similarly,

d̃j − d̃h = 2(|α| − |γ| − |δ|).(3.6)

Since d̃i+ d̃j is maximal, it follows that d̃i− d̃k ≥ 0 and d̃j− d̃h ≥ 0. Adding equations
(3.5) and (3.6) yields

0 ≤ −2(|β|+ |γ|).

This implies that β and γ are empty. However, this contradicts the fact that i ∈ β
and j ∈ γ. We conclude that either i or j is a pendant vertex.

We can now show that for unweighted trees, the only trees whose Laplacian has
a group inverse which is an M -matrix are the stars of all orders.

Theorem 3.10. Let L be the Laplacian of a tree T with n vertices. Then L# is
an M -matrix if and only if T is a star.

Proof. By Corollary 3.8,

di + dj ≤ n+
1

n

n∑
k=1

d̃k(3.7)

for each pair of adjacent vertices i and j. Let i be a pendant vertex and j the vertex
adjacent to i, and let e be the edge joining i and j. By counting the contributions of
each edge of T to d̃i + d̃j and to

∑n
k=1 d̃k we see that

d̃i + d̃j = n+ 2
∑
f 6=e
|βi(f)|
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and

n∑
k=1

d̃k = 2(n− 1) + 2
∑
f 6=e
|βi(f)|(n− |βi(f)|).

Substituting into (3.7) and simplifying we obtain that∑
f 6=e

βi(f)2 ≤ n− 1.

Since βi(f) ≥ 1 for f 6= e, we conclude that βi(f) = 1 for f 6= e. It now follows that
T is a star with center j.

We note that in Chen, Kirkland, and Neumann [4, Corollary 5.4] it is shown that
if n ≥ 5, then no weighted path of order n can yield a Laplacian whose group inverse
is an M -matrix. The following example, taken from [4], exhibits a weighted path of
order 4 whose group inverse is an M -matrix. Let

L =


0.2 −0.2 0 0

−0.2 0.6 −0.4 0

0 −0.4 0.6 −0.2

0 0 −0.2 0.2

 .

Then

L# =


3.75 0.000 −1.25 −2.5
0.000 1.250 0.000 −1.250
−1.25 0.000 1.25 0.000
−2.50 −1.25 0.000 3.75

 .
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Abstract. The sequence {xn} defined by a periodic recursive relation of period r is examined.
A necessary and sufficient condition is given for the subsequences {xnr+k}, k = 1, . . . , r, to be
arithmetic progressions. Various generalizations are also considered.
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1. Introduction. Let λ be a real number. Let us consider the following sequence
{xn} defined by the relation:

x2 = λx1

x1 + x3 = λx2

...

xr−1 + xr+1 = λxr

...

where x1 6= 0. For example, if λ = 0, then {xn} = {1, 0,−1, 0, 1, 0,−1, 0, . . .} by
assigning x1 = 1. What value(s) of λ will make the sequence {xn} in arithmetic
progression? The answer is simple: λ = 2 and xn = nx1. Subtracting the second
equation from the third equation, we have

(x2 − x1) + (x4 − x3) = λ(x3 − x2).

So if xn+1 = xn + d for n = 1, 2, . . ., then 2d = λd.

If d 6= 0, then λ = 2. Adding the first (n − 1) equations yields xn − xn−1 = x1,
n = 1, 2, . . ., i.e., d = x1. So xn = nx1.

If d = 0, then λ = 1 by the first equation. But then x1 = x2 6= 0 and x3 = 0. So
the possibility λ = 1 is rejected.

Now we want to address the following generalized problem. Let λ be a real
number and let s1, . . . , sr be r given real numbers. Then define the sequence {xn} by

∗Received by the editors April 12, 1996; accepted for publication (in revised form) by R. Brualdi
September 13, 1996.
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the following periodic recursive relation:

(1)

s1x2 = λx1

s1x1 + s2x3 = λx2

...

sr−1xr−1 + srxr+1 = λxr

srxr + s1xr+2 = λxr+1

s1xr+1 + s2xr+3 = λxr+2

...

sr−1x2r−1 + srx2r+1 = λx2r

...

The example that we discussed is corresponding to r = 1 and s1 = 1. The relation
(1) can be rewritten in matrix version

Sx = λx,

where x = (x1, x2, . . .)
T and S is the infinite tridiagonal matrix

(2) S =



0 s1
s1 0 s2

s2
. . .

. . .
. . . 0 sr

sr 0 s1
s1 0 s2

s2 0
. . .

. . .
. . .


.

If r ≥ 3, denote by S′ the r × r matrix

S′ =



0 s1 sr
s1 0 s2

s2
. . .

. . .
. . . sr−2

sr−2 0 sr−1

sr sr−1 0


.

Since S′ is a real symmetric matrix, the eigenvalues of S′ are real.
The relation (1) was investigated in [5] in order to solve a conjecture of Ridge

[4] on the numerical range of a periodic weighted shift. Indeed it was shown in [5]
that the Perron root of the nonnegative irreducible symmetric matrix S′ is not an
eigenvalue of the operator S although it is an approximate eigenvalue of S, where
s1, . . . , sr > 0 and r ≥ 3.

When r ≥ 3 and if one of the s’s is zero, say, sr = 0, then the vectors (x1, . . . , xr)
T ,

(xr+1, . . . , x2r)
T , . . . are in the null space of λI − S′.
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When r = 2 and (i) if s1 = 0 and s2 6= 0, then λ = 0 and xn = 0 for n = 2, 3, . . .,
(ii) if s2 = 0 and s1 6= 0, then s1x2 = λx1 and s1x1 = λx2. So s21 = λ2, i.e., λ = ±s1
and hence x2n = ±x2n−1 for all positive integers n.

In order to avoid triviality, we assume that x1 6= 0 and si 6= 0 for all i = 1, . . . , r
in (1).

We adopt the following notation. If B is an n×n matrix, denote by Bi,j , 1 ≤ i <
j ≤ n, the principal submatrix of B locating on the rows and the columns indexed by
i, i+ 1, . . . , j. We set Bj ≡ B1,j . We denote by ϕi,j(λ) the characteristic polynomial
of Bi,j and set ϕj(λ) ≡ ϕ1,j(λ).

When A is a Hermitian matrix, the algebraic multiplicity and the geometric mul-
tiplicity of an eigenvalue of A are the same. We simply call it multiplicity.

Theorem 1. Let s1, . . . , sr be r given nonzero real numbers. Let {xn} be the
sequence defined by (1) with x1 6= 0. Then the subsequences {xnr+k}, k = 1, . . . , r,
are in arithmetic progression; i.e., xnr+k = x(n−1)r+k + dk, k = 1, . . . , r, n = 1, 2, . . .,
if and only if

(I) λ = 2s1 when r = 1,

(II) λ = ±(s1 + s2) when r = 2,

(III) λ is an eigenvalue of S′ when r ≥ 3.

If (I) happens, then xn = nx1, n = 1, 2, . . ..

If (II) happens, then x2n = nx2 = ±n(s1+s2)
s1

x1 and x2n+1 = x1 ± nx2 = (1 +
n(s1+s2)

s1
)x1, n = 1, 2, . . ..

If (III) happens and

(a) if λ is a simple eigenvalue of S′, then the vector d = (d1, . . . , dr)
T is in the

null space of S′ − λI with dr = xr. In particular, {xnr} = {nxr}. More precisely, if
z is a normalized eigenvector of S′ corresponding to λ, and

(i) if zr = 0, then d = 0, i.e., xnr+k = xk, k = 1, . . . , r − 1, and xnr = 0 for all
positive integers n. In other words, {xn} is a periodic sequence.

(ii) If zr 6= 0, then

d =
ϕ′(λ)zr
s1 · · · sr−1

z,

where ϕ(λ) is the characteristic polynomial of S′. Hence d is an eigenvector of S′

with dr = xr. Moreover, if λ (> 0) is the largest eigenvalue of S′, then dr > 0.

(b) If λ is an eigenvalue of S′ of multiplicity 2, then d = 0; i.e., xnr+k = xk,
k = 1, . . . , r − 1, and xnr = 0 for all positive integers n. In other words, {xn} is a
periodic sequence.

There are no eigenvalues of S′ with multiplicity greater than 2.

Corollary 1. Let r ≥ 3 and let ϕj(λ) be the characteristic polynomial of Sj,
j = 1, 2, . . ..

(a) If λ is a simple eigenvalue of S′ and if z is a normalized eigenvector of S′

corresponding to λ such that zr 6= 0, then

ϕnr+k−1(λ) = s1 · · · srϕk−1(λ) + n
(s1 · · · sr)nϕ′(λ)zrzk

sk . . . sr−1
,

where ϕ0(λ) ≡ 1, k = 1, . . . , r − 1, n = 1, 2, . . ., and

ϕnr−1(λ) = n(s1 · · · sr)n−1ϕr−1(λ), n = 1, 2, . . . .
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(b) If λ is a simple eigenvalue of S′ and zr = 0 or if λ is an eigenvalue of
multiplicity 2, then

ϕnr+k−1(λ) = (s1 · · · sr)nϕk−1(λ), k = 1, . . . , r − 1, n = 1, 2, . . . ,

where ϕ0(λ) ≡ 1, and

ϕnr−1(λ) = 0, n = 1, 2, . . . .

2. Proofs.
Lemma 1 (see [1]). Let A be an n × n Hermitian matrix. Let z ∈ Cn be a

normalized eigenvector of A corresponding to the eigenvalue λ. Denote by ϕ(µ) =
det (µI −A). Then

adj (λI −A) = ϕ′(λ)zz∗.

When A is real symmetric, z ∈ Rn.
Lemma 2 (see [2, pp. 300, 316]). Let T be the following n × n real symmetric

tridiagonal matrix

(3) T =



0 β1

β1 0 β2

β2 0
. . .

. . .
. . . βn−2

βn−2 0 βn−1

βn−1 0


,

where β’s are nonzero real numbers. Let ϕk(λ) be the characteristic polynomial of Tk,
k = 1, . . . , n. Then

(a) ϕk(λ) = λϕk−1(λ)− β2
k−1ϕk−2(λ), k = 2, . . . , n, and ϕ0(λ) ≡ 1.

(b) The eigenvalues of T are simple. The vector x = (x1, . . . , xn)T is an eigen-
vector of T corresponding to the eigenvalue λ, where

x1 = 1, xk =
ϕk−1(λ)

β1 . . . βk−1
, k = 2, . . . , n.

Proof of Theorem 1. (I) was already discussed in the previous section. We are
going to establish (II) and (III).

(⇒) Assume that the subsequences {xnr+k} are in arithmetic progression; i.e.,
xnr+k = x(n−1)r+k + dk for some dk ∈ R, where k = 1, . . . , r, n = 1, 2, . . . .

(II) When r = 2, we consider two cases.
Case 1. d = (d1, d2) = 0. The first three equations of (1) become

s1x2 = λx1,

s1x1 + s2x1 = λx2,

s2x2 + s1x2 = λx1,

where x1 6= 0. We consider two possibilities.
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(i) If s1 + s2 6= 0, then from the second equation, x2 6= 0. Hence from the first
and the third equations, we have s1 = s1 + s2, which is impossible.

(ii) If s1 + s2 = 0, then from the third equation, λ = 0.
Case 2. d 6= 0. Subtracting the second from the fourth and the third from the

fifth,

s1d1 + s2d1 = λd2,

s2d2 + s1d2 = λd1.

Then (s1 + s2)2d2 = λ2d2 and (s1 + s2)2d1 = λ2d1. Since d = (d1, d2) 6= 0, we have
λ2 = (s1 + s2)2. So λ = ±(s1 + s2).

Combining these two cases, λ = ±(s1 + s2) when {x2n} and {x2n+1} are in
arithmetic progression.

(III) When r ≥ 3, we consider two cases.
Case 1. d = (d1, . . . , dr)

T 6= 0. Using the third set of r equations to subtract the
second set of r equations in (1), we have

srdr + s1d2 = λd1

s1d1 + s2d3 = λd2

...

sr−1dr−1 + srd1 = λdr.

This means that λ is an eigenvalue of S′ with eigenvector d.
Case 2. d = 0. Subtracting the (r + 1)st equation of (1) from the first, we have

xr = 0. Then the first set of r equations in (1) becomes

s1x2 = λx1

s1x1 + s2x3 = λx2

...

sr−1xr−1 + srx1 = 0.

Since x1 6= 0, λ is an eigenvalue of S′ with eigenvector x = (x1, . . . , xr−1, 0)T .
(⇐) (II) When λ = ±(s1 + s2), the relation (1) amounts to

s1x2 = ±(s1 + s2)x1,

s1x2n−1 + s2x2n+1 = ±(s1 + s2)x2n, n = 1, 2, . . . ,

s2x2n + s1x2n+2 = ±(s1 + s2)x2n+1, n = 1, 2, . . . .

Combining the last two equations yields

x2n+2 − x2n = x2n+1 − x2n−1, n = 1, 2, . . . if λ = s1 + s2,

x2n+2 − x2n = x2n−1 − x2n+1, n = 1, 2, . . . if λ = −(s1 + s2),

respectively. Similarly by shifting the index n to n− 1 in the third equation and then
combining with the second equation, we have

x2n+1 − x2n−1 = x2n − x2n−2, n = 2, 3, . . . if λ = s1 + s2,

x2n+1 − x2n−1 = x2n−2 − x2n, n = 2, 3, . . . if λ = −(s1 + s2),
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respectively. So the two subsequences {x2n} and {x2n+1} are in arithmetic progres-
sion. In addition, d1 = ±d2 if λ = ±(s1 + s2).

If λ = s1 + s2, then x3−x1 = x2 by considering the first two equations of (1). So
d1 = d2 = x2 = s1+s2

s1
x1 and hence

x2n = x2 + (n− 1)d1 = x2 + (n− 1)(x3 − x1) = nx2 =
n(s1 + s2)

s1
x1, n = 1, 2, . . . ,

x2n+1 = x1 + nx2 =

(
1 +

n(s1 + s2)

s1

)
x1, n = 1, 2, . . . .

If λ = −(s1 + s2), then x2 = x1 − x3 by considering the first two equations of (1). So
d2 = −d1 = x2 = − s1+s2s1

x1 and hence

x2n = x2 − (n− 1)d1 = x2 − (n− 1)(x3 − x1) = nx2 = −n(s1 + s2)

s1
x1, n = 1, 2, . . . ,

x2n+1 = x1 − nx2 =

(
1 +

n(s1 + s2)

s1

)
x1, n = 1, 2, . . . .

(III) Let λ be an eigenvalue of S′. We consider a modified relation:

(4)

srx0 + s1x2 = λx1

s1x1 + s2x3 = λx2

...

sr−1xr−1 + srxr+1 = λxr

srxr + s1xr+2 = λxr+1

s1xr+1 + s2xr+3 = λxr+2

...

sr−1x2r−1 + srx2r+1 = λx2r

...

The only difference between (1) and (4) is the introduction of the new variable x0.
When x0 = 0, the system (1) is recovered. Set

(5) dj = xr+j − xj , j = 0, 1, . . . .

By subtracting the (t + 1)st set of r equations of (4) from the (t + 2)nd set of r
equations, t = 0, 1, . . ., the sequence {d0, d1, . . . , dr, dr+1, dr+2, . . .} satisfies (4).

Now we set x0 = 0; i.e., {xn} is the sequence in (1) and d0 = xr − x0 = xr and
d ≡ (d1, . . . , dr)

T . Then we make the following claim:1

(6) S′d = λd.

1In view of the proof of the implication (⇒) of Theorem 1, one can add the statement of the
claim to (III) of Theorem 1. The proof will then be simpler because we can get around the proof of
the claim. However, the present statement of (III) is weaker and hence serves better as a sufficient
condition.
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The claim (6) is equivalent to saying that d satisfies the following system of linear
equations:

srzr + s1z2 = λz1

s1z1 + s2z3 = λz2
...

sr−1zr−1 + srz1 = λzr.(7)

It follows that the periodic sequence d̂ = {dr, d1, d2, . . . , dr, d1, d2, . . .} satisfies (4) as
we duplicate (7) indefinitely. We recall that the sequence d̃ = {d0, d1, . . . , dr, dr+1,
dr+2, . . .} also satisfies (4), where d’s are defined in (5), and d0 = xr. So the sequence

{dr − d0, 0, 0, . . . , d1 − dr+1, d2 − dr+2, . . . , dr − d2r, . . .}, which is the difference of d̂
and d̃, satisfies (4). The zero terms of the sequence yield that

(8) dr = d0 = xr, dkr+j = dj , j = 1, 2, . . . , r, k = 1, 2, . . .

since r ≥ 3. We now use induction on k to deduce that

xkr+j = xj + kdj , j = 1, 2, . . . r, k = 1, 2, . . . .

The case k = 1 is obviously true because of (5) in which case we consider j = 1, . . . , r.
Now we assume that the statement is true for k − 1, i.e., x(k−1)r+j = xj + (k − 1)dj ,
j = 1, 2, . . . , r. Then using (5), the induction hypothesis, and (8), respectively, we get

xkr+j = xr+(k−1)r+j

= x(k−1)r+j + d(k−1)r+j

= xj + (k − 1)dj + dj

= xj + kdj , j = 1, 2, . . . , r.

Now we are going to prove the claim (6).
(a) Let λ be a simple eigenvalue of S′ and let z be a normalized eigenvector of S′

corresponding to λ.
In order to prove the claim (6), we first establish that (d1, d0) is a scalar mul-

tiple of (z1, zr). By Lemma 1, if z = (z1, . . . , zr)
T is a normalized eigenvector of S′

corresponding to λ, then by considering the (1, r) entry of adj (λI − S′), we have

z1zr =
1

ϕ′(λ)
(−1)r+1det


−s1 −sr
λ −s2
−s2 λ

. . .
. . .

. . . −sr−2

−sr−2 λ −sr−1


=

1

ϕ′(λ)
(−1)r+1

{
(−1)r+1srϕ2,r−1(λ) + (−1)r−1s1 · · · sr−1

}
(9)

=
1

ϕ′(λ)
{srϕ2,r−1(λ) + s1 · · · sr−1}

by Laplace expansion along the last column, where ϕj(λ) and ϕi,j(λ) are the charac-
teristic polynomials of Sj ≡ S1,j and Sij , respectively, and S is the matrix given in
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(2) and ϕ(λ) = det (λI − S′). Notice that ϕ′(λ) 6= 0 as λ is a simple eigenvalue of S′.
Similarly, by considering the (r, r) entry of adj (λI − S′), we have

(10) z2
r =

1

ϕ′(λ)
ϕr−1(λ).

Without loss of generality, we may assume that x1 = 1. By Lemma 2(b),

xr+1 =
ϕr(λ)

s1 · · · sr
.

So

(11) d1 = xr+1 − x1 =
ϕr(λ)

s1 · · · sr
− 1

and

(12) d0 = xr =
ϕr−1(λ)

s1 · · · sr−1
.

Since λ is an eigenvalue of S′, by Laplace expansion along the last row, we have

0 = ϕ(λ)

≡ det (λI − S′)

= det



λ −s1 −sr
−s1 λ −s2

−s2 λ
. . .

. . .
. . . −sr−2

−sr−2 λ −sr−1

−sr −sr−1 λ



= (−1)r+1(−sr)det


−s1 −sr
λ −s2
−s2 λ

. . .
. . .

. . . −sr−2

−sr−2 λ −sr−1



+ (−1)2r−1(−sr−1)det



λ −s1 −sr
−s1 λ −s2

−s2 λ
. . .

. . .
. . . −sr−3

λ
−sr−2 −sr−1


+ λϕr−1(λ).

Laplace expansion along the last column for the two determinants yields

0 = (−1)r+1(−sr){(−1)r+1srϕ2,r−1(λ) + (−1)r−1s1 · · · sr−1}
+ sr−1{(−1)r(−sr)(−1)r−2s1 · · · sr−2 − sr−1ϕr−2(λ)}+ λϕr−1(λ)

= −s2rϕ2,r−1(λ)− s1 · · · sr − s1 · · · sr − s2r−1ϕr−2(λ) + λϕr−1(λ)

= −s2rϕ2,r−1(λ)− s2r−1ϕr−2(λ) + λϕr−1(λ)− 2s1 · · · sr.
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Hence

λϕr−1(λ)− s2r−1ϕr−2(λ) = s2rϕ2,r−1(λ) + 2s1 · · · sr.

By Lemma 2(a), we have

ϕr(λ) = λϕr−1(λ)− s2r−1ϕr−2(λ) = s2rϕ2,r−1(λ) + 2s1 · · · sr.

Hence from (11)

d1 =
srϕ2,r−1(λ) + s1 · · · sr−1

s1 · · · sr−1
.

Then from (9), (10), (11), and (12), we have

(13) (d1, d0) =
1

s1 · · · sr−1
(srϕ2,r−1(λ) + s1 · · · sr−1, ϕr−1(λ)) =

ϕ′(λ)zr
s1 · · · sr−1

(z1, zr).

Now we make the observation that the sequence defined by (4) is uniquely determined
by x0 and x1. Indeed, the system (4) determines x2, x3, . . . as linear functionals2 of
the ordered pair (x0, x1).

(i) If zr = 0, then by (13), d1 = d0 = 0. The sequence {d0, d1, . . . , dr, dr+1, . . .},
which satisfies (4), becomes the constant sequence {0, 0, . . .}. Hence {xnr+k} = {xk},
k = 1, . . . , r − 1, and xnr = 0, n = 1, 2, . . ..

(ii) Suppose that zr 6= 0. Now if z0 is defined as zr, then z0 and z1 will
generate the periodic sequence {zr, z1, . . . , zr−1, zr, z1, . . .} via (4). Hence the or-
dered pair (d1, d0), a nonzero multiple of (z1, zr), generates the periodic sequence
{d0, d1, . . . , dr−1, dr, d1, . . .}, where d0 = dr. Moreover, d = ϕ′(λ)zr(s1 · · · sr−1)−1z
since λ is a simple eigenvalue of S′.

If λ ≡ λ1 > λ2 ≥ · · · ≥ λr are the eigenvalues of S′,

dr = d0 =
ϕ′(λ)

s1 · · · sr−1
z2
r

=
(λ1 − λ2) . . . (λ1 − λr)z2

r

s1 · · · sr−1

> 0.

(b) In order to prove (b), it is sufficient to show that xr = 0 and xr+1 = 1 if
x1 = 1. If λ is a double root of det (λI − S′) = 0, then according to Lemma 1,
adj (λI − S′) = 0. By considering the (r, r) and the (r− 1, r) entries of adj (λI − S′),
respectively, we have

ϕr−1(λ) = 0,(14)

s1 · · · sr + s2r−1ϕr−2(λ) = 0.(15)

Indeed the expressions (14) and (15) appeared in the computation between (11) and
(13). By Lemma 2(a), (14), and (15), we have

ϕr(λ) = λϕr−1(λ)− s2r−1ϕr−2(λ) = s1 · · · sr.

2In particular, xr+j = fj(x0, x1), j = 1, 2, . . . , r, where f ’s are linear functionals. Due to the
periodic recursive relation of (4), we have xkr+j = fj(x(k−1)r, x(k−1)r+1), j = 1, 2, . . . , r, k =
1, 2, . . . .
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So by Lemma 2(b) and (14), we have

xr =
ϕr−1(λ)

s1 · · · sr−1
= 0.

By Lemma 2(b), we have

xr+1 =
ϕr(λ)

s1 · · · sr
= 1.

If we denote by λ1 ≥ · · · ≥ λr the eigenvalues of S′ and by µ1 > · · · > µr−1 (Lemma
2(b)) the eigenvalues of Sr−1, the interlacing inequalities [2] for the real symmetric
S′ are stated as

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ µr−1 ≥ λr.

So the multiplicities of λ’s are either 1 or 2.

Proof of Corollary 1. By Lemma 2(b)

xnr+k =
ϕnr+k−1(λ)

(s1 · · · sr)ns1 · · · sk−1
, k = 1, . . . , r − 1, n = 1, 2, . . . ,

xnr =
ϕnr−1(λ)

(s1 · · · sr)ns1 · · · sr−1
, n = 1, 2, . . . .

(a) By (a) (ii) of Theorem 1 (III), we have xnr+k = xk+ndk, where dk = ϕ′(λ)zrzk
s1···sr−1

,

k = 1, . . . , r − 1, and xnr = nxr for all n = 1, 2, . . .. So we have

ϕnr+k−1(λ)

(s1 · · · sr)ns1 · · · sk−1
=

ϕk−1(λ)

s1 · · · sk−1
+ n

ϕ′(λ)zrzk
s1 · · · sr−1

, k = 1, . . . , r − 1, n = 1, 2, . . . ,

ϕnr−1(λ)

(s1 · · · sr)ns1 · · · sr−1
=

nϕr−1(λ)

s1 · · · sr−1
, n = 1, 2, . . . .

Hence we have

ϕnr+k−1(λ) = s1 · · · srϕk−1(λ) + n
(s1 · · · sr)nϕ′(λ)zrzk

sk · · · sr−1
,

where ϕ0(λ) ≡ 1, k = 1, . . . , r − 1, n = 1, 2, . . . , and

ϕnr−1(λ) = n(s1 · · · sr)n−1ϕr−1(λ), n = 1, 2, . . . .

(b) By (a) (i) and (b) of Theorem 1 (III), we have xnr+k = xk, k = 1, . . . , r − 1,
and xnr = 0 for all n = 1, 2, . . .. It follows that

ϕnr+k−1(λ) = (s1 · · · sr)nϕk−1(λ), k = 1, . . . , r − 1, n = 1, 2, . . . ,

where ϕ0(λ) ≡ 1, and

ϕnr−1(λ) = 0, n = 1, 2, . . . .
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3. Generalizations and examples.
Remark 1. If all s’s are positive, then S′ is a nonnegative irreducible symmetric

matrix. The largest eigenvalue, denoted by λ, is the Perron root of S′ and the Perron
vector is positive. So, corresponding to this λ, the d’s are all positive because dr > 0
by Theorem 1 (III)(a)(ii).

By using Matlab, we compute some numerical examples.
Example 1. If r = 3 and s1 = 1, s2 = 2, and s3 = 2, the eigenvalues of

S′ =

 0 1 2
1 0 2
2 2 0


are λ1 = −1, λ2 = −2.3723, λ3 = 3.3723. They are simple eigenvalues. The corre-
sponding eigenvectors are (1,−1, 0)T , (0.4544, 0.4544,−0.7662)T , (0.5418, 0.5418, 0.6426)T .

For λ1 = −1, the sequence {xn} is

{1,−1, 0, 1,−1, 0, 1,−1, 0, . . .}.

So the three subsequences are

{1, 1, . . .}, {−1,−1, . . .}, {0, 0, . . .}.

Notice that z3 = 0; i.e., d3 = 0, and this demonstrates (III)(a)(i) of Theorem 1.
For λ2 = −2.3723, the sequence {xn} is

{1,−2.3723, 2.3139,−0.3723,−3.7446, 4.6277,−1.7446,−5.1168, 6.9416,−3.1168,

− 6.4891, 9.2554,−4.4891,−7.8614, . . .}.

So the three subsequences are

{1, 1 + d1, . . .}, {−2.3723,−2.3723 + d2, . . .}, {2.3139, 4.6278, . . .},

where d3 = x3 = 2.3139, d1 = d2 = 0.4544
−0.7662 (2.3139) = −1.3723.

For λ3 = 3.3723 (the Perron root of S′), the sequence {xn} is

{1, 3.3723, 5.1861, 5.3723, 7.7446, 10.3723, 9.7446, 12.1168, 15.5584, 14.1168,

16.4891, 20.7446, 18.4891, 20.8614, . . .}.

So the three subsequences are

{1, 1 + d1, . . .}, {3.3723, 3.3723 + d2, . . .}, {5.1861, 10.3722, . . .},

where d3 = x3 = 5.1861, d1 = d2 = 0.5418
0.6426 (5.1861) = 4.3723. It is no wonder that d’s

are all positive because the Perron vector is positive.
Example 2 (double root case). (i) Let s1 = s2 = 1 and s3 = −1 and r = 3.

Then the eigenvalues of S′ are λ1 = λ2 = 1 and λ3 = −2. The corresponding eigen-
vectors are (0.5910, 0.7834, 0.1924)T , (0.5634,−0.2301,−0.7935)T , and (1,−1, 1)T , re-
spectively.

When λ1 = λ2 = 1 (double root), the sequence {xn} is

{1, 1, 0, 1, 1, 0, . . .}.
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So the three subsequences are

{1, 1, . . .}, {1, 1, . . .}, {0, 0, . . .},

i.e., d = 0.
When λ3 = −2, the sequence {xn} is

{1,−2, 3, 4,−5, 6, 7,−8, 9, 10,−11, . . .}.

So the three subsequences are

{1, 4, 7, . . .}, {−2,−5,−8, . . .}, {3, 6, 9, . . .},

i.e., d = (3,−3, 3).
Remark 2. By direct computation, it can be shown that when r = 3, we have the

cubic equation

det (λI − S′) = λ3 − (s21 + s22 + s23)λ− 2s1s2s3 = 0.

If s21, s22, and s23 are not all equal (it is true when s1, s2, and s3 are positive), then
the roots of the above equation are real and distinct (see [3, p. 9]) since(

s21 + s22 + s23
3

)3

> s21s
2
2s

2
3

by arithmetic–geometric mean inequality. So the double root case, i.e., (c) of Theorem
1, does not occur when r = 3 if s1, s2, and s3 are positive. The next example is
corresponding to r = 4 and some positive s’s.

Example 3 (double root case). Let s1 = 1, s2 = 2, s3 = 2, s4 = 1, and r = 4. Then
the eigenvalues of S′ are λ1 = λ2 = 0, λ3 = −3.1623, λ4 = 3.1623. The corresponding
eigenvectors are (0.6325, 0.5000,−0.3162,−0.5000)T , (−0.6325, 0.5000, 0.3162,−0.5000)T ,
(0.3162,−0.5000, 0.6325,−0.5000)T , and (0.3162, 0.5000, 0.6325, 0.5000)T , respectively.

When λ1 = λ2 = 0 (double root), the sequence {xn} is

{1, 0,−0.5, 0, 1, 0,−0.5, 0, . . .};

i.e., d = 0.
When λ3 = −3.1623, the sequence {xn} is

{1,−3.1623, 4.5000,−3.9528, 3.5000,−7.1151, 9.5000,−7.9057, 6.0000,−11.0680, 14.5000,

− 11.8585, 8.5000,−15.0208, 19.5000,−15.8114, 11.0000,−18.9737, 24.5000, . . .};

i.e., d = (2.5,−3.9528, 5,−3.9528).
When λ4 = 3.1623, the sequence {xn} is

{1, 3.1623, 4.5000, 3.9528, 3.5000, 7.1151, 9.5000, 7.9057, 6.0000, 11.0680, 14.5000,

11.8585, 8.5000, 15.0208, 19.5000, 15.8114, 11.0000, 18.9737, 24.5000, . . .};

i.e., d = (2.5, 3.9528, 5, 3.9528).
Remark 3. For a given positive integer m, we can duplicate the nonzero real

numbers s1, . . . , sr m times, i.e., s1, . . . , sr, s1, . . . , sr, . . . , s1, . . . , sr, in which there
are m sets of s1, . . . , sr. Theorem 1 holds for the mr subsequences {xnmr+k}, k =
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1, 2, . . . ,mr, of {xn} and S′ will be replaced by the mr ×mr matrix S′(m) = Smr +
sre1e

T
mr + sremre

T
1 , where e1, . . . , emr form the standard basis of Rmr.

Corollary 2. Let s1, . . . , sr be r given nonzero real numbers. Let {xn} be the
sequence defined by (1) with x1 6= 0. Let S′(m) be the matrix

Smr + sre1e
T
mr + sremre

T
1 .

Let m be a given positive integer.
Case 1. If mr ≤ 2, i.e., (m, r) = (1, 1), (1, 2), or (2, 1), then the statements for

the first two cases are in Theorem 1. If (m, r) = (2, 1), then the sequences {x2n} and
{x2n+1} are in arithmetic progression if and only if λ = ±2s1. If λ = 2s1, we have
xn = nx1, n = 1, 2, . . .. If λ = −2s1, we have xn = (−1)n+1nx1, n = 1, 2, . . ..

Case 2. If mr ≥ 3, i.e, m ≥ 3 and r = 1, or (m, r) ≥ (2, 2), then the subsequences
{xnmr+k}, k = 1, . . . , r, are in arithmetic progression; i.e., xnmr+k = x(n−1)mr+k+dk,
k = 1, . . . ,mr, n = 1, 2, . . . if and only if λ is an eigenvalue of S′(m). Moreover,

(a) if λ is a simple eigenvalue of S′(m), then the vector d = (d1, . . . , dmr)
T is in

the null space of S′(m)− λI with dmr = xmr. In particular {xnmr} = {nxmr}. More
precisely, if z is a normalized eigenvector of S′(m) corresponding to λ, and

(i) if zmr = 0, then d = 0, i.e., xnmr+k = xk, k = 1, . . . ,mr − 1, and xnmr = 0
for all positive integers n. In other words, {xn} is a periodic sequence.

(ii) if zmr 6= 0, then

d =
ϕ′(λ)srzmr
(s1 · · · sr)m

z,

where ϕ(λ) is the characteristic polynomial of S′(m). Hence d is an eigenvector of
S′(m) with dmr = xmr. Moreover, if λ is the largest eigenvalue, then dmr > 0.

(b) If λ is an eigenvalue of S′(m) of multiplicity 2, then d = 0, i.e., xnmr+k = xk,
k = 1, . . . ,mr− 1, and xnmr = 0 for all positive integers n. In other words, {xn} is a
periodic sequence.

There are no eigenvalues of S′(m) with multiplicity greater than 2.
Example 4. Let (m, r) = (3, 1) and s1 = 1. Then

S′ =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


has eigenvalues 0, 0,−2, 2. Notice that the eigenvalue 0 has multiplicity 2. So by Case
2(b) of Corollary 2, we have {1, 0,−1, 0, 1, 0,−1, 0, . . .}. This was the example we
discussed at the very beginning.

Corollary 3. Let r ≥ 3. The spectrum of S′(1) is a subset of the spectrum of
S′(m) for m = 1, 2, . . ..

Proof. Let λ be an eigenvalue of S′. By Theorem 1, the subsequences {xnr+k},
k = 1, . . . , r, corresponding to λ are in arithemtic progression. So are the {xnmr+k}.
Hence, by Corollary 2, λ is an eigenvalue of S′(m).

Example 5. Let s1 = 1, s2 = 2, s3 = 3, r = 3, and m = 2. Then

S′(2) =


0 1 0 0 0 3
1 0 2 0 0 0
0 2 0 3 0 0
0 0 3 0 1 0
0 0 0 1 0 2
3 0 0 0 2 0
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and the eigenvalues of S′(2) are

λ1 = 0.9112, λ2 = −0.9112, λ3 = 3.2019, λ4 = 4.1131, λ5 = −3.2019, λ6 = −4.1131.

The corresponding eigenvectors are

(0.3711, 0.5958, 0.0859,−0.3711,−0.5958,−0.0859)T ,

(0.3711,−0.5958, 0.0859, 0.3711,−0.5958, 0.0859)T ,

(0.4319,−0.1933,−0.5254,−0.4319, 0.1933, 0.5254)T ,

(−0.4192,−0.3282,−0.4653,−0.4192,−0.3282,−0.4653)T ,

(−0.4319,−0.1933, 0.5254,−0.4319,−0.1933, 0.5254)T ,

(0.4192,−0.3282, 0.4653,−0.4192, 0.3282,−0.4653)T .

When λ1 = 0.9112, the sequence {xn} is

{1, 0.9112,−0.0849,−0.6332,−0.3224, 0.1698, 0.2665,−0.2665,−0.2546, 0.1003,

0.8553, 0.3395,−0.4671,−1.4441,−0.4244, 0.8338, 2.0329, 0.5093,−1.2006,−2.6217, . . .}.

When λ2 = −0.9112, the sequence {xn} is

{1,−0.9112,−0.0849, 0.6332,−0.3224,−0.1698, 0.2665, 0.2665,−0.2546,−0.1003,

0.8553,−0.3395,−0.4671, 1.4441,−0.4244,−0.8338, 2.0329,−0.5093,−1.2006, 2.6217, . . .}.

When λ3 = 3.2019, the sequence {xn} is

{1, 3.2019, 4.6261, 2.8029,−4.9038,−9.2522,−6.6057, 6.6057, 13.8784,

10.4086,−8.3076,−18.5045,−14.2115, 10.0096, 23.1306, 18.0143,−11.7115,−27.7567,

− 21.8172, 13.4134, . . .}.

When λ4 = 4.1131, the sequence {xn} is

{1, 4.1131, 7.9588, 8.1696, 9.7262, 15.9175, 15.3393, 15.3393, 23.8763,

22.5089, 20.9524, 31.8350, 29.6785, 26.5655, 39.7938, 36.8482, 32.1785, 47.7525,

44.0178, 37.7916, . . .}.

When λ5 = −3.2019, the sequence {xn} is

{1,−3.2019, 4.6261,−2.8029,−4.9038, 9.2522,−6.6057,−6.6057, 13.8784,−10.4086,

− 8.3076, 18.5045,−14.2115,−10.0096, 23.1306,−18.0143,−11.7115, 27.7567,

− 21.8172,−13.4134, . . .}.

When λ6 = −4.1131, the sequence {xn} is

{1,−4.1131, 7.9588,−8.1696, 9.7262,−15.9175, 15.3393,−15.3393, 23.8763,−22.5089,

20.9524,−31.8350, 29.6785,−26.5655, 39.7938,−36.8482, 32.1785,−47.7525,

44.0178,−37.7916, . . .}.

The vector d = (d1, . . . , d6) can be obtained by direct computation for each case. We
notice that λ2, λ4, and λ5 are the eigenvalues of S′ ≡ S′(1).
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Remark 4. For r ≥ 3, one can consider complex s’s; i.e.,

(16) S =



0 s1
s1 0 s2

s2
. . .

. . .
. . . 0 sr−1

sr−1 0 sr
sr 0 s1

s1 0
. . .

. . .
. . .


and

(17) S′ =


0 s1 sr
s1 0 s2

s2
. . .

. . .
. . . 0 sr−1

sr sr−1 0

 .

Lemma 1 works for Hermitian matrices. Lemma 2(a) can be modified as

ϕk(λ) = λϕk−1(λ)− |βk−1|2ϕk−2(λ), k = 2, . . . , n, ϕ0(λ) ≡ 1,

and Lemma 2(b) and the interlacing inequalities are still valid.
If s1 · · · sr ∈ R, then D−1S′D = Ŝ′, where

(18) Ŝ′ =



0 |s1| ±|sr|
|s1| 0 |s2|

|s2|
. . .

. . .

. . . |sr−2|
|sr−2| 0 |sr−1|

±|sr| |sr−1| 0


,

depending on whether the product s1 · · · sr is positive or negative andD is the diagonal
unitary matrix

D = diag (eiθ1 , . . . , eiθr ),

where

(19) θi − θi+1 = arg si, i = 1, . . . , r − 1, θr − θ1 = ±arg sr.

If U = ⊕∞i=1D, then Ŝy = λy, where y = U−1x, Ŝ = U−1SU, and

(20) Ŝ =



0 |s1|
|s1| 0 |s2|

|s2|
. . .

. . .

. . . 0 |sr−1|
|sr−1| 0 ±|sr|

±|sr| 0 |s1|

|s1| 0
. . .

. . .
. . .


.
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We have the following result for the complex case.
Theorem 2. Let s1, . . . , sr be r given nonzero complex numbers, not all real,

with r ≥ 3. Let {xn} be the sequence defined by Sx = λx, where S is given in (16)
and x1 6= 0. The subsequences {xnr+k}, k = 1, . . . , r, are in arithemtic progression;
i.e., xnr+k = x(n−1)r+k + dk if and only if the products s1 · · · sr ∈ R and λ is an

eigenvalue of Ŝ′ in (18).
In addition, let θ’s be given in (19) if s1 · · · sr ∈ R.

(a) If λ is a simple eigenvalue of Ŝ′, then the vector d̂ = (e−iθ1d1, . . . , e
−iθrdr)

T is
in the null space of Ŝ′−λI with xr = dr. In particular {xnr} = {xr}. More precisely,
if z is a normalized eigenvector of Ŝ′ corresponding to λ, and

(i) if zr = 0, then d = 0, i.e., xnr+k = xk, k = 1, . . . , r − 1, and xnr = 0 for all
positive integers n. In other words, {xn} is a periodic sequence.

(ii) If zr 6= 0, then

(e−iθ1d1, . . . , e
−iθrdr) =

ϕ′(λ)zr
s1 · · · sr−1

z,

where ϕ(λ) is the characteristic polynomial of Ŝ′. Hence d̂ is an eigenvector of Ŝ′

with xr = dr. Moreover, if λ (> 0) is the largest eigenvalue, then e−iθrdr > 0.
(b) If λ is an eigenvalue of Ŝ′ of multiplicity 2, then d = 0, i.e., xnr+k = xk,

k = 1, . . . , r − 1, and xnr = 0 for all positive integers n. In other words, {xn} is a
periodic sequence.

Proof. (⇒) If the subsequences {xnr+k}, k = 1, . . . , r, are in arithemtic progres-
sion, i.e., xnr+k = x(n−1)r+k + dk, k = 1, . . . , r, n = 1, 2, . . ., then λ is an eigen-
value of S′ in (17), and the proof is similar to that of Theorem 1 (III). Moreover,
d = (d1, . . . , dr)

T is in the null space of S′ − λI; i.e., the claim (7) is true. We also
have dr = d0 = xr, which is part of (8).

Case 1. Suppose that λ is a simple eigenvalue of S′. Let z = (z1, . . . , zr)
T be

an eigenvector of S′ associated with the eigenvalue λ. Then d = µz for some nonzero
scalar µ. Now perform the computation that is similar to that in between (9) and
(13). It yields

d1 = xr+1 − x1 =
srϕ2,r−1(λ) + (s1 · · · sr)s−1

r

s1 · · · sr−1
, dr = d0 = xr =

ϕr−1(λ)

s1 · · · sr−1
.

Moreover,

z1zr =
1

ϕ′(λ)
{srϕ2,r−1(λ) + s1 · · · sr−1}, |zr|2 =

1

ϕ′(λ)
ϕr−1(λ).

(i) zr = 0. Then z1zr = 0; i.e., |sr|2ϕ2,r−1(λ) + s1 · · · sr = 0. But ϕ2,r−1(λ) =
(λ− µ1) · · · (λ− µr−2), where µ’s are the eigenvalues of the Hermitian matrix S′2,r−1

and λ is an eigenvalue of the Hermitian matrix S′. So ϕ2,r−1(λ) and hence the product
s1 · · · sr is real.

(ii) zr 6= 0. Then dr = µzr implies that µ = ϕ′(λ)zr/s1 · · · sr. So d1 = µz1 implies
that srϕ2,r−1(λ) + (s1 · · · sr)s−1

r = srϕ2,r−1(λ) + s1 · · · sr−1. Hence s1 · · · sr is real.
Case 2. Suppose that λ is a double root. Then by considering the (r, r− 1) entry

of adj (λI − S′), Lemma 1 yields

s1 · · · sr + |sr−1|2ϕr−2(λ) = 0.

This also implies that s1 · · · sr is real.
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The implication (⇐) now follows from Theorem 1 and Ŝy = λy, where y = U−1x
and Ŝ = U−1SU .

We remark that the statement of Corollary 3 is valid for S in (16) when s1 · · · sr
is real.

We need to take care of some special cases; i.e., r = 1, 2.
Theorem 3. Let {xn} be the sequence defined by Sx = λx, where S is given in

(16). Assume that s1, . . . , sr are given nonzero complex numbers and are not all real.
(1) If r = 1, then the sequence {xn} is not in arithmetic progression.
(2) If r = 2, and
(i) if s1 + s2 6= 0, then at least one of the subsequences {x2n} and {x2n+1} is not

in arithmetic progression.
(ii) If s1 + s2 = 0, then the subsequences {x2n} and {x2n+1} are in arithmetic

progression if and only if λ = 0. In addition, x2n = 0 and x2n+1 = x1 for all positive
integers n.

Proof. (1) When r = 1, we have

s1x2 = λx1

s1x1 + s1x3 = λx2

...

s1xr−1 + s1xr+1 = λxr(21)

...

where s1 6= 0. Suppose that {xn} is in arithmetic progression; i.e., xn = x1 +(n−1)d.
Subtracting the second equation from the third, we have (s1 + s1)d = λd. If d 6= 0,
then λ = s1 +s1. Substituting into the second equation, we have s1x1 +s1(x1 +2d) =
(s1 + s1)(x1 + d). This implies that s1 = s1; i.e., s1 is real.

If d = 0, then from the first equation, λ = s1. But then, from the second equation,
s1 + s1 = s1; i.e., s1 = 0, which is impossible.

(2) When r = 2, we have

s1x2 = λx1

s1x1 + s2x3 = λx2

s2x2 + s1x4 = λx3

s1x3 + s2x5 = λx4

...

Suppose that {x2n} and {x2n+1} are in arithemtic progression; i.e., x2n+1 = x1 +nd1

and x2n = x2 + (n− 1)d2. We consider two cases.
Case 1. d = (d1, d2) = 0. The first three equations of (1) become

s1x2 = λx1,

s1x1 + s2x1 = λx2,

s2x2 + s1x2 = λx1,

where x1 6= 0. We consider the following two possibilities:
(a) If s1 + s2 6= 0, then from the second equation, x2 6= 0. Hence from the first

and the third equations we have s1 = s2 + s1; i.e., s2 = 0. This is impossible.
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(b) If s1 + s2 = 0, then from the third equation, λ = 0.
Case 2. d 6= 0. Subtracting the second from the fourth and the third from the

fifth, we have

s1d1 + s2d1 = λd2,

s2d2 + s1d2 = λd1.

Then |s1 + s2|2d2 = λ2d2 and |s1 + s2|2d1 = λ2d1. Since d = (d1, d2) 6= 0, λ2 =
|s1 + s2|2. So λ = ±|s1 + s2|. Direct computation gives

x2 =
λx1

s1
,

x3 =
(λx2 − s1x1)

s2
=

(λ2 − |s1|2)x1

s1s2
,

x4 =
λx3 − s2x2

s1
=
λ(λ2 − |s1|2 − |s2|2)x1

s21s2
,

x5 =
λx4 − s1x3

s2
=
{λ2(λ2 − 2|s1|2 − |s2|2) + |s1|4}x1

s21s
2
2

,

x6 =
λx5 − s2x4

s1
=
λ{λ2(λ2 − 2|s1|2 − 2|s2|2) + |s1|4 + |s1|2|s2|2 + |s2|4}x1

s31s
2
2

.

Since x5 − x3 = x3 − x1, i.e., x5 + x1 = 2x3, we have

λ2(λ2 − 2|s1|2 − |s2|2) + |s1|4
s21s

2
2

+ 1 =
2(λ2 − |s1|2)

s1s2
;

i.e.,

0 = λ2(λ2 − 2|s1|2 − |s2|2) + |s1|4 + s21s
2
2 − 2s1s2λ

2 + 2s1s2|s1|2

= λ4 − λ2(2s1s2 + 2|s1|2 + |s2|2) + |s1|4 + s21s
2
2 + 2s1s2|s1|2.(22)

Since x6 + x2 = 2x4, we have

λ{λ2(λ2 − 2|s1|2 − 2|s2|2) + |s1|4 + |s1|2|s2|2 + |s2|4}
s31s

2
2

+
λ

s1
= 2

λ(λ2 − |s1|2 − |s2|2)

s21s2
.

If λ 6= 0, i.e., s1 + s2 6= 0, it amounts to

0 = λ2(λ2 − 2|s1|2 − 2|s2|2 − 2s1s2) + |s1|4 + |s1|2|s2|2 + |s2|4

+s21s
2
2 + 2s1s2(|s1|2 + |s2|2)

= λ4 − λ2(2|s1|2 + 2|s2|2 + 2s1s2) + |s1|4 + |s1|2|s2|2 + |s2|4

+s21s
2
2 + 2s1s2(|s1|2 + |s2|2).(23)

Equating (22) and (23), we have |s2|2λ2 = |s1|2|s2|2 + |s2|4 + 2s1s2|s2|2; i.e.,

λ2 = |s1|2 + |s2|2 + 2s1s2.

But λ2 = |s1 + s2|2 = |s1|2 + |s2|2 + s1s2 + s1s2. So we have 2s1s2 = s1s2 + s1s2; i.e.,

(24) s1s2 = Re s1s2.
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So s1s2 is real, i.e., either (a) s1s2 = |s1||s2| or (b) s1s2 = −|s1||s2|. Let s1 = |s1|eiθ.
(a) If s1s2 = |s1||s2|, then s2 = |s2|e−iθ. But (24) implies |s1||s2| = Re |s1||s2|e2iθ.

This amounts to θ = 0 or π; i.e., s1 and s2 are real numbers and of the same sign.
(b) If s1s2 = −|s1|s2|, then s2 = |s2|ei(π−θ). So −|s1||s2| = Re |s1||s2|ei(2θ−π).

This has to be rejected. This amounts to θ = ±π; i.e., s1 and s2 are real numbers
and of opposite signs. This is rejected, too.

Hence we proved (2)(i) and the implication (⇒) of (2)(ii) of Theorem 3. Moreover,
if λ = s1 + s2 = 0, then the system becomes

s1x2 = 0,

s1x2n−1 + s2x2n+1 = 0, n = 1, 2,

s2x2n + s1x2n+2 = 0, n = 1, 2, . . . .

So x2n = 0 and x2n+1 = x1, n = 1, 2, . . .. This completes the proof of (2)(ii) of
Theorem 3.

Example 6. If r = 3 and s1 = 1 + i, s2 = 1− i, and s3 = 2, the eigenvalues of

S′ =

 0 1 + i 2
1− i 0 1− i

2 1 + i 0


are λ1 = 3.2361, λ2 = −2, and λ3 = −1.2361. The corresponding eigenvectors are
(1, 0.6180− 0.6180i, 1)T , (1, 0,−1)T , and (−0.3090− 0.3090i, 1,−0.3090− 0.3090i)T .

For λ1 = −1.2361, the sequence {xn} is

{1,−0.6180− 0.6180i,−0.2361, 0.7639,−0.2361− 0.2361i,−0.4721, 0.5279, 0.1459

+ 0.1459i,−0.7082, 0.2918, 0.5279 + 0.5279i,−0.9443, 0.0557, 0.9098 + 0.9098i, . . .},

where d1 = −0.2361, d2 = 0.3819 + 0.3819i, and d3 = −0.2361.
For λ2 = −2, the sequence {xn} is

{1,−1− i, 1, 0,−1− i, 2,−1,−1− i, 3,−2,−1− i, 4,−3,−1− i, . . .},

where d1 = −1, d2 = 0, and d3 = 1.
For λ3 = 3.2361, the sequence {xn} is

{1, 1.6180 + 1.6180i, 4.2361, 5.2361, 4.2361 + 4.2361i, 8.4721, 9.4721, 6.8541 + 6.8541i,

12.7082, 13.7082, 9.4721 + 9.4721i, 16.9443, 17.9443, 12.0902 + 12.0902i, . . .},

where d1 = 4.236, d2 = 2.6181, and d3 = 4.236.

Acknowledgment. The author is thankful to the referee for the careful reading
of the manuscript and for helpful suggestions.
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Abstract. LetH be positive definite, let ∆H be Hermitian, and suppose that ‖H−1/2(∆H)H−1/2‖
= 1. It is shown that the least constant cn such that

||(H + η∆H)1/2H−1/2 − I|| ≤ cnη + 0(η2)

for all n × n H and ∆H grows like logn. This fact has consequences in eigenvector perturbation
theory.
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It is well known that taking square roots of scalars halves relative perturbations.
In particular, if we fix t and ε with |ε/t| = 1 and consider t̃ = t+ ηε, then the relative
perturbation in t̃ is η, while the relative perturbation in t̃1/2, to first order, is∣∣∣∣ t̃1/2 − t1/2t1/2

∣∣∣∣ =

∣∣∣∣∣ 1
2ηεt

−1/2

t1/2

∣∣∣∣∣ =
1

2
η.

In this paper we consider two generalizations of this result to positive definite
matrices. Let H and H̃ = H+∆H be n×n positive definite matrices. Since we must
allow for noncommutativity it is natural to take the size of the relative perturbation
in H̃ to be

‖H−1/2(∆H)H−1/2‖,

and to take the size of the relative perturbation in H̃1/2 to be

‖H−1/4(H̃1/2 −H1/2)H−1/4‖.

Here, and unless otherwise stated, we use the spectral norm. By analogy with the
scalar case one would hope that the following theorem would hold.

Theorem 1. Let H be positive definite and let H̃ = H + η∆H, where ∆H is
Hermitian and such that ‖H−1/2(∆H)H−1/2‖ = 1. Then

‖H−1/4(H̃1/2 −H1/2)H−1/4‖ ≤ 1

2
η +O(η2).(1)

Indeed it does, as we shall soon prove.
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There are situations1 where one wants to bound

‖H̃1/2H−1/2 − I‖ = ‖(H̃1/2 −H1/2)H−1/2‖,(2)

in terms of ‖H−1/2(∆H)H−1/2‖. Since for any matrices A and B, with B Hermitian,
we have

‖ABA∗‖ = ρ(ABA∗) = ρ(BA∗A) ≤ ‖BA∗A‖

(here ρ denotes the spectral radius), it follows that

‖H−1/4(H̃1/2 −H1/2)H−1/4‖ ≤ ‖(H̃1/2 −H1/2)H−1/2‖ = ‖H̃1/2H−1/2 − I‖,

and so we should not be surprised if we cannot prove

‖H̃1/2H−1/2 − I‖ ≤ 1

2
η +O(η2).

In fact, the best one can do is summarized in Theorem 2. The following constants
occur in Theorem 2:

γn ≡
1

n

n∑
j=1

| cot(2j − 1)π/2n| = 2

n

[n/2]∑
j=1

cot(2j − 1)π/2n

γ̂n ≡
1

n

n∑
j=1

| csc(2j − 1)π/2n|.

Since | cot θ| < | csc θ| < | cot θ| + 1 for θ 6= kπ/2, it follows that γn < γ̂n < γn +
1. Approximating the sums by integrals one can show that γ̂n − γn → (1/π) log 2,
γn/ logn → 2/π and γ̂n/ logn → 2/π, as n → ∞. The sequences γn and γ̂n are
strictly increasing.

Theorem 2. Consider the bound

‖(H + η∆H)1/2H−1/2 − I‖ ≤ cnη + 0(η2).(3)

If this bound is to hold for all n × n positive definite matrices H and all Hermitian
matrices ∆H such that ||H−1/2(∆H)H−1/2|| = 1, then cn must be at least 1

2 (γn− 1).
On the other hand, (2) is valid for all n× n positive definite matrices H and all

Hermitian ∆H with ‖H−1/2(∆H)H−1/2‖ = 1 provided that cn ≥ 3
2 + γ̂n−1.

To prove this result we first introduce some notation and then prove a preliminary
lemma on Hadamard products that may be of independent interest.

Given matrices A = [aij ]
n
i,j=1 and B = [bij ]

n
i,j=1, we denote their Hadamard

product (or componentwise product) by A ◦ B = [aijbij ]
n
i,j=1. The Schur product

theorem states that if A and B are positive semidefinite, then so is A ◦ B. Let
λi, µi, i = 1, 2, . . . , n be positive scalars; then [(λi+λj)

−1]ni,j=1 is a positive semidefinite

1 For example, in relative perturbation theory one wants to bound the perturbation in the eigen-
vectors of H̃ = H + ∆H in terms of ‖H−1/2(∆H)H−1/2‖. One can obtain such a bound by writing
H̃ = DHD∗, where D = H̃1/2H−1/2, and then applying [3, Theorem 2.2]. The resulting bound
includes the term ‖D − I‖ = ‖H̃1/2H−1/2 − I‖. Theorem 2 in this paper shows that if one uses [3,
Theorem 2.2] in this way, then the resulting bound inevitably involves a factor of log n. There are at
least two ways to obtain a stronger eigenvector bound that does not contain a factor of log n. One
can more carefully use the method proof of [3, Theorem 2.1] and bound the quantity ‖(D − I)wi‖
that arises in the proof [2]. Alternatively one can use the main result in [7].
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Cauchy matrix [4, Problem 5.5.9 (a), pp. 347–348], while [µiµj ]
n
i,j=1 is a positive

semidefinite rank-1 matrix. The Schur product theorem ensures that[
µiµj
λi + λj

]n
i,j=1

is positive semidefinite. Given a matrix A we define its Hadamard operator norm,
denoted by |||A|||, by

|||A||| = max{||A ◦B|| : ||B|| ≤ 1}.

For positive semidefinite A it is well known that (see, e.g., [4, Theorem 5.5.18, second
part])

|||A||| = max{a11, . . . , ann}.

Proof of Theorem 1. Without loss of generality we may assume that

H = Λ = diag(λ1, . . . , λn).

Then by assumption

A = Λ−1/2∆HΛ−1/2

has norm 1.
Now, using the so-called Daleck̆ii–Krĕin formula for the derivative of (H+η∆H)1/2

with respect to η at η = 0 [4, Theorem 6.6.30 (1), noting that U(0) = I], we have

(H + η∆H)1/2 = (Λ + η∆H)1/2

= Λ1/2 + η

[
λ

1/2
i − λ1/2

j

λi − λj

]n
i,j=1

◦∆H +O(η2)

= Λ1/2 + η

[
1

λ
1/2
i + λ

1/2
j

]n
i,j=1

◦ (Λ1/2AΛ1/2) +O(η2)

= Λ1/2 + η

[
λ

1/2
i λ

1/2
j

λ
1/2
i + λ

1/2
j

]n
i,j=1

◦A+O(η2).(4)

Thus to first order in η

∥∥∥H−1/4
[
(H + η∆H)1/2 −H1/2

]
H−1/4

∥∥∥ =

∥∥∥∥∥∥ηΛ−1/4

[ λ
1/2
i λ

1/2
j

λ
1/2
i + λ

1/2
j

]n
i,j=1

◦A

Λ−1/4

∥∥∥∥∥∥
=

∥∥∥∥∥∥
[

λ
1/4
i λ

1/4
j

λ
1/2
i + λ

1/2
j

]n
i,j=1

◦A

∥∥∥∥∥∥ η
≤ 1

2
η.

For the final inequality we have used the fact that the matrix[
λ

1/4
i λ

1/4
j

λ
1/2
i + λ

1/2
j

]n
i,j=1
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is positive semidefinite, and hence its Hadamard operator norm is its largest main
diagonal element—that is, 1

2 . 2

Now let us turn our attention to Theorem 2. Assume from now on that λ1 ≥
λ2 ≥ · · · ≥ λn > 0. In proving Theorem 2 it is necessary to obtain bounds on∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
[

λi
λi + λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ .

A simple approach to bounding this quantity is∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[

λi
λi + λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[
λiλj
λi + λj

]n
i,j=1

◦
[

1

λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[
λiλj
λi + λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[

1

λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=
1

2
λ1

1

λn
.(5)

For the final equality we have used the fact that [
λiλj
λi+λj

] is positive semidefinite and

hence that its Hadamard operator norm is its largest diagonal element [4, Theorem
5.5.18, second part]. The fact that |||[ 1

λj
]||| = 1

λn
follows from∥∥∥∥∥

[
1

λj

]n
i,j=1

◦B
∥∥∥∥∥ = ||BΛ−1|| ≤ ||Λ−1|| ||B|| = λ−1

n ||B||,

where Λ = diag(λ1, . . . , λn).
Typically we will apply the bound on |||[ λi

λi+λj
]||| when H is graded and in this

case λ1

λn
is very large and so the bound (5) is not very useful, even though it is

independent of n. Our next result gives bounds on |||[ λi
λi+λj

]||| that are independent

of λ1

λn
but grow like logn.

Lemma 3. Let λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then∣∣∣∣∣∣∣∣∣∣∣∣[ λi
λi + λj

]∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 3

2
+ γ̂n−1.(6)

Furthermore, one can choose λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and a Hermitian contraction B
such that ||[ λi

λi+λj
] ◦B|| is at least 1

2 (γn − 1)− ε for any ε > 0.

Proof. Let Tn denote the n×n strictly upper triangular matrix with all elements
above the diagonal equal to 1. Then one can check that[

λi
λi + λj

]
=

[
min{λi, λj}
λi + λj

]
+ Tn ◦

[
|λi − λj |
λi + λj

]
≡ X + Tn ◦ Y.

We have used the fact that λ1 ≥ λ2 ≥ · · · ≥ λn > 0 in the first equality. The matrix
X is positive semidefinite—see, for example, the proof of Theorem 3.2 in [5], and so
|||X||| is just its largest diagonal element, which is 1

2 . The Hadamard operator norms
of Y and Tn have been shown to be at most 2 [5, Theorem 3.2] and (γ̂n−1 + 1)/2
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([5, Corollary 3.5] and the fact that, in the notation of [5], |||Tn||| = |||T̂n−1|||),
respectively. So

|||Tn ◦ Y ||| ≤ |||Tn||| |||Y ||| ≤ 2 · 1

2
(γ̂n−1 + 1).

Combining these bounds gives (6).
Now let us consider the lower bound on |||[ λi

λi+λj
]|||. If we choose the λ’s so that

the ratio λi+1/λi → 0 for each i = 1, . . . , n− 1, then[
λi

λi + λj

]
→ T̃n ≡ Tn +

1

2
I.

Because ||| · ||| is continuous we need only show that there is a Hermitian contraction
B such that

|||T̃n ◦B||| ≥
1

2
(γn − 1).

Let Sn = [sign (j− i)]; that is, Sn has 0’s on the diagonal, 1’s above the diagonal, and
−1’s below the diagonal. Lemma 3.1 in [5] gives |||Sn||| = γn. There is a contraction
B such that ||iSn ◦ B|| = |||iSn|||, and by [6, Corollary 3.3] we may take B to be a
Hermitian contraction since iSn is itself Hermitian. Then

||Sn ◦B|| = |||Sn||| = γn.

Let Jn denote the n× n matrix of 1’s. One can check that T̃n = 1
2 (Sn + Jn). For

the B in the previous paragraph we have

||T̃n ◦B|| =
1

2
||Sn ◦B + Jn ◦B||

≥ 1

2
(||Sn ◦B|| − ||Jn ◦B||)

=
1

2
(γn − ||B||)

≥ 1

2
(γn − 1)

as required. 2

Now we can prove Theorem 2.
Proof of Theorem 2. As in the proof of Theorem 1 we may assume without loss

of generality that

H = Λ = diag(λ1, . . . , λn).

Then A = Λ−1/2∆HΛ−1/2 has norm-1 by assumption.
Now, using the first-order approximation in (4) we have

(H + η∆H)1/2H−1/2 − I = η

[
λ

1/2
i

λ
1/2
i + λ

1/2
j

]
◦A+ 0(η2).

Since the only constraint on ∆H is that ‖H−1/2(∆H)H−1/2‖ = 1, A is an arbitrary
Hermitian matrix with norm 1. So the smallest value of cn for which (3) is valid is

α = max

{∥∥∥∥∥
[

λ
1/2
i

λ
1/2
i + λ

1/2
j

]
◦X

∥∥∥∥∥ : ||X|| ≤ 1, X = X∗

}
.
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From Lemma 3 we have

α ≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[

λ
1/2
i

λ
1/2
i + λ

1/2
j

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ 3

2
+ γ̂n−1,

which is the second part of the theorem. Lemma 3 also says that the λ’s can be
chosen so that α is arbitrarily close to 1

2 (γn − 1), and this gives us the first part of
the theorem. 2

The bounds in this paper depend heavily on results on |||[sign (j− i)]ni,j=1||| from
[5]. See [5] for further applications of the fact |||[sign (j−i)]ni,j=1||| = γn to inequalities

for commutators and the matrix absolute value (|A| ≡ (A∗A)1/2), to the norm of the
triangular truncation operator, and to bounds on the perturbation of the eigenvalues
of a Hermitian matrix that is subjected to a skew-Hermitian perturbation.

So far we have considered only the spectral norm. If we had taken the Frobenius
norm,

||X||F ≡

∑
i,j

|xij |2
1/2

,

then, since |λ1/2
i (λ

1/2
i + λ

1/2
j )−1| ≤ 1, it is easy to see that∥∥∥∥∥
[

λ
1/2
i

λ
1/2
i + λ

1/2
j

]
◦A
∥∥∥∥∥
F

≤ ||A||F ,

and hence that if || · || is replaced by || · ||F in (3) then we may take cn = 1 independent
of n.

Let || · ||p denote the Schatten p-norm, i.e.,

||X||p =

(
n∑
i=1

σpi (x)

)1/p

,

and let

|||A|||p ≡ max {||A ◦B||p : ||B||p ≤ 1} .

Note that || · || = || · ||∞ and || · ||F = || · ||2. Davies [1, Proposition 4] has proved the
following bounds that are independent of n for the Hadamard operator norm with
respect to the Schatten p-norms:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
[
λi − λj
λi + λj

]n
i,j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

{
cp, 2 ≤ p <∞,
cp/(1− p), 1 < p ≤ 2,

where c is an absolute constant (independent of p, n, and λ). If we let λi+1/λi → 0
as we did in the proof of Lemma 3, then[

λi − λj
λi + λj

]n
i,j=1

→ T̃n.



PERTURBATION OF THE MATRIX SQUARE ROOT 867

Thus
∣∣∣∣∣∣∣∣∣T̃n∣∣∣∣∣∣∣∣∣ is bounded independent of n and, following the proof of Lemma 3,∣∣∣∣∣∣∣∣∣∣∣∣[ λi

λi + λj

]∣∣∣∣∣∣∣∣∣∣∣∣
p

is also bounded independently of n. Consequently, if we replace || · || by || · ||p in (1)
for any p ∈ (1,∞), then we may choose cn independent of n.
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Abstract. In this paper a new approach to the evaluation of sensitivity or condition of eigenvalue
problems is proposed. This approach is applicable to general nonsymmetric matrices as well as to
matrices with special structure and is suitable for various types of perturbations. In particular, the
important class of componentwise relative perturbations can easily be handled for a general matrix.
This cannot be done satisfactorily with other currently available methods. The sensitivity evaluation
is based on the recently introduced technique of small-sample statistical estimation for the local
sensitivity of a large variety of functions.

Key words. conditioning, statistical condition estimation, eigenvalues, eigenvectors, sensitivity
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1. Introduction. The accuracy of numerical computations is traditionally mea-
sured in terms of an upper bound on the error in the computed result under the
assumption that each data element is perturbed equally and that the overall pertur-
bation is bounded in norm. Some examples are the well-known condition number of
a matrix, which gives an upper bound on the norm of the deviation of a computed
solution to a linear system from the correct solution [7], [22], [24], bounds on the
error norm in a computed least-squares solution [41], and bounds on the error in com-
puted results of eigenvalue problems. Sensitivity analysis for the latter is significantly
more complex than for the first two, and many different approaches to measuring the
condition of eigenproblems have been proposed. A classical treatment of the sensitiv-
ity of individual eigenvalues and eigenvector components of a general matrix under
norm-bounded perturbations is [47]. In [8], the sensitivity of invariant subspaces of
Hermitian matrices is defined in terms of rotations of the subspaces, and [40] extends
this to general matrices. Further work on the behavior of ill-conditioned eigenval-
ues under perturbations may be found in [20] and [48], the sensitivity of eigenvector
components is further discussed in [17], [35], and [36] focuses on Hermitian matrices.
Extensions of these results have been made to the generalized eigenvalue problem [9],
[39], [40], as well as to singular value problems [42], [46]. An excellent treatment of
the eigenvalue problem and its sensitivity to perturbations is given in [5], while [19],
[27], and [44] discuss the effects of norm-bounded perturbations on the both this and
other matrix problems.

The assumption that each element of a matrix is perturbed equally in absolute
terms is not appropriate in many practical situations and has led to increased research
on other types of perturbations. For example, errors introduced by representing data
in finite precision arithmetic might be modeled by assuming that each element of the
matrix undergoes a random perturbation relative to its individual magnitude, rather
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than relative to the norm of the matrix. The assumption of such componentwise
relative perturbations in the matrix leads to very different upper bounds on the com-
putational error, which are frequently much smaller than their counterparts based on
norm-bounded errors. Although this difference may often be reduced by appropriate
scaling of the matrix, the issue of choosing such scaling is not very well resolved. An
excellent survey of current results on error bounds based on componentwise relative
perturbations may be found in [25], and an extended treatment of this and many
related topics can be consulted in [26].

Another important perturbation class is that of structured perturbations. This
may arise when the matrix has some fixed structural integer entries such as coeffi-
cients of a discretized differential equation, fixed zeros such as in sparse or “shaped”
matrices, or elements known to be equal or derived from a single parameter such as
for symmetric or Vandermonde matrices. In the first two cases some elements are not
perturbed at all, and in the third case not all elements are perturbed independently,
so an analysis using norm-bounded perturbations is not appropriate. Componentwise
relative perturbations may model the errors in some sparse matrix problems well but
are not satisfactory for many other structured matrix problems.

Currently, no satisfactory computational method exists to evaluate the sensitivity
of eigenvalue problems to perturbation classes other than norm-bounded perturba-
tions, except in special cases. This includes the sensitivity of a simple eigenvalue and
corresponding eigenvector of a general matrix to componentwise relative perturbations
[3], [5], [17] and the sensitivity of all eigenvalues and eigenvectors of a symmetric pos-
itive definite matrix to the same [10], [15], [14]. The former results are too limited to
be of much practical use and, although the latter results are very useful where they
apply, they have not been extended to general matrices.

The theory of small-sample statistical condition estimation, recently introduced
in [31], provides a tool to estimate the local sensitivity of any differentiable function at
a point under a wide variety of assumptions on the type of perturbations of the point.
In particular, it provides a way to monitor the effects of componentwise or structured
perturbations to nonsingular linear systems of equations [33] and linear least-squares
problems [32]. This paper proposes using the same theory to evaluate the sensitivity
of eigenvalue problems and outlines how this can be accomplished for a general matrix
and for a very large class of perturbations, including both componentwise relative and
structured perturbations. Thus, it fills a gap in the set of computational resources
available for the eigenvalue problem. For nonsymmetric matrices, the computational
effort required is in most cases comparable with that currently accepted for norm-
bounded perturbations [1] and is at most on the order of the effort required for
computing the eigenvalues or invariant subspaces. For symmetric matrices, some
specialized error bounds are more efficient to compute, but the approach proposed in
this paper provides a way to handle a much larger class of perturbations than any
other existing method.

Remark. The idea of condition estimation by statistical methods is by no means
new and has been used extensively, usually in the framework of Monte Carlo trials
[23], [38]. It has also been proposed in a similar setting as in [31], with applications
to linear systems, least squares problems, and eigenvalue problems [11], [16], [43], but
this seems to be the first approach that is of practical use. Different applications
of statistical methods in relation to condition include the analysis of the statistical
properties of random matrices [12], [13], analysis of the pseudospectra of matrices
[45], and certain approaches to qualitative computing [6].



870 T. GUDMUNDSSON, C. KENNEY, AND A. J. LAUB

Section 2 of this paper gives a brief overview over perturbation theory for eigen-
values and invariant subspaces, section 3 reviews the theory of statistical condition
estimation, and section 4 applies this estimation method to the eigenvalue problem
under different assumptions on the perturbations. Section 5 gives an algorithmic de-
scription of the resulting estimators, along with a few numerical examples, and some
conclusions are made in section 6.

In what follows, the 2-norm ‖ · ‖2 is used exclusively for vectors and the Frobenius
norm ‖ · ‖F exclusively for matrices. The range of a matrix is denoted by R(·) and its
spectrum by Λ(·). The Kronecker product of two matrices is denoted by the operator
⊗, the vec (·) operator stacks the columns of a matrix into a vector, and the unvec (·)
operator reverses this operation (with matrix size determined by context).

2. Perturbations of eigenvalues and invariant subspaces. Let a matrix
A ∈ Rn×n be perturbed by a matrix E, about which nothing is known except that it
belongs to some set E . How much can the eigenvalues and invariant subspaces of A
change by such a perturbation?

As discussed in the introduction, a wealth of results is available on this problem
when E is a set of norm-bounded perturbations, E = {E : ‖E‖ ≤ ε ‖A‖} for some
norm and ε > 0, but similar results for other perturbation classes have only been
derived for certain special cases. In contrast, the results presented in this paper can
be applied to a general matrix and, moreover, can be implemented for a very wide
class of perturbations. These results are based on classical first-order perturbation
results for eigenvalues and invariant subspaces of general matrices as presented in,
e.g., [40].

Accordingly, assume that the matrix A has the block-Schur decomposition

UHAU =

[
A11 A12

0 A22

]
,(1)

where U = [U1 U2] is unitary, U1 has k columns, and the spectrum of the k × k
submatrix A11 = UH1 AU1 is separated from the spectrum of A22

Λ(A11) ∩ Λ(A22) = ∅.(2)

Further, assume that A is perturbed by a random matrix E, drawn from a distribution
E , denote the perturbed matrix by Â = A+ E, and partition it conformably with A
as

UHÂU =

[
Â11 Â12

Â21 Â22

]
=

[
A11 + E11 A12 + E12

E21 A22 + E22

]
.

The question posed at the beginning of the section may now be rephrased as
follows: for E ∈ E , by how much can the spectrum of A11 and the range of U1

differ from the corresponding subset of the eigenvalues and corresponding invariant
subspace of Â? The following theorem is a slight modification of Theorem 4.1 in [40]
and provides the necessary elements to answer this.

Theorem 2.1. Let B ∈ Rn×n and the unitary W = [W1 W2] be such that

WHBW =

[
B11 B12

B21 B22

]
,
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where the right-hand side is partitioned conformably with W . Define the operator TB
by TB(Q) = QB11 −B22Q. If the Riccati equation

B21 +B22P − PB11 − PB12P = 0(3)

has a solution P , then the columns of

Ŵ1 = (W1 +W2P )(I + PHP )−1/2

are orthonormal and span an invariant subspace of B, and the matrix

B̂11 = ŴH
1 BŴ1

is similar to the matrix B11 +B12P .

Equation (3) has a solution if TB is invertible and ‖B21‖F ‖B12‖F ‖T
−1
B ‖

2

F < 1
4 .

In this case, the solution satisfies

‖P‖F ≤ 2‖B21‖F ‖T
−1
B ‖F .

The application of this result with B replaced by Â = A+E and W replaced by
U shows that the invariant subspace spanned by the columns of U1 is perturbed to
the span of the columns of U1 + U2X,

R{Û1} = R{U1 + U2X},

where X solves the equation

E21 −XÂ12X = TÂ(X).(4)

If E is small compared with A and the spectrum of A11 is well separated from the
spectrum of A22, then

‖T −1

Â
‖
F
≈ ‖T −1

A ‖F

is moderate; see, for example, section 4 of [40]. Under these assumptions, the theorem
shows that ‖X‖F is on the order of ‖E‖F . Then a first-order approximation of
equation (4) is

TA(X) ≈ E21,

where E21 = UH2 EU1.
The solution to this linear equation can be used as a measure of the error in the

invariant subspace U1 induced by the perturbation E. This first-order error approxi-
mation is denoted by ∆U1

,

∆U1 = T −1
A (UH2 EU1).(5)

Remark. The k subspace angles θi, i = 1, 2, . . . , k, between R{U1} and R{Û1}
are given by

tan (θi(R{U1},R{Û1})) = σi(X),
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where σi are the singular values of X, suitably ordered [8]. Thus X represents the
rotation of the invariant subspace by the perturbation.

Theorem 2.1 may be used directly to obtain an expression for the spectrum of
the perturbed upper block ÛH1 ÂÛ1, but a more useful expression may be obtained by
first block-diagonalizing A. Thus, define

T =

[
I Y
0 I

]
,

where A12 = Y A22 −A11Y , giving

T−1UHAUT =

[
A11 0
0 A22

]
.

Then define

T−1UHEUT =

[
F11 F12

F21 F22

]
.

By Theorem 2.1, there is a matrix V̂1 with orthonormal columns such that the spec-
trum of

V̂ H1 T−1UH(A+ E)UT V̂1 = Â11

is equal to the spectrum of A11 +F11 +F12P , where P solves a Riccati equation. For
small perturbations, it may be assumed that P is small enough to disregard the term
F12P , so

Λ(Â11) ≈ Λ(A11 + F11)

or

Λ(Â11) ≈ Λ(A11 + (UH1 − Y UH2 )EU1).(6)

The eigenvalues of A11 may be closely clustered or degenerate, and their individual
sensitivity thus not well defined. The sensitivity of the average eigenvalue is well
defined, however, as long as the spectra of A11 and A22 are well separated [29], [48].
Therefore, a condition estimator for this average, denoted by

µ(A11) =
trace (A11)

k

is derived in the sequel. By (6), this average eigenvalue is perturbed to

µ(Â11) ≈ µ(A11 + (UH1 − Y UH2 )EU1)

= µ(A11) + µ((UH1 − Y UH2 )EU1).

The error in the average eigenvalue of A11 induced by the perturbation E can be
measured by this first-order approximation

∆µ = µ((UH1 − Y UH2 )EU1).(7)

Remark. The issue of how small E must be for the approximations above to
be valid is not addressed in this paper. Discussion of this may be found in [2], for
example, where various global bounds are also given.
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When an appropriate block-Schur decomposition of A is available, the errors
induced by a perturbation matrix E can be computed via their definitions, (5) and
(7), but this need not be done in practice. Rather, the direct first-order difference
approximations

‖∆U1‖
2
F ≈

k∑
i=1

tan2(θi(R{U1},R{Û1}))(8)

and

∆µ ≈ µ(Â11)− µ(A11)(9)

can be used, where the right-hand sides are computed directly from the eigenvalues
and invariant subspaces of A and A + E, respectively. These quantities may be ob-
tained via any computational method deemed appropriate, including, but not limited
to, a Schur decomposition.

3. Small-sample statistical condition estimation. Common sense and ex-
perience suggest that a numerical computation is sensitive if small changes in the
input data produce large changes in the output. Usually, slightly different informa-
tion is desired: what is the largest change in the output that can occur under some
given assumptions on the changes in the input? In [31] these ideas are connected by
showing how the change in the output resulting from a small random perturbation of
the input, when properly scaled, provides an estimate of the largest possible change.
This technique is practical because the scaling factor between random and maximal
change depends only on the number of input variables and is independent of the func-
tion whose value is being computed. Moreover, the maximal sensitivity can usually
be adequately estimated by looking at the effect of very few random perturbations,
and in many cases just one perturbation gives sufficient information. In this section
a brief review of this theory of statistical condition estimation is given. First, an
estimator for the sensitivity of scalar-valued functions of several variables is defined
and its statistical properties described, and then this is extended to vector-valued
functions.

Let the function f : Rp → R be differentiable at a point x ∈ Rp and assume that
x is perturbed by a vector δz, where ‖z‖2 ≤ 1 and δ > 0 is small. Then

f(x+ δz) ≈ f(x) + δfx(x)z,

where fx(x) is the Fréchet derivative of f at x

fx(x) =
∂f

∂x
(x).

The relative error in f induced by the perturbation δz is given by

f(x+ δz)− f(x)

δ
≈ fx(x)z,(10)

and the largest such error is given by ‖fx(x)‖. This latter quantity is a standard
measure of the sensitivity, or condition of f at x [30], [37].

The derivative fx(x) is usually expensive to compute, but the product fx(x)z
can often be evaluated efficiently for any z, either by using a first-order perturbation



874 T. GUDMUNDSSON, C. KENNEY, AND A. J. LAUB

analysis or by employing (10) directly. Thus, a method for estimating the norm of a
vector given its inner product with another vector applies naturally to the problem
of estimating the condition of f . The results of [31] are based on this approach and
are presented in the framework of estimating vector norms.

If f is a vector-valued function, f : Rp → Rq, the derivative fx at a point x is a
q×p matrix, rather than a row vector. As in the scalar case, a first-order perturbation
analysis or the approximation (10) can be used efficiently to approximate the product
of fx and a vector, and a method for estimating matrix norms, given such products,
applies to estimating the condition of f . A method for performing this estimation is
presented in [21].

For the eigenvalue problem, x represents the elements of a matrix A, δz repre-
sents a perturbation E, and f and ‖fx(x)‖ represent the average eigenvalue and its
sensitivity, or the subspace rotation and the corresponding sensitivity, respectively.
Different definitions of the perturbation class E lead to different precise definitions of
these quantities, as shown in the following section, but equations (5) and (7) can be
used to compute fx(x)z in practice, or the product can be approximated by evaluating
the function at x and x+ δz as in (8) and (9).

The distribution underlying the theory of statistical condition estimation is the
uniform distribution of m-dimensional subspaces of Rp, denoted by Ωmp . A basis
for a sample from this distribution can be generated by selecting m independent
vectors from the p-dimensional standard normal distribution Np(0, 1) [28]. This basis
is assumed to be orthonormalized. The results are presented in terms of the Wallis
factor ωp for an integer p

ωp =


1 for p = 1,
2
π for p = 2,
1·3·5···(p−2)
2·4·6···(p−1) for odd p > 2,
2
π

2·4·6···(p−2)
3·5·7···(p−1) for even p > 2.

This quantity can be approximated accurately, even for moderate values of p, by

ωp ≈
√

2

π(p− 1
2 )
.

Theorem 3.1 (see [31]). Let the columns of Z ∈ Rp×m be an orthonormal basis
for Z ∼ Ωmp , and define

φ =
ωm
ωp
‖`TZ‖F

for ` ∈ Rp. Then E(φ) = ‖`‖2 and, for γ > 1,

Pr

(
‖`‖2
γ
≤ φ ≤ γ ‖`‖2

)
= gp,m

(
γ ωp
ωm

)
− gp,m

(
ωp
γ ωm

)
where, for 0 ≤ η ≤ 1, we have gp,m(η) =

Tp,m(η)
Tp,m(1) with

Tp,m(η) =

∫ η

0

(1− ν2)(p−m−2)/2 νm−1 dν.
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Furthermore, the probability can be bounded by

Pr

(
‖`‖2
γ
≤ φ ≤ γ ‖`‖2

)
≥ 1− 1

m!

(
2m

πγ

)m
+ O

(
1

γm+1

)
.

This result shows that for a small number of evaluations of the form `T z, the
probability of an estimate being within a small factor of the correct norm of ` is very
high. For example, for m = 3 the probability of getting an estimate that is within a
factor of 10 (γ = 10) of ‖`‖2 is greater than 0.9988, while for γ = 100, it is greater
than 0.9999988.

In [21], the above is extended to matrix norms, rather than vector norms, thus
allowing the same methods to be applied to functions into subspaces of order greater
than one.

Theorem 3.2 (see [21]). Let the columns of Z ∈ Rp×m be an orthonormal basis
for Z ∼ Ωmp , and define

ψ =

√
p

m
‖LZ‖F

for L ∈ Rq×p. Then,

E(ψ2) = ‖L‖2F .

Although not proved, the following is supported by extensive numerical evidence,
and can almost certainly be taken to be true for the purpose of condition estimation.

Conjecture 3.3 (see [21]). For the estimator ψ defined in Theorem 3.2 and
for γ > 1,

Pr

(
‖L‖F
γ
≤ ψ ≤ γ ‖L‖F

)
≥ gp,m

(
γ ωp
ωm

)
− gp,m

(
ωp
γ ωm

)
,

where gp,m(y) is defined in Theorem 3.1.
Remark. When L is a row vector, L = `T , the estimators φ and ψ do not coincide.

Their statistical properties are effectively the same, however, in the sense that√
E(ψ2) = E(φ) = ‖`‖2

and

Pr

(
‖`‖2
γ
≤ ψ ≤ γ ‖`‖2

)
≥ Pr

(
‖`‖2
γ
≤ φ ≤ γ ‖`‖2

)
.

4. Condition estimation for eigenvalue problems. To facilitate appropriate
definitions of condition numbers for different classes of perturbations, equations (5)
and (7) can be rewritten.

Lemma 4.1. The first-order error in equation (7) can be written as

∆µ = tT vec (E),

where

t = (U1 ⊗ (Ū1 − Ū2Y
T ))

vec (Ik)

k
.
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Similarly, equation (5), which is equivalent to solving the Sylvester equation XA11 −
A22X = UH2 EU1, can be written in the form

vec (∆U1
) = R vec (E),

where

R = (AT11 ⊗ I − I ⊗A22)−1(UT1 ⊗ UH2 ).

Proof. This follows from applying the rules

vec (K1K2K3) = (KT
3 ⊗K1) vec (K2),

(K1 ⊗K2)T = KT
1 ⊗KT

2 ,

trace (K) = (vec (I))T vec (K)

to the respective equations.
For a general function f , the first-order approximation (10) suggests a definition

of a condition number as ‖fx(x)‖. This gives the error in f relative to the size of the
perturbation, indicating that all perturbations of equal norm are equally important.
If the class of perturbations is such that this is not the case, namely, such that not
all entries of the perturbation have equal weight, this needs to be modified. In fact,
if the perturbation δz in the argument of f can be written as δz = δSz̃, where S is a
constant matrix and ‖z̃‖ is bounded, then ‖fx(x)S‖ can be taken as an appropriate
condition number. Accordingly, condition numbers for the eigenvalue problem may
be defined as follows.

Definition 4.2. Let the class of perturbations of A be given by

E = {E : E = δ unvec (Sz), δ > 0, z ∈ Rp, ‖z‖2 ≤ 1}

for some fixed matrix S. Then a condition number for the average eigenvalue of the
submatrix A11 is

τ(A, E) = ‖tTS‖2,(11)

and a condition number for the corresponding invariant subspace is

ρ(A, E) = ‖RS‖F ,(12)

where t and R are defined in Lemma 4.1.
Remark. The dimensions of the vector t and matrices R and S can be very high

(for example, S can be as large as n2 × n2), but they need not usually be computed
explicitly in practice. In fact, the operations of R and t on any perturbation matrix
are defined by (5) and (7) and approximated by (8) and (9), and S can usually be
provided in the form of a set of rules for assigning the elements of the vector δz to
the perturbation matrix E.

Estimators for the condition numbers τ(A, E) and ρ(A, E) can now be defined.
Definition 4.3. Let Z ∈ Rp×m be an orthonormal basis for Z ∼ Ωmp , let zi,

i = 1, 2, . . . ,m, denote the columns of Z, and let S be such that unvec (δSzi) is an
element of E for each i = 1, 2, . . . ,m. Then estimators for the condition of the average
of the spectrum of A11 and the corresponding invariant subspace are

φτ =
ωm
ωp
‖tTSZ‖F(13)
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and

ψρ =

√
p

m
‖RSZ‖F ,(14)

respectively.
The statistical properties of these estimators can be expressed as follows.
Theorem 4.4. For the estimator φτ

E(φτ ) = τ(A, E)

and

Pr

(
τ(A, E)

γ
≤ φτ ≤ γ τ(A, E)

)
≥ 1− 1

m!

(
2m

πγ

)m
+ O

(
1

γm+1

)
for γ > 1. Similarly, for the estimator ψρ

E(ψ2
ρ) = ρ2(A, E)

and, under the hypothesis that Conjecture 3.3 holds,

Pr

(
ρ(A, E)

γ
≤ ψρ ≤ γ ρ(A, E)

)
≥ 1− 1

m!

(
2m

πγ

)m
+ O

(
1

γm+1

)
for γ > 1.

Proof. Apply Theorems 3.1 and 3.2 to the estimators as defined in Definition 4.3,
noting the definitions of the condition numbers in (11) and (12).

The following examples of different perturbation classes show the versatility of
the estimators φτ and ψρ.

4.1. Norm-bounded perturbations. The first case is that of norm-bounded
perturbations

‖E‖F ≤ ε ‖A‖F
for a scalar ε > 0. For this class of perturbations, other methods for estimating
the condition of the eigenproblem are available [1], [10], some of which may be more
efficient than the statistical approach presented here. This approach is, however, more
widely applicable than those methods, since it neither puts restrictions on the matrix
nor relies on a particular method for computing eigenelements.

The class of norm-bounded perturbations can be characterized as

Enb =
{
E : E = ε ‖A‖F z, z ∈ Rn

2

, ‖z‖2 ≤ 1
}
.

Referring to Definition 4.2, the matrix δS is trivially defined by

δS = ε ‖A‖F In2 ,

and the condition estimates φτ and ψρ are easily computed by evaluating (5) and
(7) (or (8) and (9)) for m different perturbations of the form E = ε ‖A‖F unvec (z)
as specified in Definition 4.3. Note that the matrix δS is never explicitly needed in
practice.

Remark. Applying the estimators φτ and ψρ with E ∈ Enb effectively gives esti-
mates of the norm of the spectral projector for Λ(A11) and the inverse of the separation
sep (A11, A22) between A11 and A22, respectively, as those quantities are defined in,
e.g., [44].
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4.2. Componentwise relative perturbations. A perturbation class of special
interest arises when the entries of A are perturbed relative to their size, or

|eij | ≤ ε |aij |(15)

for some fixed scalar ε and i, j = 1, 2, . . . , n. As discussed in the introduction, this
is often considered the most appropriate description of certain types of perturbations
such as rounding errors. Examples 2 and 3 demonstrate this. Note that the number
of perturbation entries in E is equal to the number of nonzero entries of A, since the
zero entries are not perturbed.

The class of componentwise relative perturbations can be characterized as follows.
Let p denote the number of nonzero elements of A, let a = [a1 a2 · · · ap]T denote a

vector consisting of those elements, let C ∈ Rp×n2

be a matrix of ones and zeros such
that CCT = I and CTa = vec (A), and let

D =


a1

a2

. . .

ap

 .
Then

Ecr =
{
E : E = ε CTDz, z ∈ Rp, ‖z‖2 ≤ 1

}
,

and the matrix δS in Definition 4.2 is given by

δS = ε CTD.

As for norm-bounded perturbations, this matrix need never be generated in practice,
since an equivalent set of rules for assigning the elements of z to E is available. In
fact, defining the matrix C is equivalent to assigning a unique integer qij ∈ {1, . . . , p}
to the position of each nonzero entry aij of A, and the definition of δS is equivalent
to setting eij = ε aij zqij for each such entry. The remaining entries of E are zero.

The condition estimates φτ and ψρ are easily computed by using these equivalent
assignment rules to generate m perturbation matrices E as in Definition 4.3 and
applying (5) and (7) (or (8) and (9)) to each of those.

4.3. Structured perturbations. Many different perturbation classes can arise
when the matrix A has some fixed structure or shape. For example, some elements of
A may be known to be equal, such as in symmetric matrices, some elements may be
fixed, such as in sparse matrices (see, e.g., Example 1), or elements may depend on
a single parameter, as in matrices arising from modeling some physical phenomenon.
This section focuses on the case when certain elements of A are known to be equal
and the perturbation is otherwise norm-bounded, ‖E‖F ≤ ε ‖A‖F . In this case,
the number p of independent random parameters of the perturbation is equal to the
number of independent elements of A.

The class of such structured perturbations can be characterized as follows. Let p
be the number of independent elements of A and let C ∈ Rp×n2

be such that CCT = I
and the vector C vec (A) includes one and only one copy of each such element. Then

Es =
{
E : E = ε ‖A‖F CT z, z ∈ Rp, ‖z‖2 ≤ 1

}
.
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In this case the matrix δS in Definition 4.2 is

δS = ε ‖A‖F CT ,

which, in practice, may be replaced by an equivalent set of rules for assigning the
elements of z to E. This set of rules states which entries of E should be equal and
which entry of z should be assigned to each such group of perturbation entries. Using
these rules to generate perturbations for equations (5) and (7) (or (8) and (9)) the
condition estimators in Definition 4.3 can easily be computed.

Remark. Although only three examples of perturbation classes have been given
here, any eigenvalue problem where the perturbations of the matrix elements can be
modeled as in Definition 4.2 can be handled in the same fashion. The only requirement
is that a matrix S can be provided, or, equivalently, a set of rules that describes a linear
relationship between unit-norm vectors z that perturb the underlying parameters in
an identical fashion and the corresponding effect on the elements of A. In particular,
perturbations may be both structured and componentwise relative at the same time,
as in the case of badly scaled symmetric matrices. The results of sections 4.2 and 4.3
can be combined to define appropriate assignment rules for this case.

5. Numerical examples. The results of the paper can be illustrated by restat-
ing them in the form of two pairs of algorithms. For the first pair, Algorithms 1 and 2,
it is assumed that a block-Schur decomposition of a matrix A ∈ Rn×n is given as (1)
and that a linear relationship between the perturbations E and the random samples z
is available, either in the form of a matrix or a set of assignment rules. Note that the
perturbation matrices E have been scaled so that the factor ε can be omitted from
these two algorithms.

Algorithm 1. Given the decomposition (1) of A, the set of assignment rules S,
the number of independent variables p, and the number of samples m, this algorithm
estimates the condition of the average eigenvalue of A11.

Let the columns of Z be an orthonormal basis for Z ∼ Ωmp .
Solve the equation A12 = A11Y − Y A22 for Y .
For i = 1, . . . ,m

Set z equal to column i of Z.
Set E = unvec (Sz).
Form E11 = UH1 EU1 and E21 = UH2 EU1.
Compute φi = |µ(E11 + Y E21)|.

End for
Compute the condition estimate

φτ =
ωm
ωp

√√√√ m∑
i=1

φ2
i .

Algorithm 2. Given the decomposition (1) of A, the set of assignment rules S,
the number of independent variables p, and the number of samples m, this algorithm
estimates the condition of the invariant subspace spanned by the columns of U1.

Let the columns of Z be an orthonormal basis for Z ∼ Ωmp .
For i = 1, . . . ,m

Set z equal to column i of Z.
Set E = unvec (Sz).
Solve the equation E21 = XA11 −A22X for X.
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Compute ψi = ‖X‖F .
End for
Compute the condition estimate

ψρ =

√√√√ p

m

m∑
i=1

ψ2
i .

The dominant calculation in each of the above algorithms is the solution of the ap-
propriate Sylvester equation. The Golub–Nash–Van Loan algorithm [18] is especially
well suited to this situation. In particular, for the Sylvester equation AX +XB = C
where A ∈ Rα×α and B ∈ Rβ×β with α ≥ β, their algorithm takes approximately
5
3α

3+10β3+5α2β+ 5
2αβ

2 floating-point operations for general A,B. However, if these
coefficient matrices are already in Schur form, the operation count is only 3α2β+ 1

2αβ
2.

In Algorithms 1 and 2, the Sylvester equation coefficient matrices A11 ∈ Rk×k and
A22 ∈ R(n−k)×(n−k) are already in Schur form. Moreover, with k � n, the total oper-
ation count for the above algorithms, including both the Sylvester equation solution
and associated matrix multiplications, is on the order of n2km.

Apart from the factor m, this is the same order of magnitude as the Lapack con-
dition estimator for general eigenvalue problems [1]. Since m ≤ 3 is usually sufficient
(see further discussion below), the computational effort for our statistical approach
is compatible with the conventional method, while applying to a wider class of per-
turbations. Condition estimators for some special problems, e.g., for componentwise
relative perturbations of Hermitian matrices (see, e.g., [10]) may be more efficient
than the statistical approach, and these should be used when they apply.

Each of the second pair of algorithms assumes that the average µ0 of a set of eigen-
values of A has been computed along with a basis U0 for the corresponding invariant
subspace. We also assume that a linear relationship S between the perturbations E
and the random samples z is available.

Algorithm 3. Given the average eigenvalue µ0, the set of assignment rules S,
the number of independent variables p, the number of samples m, and the size of the
perturbation ε, this algorithm estimates the condition of µ0.

Let the columns of Z be an orthonormal basis for Z ∼ Ωmp .
For i = 1, . . . ,m

Set z equal to column i of Z.
Set E = ε unvec (Sz).
Compute the average µi of a set of eigenvalues of A+ E
corresponding to µ0.
Compute φi = |µi − µ0|.

End for
Compute the condition estimate

φτ =
1

ε

ωm
ωp

√√√√ m∑
i=1

φ2
i .

Remark. Algorithm 3 can easily be modified for simultaneously estimating the
condition of more than one eigenvalue or eigenvalue cluster by letting µ0 denote a
vector of the eigenvalues and average eigenvalues of interest, letting µi denote the
corresponding vectors for the perturbed matrices, and computing φi and φτ for each
entry of these vectors. In this case, clusters that need to be distinguished must
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of course be sufficiently well separated to be uniquely identifiable for all allowable
perturbations, but a similar modification of the algorithm also allows for estimation
of the condition of multiple or closely clustered eigenvalues. In fact, the maximum
perturbation of an eigenvalue in the cluster can be used as a measure of this condition,
rather than the perturbation of the average eigenvalue in the cluster. Example 1
illustrates this.

Algorithm 4. Given the basis U0 for an invariant subspace of A, the set of
assignment rules S, the number of independent variables p, the number of samples m,
and the size of the perturbation ε, this algorithm estimates the condition of U0.

Let the columns of Z be an orthonormal basis for Z ∼ Ωmp .
For i = 1, . . . ,m

Set z equal to column i of Z.
Set E = ε unvec (Sz).
Compute a basis Ui for the invariant subspace of A+ E
corresponding to U0.
Compute

ψ2
i =

k∑
j=1

tan2(θj(U0,Ui)).

End for
Compute the condition estimate

ψρ =
1

ε

√√√√ p

m

m∑
i=1

ψ2
i .

The latter pair of algorithms requires on the order of m times the computational
effort needed for computing µ0 and U0, respectively, which can be significantly more
than for the former pair of algorithms. Nevertheless, the wide class of perturbations
to which they apply make them valuable alternatives to existing methods.

Choice of m. The condition estimates given below in Example 1 are the average
over several applications of Algorithm 3 with m = 1. The probability of obtaining an
estimate close to the mean value depends, of course, on the number of samples m as
discussed in section 3. For example, the probability of obtaining an estimate within
a factor of 10 of the mean is in theory approximately bounded below by

1− 1

m!

(m
5π

)m
,

which is close to unity, even for small m. Numerical results agree well with this
theoretical bound, and in the remaining examples the value of m is left unspecified
(we actually used m = 1).

Example 1. A standard example of an eigenvalue problem where bounds based on
norm-bounded perturbations overestimate the actual perturbation by a large margin
is an n × n matrix composed of a single Jordan block. It is well known [29] that a
perturbation of size ε of the zero in the lower left-hand corner causes the eigenvalues to
spread out on a circle of radius ε1/n around the multiple eigenvalue of the unperturbed
matrix. If the shape of the matrix is known, however, the zero elements may be
assumed not to change by the perturbation, and the eigenvalues of the perturbed
matrix are contained in a circle of radius ε around the original eigenvalue.
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The small-sample statistical estimation approach predicts this behavior accu-
rately. As a concrete example, let

A =


0.2 1

0.2 1
. . .

0.2 1
0.2


be of order n = 10 and let ε ≈ 2× 10−16. Since all the eigenvalues are equal, assump-
tion (2) is not satisfied, and Algorithm 3 must be used to estimate their condition. If
norm-bounded perturbations ‖E‖F = ε ‖A‖F are assumed, the algorithm gives error
estimates of approximately 1015 ε for the computed eigenvalues, which indicates that
no digits can be assumed to be correct. If the zero elements of A are not perturbed,
however, the same algorithm gives error estimates of approximately ε. Note that in
the former case, p = n2 and the assignment rule S given to the algorithm is simply
that the ith entry of vec (E) equals the ith entry of z multiplied by ε ‖A‖F . In the
latter case, however, p = 2n− 1 equals the number of nonzero entries of A, and S as-
signs the p entries of each vector ε ‖A‖F z to the corresponding p entries of E and sets
the remaining entries to zero. In both cases, µ0 = 0.2 and the condition is estimated
for individual eigenvalues by monitoring the maximum perturbation of the spectrum
of A, rather than the perturbation of the average eigenvalue.

Example 2. An example of how the assumption of componentwise relative per-
turbations may be more appropriate than full additive perturbations follows. Let

A0 = Q− In,

where qij = 1 for i, j = 1, 2, . . . , n, let

M =


1

ξ
. . .

ξn−1

 ,
where ξ is a positive scalar, and let A = MA0M

−1. This matrix is Toeplitz, has
n − 1 eigenvalues at −1 and one at n − 1 and is badly scaled for ξ not close to 1.
Additionally, the eigenvector corresponding to the eigenvalue at n− 1 is proportional
to

x =
[
1 ξ ξ2 · · · ξn−1

]T
.

For a Schur decomposition of A with A11 = n − 1 and all eigenvalues of A22 at
−1, the upper bound on the subspace angle between the computed eigenvector x̂
and the corresponding vector for A + E for norm-bounded perturbations ‖E‖F ≤
ε ‖A‖F is very high, while the decomposition is computed very accurately in practice.
The reason for this is, of course, that the matrix is badly scaled and its entries
are not perturbed equally by rounding errors. Therefore, componentwise relative
perturbations are a more appropriate description of the errors than norm-bounded
perturbations.
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As a numerical example, take ξ = 3 and n = 20. An upper bound on the subspace
angle induced by a perturbation matrix E as above is approximately

‖E‖F
sepF (A11, A22)

≤ ε ‖A‖F
sepF (A11, A22)

≈ 3× 108 ε,

and applying Algorithm 2 to this case, with the assignment rules S for norm-bounded
perturbations as described in section 4.1, gives a similar value. In contrast, when
componentwise relative perturbations are assumed and the assignment rules S are
constructed as described in section 4.2, the estimates given by Algorithm 2 are on the
order of 10−1 ε. Note that for simplicity of exposition the Toeplitz structure of A is
not exploited in this example. In fact, incorporating this structural information in the
assignment rules S may give an even lower estimate of the condition of the problem.

The sensitivity of the simple eigenvalue at n− 1 shows similar behavior, with the
upper bound approximately 1017 ε when norm-bounded perturbations are assumed in
Algorithm 1, but on the order of ε when componentwise relative perturbations are
assumed.

Example 3. The great discrepancy between the condition estimates in the previ-
ous example is primarily due to the matrix A being very badly scaled. Another such
badly scaled example is given in [10]. In this case the matrix is symmetric and, unlike
before, the QR method fails to compute a Schur form for the matrix. Therefore,
Algorithms 3 and 4 must be employed, with Jacobi iterations used to compute the
eigenvalues for each perturbation.

The matrix under consideration is

A =

 1040 1029 1019

1029 1020 109

1019 109 1


with eigenvalues at approximately 1040, 9.9 × 1019, and 0.98. As discussed in [10],
the QR method fails to compute the two smaller eigenvalues, but all eigenvalues are
computed accurately via Jacobi iterations. According to the authors, the condition
number of all the eigenvalues is on the order of 1040, while componentwise relative
error bounds for symmetric matrices give a value of approximately 1.33. Applying
Algorithm 3 (modified either directly or modified according to the remark following Al-
gorithm 3 to estimate the sensitivity of the individual eigenvalues) with norm-bounded
perturbations as described in section 4.1 supports this result and gives absolute error
estimates on the order of 1040 ε for each eigenvalue. On the other hand, if both the
symmetry of the matrix and the size of individual components are exploited in the
construction of the assignment rules S, the estimates are on the order of ε λi for each
eigenvalue λi. Constructing these assignment rules may be done by noting that A has
only p = 6 independent elements, which may be taken to be its upper triangle. Thus,
each perturbation z is of dimension 6, its elements are assigned to the 6 elements of
the upper triangle of A, each one is multiplied by ε and the corresponding entry of A,
and a symmetric perturbation E is created from the resulting values.

Example 4. In some applications, the computation of the eigenelements of a
matrix is only an intermediate step toward some desired final result and the question
of the relevance of the accuracy of this particular step arises. More precisely, does
an ill-conditioned eigenvalue problem necessarily indicate ill conditioning in the final
result, and, vice versa, when does a well-conditioned eigenvalue step guarantee a well-
conditioned final result? This example illustrates how this may arise and motivates
some further work in that direction.
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Computing one type of optimal control law for a linear n-dimensional differential
system

ẋ(t) = Fx(t) +Gu(t),

y(t) = Hx(t),

where t denotes time, x(t) ∈ Rn, u(t) and y(t) are vectors or scalars, and F , G, and
H are appropriately dimensioned matrices, involves solving a Riccati equation of the
form [4]

FTX + FX −XGGTX +HTH = 0.

When certain system-theoretic assumptions on F , G, and H are satisfied (see, for
example, [4]), a unique symmetric positive definite solution to this equation exists,
the so-called stabilizing solution, which may be computed via the 2n×2n Hamiltonian
matrix

A =

[
F −GGT

−HTH −FT
]
.

This matrix has exactly n eigenvalues in the open left half-plane and, if the columns
of [XT

1 XT
2 ]T span the invariant subspace corresponding to those eigenvalues, then

X = X2X
−1
1 is the desired stabilizing solution.

Obviously, both the condition of the invariant subspace computation and the
condition of X1 with respect to inversion contribute to the condition of the solution
X. Moreover, the choice of X1 is not unique and its condition may depend heavily
on the choice of basis vectors for the invariant subspace [34]. Thus, the condition of
this invariant subspace is not the only factor determining the condition of the Riccati
solution, and to what extent it affects the final result is not obvious.

To illustrate, let

F =

 −1 1 0
0 −0.003 1
0 0 −0.002

 , G =

 0.1
0
0

 , H = I3.

Assuming norm-bounded perturbations, the condition of the invariant subspace cor-
responding to the three eigenvalues of A in the left half-plane is on the order of 107.
If the “shape” of F , G, and H is fixed and only the nonzero elements are assumed to
be perturbed, the condition is only on the order of unity, showing that in this case
the desired invariant subspace may be computed accurately. This holds for both com-
ponentwise relative perturbations and equal perturbations of the nonzero elements.
For all three types of perturbations the condition of X1 with respect to inversion is
high, or O(106).

The condition of the two steps does not seem to translate to the condition of
the Riccati solution in a consistent fashion. In fact, the latter value is on the order
of 107 for both norm-bounded perturbations and equal perturbations of the nonzero
elements of F , G, and H but only on the order of unity for componentwise relative
perturbations. This issue will be investigated further in a forthcoming paper.

6. Conclusions. A statistical approach to estimating the sensitivity of eigen-
value computations to perturbations in the matrix elements has been proposed. This
approach usually requires a computational effort similar to that of standard condition
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estimators for general matrices but more than some specialized ones. It has an added
benefit, however, namely, that it allows for a much wider class of perturbations than
other approaches, while giving results that have a high probability of being accurate.
In particular, the class of matrix perturbations can be restricted to componentwise
relative perturbations or various structured perturbations.

The statistical approach gives a powerful alternative to conventional condition
estimators for eigenvalue problems. In addition to being applicable to a wide class
of perturbations and requiring only moderate computational effort, it may be well
suited to problems involving large matrices since only a subset of eigenvalues and
the associated invariant subspace are required to evaluate the estimators. This is a
subject for future investigation.
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Abstract. In this note we introduce a partial ordering in the set of complex Hermitian matrices
which coincides with the well-known Löwner ordering when the considered matrices have the same
number of negative eigenvalues. Some properties of the new ordering are investigated, and known
results for shorted matrices are generalized.
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1. Introduction. Let Cm,n denote the set of complex m × n matrices and Cm
denote the set Cm,m. Let CHm denote the subset of Cm containing all Hermitian
matrices, and let C≥m denote the subset of CHm containing all non-negative definite
matrices. The symbols A∗, R(A), R⊥(A), N (A), and rk(A) will stand for the
conjugate transpose, the range, the orthogonal complement of the range, the null
space, and the rank, respectively, of A ∈ Cm,n. By A+ we denote the Moore–
Penrose inverse of A ∈ Cm,n, i.e., the unique matrix A+ satisfying AA+A = A,
A+AA+ = A+, (AA+)∗ = AA+, and (A+A)∗ = A+A. Any matrix A− satisfying
only the first of these equations, i.e., AA−A = A, is called a generalized inverse of
A ∈ Cm,n.

In this paper we are concerned with two known partial orderings. One of them is
defined in the set of complex rectangular matrices, whereas the other is only applicable

to square matrices. The rank subtractivity partial ordering A
rs
≤B in Cm,n is defined

by

(1) A
rs
≤B :⇔ rk(B−A) = rk(B)− rk(A),

whereas the Löwner partial ordering A
L
≤B in Cm is defined by

(2) A
L
≤B :⇔ B−A = KK∗

for some matrix K. The right-hand part of this definition means that B − A is a
non-negative definite matrix, i.e., B−A ∈ C≥m.

When A and B are Hermitian matrices, then

(3) A
rs
≤B ⇔ R(A) ⊆ R(B) and AB+A = A;

cf. statement (1.21) in Baksalary, Pukelsheim, and Styan (1989). Moreover, when A
and B are Hermitian matrices with the same number of negative eigenvalues, then

(4) A
L
≤B ⇔ R(A) ⊆ R(B) and AB+A

L
≤A;
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cf. Gross (1997). Observe that (4) has been established earlier for non-negative
definite matrices A and B; cf. statement (1.20) in Baksalary, Pukelsheim, and Styan
(1989). In this note we show that the conditions

R(A) ⊆ R(B) and AB+A
L
≤A

specify themselves a partial ordering within the set of Hermitian matrices. By re-
garding the shorted matrix with respect to the new ordering, a generalization of the
results of Goller (1986) and Mitra, Puntanen, and Styan (1994) is derived.

2. Ordering of Hermitian matrices. In the following we write A
◦
≤B when-

ever the Hermitian matrices A and B satisfy the conditions R(A) ⊆ R(B) and

AB+A
L
≤A. Note that in view of R(A) ⊆ R(B) the product AB+A does not de-

pend on the choice of generalized inverse; i.e., AB+A = AB−A for every generalized
inverse A− of A.

The following theorem ensures that the relation
◦
≤ specifies, in fact, a partial

ordering in the set of Hermitian matrices.

Theorem 1. For two matrices A,B ∈ CHm, the relation
◦
≤ defined by

A
◦
≤B :⇔ R(A) ⊆ R(B) and AB+A

L
≤A

specifies a partial ordering in CHm.

Proof. Reflexivity of the relation
◦
≤ is obvious.

Transitivity: Let A,B,C ∈ CHm such that A
◦
≤B and B

◦
≤C. Then R(A) ⊆ R(B)

andR(B) ⊆ R(C), which clearly givesR(A) ⊆ R(C). Moreover, we have AB+A
L
≤A,

i.e., A(A+ −B+)A ∈ C≥m, and BC+B
L
≤B, i.e., B(B+ −C+)B ∈ C≥m. Multiplying

B(B+ − C+)B from the left with AB+ and from the right with (AB+)∗ = B+A
shows that also AB+B(B+ − C+)BB+A ∈ C≥m. But in view of R(A) ⊆ R(B) we

have AB+B = A = BB+A, which gives A(B+ − C+)A ∈ C≥m and thus AC+A
L
≤

AB+A
L
≤A. Hence A

◦
≤C.

Antisymmetry: Let A,B ∈ CHm such that A
◦
≤ B and B

◦
≤ A. Then R(A) =

R(B). Moreover, AB+A
L
≤ A, i.e., A(A+ − B+)A ∈ C≥m, and BA+B

L
≤ B, i.e.,

B(B+ −A+)B ∈ C≥m. Multiplying B(B+ −A+)B from the left with AB+ and from
the right with (AB+)∗ = B+A gives A(B+−A+)A ∈ C≥m. But A(A+−B+)A ∈ C≥m
and A(B+ − A+)A ∈ C≥m can only hold together when A(B+ − A+)A = 0, i.e.,
AB+A = A. Now, since we also have R(B) ⊆ R(A) there exists a matrix G such
that B = AG. Multiplying AB+A = A from the right with G gives AB+B = B;
i.e., A = B in view of R(A) ⊆ R(B).

Let ν(A) denote the number of negative eigenvalues of a matrix A ∈ CHm. Then
we may state the following.

Corollary 1. Let A,B ∈ CHm. Then A
◦
≤B if and only if R(A) ⊆ R(B) and

ν(B−A) = ν(B)− ν(A).
Proof. From statement (1.66) in Styan (1985) or Lemma 2 in Gross (1997), we get

ν(A−AB+A) = ν(B−A)− [ν(B)− ν(A)] when R(A) ⊆ R(B). Since AB+A
L
≤A

if and only if ν(A−AB+A) = 0, the assertion follows immediately.
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Our next corollary has already been mentioned in the introduction. The nontrivial

part of its proof appears to be the implication A
L
≤ B ⇒ R(A) ⊆ R(B); cf. Gross

(1997, Theorem).

Corollary 2. Let A,B ∈ CHm be such that ν(A) = ν(B). Then A
◦
≤B if and

only if A
L
≤B.

Observe that the ordering
◦
≤ does not coincide with the Löwner partial ordering in

general, even when R(A) ⊆ R(B). Choose, e.g., A =

(
0 0
0 −2

)
and B =

(
1 0
0 1

)
.

Then A
L
≤ B, but A

◦
≤ B does not hold. On the other hand, by choosing A =(

1 1
1 1

)
and B =

(
2 2
2 −2

)
we have A

◦
≤ B, but A and B are not ordered with

respect to
L
≤. Note that the last two example matrices also confirm the fact that

A
◦
≤B does not imply A

rs
≤B. Of course, the converse is true for arbitrary Hermitian

matrices A and B, i.e., A
rs
≤B⇒ A

◦
≤B.

Moreover, it is easily verified that the condition AB+A
L
≤A alone cannot specify a

partial ordering. Consider, e.g., A =

(
1 0
0 −1

)
and B =

(
0 0
0 −1

)
. Then AB+A

L
≤

A and BA+B
L
≤B but A 6= B.

Nevertheless, the following holds.

Corollary 3. Let A,B ∈ CHm be such that R(A) = R(B). Then A
◦
≤B if and

only if B+
L
≤A+.

Proof. When A
◦
≤ B, then AB+A

L
≤ A, or, equivalently, A − AB+A ∈ C≥m.

Multiplying A−AB+A from both sides with A+ shows A+ −A+AB+AA+ ∈ C≥m.
But since R(A) = R(B) and R(B) = R(B+) we have A+AB+ = B+ = B+AA+.

Hence we obtain A+ − B+ ∈ C≥m, i.e., B+
L
≤ A+. On the other hand, multiplying

A+ −B+ ∈ C≥m from both sides with A immediately gives AB+A
L
≤A.

The following result on antitonicity of the Moore–Penrose inversion with respect

to
◦
≤ is strongly related to Corollary 3 and the results in Baksalary, Nordström, and

Styan (1990).

Corollary 4. Let A,B ∈ CHm. Then A
◦
≤ B and B+

◦
≤ A+ if and only if

A+
L
≤B+ and B+

L
≤A+.

Proof. Suppose A
◦
≤B and B+

◦
≤A+. Then R(A) = R(B) and from Corollary

3 B+
L
≤A+ and A+

L
≤B+.

Suppose, on the other hand, A+
L
≤B+ and B+

L
≤A+. Then R(A) = R(B) from

Theorem 2 and Lemma 4 in Baksalary, Nordström, and Styan (1990), and Corollary

3 gives B
◦
≤A and A

◦
≤B.

Recall that two matrices A,B ∈ Cm,n are called parallel summable if the product
A(A + B)−B does not depend on the choice of (A + B)− in which case P (A,B) =
A(A + B)−B is called the parallel sum of A and B; cf. section 10.1.6 in Rao and
Mitra (1971).
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Corollary 5. Let A,B ∈ CHm. Then A and B are parallel summable and

P (A,B) ∈ C≥m if and only if A
◦
≤A + B.

Proof. In view of statement (10.1.29) in Rao and Mitra (1971), A and B are
parallel summable if and only if R(A) ⊆ R(A + B). Moreover, P (A,B) = A(A +
B)+B = A(A + B)+(A + B−A) = A −A(A + B)+A ∈ C≥m if and only if A(A +

B)+A
L
≤A.

3. Shorted matrix. Consider the class A = {A : A
◦
≤ B,R(A) ⊆ R(C)},

where A,B ∈ CHm and C ∈ Cm,n.
Here we are interested in finding the maximal element in A, which may be called

the shorted matrix of B with respect to C in A (in the ordering
◦
≤). Anderson (1971)

investigated the class A as a subclass of C≥m with B ∈ C≥m, implying that
◦
≤ coincides

with
L
≤. The author has shown that A has a maximal element which is unique.

In the following we demonstrate that this result remains true when A and B
are considered to be Hermitian. However, we have to impose some restrictions on
the subspace R(C), which are known to be automatically satisfied when B is a non-
negative definite matrix.

For a matrix C ∈ Cm,n we will denote the orthogonal projector onto R⊥(C) by
QC, i.e., QC = Im −CC+. The following lemma might also be of some interest on
its own.

Lemma 1. Let B ∈ CHm and C ∈ Cm,n. Then R(B) +R(C) = R(BQC)⊕R(C)
if and only if rk(QCB) = rk(QCBQC).

Proof. Clearly R(C) + R(BQC) ⊆ R(C) + R(B), which means that R(C) +
R(BQC) = R(C)+R(B) if and only if rk(C : BQC) = rk(C : B). In view of Theorem
19 in Marsaglia and Styan (1974) the latter is equivalent to rk(QCB) = rk(QCBQC).

Moreover, dim[R(C)∩R(BQC)] = rk(C)+rk(BQC)−rk(C : BQC). By applying
again Theorem 19 in Marsaglia and Styan (1974) we obtain rk(C : BQC) = rk(C) +
rk(QCBQC). But when rk(QCBQC) = rk(QCB) = rk(BQC) we get dim[R(C) ∩
R(BQC)] = 0 and hence R(C) +R(BQC) = R(C)⊕R(BQC).

Observe that the condition rk(QCB) = rk(QCBQC) is equivalent to R(QCB) =
R(QCBQC), since always R(QCBQC) ⊆ R(QCB).

When B ∈ C≥m then rk(QCB) = rk(QCBQC) is obviously satisfied and Lemma
1 gives a well-known result; cf. Lemma 2.1 in Rao (1974).

Corollary 6. Let B ∈ CHm and C ∈ Cm,n be such that R(B) + R(C) =
R(BQC)⊕R(C). Then dim[R(B) ∩R(C)] = rk(B)− rk(BQC).

Proof. Observe that dim[R(C) ∩R(B)] = rk(C) + rk(B)− rk(C : B). In view of
Theorem 19 in Marsaglia and Styan (1974) we have rk(C : B) = rk(C) + rk(QCB).
This immediately leads to the assertion.

Lemma 2. Let B ∈ CHm and C ∈ Cm,n be such that R(B) +R(C) = R(BQC)⊕
R(C). Let S = B−BQC(QCBQC)+QCB. Then the following two statements hold :

(a) S
rs
≤B, i.e.; R(S) ⊆ R(B) and SB+S = S;

(b) rk(S) = dim[R(B) ∩R(C)], or, equivalently, R(S) = R(B) ∩R(C).
Proof. In view of the assumptions we have R(QCB) = R(QCBQC), which

immediately gives

(5) QCBQC(QCBQC)+QCB = QCB.

To observe statement (a) we only have to show SB+S = S since R(S) ⊆ R(B)
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is obviously satisfied. Now, since BB+S = S we immediately get SB+S = S −
BQC(QCBQC)+QCS. Since in view of (5) QCS = 0 we obtain SB+S = S.

Moreover, rk(S) = rk[B(Im − P)], where P := QC(QCBQC)+QCB is idempo-
tent, or, in other words, P is a projector. Applying Corollary 6.2 in Marsaglia and
Styan (1974) shows that

rk(S) = rk[B(Im −P)] = rk(Im −P)− dim[N (B) ∩R(Im −P)].

But since P is a projector we have R(Im−P) = N (P); see, e.g., Theorem 3.6.3 in Rao
and Bhimasankaram (1992). By using (5) we immediately get N (P) = N (QCB), and
hence N (B)∩R(Im−P) = N (B). This gives dim[N (B)∩R(Im−P)] = m− rk(B).
Since P is a projector we also have rk(Im−P) = m− rk(P). See again Theorem 3.6.3
in Rao and Bhimasankaram (1992), which leads to

rk(S) = rk(B)− rk(P).

In view of (5) we have rk(QCB) = rk(QCBQC(QCBQC)+QCB) = rk(QCBP) ≤
rk(P) ≤ rk(QCB), which gives rk(P) = rk(QCB) = rk(BQC). Hence, rk(S) =
dim[R(B) ∩R(C)] follows from Corollary 6.

By noting that BB+S = S and SQC = 0, i.e., R(S) ⊆ R(B)∩R(C), we obviously
get the equivalence of rk(S) = dim[R(B) ∩ R(C)] and R(S) = R(B) ∩ R(C), and
statement (b) is shown.

Observe that under the assumption R(B)+R(C) = R(BQC)⊕R(C) the matrix
S in Lemma 2 does not depend on the choice of generalized inverse (QCBQC)−, i.e.,
S = B − BQC(QCBQC)−QCB for any (QCBQC)−. However, we may also write
S = B − B(QCBQC)+B, since (QCBQC)+ = (QCBQC)+(QCBQC)+QCBQC,
i.e., (QCBQC)+ = (QCBQC)+QC = QC(QCBQC)+. It should be pointed out
that the plus superscript in

S = B−B(QCBQC)+B

cannot be replaced by a minus superscript unless R(B) ⊆ R(QCBQC). The latter
inclusion is equivalent to R(B)∩R(C) = {0} when R(B)+R(C) = R(BQC)⊕R(C)
is satisfied. In view of Lemma 2, R(B) ∩R(C) = {0} means S = 0.

We are now ready to present the main result of this section. It is not only

concerned with the above introduced class A = {A ∈ CHm : A
◦
≤B, R(A) ⊆ R(C)}

but also with the class Ars = {A ∈ CHm : A
rs
≤B, R(A) ⊆ R(C)}.

Theorem 2. Let B ∈ CHm and C ∈ Cm,n be such that R(B)+R(C) = R(BQC)⊕
R(C). Then S = B−BQC(QCBQC)+QCB is the maximal element in A as well as
in Ars.

Proof. In view of Lemma 2 the matrix S belongs to Ars and hence also to A.
To demonstrate that S is maximal in A consider an arbitrary matrix A ∈ CHm

satisfying A
◦
≤B and R(A) ⊆ R(C). Then obviously R(A) ⊆ R(B) ∩ R(C), where

R(B) ∩ R(C) = R(S) in view of Lemma 2. Since S
rs
≤ B, we have SB+S = S.

Multiplying from the left with AS+ and from the right with (AS+)∗ = S+A gives
AS+SB+SS+A = AS+SS+A = AS+A. In view of R(A) ⊆ R(S) we have AS+S =

A = SS+A, showing that AB+A = AS+A. Hence, A
◦
≤B implies A

◦
≤ S, showing

that S is maximal in A.
When A is an arbitrary matrix in Ars, then we also obtain AB+A = AS+A.

Hence, A
rs
≤B implies A

rs
≤ S, showing that S is maximal in Ars.
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As mentioned above, our Theorem 2 generalizes results of Anderson (1971, Theo-
rem 1), Goller (1986, Theorem 4.1), and Mitra, Puntanen, and Styan (1994, Theorem
3.3), who considered maximal elements in subclasses of C≥m. Clearly we automatically

have R(B) +R(C) = R(BQC)⊕R(C) and A
◦
≤B⇔ A

L
≤B when A,B ∈ C≥m.

Note that, e.g., Mitra and Puri (1982), Mitra (1986), and Goller (1986) also
consider maximal elements in subclasses of Cm,n.

4. Concluding remarks. Observe that any partial ordering in the set of com-
plex Hermitian matrices can be extended to the broader set of complex square matri-
ces. For this let H(A) denote the Hermitian part of A ∈ Cm, i.e., H(A) = 1

2 (A+A∗),
and S(A) denote the skew-Hermitian part of A, i.e., S(A) = 1

2 (A − A∗). Then
A = H(A) + S(A).

Now, when
?
≤ denotes an arbitrary partial ordering defined for Hermitian matrices

only, specify the extended partial ordering in Cm by

A
?
≤B :⇔ H(A)

?
≤H(B) and S(A) = S(B).

It is clear that S(A) = S(B) is satisfied if and only if the difference B−A is Hermitian.
Note that the well-known Löwner partial ordering defined by (2) may be characterized
in this way; i.e., we have

A
L
≤B ⇔ H(A)

L
≤H(B) and S(A) = S(B).
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Abstract. We develop a unified representation of two well-known approaches for the solution of
linear systems of equations by partitioning the original system into overlapping subsystems. The rep-
resentation generalizes the algebraic form of both the additive Schwarz and multisplitting methods.
In the new formulation we obtain convergence results similar to those known for multisplittings,
considering one- and two-stage variants. We report on some numerical experiments on a CRAY
T3D which suggest a slight preference for algebraic additive Schwarz methods over multisplitting
methods. These experiments also demonstrate the efficiency of our approach in a parallel computing
environment.
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1. Introduction. The classical Schwarz alternating procedure (SAP) has been
introduced in [29] in the last century in order to provide a constructive proof for the
existence of a (continuous) solution of a class of partial elliptic boundary value prob-
lems. The domain of integration is partitioned into possibly overlapping subdomains.
Starting from an initial approximation to the solution, one iteratively solves a smaller
boundary value problem alternatingly for each subdomain. Due to the domain decom-
position, “artificial” boundaries are introduced on each subdomain. These “artificial”
boundaries are updated iteratively by appropriate parts of the approximations on the
neighboring subdomains. The SAP represents one of the best known and most widely
used domain decomposition principles which has been used in many methods for both
the continuous and the discrete solution not only of elliptic, but also of parabolic and
hyperbolic, partial differential equations; see, e.g., [4], [14], [17], [18], [28], [33]. The
original Schwarz method can be classified as an example of a multiplicative Schwarz
method. In the so-called additive Schwarz methods the alternating treatment of the
subproblems in each iterative step is replaced by a simultaneous treatment. Additive
Schwarz-type methods have proven to be very useful in parallel contexts, particularly
as a preconditioning technique (see [4] and the references therein).

The idea of the additive Schwarz method has been applied to general algebraic
systems of linear equations by several authors; see [6], [25], [26], [27]. These alge-
braic additive Schwarz methods are related—but not identical—to those from domain
decomposition. The idea of overlapping subdomains is now reflected by overlapping
subsystems. This provides the connection to multisplitting methods which result
from an entirely algebraic background. In the case of a linear system Ax = b with
a nonsingular coefficient matrix A, multisplittings cover certain block splittings of
A with overlapping diagonal blocks. Analogously to the additive Schwarz principle,
the overlaps are introduced to optimize the relation of asymptotic convergence speed
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and arithmetic work per iteration and to improve the load balancing for a parallel
solution. Multisplitting methods have been introduced in [21]. Among the numerous
papers which have appeared since then, we note, e.g., [1], [5], [8], [9], [10], [15], [20],
[30].

In this paper we present a general model which covers both algebraic additive
Schwarz methods and multisplitting methods. As opposed to [6], [25], [26], [27],
where special sparsity patterns (like block tridiagonality) are required, our model
does not rely on any particular structure of the system to be solved. We develop a
unified convergence analysis for our general model and, moreover, stress the strong
similarity of the resulting algorithmic formulations for multisplitting and algebraic
additive Schwarz methods.

The paper is organized as follows: in section 2 we develop and motivate our con-
cept starting from an example. Section 3 contains basic definitions and auxiliary re-
sults, whereas in section 4 we prove several convergence results based on the theory of
nonnegative matrices and H-matrices. Section 5 considers two-stage (“inner-outer”)
modifications which are relevant for practical applications and for which we present
convergence results similar to those in section 4. In section 6 we give some compari-
son results with methods based on a single splitting. Section 7 discusses algorithmic
aspects. In section 8 we report the results of some numerical experiments.

2. The representation. We develop the idea behind both types of methods by
the example of two overlapping index sets which are the algebraic counterpart of two
overlapping subdomains in the case of a SAP applied to a continuous boundary value
problem. Let

Ax = b, A ∈ Rn×n, x, b ∈ Rn ,

be a linear system with nonsingular coefficient matrix A and let S, S̃ be a decompo-
sition of the set {1, . . . , n}; i.e., ∅ 6= S, S̃, S ∪ S̃ = {1, . . . , n}, and O := S ∩ S̃ 6= ∅.
For ease of notation we assume that S, S̃ consist of blocks of consecutive indices,
S = {1, . . . ,m}, S̃ = {m̃, . . . , n} with m̃ ≤ m, but this is by no means mandatory.
The overlapping part is thus given by O = {m̃, . . . ,m}. We decompose A as a 3× 3
block matrix:

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

with A11 ∈ R(m̃−1)×(m̃−1), A22 ∈ R(m−m̃+1)×(m−m̃+1), A33 ∈ R(n−m)×(n−m), and

b =

 b1
b2
b3

 , b1 ∈ Rm̃−1, b2 ∈ Rm−m̃+1, b3 ∈ Rn−m .

Abusing notation, we will also write b = (b1, b2, b3)T instead of the correct but
more complicated (bT1 , b

T
2 , b

T
3 )T . Given an initial approximation x0 = (x0

1, x
0
2, x

0
3)T ,

we now calculate first iterates (x1
1, x

1
2)T and (x̃1

2, x̃
1
3)T for both subsets S, S̃ by solving(

A11 A12

A21 A22

)(
x1

1

y1
2

)
=

(
b1 −A13x

0
3

b2 −A23x
0
3

)
,(

A22 A23

A32 A33

)(
ỹ1

2

x̃1
3

)
=

(
b2 −A21x

0
1

b3 −A31x
0
1

)
,
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yielding two potentially different approximations y1
2 , ỹ

1
2 on the overlapping part O.

Taking nonnegative diagonal weighting matrices E1, E2, Ẽ1, Ẽ2 of dimension (m −
m̃ + 1) with E1 + E2 = Ẽ1 + Ẽ2 = I we obtain a variety of possibilities for keeping
different and/or weighted approximations on the overlap by setting

x1
2 = E1y

1
2 + E2ỹ

1
2 ,

x̃1
2 = Ẽ1ỹ

1
2 + Ẽ2y

1
2 .

In general, the (k + 1)st iteration step is given by

(
A11 A12

A21 A22

)(
xk+1

1

yk+1
2

)
=

(
b1 −A13x̃

k
3

b2 −A23x̃
k
3

)
,(1) (

A22 A23

A32 A33

)(
ỹk+1

2

x̃k+1
3

)
=

(
b2 −A21x

k
1

b3 −A31x
k
1

)
,(2)

and

xk+1
2 = E1y

k+1
2 + E2ỹ

k+1
2 ,(3)

x̃k+1
2 = Ẽ1ỹ

k+1
2 + Ẽ2y

k+1
2 .(4)

We thus obtain an approximation xk+1
1 for the solution on S1\O, x̃k+1

3 on S2\O,
and two possibly different approximations xk+1

2 , x̃k+1
2 on the overlapping part O. In

the algebraic additive Schwarz method one takes

E1 = I, E2 = 0, Ẽ1 = 0, Ẽ2 = I, i.e., xk+1
2 = yk+1

2 , x̃k+1
2 = ỹk+1

2 ,

while multisplitting methods are characterized by

E1 = Ẽ1, E2 = Ẽ2, i.e., x̃k+1
2 = xk+1

2 = E1y
k+1
2 + E2ỹ

k+1
2 .

If we have more than two overlapping subsets which are not necessarily blocks of
consecutive indices, it becomes increasingly cumbersome to formulate the method in
a way similar to (1)–(4). This is the reason we now introduce blocks xk3 and x̃k1 which
can be treated as dummy blocks, which will never have to be computed in practice in
the above context. We set

M =

 A11 A12 0
A21 A22 0
0 0 A33

 , N = M −A ,

M̃ =

 A11 0 0
0 A22 A23

0 A32 A33

 , Ñ = M̃ −A ,

and xk = (xk1 , x
k
2 , x

k
3), x̃k = (x̃k1 , x̃

k
2 , x̃

k
3). By defining

E1 =

 I
E1

0

 , E2 =

 I
E2

0

 ,

and similarly, Ẽ1, Ẽ2, we can reformulate (1)–(4) as

xk+1 = E1(M−1(Nxk + b)) + E2(M̃−1(Ñ x̃k + b)) ,(5)

x̃k+1 = Ẽ1(M−1(Nxk + b)) + Ẽ2(M̃−1(Ñ x̃k + b)) .(6)
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Due to the block structure ofM,N, M̃, Ñ and the weighting matricesE1, E2, Ẽ1, Ẽ2,
neither xk+1

3 nor x̃k+1
1 in (5), (6) contribute to xk+2

1 , xk+2
2 or x̃k+2

2 , x̃k+2
3 in the

next iterative step. Also note that we could replace A33 in M and A11 in M̃
by any other (nonsingular) matrix without any influence on the computed blocks
xk+1

1 , xk+1
2 , x̃k+1

2 , x̃k+1
3 .

Besides its notational simplicity, the major advantage of the formulation of (5), (6)

lies in the fact that we now deal with “ordinary” splittings A = M−N, A = M̃−Ñ of
the full matrix A. This will make theoretical investigations much easier. Generalizing
(5) and (6) to more than two splittings yields the following fundamental definition.

Definition 2.1. Let A ∈ Rn×n be nonsingular. A collection of L splittings A =
Ml − Nl ∈ Rn×n, l = 1, . . . , L, and L2 nonnegative diagonal matrices El,m ∈ Rn×n

such that
∑L
m=1El,m = I for l = 1, . . . , L is called a weighted additive Schwarz-type

splitting of A.
The corresponding weighted additive Schwarz-type method computes iterates

xk,l, l = 1, . . . , L, by

xk+1,l =

L∑
m=1

El,my
k,m, k = 0, 1, . . . ,(7)

where

Mmy
k,m = Nmx

k,m + b, m = 1, . . . , L,(8)

with a priori given initial approximations x0,l, l = 1, . . . , L.
We emphasize that Definition 2.1 does not assume that the matrices Ml are built

from blocks of the matrix A nor does it assume any block structure for the Ml at
all. However, such block structure, together with the zero pattern of the El,m, will be
crucial for the determination of those (block) components of the iterates which will
actually have to be computed to perform (7).

Multisplittings can be considered as a special case of weighted additive Schwarz-
type methods where El,m = Em does not depend on l, so there is a unique iterate
which does not depend on l. This is specified in our next definition.

Definition 2.2. A multisplitting of A ∈ Rn×n is a collection of L splittings A =
Ml−Nl, l = 1, . . . , L, and L nonnegative diagonal matrices El such that

∑L
m=1Em =

I. The corresponding multisplitting iteration is defined by

xk+1 =
L∑

m=1

Emy
k,m,(9)

where

Mmy
k,m = Nmx

k + b, m = 1, . . . , L .(10)

We can retrieve the algebraic additive Schwarz methods considered in [6], [25],
[26], [27], e.g., as another special case of Definition 2.1. Consider a decomposition of
{1, . . . , n} into (overlapping) subsets Sm,m = 1, . . . , L, and define Pm ∈ Rn×n to be
the projection onto Sm; i.e., Pm is diagonal with its jth diagonal element equal to 1
if j ∈ Sm and 0 otherwise.
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Definition 2.3. Assume

(El,m)ii ∈ {0, 1}, i = 1, . . . , n, l,m = 1, . . . , L,(11)

for all diagonal elements of all matrices El,m in Definition 2.1 and, in addition,

El,l = Pl, l = 1, . . . , L.(12)

Then, we call the resulting weighted additive Schwarz-type splitting an algebraic ad-
ditive Schwarz splitting.

By (12) we ensure that for the components of xk+1,l which belong to Sl we just
take the result from the lth splitting, regardless of any possible overlap of Sl with
other sets Sm. Condition (11) states that the weighting process is specialized to a
choice.

Different possibilities still exist to define the remaining matrices El,m, subject to

the condition
∑L
m=1,m 6=lEl,m = I − Pl, resulting from (12) and Definition 2.1. For

example, we can take

El,m =


(I − Pl)

m−1∏
i=1

(I − Pi)Pm for m < l,

m−1∏
i=1

(I − Pi)Pm for m > l,

(13)

but various other choices are conceivable. Any such choice may be interpreted as
follows: the equation for updating component i ∈ Sl of xk,l induced by the splitting
Ml−Nl will usually involve several components j 6∈ Sl. Such components j can belong
to several other blocks Sm, and one has to decide which block Sm′ to take by setting the
jth diagonal element of El,m′ to 1. We illustrate this point by the following example.
Assume a finite difference discretization of a partial elliptic boundary value problem
with a five-point stencil on a rectangular domain which is decomposed vertically
and horizontally into rectangular subdomains which overlap on all four edges with
the respective neighbor. Then there exist grid points x belonging to four different
subdomains, and when evaluating a stencil involving x, one has to decide from which
subdomain x is taken.

The general case of Definition 2.1 can be regarded as a hybrid variant of an
algebraic additive Schwarz method and a multisplitting method: we do not require the
diagonal entries of the El,m to be equal to either 0 or 1 only. A component belonging
to an overlap between several subsets can be chosen as a general convex combination
of the individual contributions. On each overlap, different approximations will be kept
during the whole iteration and each of these approximations will be itself the result
of a weighting process for the approximations on the overlaps from the preceding
iteration.

While all three definitions above are very appropriate for theoretical purposes
they do not at all address the issue of computational efficiency. In fact, having to
compute all components of all vectors yk,m in each iteration would certainly yield a
quite inefficient computational process, and our introductory example showed that
the vectors yk,m may contain “dummy blocks” which are irrelevant for the iteration
and need not be computed.

In order to address this issue in the general setting of Definition 2.1, we define
the block property of an algebraic additive Schwarz-type splitting as follows.
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Definition 2.4. An algebraic additive Schwarz-type splitting is said to satisfy
the block property if for all l,m = 1, . . . , L, we have

(Em,m)ii = 0⇒ (El,m)ii = 0 for i = 1, . . . , n .

Any multisplitting, according to Definition 2.2, trivially satisfies the block prop-
erty. In this case, the component (yk,m)i only needs to be computed if (Em)ii 6= 0.
In the general case of Definition 2.1, and so, in particular, for the algebraic additive
Schwarz splittings of Definition 2.3, the block property ensures that we only have to
compute those components i of yk,m in Mmy

k,m = Nmx
k,m+b for which (Em,m)ii 6= 0,

since only these components possibly contribute to xk+1,l =
∑L
m=1El,my

k,m for all
l = 1, . . . , L. For example, the choice for El,m given in (13) for an algebraic additive
Schwarz splitting satisfies the block property.

3. Notation and auxiliary results. In Rn and Rn×n the relation ≤ denotes
the natural componentwise partial ordering. In addition, for x, y ∈ Rn we write
x < y if xi < yi, i = 1, . . . , n. A vector x ≥ 0 is called nonnegative; if x > 0 we call
x positive. Similarly, A ∈ Rn×n is called nonnegative if A ≥ 0. If A is nonsingular
with A−1 ≥ 0 and u ∈ Rn is positive, then A−1u > 0 since A−1 cannot contain a row
whose entries are all equal to 0. This fact will be used several times in the sections
below without any further comment.

A representation A = M −N, A,M,N ∈ Rn×n is termed a splitting of A if M is
nonsingular. A splitting A = M −N is termed regular (weak regular) if M−1 ≥ 0 and
N ≥ 0 (M−1N ≥ 0). So regular implies weak regular. The following result goes back
to Varga [32].

Lemma 3.1. Let A ∈ Rn×n be nonsingular and A = M − N be a weak regular
splitting. Then ρ(M−1N) < 1 if and only if A−1 ≥ 0.

Here, ρ(·) denotes the spectral radius of a matrix in Rn×n. A special class of
matrices A with A−1 ≥ 0 is given by the M -matrices. A nonsingular matrix A =
(aij) ∈ Rn×n is termed an M -matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0. Alternatively,
instead of A−1 ≥ 0 we can equivalently require Au > 0 for some vector u > 0 (see
[2]). The latter characterization shows immediately that the following lemma is valid
[22, sect. 2.4.10].

Lemma 3.2. Let A = (aij), B = (bij) ∈ Rn×n and assume that A is an M -matrix,
bij ≤ 0 for i 6= j and A ≤ B. Then B is an M -matrix.

For a given matrix A = (aij) ∈ Rn×n, its comparison matrix 〈A〉 = (αij) ∈ Rn×n

is defined by

αij =

{
|aii| if i = j,
−|aij | if i 6= j.

A is called an H-matrix if 〈A〉 is an M -matrix. The previous lemma immediately
yields an analogous result for H-matrices (see [8], for example).

Lemma 3.3. Let A,B ∈ Rn×n such that 〈A〉 ≤ 〈B〉. If A is an H-matrix, then
B is an H-matrix as well.

H-matrices are always nonsingular (see [2]). According to our previous remark
on M -matrices, A = (aij) being an H-matrix is characterized by the existence of a
positive vector u such that 〈A〉u > 0. Writing this componentwise yields

|aii|ui >
n∑

j=1,j 6=i
|aij |uj , i = 1, . . . , n .
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Therefore, H-matrices may be viewed as generalized diagonally dominant matrices
with weights ui. Special H-matrices include strictly diagonally dominant matrices
(take u = (1, . . . , 1)T ) as well as irreducibly diagonally dominant matrices or weakly
Ω-diagonally dominant matrices (see [7], [19]).

The absolute value |A| of A = (aij) ∈ Rn×n is again defined componentwise; i.e.,
|A| = (|aij |) ∈ Rn×n. Our final auxiliary result in this section gives a bound on |A−1|
if A is an H-matrix (see [8] or [23]).

Lemma 3.4. Let A ∈ Rn×n be an H-matrix. Then |A−1| ≤ 〈A〉−1.
We finally define the weighted max-norm ||·||u in Rn by ||x||u = max1≤i≤n |xi/ui|,

where u ∈ Rn is a positive vector. An easy calculation shows that the induced
operator norm is given by

||A||u = max
1≤i≤n

 1

ui

n∑
j=1

| aij | uj

 .

4. Convergence. According to Definition 2.1 we have L generally different iter-
ates xk,l, l = 1, . . . , L, at each iteration k in a weighted additive Schwarz-type method.
We collect them in the vector

xk = (xk,1, . . . , xk,L)T ∈ RLn .

Defining

c =

(
L∑

m=1

E1,mM
−1
m b, . . . ,

L∑
m=1

EL,mM
−1
m b

)T
∈ RLn

and

H =

 E1,1M
−1
1 N1 · · · E1,LM

−1
L NL

...
. . .

...
EL,1M

−1
1 N1 · · · EL,LM

−1
L NL

 ∈ RLn×Ln,(14)

we can rewrite (7) and (8) as

xk+1 = Hxk + c .(15)

Our convergence analysis will be based on (15). We start by showing that (15) is
consistent with Ax = b.

Lemma 4.1. Let A ∈ Rn×n be nonsingular, x∗ = A−1b, and x∗ = (x∗, . . . , x∗)T ∈
RLn. Then

x∗ = Hx∗ + c .(16)

Consequently, if ρ(H) < 1, then x∗ is the unique fixed point of the affine operator
x 7→Hx+ c.

Proof. Since Ax∗ = b, we have x∗ = M−1
m (Nmx

∗ + b) for m = 1, . . . , L, and thus

L∑
m=1

El,mM
−1
m Nmx

∗ +
L∑

m=1

El,mM
−1
m b =

L∑
m=1

El,mM
−1
m (Nmx

∗ + b)

=
L∑

m=1

El,mx
∗ = x∗ for l = 1, . . . , L .
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This proves (16). If ρ(H) < 1, the matrix I −H is nonsingular, so x = Hx + c ⇔
(I −H)x = c has a unique solution, which is x∗.

To formulate our general convergence result we need the following basic auxiliary
result (see also [32], for example).

Lemma 4.2. Let A = (aij) ∈ Rn×n and suppose there exists u ∈ Rn, u > 0, such
that

|A|u < u .(17)

Then ρ(A) < 1. Moreover, let Θ ∈ [0, 1) be such that

|A|u ≤ Θu .(18)

Then ρ(A) ≤ Θ < 1.

Proof. We recall ||A||u = maxni=1

(∑n
j=1 | aij | uj

)
/ui, so in the case of (17) we

have ||A||u < 1, and in the case of (18) we have ||A||u ≤ Θ. Both assertions now
follow, since ρ(A) ≤ ||A|| for any operator norm.

Theorem 4.3. Let a weighted additive Schwarz-type splitting of A ∈ Rn×n with
splittings A = Ml−Nl and weighting matrices El,m, l,m = 1, . . . , L, be given. Assume
that there exists a vector u ∈ Rn, u > 0, such that |M−1

l Nl|u < u, l = 1, . . . , L.
Then ρ(H) < 1, which implies limk→∞ xk,l = x∗ = A−1b, l = 1, . . . , L, for the
iterates of the corresponding iteration (7), (8).

Proof. In light of Lemma 4.1, we only have to show that ρ(H) < 1. Denote

u = (u, . . . , u)T ∈ RLn .

Obviously, u > 0. The lth block of |H|u is given by

L∑
m=1

|El,mM−1
m Nm|u =

L∑
m=1

El,m|M−1
m Nm|u <

L∑
m=1

El,mu = u,

which results in |H|u < u, so ρ(H) < 1 follows from Lemma 4.2.
In weighted additive Schwarz-type methods, generally, different iterates are com-

puted on overlaps. The above theorem includes the important assertion that all se-
quences of different iterates on an overlap converge to the same solution. For special
cases, this was already observed in [6], [25].

Corollary 4.4. Assume that each splitting Ml−Nl, l = 1, . . . , L, in a weighted
additive Schwarz-type splitting of A ∈ Rn×n is weak regular. Moreover, assume A−1 ≥
0. Then ρ(H) < 1.

Proof. Let e = (1, . . . , 1)T ∈ Rn and u = A−1e. Since A−1 ≥ 0, we have
u > 0. Now |M−1

l Nl| = M−1
l Nl = I −M−1

l A, and thus |M−1
l Nl|u = u −M−1

l Au =
u−M−1

l e < u, the last inequality holding because of M−1
l ≥ 0. The conclusion thus

follows from Theorem 4.3.
Another corollary arises for particular splittings of an H-matrix.
Corollary 4.5. Let A be an H-matrix and assume that each splitting Ml −Nl

in a weighted additive Schwarz-type splitting satisfies

〈A〉 ≤ 〈Ml〉 − |Nl|, l = 1, . . . , L .(19)

Then ρ(H) < 1.
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Proof. Because of (19) each 〈Ml〉 satisfies 〈A〉 ≤ 〈Ml〉. With Lemma 3.3, this
implies that Ml is an H-matrix. Therefore |M−1

l Nl| ≤ |M−1
l | |Nl| ≤ 〈Ml〉−1|Nl|, l =

1, . . . , L, by Lemma 3.4. Together with (19) this implies |M−1
l Nl| ≤ 〈Ml〉−1(〈Ml〉 −

〈A〉) = I − 〈Ml〉−1〈A〉, l = 1, . . . , L. As in Corollary 4.4, let e = (1, . . . , 1)T and
u = 〈A〉−1e > 0. Then |M−1

l Nl|u ≤ u − 〈Ml〉−1e < u, l = 1, . . . , L, so that we are
back to the situation of Theorem 4.3.

Special cases of Corollary 4.5 arise if

〈A〉 = 〈Ml〉 − |Nl|, l = 1, . . . , L .(20)

Such splittings were termed H-compatible in [12]. The equality (20) holds trivially if
each entry of Ml is either 0 or equal to the corresponding entry of A, as is the case
in the traditional (block) Jacobi or (block) Gauß–Seidel splittings, for example. Also
note that Corollary 4.5 holds, in particular, for M -matrices, since these are special
cases of H-matrices.

5. Two-stage variants. The splittings A = Ml − Nl, l = 1, . . . , L, are often
primarily conceptual rather than numerically practical: they describe the principal
way in which the original system Ax = b is decomposed for the general additive
Schwarz-type process, but systems with the matrices Ml can be too expensive to be
solved exactly. Therefore, analogously to [11], [13], [15], [16], [25], [30], e.g., we now
consider the situation where for each primary or outer splitting A = Ml−Nl, we have
an additional inner splitting

Ml = Fl −Gl, l = 1, . . . , L .

Instead of solving

Mly = Nlx
k,l + b(21)

for y to obtain yk,l in the weighted additive Schwarz-type method (7), (8), we now
approximate the solution of (21) by performing s steps of the inner iteration

Fly
k,l,ν+1 = Gly

k,l,ν +Nlx
k,l + b, ν = 0, . . . , s− 1,(22)

with yk,l,0 = xk,l, taking yk,l = yk,l,s in (7). Of course, the number s of inner iterations
may depend on the iteration level k and on the individual outer splittings, so we write
s = s(k, l). A short calculation shows

yk,l = yk,l,s(k,l) = (F−1
l Gl)

s(k,l)xk,l +

s(k,l)−1∑
ν=0

(F−1
l Gl)

νF−1
l (Nlx

k,l + b)

=
(
I − (I − (F−1

l Gl)
s(k,l))M−1

l A
)
xk,l + cs(k,l)

with

cs(k,l) =

s(k,l)−1∑
ν=0

(F−1
l Gl)

νF−1
l b .(23)

Define

Ts(k,l) = (F−1
l Gl)

s(k,l) +

s(k,l)−1∑
ν=0

(F−1
l Gl)

νF−1
l Nl(24)

= I −
(
I − (F−1

l Gl)
s(k,l)

)
M−1
l A(25)

= (Ms(k,l))
−1Ns(k,l)(26)
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with

Ms(k,l) = Ml

(
I − (F−1

l Gl)
s(k,l)

)−1

, Ns(k,l) = A−Ms(k,l) ,(27)

so A = Ms(k,l) − Ns(k,l) is the unique splitting leading to Ts(k,l); see [15]. Then the
two-stage weighted additive Schwarz-type method is given by

xk+1,l =
L∑

m=1

El,my
k,m, k = 0, 1, . . . ,(28)

where

yk,m = Ts(k,m)x
k,m + cs(k,m), m = 1, . . . , L,

with Ts(k,m) from (24), cs(k,m) from (23), and El,m from Definition 2.1.

As in section 4 we can write the whole process as an iteration in Rn×n by setting

xk = (xk,1, . . . , xk,L), ck =

(
L∑

m=1

E1,mc
s(k,m), . . . ,

L∑
m=1

EL,mc
s(k,m)

)T
,

and

Hk =

 E1,1Ts(k,1) · · · E1,LTs(k,L)

...
...

EL,1Ts(k,1) · · · EL,LTs(k,L)


so that

xk+1 = Hkx
k + ck, k = 0, 1, . . . .(29)

Note that x∗ = A−1b satisfies Flx
∗ = Glx

∗ + Nlx
∗ + b for l = 1, . . . , L, so from

(22) we deduce that x∗ = Ts(k,l)x
∗+ cs(k,l). Defining the error ek of the kth iteration

as ek = xk − x∗, where x∗ = (x∗, . . . , x∗)T ∈ RLn, we obtain

ek+1 = Hke
k, k = 0, 1, . . . .(30)

We are now ready to prove our main result on the convergence of the two-stage
iteration (29). It is similar to Theorem 4.3, and we will subsequently again give
two corollaries illustrating special cases of this theorem. Also note that the theorem
and the corollaries hold for arbitrary s(k, l), and so they hold particularly for the
nonstationary case where s(k, l) depends explicitly on k. Of course, the results also
hold for the stationary case where s(k, l) = s(l).

Theorem 5.1. Assume that there exists a positive vector u ∈ Rn, u > 0, such
that for l = 1, . . . , L and for all k = 0, 1, . . . we have

|Ts(k,l)|u ≤ Θu(31)

with Θ ∈ [0, 1). Then the two-stage iterates xk from (29) satisfy limk→∞ x
k = x∗.

Proof. By (30), the errors ek satisfy

ek = Hk−1e
k−1 = Hk−1 · · ·H0e

0, k = 1, 2, . . . .
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So we have to show that limk→∞Hk−1 · · ·H0 = 0. Defining u = (u, . . . , u)T , from
(31) we obtain for the lth block in |Hk|u

L∑
m=1

|El,mTs(k,m)|u =
L∑

m=1

El,m|Ts(km)|u ≤
L∑

m=1

El,mΘu = Θu ,

so |Hk|u ≤ Θu and, consequently, by Lemma 4.2

||Hk||u ≤ Θ , k = 0, 1, . . . .

This implies ||Hk−1 · · ·H0||u ≤ Θk and thus limk→∞Hk−1 · · ·H0 = 0.
Corollary 5.2. Suppose that the splittings A = Ml − Nl, l = 1, . . . , L, and

Ml = Fl −Gl, l = 1, . . . , L, are all weak regular. Assume that A−1 ≥ 0 and F−1
l Nl ≥

0, l = 1, . . . , L. Then limk→∞ x
k = x∗ for the two-stage iterates xk from (29).

Proof. Let e = (1, . . . , 1)T and u = A−1e > 0. Since F−1
l Gl ≥ 0, F−1

l ≥ 0,
and F−1

l Nl ≥ 0, we see that Ts(k,l) ≥ 0 from (24). Moreover, since by Lemma 3.1

ρ(F−1
l Gl) < 1, we have M−1

l = (I−F−1
l Gl)

−1F−1
l =

∑∞
j=0(F−1

l Gl)
jF−1

l . Therefore,
from the representation of Ts(k,l) in (25), we get

0 ≤ |Ts(k,l)|u = Ts(k,l)u = u−
(
I − (F−1

l Gl)
s(k,l)

)
M−1
l e

= u−
(
I − (F−1

l Gl)
s(k,l)

) ∞∑
j=0

(F−1
l Gl)

jF−1
l e

= u−
s(k,l)−1∑
j=0

(F−1
l Gl)

jF−1
l e ≤ u− F−1

l e .

Since F−1
l e > 0, there exists Θl ∈ [0, 1) such that |Ts(k,l)|u ≤ Θlu, l = 1, . . . , L.

Taking Θ = max1≤l≤L Θl, we finally obtain |Ts(k,l)|u ≤ Θu with Θ ∈ [0, 1), as
required for Theorem 5.1.

In passing, let us note that Corollary 5.2 generalizes results for single splitting
two-stage methods in [12], [16], where the outer splitting was assumed to be regular
and the inner to be weak regular.

Corollary 5.3. Let A be an H-matrix and assume that all splittings A =
Ml −Nl satisfy

〈A〉 ≤ 〈Ml〉 − |Nl|, l = 1, . . . , L,(32)

and that all inner splittings Ml = Fl −Gl satisfy

〈Ml〉 = 〈Fl〉 − |Gl|, l = 1, . . . , L .(33)

Then limk→∞ x
k = x∗ for the two-stage iterates xk from (29).

Proof. The proof follows by combining the techniques in the proofs of Corollar-
ies 5.2 and 4.5.

6. Comparison theorems. So far we have proved the convergence of weighted
additive Schwarz-type methods. A natural question that arises in this context is, for
example, how the size of the overlap influences the rate of convergence. Any theoretical
investigation in this direction seems to be very difficult even for qualitative assertions.
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For multisplittings, some results are found in [1], [10], but their technique of proof
does not carry over to our more general case.

We will give a result comparing a weighted additive Schwarz-type splitting with
a single splitting. It is similar to those given in [5], [20] for multisplittings. We need
the following auxiliary result.

Lemma 6.1. Let A ∈ Rn×n be nonnegative, u ∈ Rn be positive, and Θ > 0.
(i) If Au ≤ Θu, then ρ(A) ≤ Θ.
(ii) If Au ≥ Θu, then ρ(A) ≥ Θ.

Proof. (i) was proved in Lemma 4.2. For (ii) we have

0 < u ≤
(

1

Θ
A

)
u ≤ · · · ≤

(
1

Θ
A

)k
u ≤ · · · ,

which shows that
(

1
ΘA
)k

cannot converge to 0. This implies ρ
(

1
ΘA
)
≥ 1, i.e., ρ(A) ≥

Θ.
Theorem 6.2. Let A ∈ Rn×n be nonsingular with A−1 ≥ 0. Let A = M −N =

M̃ − Ñ be two regular splittings of A. Moreover, assume that in a weighted additive
Schwarz-type splitting of A, all splittings A = Ml −Nl are weak regular and

M̃−1 ≥M−1
l ≥M−1, l = 1, . . . , L .

Let H denote the iteration matrix for the weighted additive Schwarz-type splitting as
defined in (14). Then

ρ(M̃−1Ñ) ≤ ρ(H) ≤ ρ(M−1N).

Proof. We start proving the second inequality. For simplicity, let us write ρ
instead of ρ(M−1N). Note that ρ < 1 due to Lemma 3.1. By the Perron–Frobenius
theorem (see [2, 24, 31]) there exists u ∈ Rn, u ≥ 0, such that M−1Nu = ρu. Since
0 ≤ Nu = ρMu we get Au = Mu−Nu = (1−ρ)Mu ≥ 0. Thus, for each l = 1, . . . , L,
we have

M−1
l Nlu = (I −M−1

l A)u = u−M−1
l Au ≤ u−M−1Au = M−1Nu = ρu .

Defining u = (u, . . . , u) ∈ RLn, this immediately yields Hu ≤ ρu with H ≥ 0.
Hence, if u is positive, ρ(H) ≤ ρ by Lemma 6.1 (i). If u is only nonnegative, define

E =

 1 · · · 1
...

...
1 · · · 1

 ∈ Rn×n

and consider the matrix Aε = A− εE with the splittings Aε = M − (N + εE), Aε =
Ml − (Nl + εE), l = 1, . . . , L. For all ε > 0 the matrix M−1(N + εE) is positive
so that there exists a positive Perron vector uε with M−1(N + εE)uε = ρεuε, ρε :=
ρ(M−1(N + εE)) > 0. Taking ε > 0 sufficiently small, we still have ρε < 1, and
thus A−1

ε =
(∑∞

ν=0(M−1(N + εE))ν
)
M−1 ≥ 0. Repeating the part of the proof

given before, we thus get Aεuε ≥ 0 and ρ(Hε) ≤ ρε for the iteration matrix of the
corresponding weighted additive Schwarz-type splitting. As ε tends to 0 this yields
ρ(H) ≤ ρ.
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The proof for the first inequality proceeds in a completely analogous manner
showing Hũ ≥ ρ(M̃−1Ñ)ũ for the Perron vector ũ of M̃−1Ñ . If ũ > 0 the proof is
complete according to Lemma 6.1 (ii); otherwise we consider Aε, as before.

To give a specific example, let A = D − L − U be an M -matrix with diagonal
part D and strictly lower and upper triangular parts −L and −U , respectively. Let
S1, . . . , SL be an (overlapping) decomposition of {1, . . . , n} and define

(Ml)ij =

{
(A)ij if (i = j) or (i > j and i, j ∈ Sl),

0 otherwise.
(34)

With M = D, M̃ = D − L, all assumptions of Theorem 6.2 are met, showing
that any weighted additive Schwarz-type splitting with the matrices Ml from (34)
converges at least as fast as the Jacobi iteration but not faster than the Gauß–Seidel
method.

As another particular case, assume that all splittings are equal; i.e., M = M̃ =
Ml, l = 1, . . . , L. Theorem 6.2 then shows that ρ(H) = ρ(M−1N). This equality
even holds under less restrictive assumptions, as the following theorem shows.

Theorem 6.3. Assume a splitting A = M − N and let Ml = M,Nl = N, l =
1, . . . , L, in (8). Assume further that H ≥ 0, H 6= 0 for H = M−1N . Then for any
weighted additive Schwarz-type splitting,

ρ(H) = ρ(H),

where H denotes the iteration matrix from (14).
Proof. Let ε > 0 such that

Hε = H + εE

has a positive Perron vector u ∈ Rn. An immediate calculation shows that for
u = (u, . . . , u) ∈ RLn we have Hεu = ρ(Hε)u so that Lemma 6.1(i),(ii) yields
ρ(Hε) = ρ(Hε) and, as ε→ 0, ρ(H) = ρ(H).

The above theorem can be adapted to two-stage methods as the subsequent corol-
lary shows.

Corollary 6.4. Assume a stationary two-stage splitting A = M−N,M = F−G
and let Ml = M,Nl = N,Fl = F,Gl = G, l = 1, . . . , L, in (24) with s(k, l) = s for
all l, k. Assume further that A = M −N,M = F −G are weak regular splittings and
that F−1N ≥ 0.

Then

ρ(Ts) = ρ(Hs),

where Hs denotes the iteration matrix (14) for this stationary two-stage method.
Proof. By (26), (27) we have Ts = M−1

s Ns with Ms = M(I − (F−1G)s)−1, Ns =
A−Ms. The inequalities F−1N,F−1, F−1G ≥ 0 yield Ts ≥ 0. M−1, F−1, F−1G ≥ 0
imply ρ(F−1G) < 1, hence (I−(F−1G)s)−1 exists and Ms is well defined. We further

note M−1
s = (I − (F−1G)s)M−1 =

∑s−1
j=0(F−1G)jF−1 ≥ 0. We now repeat the proof

of Theorem 6.3 with M,N replaced by Ms, Ns.
The above theorem and its corollary generalize results to both one-stage and two-

stage variants of weighted additive Schwarz-type methods, which have been proved
in [25], [27] for one-stage Schwarz-type methods (more precisely: two-stage methods
with one inner iteration) and more abstract results presented in [20] for one-stage mul-
tisplitting methods. The above theorem suggests, however, that all these results are
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of more theoretical than practical interest: if we start the weighted additive Schwarz-
type iteration with identical initial guesses x0,1 = · · · = x0,L = x0, we get (see (14))
identical iterates xk,1 = · · · = xk,L = xk, where xk is also obtained by the single
splitting iteration xk+1 = M−1(Nxk + b), k = 0, 1, . . . , with initial guess x0.

7. Algorithmic aspects. For multisplitting methods, implementation details
are described in [3, Chap. 7, 9]. Here, we discuss some algorithmic aspects of gen-
eral weighted additive Schwarz-type methods. We assume L processors P (m), m =
1, . . . , L, each associated with one splitting A = Mm −Nm. For simplicity we do not
include the convergence control.

In the most general case following Definition 2.1, iteration k can be implemented
as follows in a message passing environment:

for m = 1 to L do in parallel on P (m)
solve Mmy = Nmx

k,m + b for y exactly or approximately (in a two-stage method),
call result yk,m

for l = 1 to L, l 6= m do
send El,my

k,m to P (l)
receive Em,ly

k,l from P (l)

accumulate xk+1,m =
∑L
l=1Em,ly

k,l

In the above algorithm, each processor P (m) holds a complete iterate xk,m. In
every step, the processors exchange “their” respective approximations yk,m (which,
for convenience, are already multiplied by the weighting factors El,m required by the
receiving processor). These are then accumulated to yield the next complete iterate
xk+1,m.

The algorithmic efficiency of communication is determined by the message length,
which is formally equal to n for each message El,my

k,m, and the maximal number of
messages, which is 2L(L−1) in the above general algorithm. Both can be substantially
reduced in specific situations.

The message length can be reduced as soon as the El,m have many zero diagonal
elements. It is then advantageous to restrict the messages to the nonzero components
of El,my

k,m. To be specific, define Sm = {i : 1 ≤ i ≤ n and (Em,m)ii 6= 0}. The
block property of Definition 2.4 then ensures that each processor P (m) only needs to
compute those components of yk,m which belong to Sm. Due to the block property,
only a part of these nonzero components must be sent to the other processors since
(El,my

k,m)i = 0 as soon as i 6∈ Sm. Hence, when transferring Elmy
k,m, the message

length actually reduces to at most |Sm| components.
Furthermore, in applications with a sparse matrixA (and sparse matricesMm, Nm),

the number of messages will usually also be reduced drastically. Typically then, a pro-
cessor only communicates with a few “neighbors,” since each processor P (m) needs
only a small part of xk,m to form those components of Nm(xk,m + b) required to
compute its part of yk,m. This part of xk,m will usually involve only a few of the
Em,ly

k−1,l, l 6= m, the nonzero components of which are the only ones to be commu-
nicated.

As opposed to methods which perform a “true” weighting of components, addi-
tive Schwarz methods according to Definition 2.3 tend to minimize the overall message
length. Each processor receives only one value for each relevant component of xk,m+1,
and the accumulation to get xk+1,m reduces to a mere selection process. If a “true”
weighting is performed for some component, more than one value for this compo-
nent has to be transferred and the weighting requires arithmetic work during the
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accumulation process. This shows that methods with a “true” weighting exhibit a
certain overhead with respect to computation and communication as compared to the
additive Schwarz methods from Definition 2.3.

In conclusion, we point out that the above algorithmic framework illustrates that
the similarity of algebraic Schwarz methods and multisplitting methods exceeds the
formal aspect of Definition 2.1. In the framework of overlapping block decompositions
these methods simply differ by their treatment of the approximations on the overlaps.
Schwarz methods keep different approximations on the overlaps during the whole
iterative process, while multisplitting methods determine a unique approximation
after every iteration. This requires an additional weighting process, producing some
communicational and computational overhead.

8. Numerical results. For our numerical experiments we choose as an example
the Dirichlet problem

(a(x)ux)x + (b(y)uy)y + αu = 0

on a rectangle Ω = [0, 1]× [0, c] for α ∈ {0.1, 1.0} and

(i) a(x) = 1 + 0.02x, b(y) = 1 + 0.002y,
(ii) a(x) = 1 + 2x, b(y) = 0.133 + 1.2y,

with Dirichlet boundary conditions

u(x, y) =


y for x = 0,
2y for x = 1,
x/2 for y = c,
1.1x for y = 0.

This example is a typical one, but it cannot be representative due to the large
variety of possible applications. Nevertheless, it should give a feeling for the potential
properties of the methods treated in this paper and, in particular, for the intended
comparison.

The five-point discretization with central differences and a mesh size of h =
1/(p+ 1) leads for c = (q + 1) · h to the q × q block tridiagonal coefficient matrix

A = (−Bj−1, Aj ,−Bj)qj=1

with diagonal p× p blocks

Bj = b
(

2j+1
2 h

)
· I

and tridiagonal p× p blocks

Aj =
(
−a( 2i−1

2 h), a( 2i−1
2 h) + a( 2i+1

2 h) + b( 2j−1
2 h) + b( 2j+1

2 h) + α,−a( 2i+1
2 h)

)p
i=1

.

The condition of A decreases as α > 0 gets larger, so in all methods tested we
expect α = 0.1 to require more iterations than α = 1.0. We introduce a simple domain
decomposition of Ω into L overlapping rectangles

Γl = [0, 1]× [l(i), r(i)], l = 1, . . . , L,

l(i) = (i− 1) · q/L− ov, r(i) = i · q/L+ 1 + ov,

l(1) = 0, r(L) = q + 1.
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Each rectangle consists of r(i) − l(i) − 1 grid lines, each with two additional
artificial boundaries l(i), r(i) except for the first left and last right “true” boundaries.
2ov indicates the number of grid lines per overlap.

We report tests for a two-stage method (21), (22) with a block Jacobi iteration as
outer iteration by choosing for m = 1, . . . , q the matrix Mm to be the identity apart
from the blocks l(m) + 1 through r(m) − 1 where we take the corresponding entries
of A; i.e.,

Mm =



I

Al(m)+1 −Bl(m)+1

−Bl(m)+1

. . .
. . .

. . .
. . . −Br(m)−1

−Br(m)−2 Ar(m)−1

I


.

The inner iteration is also taken to be a block Jacobi iteration where for m =
1, . . . , q we remove the off-diagonal blocks in Mm; i.e.,

Fm =


I

Al(m)+1

. . .

Ar(m)−1

I

 .

We tested the following three variants:
schw an algebraic additive Schwarz method,
ms-w a multisplitting method with weight 0.5 on the overlaps,
ms-l a multisplitting method, where on every overlap the last approximation

of the upper neighboring subdomain is chosen after each step.

In schw we take

Em,m =


0

I

0

 ,

whereas ms-w and ms-l are characterized by

Em =


0

1
2I

I
1
2I

0

 and Em =


0

I
I

0
0

 ,

respectively. Here, the horizontal and vertical lines refer to the same block decom-
position as in Mm, Fm. Within the central block in the Em, the first (last) diagonal
block corresponds to that part which overlaps with the lower (upper) neighboring
subdomain.
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As a convergence criterion we use a modified relative difference of two iterates:

max
1≤i≤p,1≤j≤q

{ ∣∣xk+1
i,j − xki,j

∣∣
max

{∣∣xki,j∣∣ , 10−300
}} < 10−14.

In all tests with a given solution, we observed only minimal differences between
the three variants with respect to the relative error.

In Table 1 we compare the three variants applied to example (ii) with p = 256, q =
256, α = 0.1, L = 16 subdomains and 2ov = 32 overlapping lines. These (sequential)
results have been obtained on a workstation IBM RS 6000-550 at the Department
of Mathematics of the Technical University of Berlin. We state the number itout of
outer iterations and the CPU time in seconds as a function of the number itin of
inner iterations.

Table 1

Dependence on the number of inner iterations.

itin
itout
schw

itout
ms-w

itout
ms-l

Time
schw

Time
ms-w

Time
ms-l

1 1325 1325 1325 582.9 650.1 600.1
2 679 683 679 448.2 476.8 445.8
3 460 465 466 395.2 421.5 404.9
4 348 354 350 371.4 397.7 382.7
5 281 288 288 362.4 382.5 370.9
7 204 210 210 347.9 370.9 360.9
9 160 166 166 347.9 369.5 357.2

11 132 138 138 339.9 367.6 363.3
13 113 119 118 330.7 357.7 347.2
15 98 104 103 335.0 360.9 353.3
17 87 93 92 337.5 365.0 356.4

As one could expect, the number of outer iterations decreases with an increasing
number of inner iterations. Since performing more inner iterations requires more time,
there is an optimal number of inner iterations minimizing the CPU time. In the case
of Table 1, itin = 13 is optimal. In many other examples, only a few inner iterations
(two to four) were optimal. As a characteristic result we obtain that for itin fixed
the numbers of iterations needed by the three different methods vary only slightly,
even for larger overlaps. In the latter case, however, the additional time for copying
(sending) the whole overlaps in both multisplitting methods ms-l and ms-w and, in
particular, that for the weighting process for method ms-w, is no longer negligible,
so the algebraic additive Schwarz method becomes fastest. In particular, this effect
becomes obvious for itin = 1, where communication is necessary after every inner (=
outer) iteration.

In Table 2 we illustrate the influence of the size of the overlaps. We take the above
example for itin = 4, α = 0.1, and α = 1.0. As the number of outer iterations differs
by at most one or two for the three methods, we only note the results (computed
again on an IBM RS 6000-550) for the algebraic additive Schwarz method.

Table 2 illustrates a typical behavior of weighted algebraic Schwarz-type methods.
Starting with ov = 0, i.e., a simple nonoverlapping block Jacobi method, the number of
iterative steps decreases for a moderate increase in the size of the overlaps. For larger
values of ov, the number of steps remains constant1 and the increasing arithmetic

1 As was suggested by one of the referees, a heuristic explanation for this fact is the very local
character of the five-point stencil used in our discretization.
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Table 2

Dependence on the size of the overlap.

2ov
itout

(α = 0.1)
Time

(α = 0.1)
itout

(α = 1.0)
Time

(α = 1.0)
0 384 180.7 61 28.6
2 356 175.4 46 22.6
4 353 182.4 45 23.2
6 351 188.5 44 24.2
8 351 197.5 44 26.2

10 350 207.6 44 26.4
12 350 219.2 44 28.3
14 349 226.9 44 28.7
16 349 236.5 44 29.8
18 349 245.2 44 31.2
20 349 256.6 44 33.0

complexity of the individual steps causes a re-increasing CPU time. In other cases
the influence of the overlap can be stronger. See [10], for example, for results for a
one-stage multisplitting method in the framework of waveform relaxation methods.

Our tests on a parallel machine have been carried out on the CRAY T3D of the
Konrad-Zuse-Zentrum für Informationstechnik, Berlin. We used a message passing
code for parallelization, which we implemented with CRAY PVM, a version particu-
larly adapted to the hardware of the T3D.

Table 3 shows the scaling effect of the three methods for example (i) with α =
0.1, p = 500, itin = 4, ov = 1, and q = 2k+7, 0 ≤ k ≤ 8, the number of subdomains L
increasing with and being equal to the number of processors.

Table 3

Scaling of the weighted additive Schwarz methods schw, ms-w, and ms-l.

q
# of
proc

itout
schw

itout
ms-w

itout
ms-l

Time
schw

Time
ms-w

Time
ms-l

128 1 158 158 158 68.1 68.1 68.1
256 2 162 162 161 70.7 71.1 70.3
512 4 162 162 161 71.4 71.8 70.9

1024 8 163 162 161 71.9 71.9 71.5
2048 16 163 163 163 71.9 72.4 71.5
4096 32 164 164 163 72.5 72.9 72.1
8192 64 167 166 166 74.0 73.7 73.3

16384 128 171 171 171 78.0 76.9 76.4
32768 256 181 181 180 85.6 84.6 83.9

All three algorithms scale rather well. The number of outer iterative steps and
the CPU time remain almost constant with an increasing number of processors (i.e.,
subdomains) up to 64 processors. For larger numbers of processors, the times begin to
increase somewhat faster since the number of iterations increases (whereas the time
per iterative step increases only very slowly). Note that the size of the subdomains
500× (128 + 2) is constant for L > 2, whereas for L = 1 the size is equal to 500× 128
due to the lack of overlap.

Finally, our last table, Table 4, deals with the same example with α = 1.0, p =
64, q = 16 384, itin = 4, ov = 1. It illustrates the parallelization effect for a fixed
problem size and an increasing number L of processors, i.e., an increasing number
of subdomains with a decreasing size p× (q/L+ 2). Since, again, the three methods
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differ only minimally due to the small overlap, we only note the results for the Schwarz
method schw. The case L = 1 could not be computed because of memory restrictions.

Table 4

Parallelization effect.

# of
proc

q/L+ 2 itout Time Speedup T2/Tproc

2 8194 29 98.93 1.00
4 4098 30 50.07 1.98
8 2050 31 25.95 3.81

16 1026 31 12.94 7.65
32 514 31 6.99 14.15
64 258 32 3.43 28.85

128 130 32 2.01 49.02
256 66 32 1.86 53.18

For small numbers of processors, the difference to the optimal speedup is mostly
due to the slightly different numbers of iterative steps. For large numbers of processors
the speedup deviates somewhat more from its optimum due to the interference of the
(not entirely proportionally) decreasing size of the subproblems and the increasing
significance of communication. The latter effect becomes dominant for 256 processors
and more.

In conclusion, the above numerical examples illustrate the strong similarity of
algebraic additive Schwarz-type and multisplitting methods, as predicted by the the-
oretical results. The results do not suggest a clear preference when comparing these
methods. A slight preference should probably be given to Schwarz-type methods in
applications with more complicated communication patterns (like a three-dimensional
problem where domain decomposition is applied in all three directions) and where a
small number of inner iterations is optimal. In these cases the longer message length
and the additional weighting process of a multisplitting method may increase the
time.

Acknowledgments. We want to thank Daniel B. Szyld for many valuable com-
ments and his very careful reading of the manuscript. We are also grateful to an
anonymous referee for suggesting several improvements.
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Abstract. This paper addresses the problem of approximating an eigenvector belonging to the
largest eigenvalue of a symmetric positive definite matrix by the power method. We assume that the
starting vector is randomly chosen with uniform distribution over the unit sphere.

This paper provides lower and upper as well as asymptotic bounds on the randomized error
in the Lp sense, p ∈ [1,+∞]. We prove that it is impossible to achieve sharp bounds that are
independent of the ratio between the two largest eigenvalues. This should be contrasted to the
problem of approximating the largest eigenvalue, for which Kuczyński and Woźniakowski [SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 1094–1122] proved that it is possible to bound the randomized
error at the kth step with a quantity that depends only on k and on the size of the matrix.

We prove that the rate of convergence depends on the ratio of the two largest eigenvalues, on
their multiplicities, and on the particular norm. The rate of convergence is at most linear in the
ratio of the two largest eigenvalues.

Key words. eigenvectors, power method, random start, randomized error

AMS subject classification. 65F15

PII. S0895479895296689

1. Introduction. In this paper we deal with the power method, which is used
to approximate a largest eigenvector of an n× n symmetric matrix A. By the largest
eigenvector we mean a normalized eigenvector corresponding to the largest eigenvalue
of A. Our analysis holds for every matrix A for which the power method is convergent.
To simplify the analysis, we assume that A is positive definite.

It is well known that the convergence of the power method depends on the starting
vector b. In particular, the power method is not convergent if b is orthogonal to the
eigenspace corresponding to the largest eigenvalue of A. Since no a priori information
about this eigenspace is generally available, a random starting vector is usually chosen.
This indicates the need to study the convergence of the power method with a random
start.

It is easy to see that if b is randomly chosen according to the uniform distribution
then the power method approximates a largest eigenvector and the largest eigenvalue
with probability 1. The problem of approximating the largest eigenvalue by the power
method with a random start has been considered in [4], where sharp upper bounds on
the randomized relative error at each step are given. An important feature of these
bounds is that they are independent of the distribution of the eigenvalues.

The approach of our paper is similar to that of [4]. We analyze the convergence of
the power method for approximating a largest eigenvector when the starting vector b
is randomly chosen with uniform distribution over the unit sphere of the n-dimensional
space.
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Department at Columbia University. This research was (partially) supported by the ESPRIT III
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In order to define the randomized error, we consider the acute angle αk = αk(b)
between the vector computed by the power method at the kth step and the eigenspace
corresponding to the largest eigenvalue, and we study the expectation of sin(αk(b))
over b in the Lp sense, p ∈ [1,+∞].

We first ask whether it is possible to get bounds on the randomized error that do
not depend on the distribution of the eigenvalues. We prove (see section 3) that for
every k and p there are matrices for which the randomized error is very close to 1.
This means that there are matrices for which the power method fails after k steps even
for a random starting vector. In contrast to the problem of approximating the largest
eigenvalue, this shows that the randomized error for the problem of approximating
a largest eigenvector must depend on the distribution of eigenvalues. In particular,
it must depend on the ratio between the two largest eigenvalues. So, the problem of
approximating a largest eigenvector is harder than the problem of approximating the
largest eigenvalue, and even a random start does not help to obtain distribution-free
bounds.

We show that the rate of convergence of the power method depends on the ratio
of the two largest eigenvalues, on their multiplicities, and on the particular norm
Lp. Let λ1 be the largest eigenvalue with multiplicity r, and let λr+1 be the second
largest eigenvalue with multiplicity s. Then the randomized error after k steps is

proportional to (λr+1/λ1)
k

if p < r, to k1/p (λr+1/λ1)
k

if p = r, and to (λr+1/λ1)
kr/p

if p > r. The multiplicative constants depend on p, r, and s. This means that the rate
decreases with p, increases with multiplicity r, decreases with multiplicity s, and is
at most linear in λr+1/λ1. For p = +∞, the power method has the randomized error
equal to one for all k.

The results in this paper provide useful insight into the behavior of the power
method for eigenvector approximation when the initial vector is randomly chosen.
Our bounds can be useful for determining the computational cost for achieving a
prescribed accuracy for eigenvector estimate. In fact, the sharpness of our upper
and lower bounds allows one to derive an accurate estimate of the computational
cost when the distribution of the eigenvalues is partially known. Another interesting
result of the paper is that in some cases the randomized error has a rate of convergence
lower than the well-known (λr+1/λ1)k ratio achieved in the deterministic case. This
is undoubtedly to be taken into account when one applies the power method with an
initial starting vector.

We briefly comment on related work on approximate computation of eigenvectors.
The idea of using random starting vectors for the power method can be found in
Shub [8]. Shub applies the power method to the matrix e−A and approximates an
eigenvector of A which is not necessarily a largest eigenvector. Although, for this
problem, the power method is globally convergent, the random start is used to improve
efficiency. Shub shows, however, that even for n = 2 there are matrices for which this
problem is very hard. In our paper we apply the power method to the matrix A, and
we are only interested in approximating a largest eigenvector.

Kostlan [2] studies the randomized performance of the power method. In partic-
ular, in that paper he bounds the number of steps that allows the error to be lower
than a fixed threshold ε. We discuss those bounds in section 4.3, comparing them
with the bounds proposed in this paper.

Wright [10] and Kostlan [3] analyzed the problem of approximating a largest
eigenvector by the power method in a different setting. They considered the average
case setting over a class of matrices, whereas we consider the randomized setting.
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In particular, they estimate the average time needed for computing a vector whose
relative distance from the eigenspace of largest eigenvectors is less than ε. In our
paper the matrix is fixed while the starting vector is chosen at random.

The paper is organized as follows. Section 2 contains the definition of the problem
and some general results that are used in subsequent sections. In section 3 we analyze
the behavior of the power method for worst case matrices. In section 4 we find
upper and lower bounds on the randomized error. We show that these bounds are
asymptotically optimal since, up to lower order terms, they match the asymptotic
bounds presented in section 5. Numerical tests are presented in section 6. The tests
show that the randomized error indeed depends on the distribution of the eigenvalues.
We compare the test results with the theoretical lower and upper bounds. Section 7
contains the conclusions and final remarks.

2. Definition of the problem. Let A be an n × n symmetric positive defi-
nite matrix with eigenvalues λ1 ≥ λ2 ≥ · · ·λn > 0 and corresponding orthonormal
eigenvectors z1, z2, . . . , zn. We will denote by Z the eigenspace corresponding to λ1.
We recall that the power method is defined as follows; see, e.g., [7]. Let u0 = b be
any nonzero starting vector. Then, for every k = 1, 2, . . ., we construct the following
sequences of vectors: {

yk= Auk−1,
uk= yk/‖yk‖,

where ‖ · ‖ is the Euclidean vector norm.
Without loss of generality, we may assume that the starting vector b is normalized,

so ‖b‖ = 1. Observe that if we express b as a linear combination of the orthonormal
eigenvectors,

b =

n∑
i=1

bizi,

then uk becomes

uk =

∑n
i=1 biλ

k
i zi√∑n

i=1 b
2
iλ

2k
i

.(2.1)

Let r be the multiplicity of the largest eigenvalue λ1. Without loss of generality,
we assume that 1 ≤ r < n, since r = n implies A = λ1I, and in this case any nonzero
vector is an eigenvector corresponding to λ1.

In order to estimate the error at the kth step, we consider the acute angle αk(b)
between the vector uk and the eigenspace Z. This angle is uniquely determined by
the vector uk and by its orthogonal projection on the subspace Z. The sine of αk(b)
is the distance between the vector uk and the subspace Z. From (2.1) we have

dist(uk,Z) := inf
z∈Z
‖uk − z‖ = sin(αk(b)) =

√ ∑n
i=r+1 b

2
iλ

2k
i∑r

i=1 b
2
iλ

2k
1 +

∑n
i=r+1 b

2
iλ

2k
i

.(2.2)

It is straightforward to see that, if the vector b has zero components in the directions
of the eigenvectors belonging to λ1 (i.e., bi = 0 for i = 1, 2 . . . , r), then αk = π/2 for
any k. Otherwise, uk converges to a vector of Z and the angle αk goes to zero as k
goes to infinity. The analysis of the power method for a fixed starting vector b may
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be found in many books (see, for example, [7] and [9]), where in particular one finds
that, if the method converges, the rate convergence is λr+1/λ1.

As already mentioned, we study the randomized error of sin(αk(·)) in the Lp
sense. Using (2.2) we have

sin(αk(b)) =

√ ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

,(2.3)

where

xi = λi/λ1 for i = 1, 2, . . . , n, and 1 = x1 = · · · = xr > xr+1 · · · ≥ xn > 0.(2.4)

Let us formalize the notion of Lp norm. Let µ be the uniform distribution over
the unit sphere Sn = {b : ‖b‖ = 1} such that µ (Sn) = 1. Then the Lp norm of the
function sin(αk(·)), defined as in (2.3), is given by

‖ sin(αk(·))‖p =

[∫
Sn

|sin (αk(b))|p µ(db)

]1/p
.(2.5)

From Remark 7.2 of [4], we have∫
Sn

|sin (αk(b))|p µ(db) =
1

cn

∫
Bn

|sin (αk(b))|p db,(2.6)

where cn is Lebesgue’s measure of the unit ball Bn = {b : ‖b‖ ≤ 1}; see (2.10) for
the definition of cn. Substituting (2.3) into (2.5) and using (2.6), we have

‖ sin(αk(·))‖p =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.

In the same way we define the norm of the space L∞ to be

‖ sin(αk(·))‖∞ = sup
b∈Sn

|sin(αk(b))|

= sup
‖b‖=1

√ ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

.(2.7)

It is easy to see that the supremum in (2.7) is achieved by setting
∑r
i=1 b

2
i = 0.

From (2.7), we get

‖ sin(αk)‖∞ = 1.(2.8)

In the following we refer to sin(αk(b)) as the error of the power method after k
steps for the starting vector b. We denote ‖ sin(αk)‖p by erank (A, p), and we call it
the randomized error in the Lp sense of the power algorithm after k steps. Hence, we
have

erank (A, p) =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.(2.9)
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For p = +∞, the power method fails to converge since its randomized error is 1
for all k; see (2.8). From now on we therefore assume that p < +∞. As we shall see,
the power method is then convergent: erank (A, p) → 0. The speed of convergence is,
however, poor for large p.

In the paper we will denote by ci the measure of the unit ball over IRi. We have

ci =
πi/2

Γ (i/2 + 1)
;(2.10)

see [1, eq. 8.310, 1] for the definition of the gamma function Γ (x). We will also use
the following relation between the beta and gamma functions:

B (i, j) = 2

∫ 1

0

t2i−1(1− t2)j−1 dt =
Γ (i) Γ (j)

Γ (i+ j)
.(2.11)

We will denote by F (a, b; c;x) the hypergeometric function; see [1, eq. 9.10] for the
definition and the properties of this function.

3. Worst case matrices. In [4], Kuczyński and Woźniakowski considered the
power method for approximating the largest eigenvalue λ1. They proved that the
randomized error after k steps is bounded by a quantity that goes to zero as fast
as ln(n)/k independently of the distribution of the eigenvalues. Our first goal is
to analyze the possibility of obtaining distribution-free bounds for the problem of
approximating a largest eigenvector. To this extent, we will deal with “worst case
matrices.”

Let us denote by s(k, p) the supremum of the randomized error in the Lp sense
over all positive definite matrices A, i.e.,

s(k, p) = sup
A=A∗>0

erank (A, p).

Since the randomized error increases with xi (see (2.4)), it is easy to show that the
supremum is achieved by setting xi = 1 for every i ≥ 2 and for every p, 1 ≤ p < ∞.
Then we get

s(k, p) =

[∫
Sn

( ∑n
i=2 b

2
i

b21 +
∑n
i=2 b

2
i

)p/2
db

]1/p

(3.1)

=

[
1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)p/2
db

]1/p

.

Hence, s(k, p) is independent of k and cannot go to zero. This shows that there are
no distribution-free bounds. In fact, s(k, p) are pretty close to 1. We first consider
the case p = 1. Using (3.1) and the symmetry argument, we have

s(k, 1) =
1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)1/2

db

≥ 1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)
db =

(
1− 1

n

)
.(3.2)

We obtain estimates on s(k, p) by the following proposition.
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Proposition 3.1. For every k and p, 1 ≤ p <∞, we have(
1− 1

n

)
≤ s(k, p) ≤ 1.

Proof. The right-hand side inequality is trivial. Let us prove the left-hand side.
For p = 1 it follows immediately by (3.2). For p > 1, applying Hölder’s inequality
to (3.1) gives us∫

Sn

(
1− b21∑n

i=1 b
2
i

)1/2

db ≤
[∫

Sn

(
1− b21∑n

i=1 b
2
i

)p/2
db

]1/p [∫
Sn

db

]1/q
,

where p and q are conjugate exponents; i.e., 1/p + 1/q = 1. The proof is completed
by observing that

∫
Sn
db = 1.

Proposition 3.1 states that for every k there are matrices for which the randomized
error is close to 1. These matrices have the largest eigenvalue of multiplicity 1, and
the second largest eigenvalue has multiplicity n− 1 and is pathologically close to λ1.
In this case, even if the starting vector is random, the sequence {ui} for i = 1, 2 . . . , k
does not approximate a largest eigenvector.

4. Nonasymptotic behavior. So far we have seen that if λr+1/λ1 ≈ 1 then
the power method behaves badly even for a random starting vector. We now ana-
lyze the relationship between the ratio λr+1/λ1 and the rate of convergence of the
power method for approximating a largest eigenvector. We first show upper and lower
bounds on the randomized error erank (A, p). These bounds depend on the distribution
of the eigenvalues of the matrix A and on the particular norm used. In particular,
we prove that the rate of convergence is slower when the multiplicity of λ1 is smaller
than the value of the parameter p of the norm. What seems interesting about these
results is that they hold for a complete class of norms, and we are able to show how
the speed of convergence of the power method depends on the norm.

4.1. Upper bounds. We now show how the rate of convergence depends on
the multiplicity r of the largest eigenvalue and on the value of the parameter p of
the norm. Theorem 4.1 shows that the rate of convergence depends on the relation
between the parameters r and p. In particular, the speed of convergence increases
with r and decreases with p.

Theorem 4.1. Let A be a symmetric positive definite matrix, and let r, r < n,
denote the multiplicity of the largest eigenvalue λ1 of A. Let

β =

[
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

(
2 +

2

n

)]1/p
xkr+1.

Then, for every p, 1 ≤ p <∞, and for every k we have

erank (A, p) ≤



xkr+1

(
Γ ((r − p)/2) Γ ((n+ p− r)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

if p < r,

xkr+1 (2k)1/p
(

ln

(
1

xr+1

)
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

)1/p

+ β if p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ (n/2)

Γ (p/2) Γ ((n− r)/2)

)1/p

if p > r.
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Proof. We have

[erank (A, p)]p =
1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.

Observe that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . The upper

bound is then obtained by replacing xi by xr+1 for i > r + 1,

[erank (A, p)]p ≤
xkpr+1

cn

∫
Bn

( ∑n
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑n
i=r+1 b

2
i

)p/2
db.(4.1)

Let a = xkr+1, ‖b‖2 =
∑r
i=1 b

2
i , and let ti = bi/(1− ‖b‖2)1/2 for i = r + 1, . . . , n with

‖t‖2 =
∑n
i=r+1 t

2
i . If we rewrite the last integral as an integral over the balls Br and

Bn−r, we get

[erank (A, p)]p ≤ ap

cn

∫
Br

∫
Bn−r

‖t‖p (1− ‖b‖2)(n+p−r)/2

(‖b‖2 + a2‖t‖2(1− ‖b‖2))
p/2

dt db.

Let γ = r(n − r)crcn−r/cn. We twice apply [1, eq. 4.642] to reduce the last integral
to the two-dimensional integral, and we get

[erank (A, p)]p ≤ apγ
∫ 1

0

∫ 1

0

tn+p−r−1 br−1(1− b2)(n+p−r)/2

(b2 + a2t2(1− b2))p/2
db dt.

Since b2 + a2t2(1− b2) ≥ b2, we have

[erank (A, p)]p ≤ apγ
∫ 1

0

tn+p−r−1 dt

∫ 1

0

br−1(1− b2)(n+p−r−1)/2

bp
db

= ap
γ

n+ p− r

∫ 1

0

br−p−1(1− b2)(n+p−r)/2 db.(4.2)

Consider first the case p < r. From the definition of the beta function, (4.2) becomes

[erank (A, p)]p ≤ ap γ

2(n+ p− r)B
(
r − p

2
,
n+ p− r

2
+ 1

)
= ap

Γ ((n+ p− r)/2) Γ ((r − p)/2)

Γ ((n− r)/2) Γ (r/2)
.

This proves the case p < r.
Let us now consider the case p = r. The integral in (4.1) can be rewritten

with respect to the ball Bn−p and the p-dimensional ball B′p = {b :
∑p
i=1 b

2
i ≤

1−
∑n

i=p+1 b
2
i }. We have

[erank (A, p)]p ≤ ap

cn

∫
Bn−p

 n∑
i=p+1

b2i

p/2 ∫
B′p

1(∑p
i=1 b

2
i + a2

∑n
i=p+1 b

2
i

)p/2 db.
Let ‖b‖2 =

∑n
i=p+1 b

2
i . From [1, eq. 4.642], we get

[erank (A, p)]p ≤ ap p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

tp−1

(t2 + a2‖b‖2)p/2
dt db.(4.3)
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We have two cases, p = r = 1 and p = r ≥ 2. If p = 1, (4.3) becomes

[erank (A, 1)] ≤ a 2

cn

∫
Bn−1

‖b‖
∫ √1−‖b‖2

0

1

(t2 + a2‖b‖2)1/2
dt db

= a
2

cn

∫
Bn−1

‖b‖ ln

(√
1− ‖b‖2 +

√
1− (1− a2)‖b‖2

a ‖b‖

)
db.

Using [1, eq. 4.642], and observing that
√

1− ‖b‖2 ≤
√

1− (1− a2)‖b‖2, we get

[erank (A, 1)] ≤ a γ
∫ 1

0

bn−1 ln

(
2
√

1− (1− a2)b2

ab

)

≤ a γ

2n
ln

(
1

a2

)
+ a

γ

n
+ a

γ

n2
,(4.4)

where γ = (n− 1)2cn−1/cn. Hence, from (4.4) we have

[erank (A, 1)] ≤ a Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)
ln

(
1

a2

)
+ a

Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)

(
2 +

2

n

)
.

This proves the case p = r = 1.
Let us consider the case p ≥ 2. Notice that

(t2 + a2‖b‖2)p/2 ≥ tp +
p

2
t2(p/2−1)a2‖b‖2.

Then we can bound the denominator of the integrand of (4.3) with the first two terms
of this expansion. We have

[erank (A, p)]p ≤ ap p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

tp−1

tp + p/2 tp−2a2‖b‖2 dt db

= ap
p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

t

t2 + p/2 a2‖b‖2 dt db.

Solving the last integral, and using again [1, eq. 4.642] to reduce the first integral to
a one-dimensional integral, we obtain

[erank (A, p)]p ≤ apγ
∫ 1

0

bn−1 1

2
ln

(
1− (1− p/2a2)b2

p/2 a2b2

)
db

= ap
γ

2

∫ 1

0

bn−1 ln

(
1

p/2 a2b2

)
db+ ap

γ

2

∫ 1

0

bn−1 ln
(

1−
(

1− p

2
a2
)
b2
)
db

= ap
γ

2n
ln

(
2

pa2

)
+ ap

γ

n2
+ ap

γ

2

∫ 1

0

bn−1 ln
(

1−
(

1− p

2
a2
)
b2
)
db,(4.5)

where γ = p(n − p)cpcn−p/cn. Let us consider the argument of the logarithm in the
integral of (4.5). Observe that if a2 ≤ 2/p, then ln(1− (1− p/2 a2)b2) ≤ 0. Hence, in
this case, we can bound (4.5) by

[erank (A, p)]p ≤ ap γ
2n

ln

(
2

pa2

)
+ ap

γ

n2
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= ap
γ

2n
ln

(
1

a2

)
+ ap

γ

2n

(
ln

(
2

p

)
+

2

n

)
≤ ap Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

2

n
.(4.6)

Otherwise, if a2 > 2/p, then ln(1− (1− p/2 a2)b2) ≤ ln(p/2). In this case we have

[erank (A, p)]p ≤ ap γ
2n

ln

(
2

pa2

)
+ ap

γ

n2
+ ap

γ

2

∫ 1

0

bn−1 ln
(p

2

)
db

= ap
γ

2n
ln

(
1

a2

)
+ ap

γ

n2

= ap
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

2

n
.(4.7)

Observing that 2/n < (2 + 2/n) and using (4.6) and (4.7), we have

[erank (A, p)]p ≤ ap Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

(
2 +

2

n

)
.

This proves the case p = r.
Finally, assume that p > r. From (4.1), repeating the same reasoning that led

to (4.3), we have

[erank (A, p)] ≤ ap rcr
cn

∫
Bn−r

‖b‖p
∫ √1−‖b‖2

0

tr−1

(t2 + a2‖b‖2)p/2
dt db

=
rcr
cn

∫
Bn−r

∫ √1−‖b‖2

0

tr−1

(t2/(a2‖b‖2) + 1)
p/2

dt db.

Changing variables by setting z = t/(a‖b‖), we get

[erank (A, p)]p ≤ ar rcr
cn

∫
Bn−r

‖b‖r
∫ d

0

zr−1

(z2 + 1)p/2
dz db,

where d =
√

1− ‖b‖2/(a‖b‖). Now set y = z2. From the last equation we have

[erank (A, p)]p ≤ ar rcr
2cn

∫
Bn−r

‖b‖r
∫ d2

0

yr/2−1

(y + 1)p/2
dy db.

We notice that d goes to infinity when a goes to zero. Then we have∫ d2

0

yr/2−1

(y + 1)p/2
dy ≤

∫ +∞

0

yr/2−1

(y + 1)p/2
dy = B

(
r

2
,
p− r

2

)
,

due to formula [1, eq. 3.194]. We apply [1, eq. 4.642] to reduce the integral over Bn−r
to a one-dimensional integral, and we get

[erank (A, p)]p ≤ ar r(n− r)crcn−r
cn

∫ 1

0

bn−1B

(
r

2
,
p− r

2

)
= ar

Γ (n/2) Γ ((p− r)/2)

Γ ((n− r)/2) Γ (p/2)
.

This concludes the proof.
Note that, when p = r, the bound is composed of two terms. The first term

depends on k through xkr+1k
1/p; the second term depends on k through xkr+1. We

remark that for large k the influence of the second term is negligible. Nevertheless,
numerical tests show that this term can affect the bound when the value of xr+1 is
close to 1.
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4.2. Lower bounds. In this section we find lower bounds on the randomized
error erank (A, p). As in section 4.1, we show that these lower bounds depend on the
multiplicity of the largest eigenvalue and on the value of the parameter p of the norm.
Upper and lower bounds show the same dependence on the ratio between the two
largest eigenvalues and on the relation between p and r.

Below we define some constants that are used in Theorem 4.2.

γ =

(
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
; 1− x2k

r+1

))1/p

if p < 2, and

γ =

(
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 3

2
; 1− x2k

r+1

))1/p

if p ≥ 2. Moreover,

γ′ =

(
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

(
log

(
p2 + 3p

4

)
− 2

p+ 1
+

2p− 4

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− x2k

r+1

)))1/p
,

γ′′ =

(
r Γ ((r + 1)/2 + 1) Γ ((p− r)/2)

4pΓ (1/2) Γ (p/2 + 1)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− x2k

r+1

))1/p

.

Theorem 4.2. Let A be a symmetric positive definite matrix, and let r, r < n,
denote the multiplicity of the largest eigenvalue λ1 of A. Then, for every p, 1 ≤ p <∞,
and for every k we have

erank (A, p) ≥



xkr+1

(
Γ ((r − p)/2) Γ ((p+ 1)/2)

Γ (r/2) Γ (1/2)

)1/p

− γ xkr/pr+1 if p < r,

xkr+1(2k)1/r
(

ln

(
1

xr+1

)
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

)1/p

− γ′xkr+1 if p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ ((r + 1)/2)

Γ (p/2) Γ (1/2)

)1/p

− γ′′xk(r+2)/p
r+1 if p > r.

Proof. We have

[erank (A, p)]p =
1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.

Notice that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . Hence, the lower

bound is obtained by replacing xi by 0 for i > r + 1,

[erank (A, p)]p ≥
xkpr+1

cn

∫
Bn

bpr+1(∑r
i=1 b

2
i + x2k

r+1b
2
r+1

)p/2 db.
Let a = xkr+1. Writing the last integral as an integral over the ball Bn−r and the

r-dimensional ball of radius q =
√

1−
∑n
i=r+1 b

2
i , and applying [1, eq. 4.642], we get

[erank (A, p)]p ≥ rcr
cn

∫
Bn−r

∫ q

0

tr−1

(
a2 b2r+1

t2 + a2 b2r+1

)p/2
dt db.(4.8)
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Let us denote a2 b2r+1 by α and consider the integral

f(α) =

∫ q

0

tr−1

(
α

t2 + α

)p/2
dt.(4.9)

We have three cases depending on the relation between p and r.

Consider first the case p < r. It is convenient to split f(α) as follows:

f(α) = αp/2
(∫ q

0

tr−p−1 dt−
∫ q

0

g(t) dt

)
,(4.10)

where

g(t) = tr−1

(
1

tp
−
(

1

t2 + α

)p/2)
.

We can conveniently rewrite g(t) as

g(t) = tr−p−1

(
1−

(
t2

t2 + α

)p/2)
.

Setting y = t2/α, we have∫ q

0

g(t) dt =
α(r−p)/2

2

∫ q2/α

0

y(r−p)/2−1 (y + 1)p/2 − yp/2
(y + 1)p/2

dy.(4.11)

We consider two cases: p < 2 and p ≥ 2. Let us start with p < 2. Notice that
(y + 1)p/2 − yp/2 ≤ 1. Then from (4.11) we get∫ q

0

g(t) dt ≤ α(r−p)/2

2

∫ q2/α

0

y(r−p)/2−1

(y + 1)p/2
dy

=
qr−p

r − pF
(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
,

due to [1, eq. 3.194] (also see [1] for the definition and the properties of the hypergeo-
metric function F (a, b; c;x)). Substituting it into (4.10) and solving the first integral,
we have

f(α) ≥ αp/2 q
r−p

r − p − α
p/2 q

r−p

r − pF
(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.

Hence, (4.8) becomes

[erank (A, p)]p ≥ rcr
(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

db

− aprcr
(r − p)cn

∫
Bn−r

bpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

F

(
p

2
,
r − p

2
;
r − p+ 2

2
;

∑n
i=r+1 b

2
i − 1

a2b2r+1

)
db.
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Using [1, eq. 4.642], we get

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
(4.12)

− ap (r + 1)Γ ((r + 1)/2)

(r − p)Γ (r/2) Γ (1/2)

∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p+ 2

2
;
t2 − 1

a2t2

)
dt.

After setting y = (1− t2)/(a2t2), we can rewrite the integral in (4.12) as∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−1− t2

a2t2

)
dt

=
a−p−1

2

∫ ∞
0

y(r−p)/2

(y + 1/a2)(r+3)/2
F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−y

)
dy.

From the last equation and using [1, eq. 7.512, 10], we have∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;

t2 − 1

a2t2

)
dt(4.13)

=
2ap+1Γ ((r − p)/2 + 1)Γ (p+ 1/2) Γ ((r + 1)/2)

Γ ((r + 3)/2) Γ ((p+ r + 1)/2)
F

(
p+

1

2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
.

Applying the transformation formula to the hypergeometric function (see [1, eq. 9.131,
1]), we have

F

(
p+

1

2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
= ar+1 F

(
r + 1

2
,
r − p

2
;
p+ r + 1

2
; 1− a2

)
.

Substituting it into (4.13) and then into (4.12), we get

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
, 1− a2

)
.

This concludes the proof of the case p < 2.
Let p ≥ 2. Observe that, from Lagrange’s theorem, there exists a value ξ, y ≤

ξ ≤ y + 1, such that (y + 1)p/2 − yp/2 = p/2 ξp/2−1. Since ξp/2−1 ≤ (y + 1)p/2−1, we
obtain the bound∫ q

0

g(t) dt ≤ α(r−p)/2 p

4

∫ q2/α

0

y(r−p)/2−1

y + 1
dy

= qr−p
p

2(r − p) F
(

1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
,(4.14)

which follows from [1, eq. 3.194, 1]. Proceeding exactly as before, we get

f(α) ≥ αp/2 q
r−p

r − p − α
p/2 qr−pp

2(r − p) F
(

1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.
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Using this bound in (4.8), we get

[erank (A, p)]p ≥ rcr
(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

db(4.15)

− rpcr
2(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

F

(
1,
r − p

2
;
r − p+ 2

2
;

∑n
i=r+1 b

2
i − 1

a2b2r+1

)
db.

Solving the second integral in (4.15) as before and applying the transformation formula
[1, eq. 9.131] to the hypergeometric function, we have

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 1

2
+ 1, 1− a2

)
.

This concludes the proof for p < r.

Let p = r. The integral denoted by f(α) in (4.9) becomes

f(α) = αp/2
∫ q

0

tp−1

(
1

t2 + α

)p/2
dt(4.16)

and can be rewritten as

f(α) = αp/2
(∫ q

0

t

t2 + p/2α
dt−

∫ q

0

g(t) dt

)
,(4.17)

where

g(t) =
t

t2 + p/2α
− tp−1

(t2 + α)p/2
.

Since p = r, we have that p is an integer between 1 and n. We analyze separately the
cases p = 1 and p ≥ 2. If p = 1, then g(t) ≤ 0 and

f(α) ≥ α1/2

(∫ q

0

t

t2 + 1/2α
dt

)
=
α1/2

2
ln

(
q2 + 1/2α

1/2α

)
.

From (4.8) and since q =
√

1−
∑n
i=2 b

2
i , we get

[erank (A, 1)]1 ≥ 1

cn

∫
Bn−1

α1/2 ln

(
1−

∑n
i=2 b

2
i + 1/2α

1/2α

)
db.
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Let ‖b‖ =
∑n
i=3 b

2
i and t = b2/(1− ‖b‖2)1/2. Since α = a2 b22, using [1, eq. 4.642], we

have

[erank (A, 1)] ≥ a 2

cn

∫
Bn−2

∫ 1

0

t
(
1− ‖b‖2

)
ln

(
1− (1− 1/2 a2)t2

1/2 a2t2

)
dt db

= a
(n− 2)cn−2

cn
B
(n

2
− 1, 2

)∫ 1

0

t ln

(
1− (1− 1/2 a2)t2

1/2a2t2

)
dt

= a
(n− 2)cn−2

cn
B
(n

2
− 1, 2

) 1

2(1− 1/2 a2)
ln

(
2

a2

)
≥ a (n− 2)cn−2

2cn
B
(n

2
− 1, 2

)
ln

(
1

a2

)
+ a

(n− 2)cn−2

2cn
B
(n

2
− 1, 2

)
ln(2),

from which we have

erank (A, 1) ≥ a

π
ln

(
1

a2

)
+
a

π
ln(2).

This provides the proof for p = r = 1.
Now let p ≥ 2. We notice that t2 + p/2α ≥ t2 + α. Then

g(t) ≤ t(t2 + α)p/2−1 − tp−1

(t2 + α)p/2
.

Setting y = t2/α, we have∫ q

0

g(t) dt ≤
∫ q2/α

0

(y + 1)p/2−1 − yp/2−1

2(y + 1)p/2
dy

≤ 1

2

(p
2
− 1
)∫ q2/α

0

1

(y + 1)2
dy

=
1

2

(p
2
− 1
) q2

α+ q2
.

We substitute this inequality into (4.17). We have

f(α) ≥ αp/2
(∫ q

0

t

t2 + p/2α
dt− 1

2

(p
2
− 1
))

=
αp/2

2
ln

(
q2 + p/2α

p/2α

)
− αp/2

2

(p
2
− 1
) q2

α+ q2
.

Since q =
√

1−
∑n
i=p+1 b

2
i and p = r, we obtain the lower bound

[erank (A, p)]p ≥ pcp
2cn

∫
Bn−p

αp/2 ln

(
1−

∑n
i=p+1 b

2
i + p/2α

p/2α

)
db

− pcp
2cn

(p
2
− 1
)∫

Bn−p

αp/2
1−

∑n
i=r b

2
i

α+ 1−
∑n
i=r b

2
i

db.

Let ‖b‖2 =
∑n
i=p+2 b

2
i and t = bp+1/(1− ‖b‖2)1/2. Then from the definition of α and
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using [1, eq. 4.642], we have

[erank (A, p)]p ≥ ap pcp
cn

∫
Bn−p−1

∫ 1

0

tp(1− ‖b‖2)(p+1)/2 ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt db

− ap pcp
cn

(p
2
− 1
)∫

Bn−p−1

∫ 1

0

tp(1− ‖b‖2)(p+1)/2 (1− t2)

1− (1− a2)t2
dt db.

Again using [1, eq. 4.642], we get

[erank (A, p)]p ≥ apγB
(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0

tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt

− apγ p− 2

2
B

(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0

tp(1− t2)

1− (1− a2)t2
dt,(4.18)

where γ = p(n− p− 1)cpcn−p−1/(2cn). Observe that∫ 1

0

tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt

=
1

p+ 1
ln

(
2

pa2

)
+

2

(p+ 1)2
+

∫ 1

0

tp ln
(

1−
(

1− p

2
a2
)
t2
)
dt.(4.19)

Notice that if a2 > 2/p then ln(1 − (1 − p/2 a2)t2) ≥ ln(1) = 0. Hence, from (4.19)
and using [1, eq. 3.197, 3] to solve the integral in (4.18), we have

[erank (A, p)]p ≥ ap γ′

p+ 1
ln

(
2

pa2

)
− apγ′ 2(p− 2)

(p+ 3)
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ apγ′

2

p+ 1
,

where γ′ = γB ((n− p− 1)/2, (p+ 1)/2 + 1). Using (2.10), we can express ci in terms
of the gamma function, and we get

[erank (A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln

(
1

a2

)
(4.20)

− ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2(p− 2)

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
− ln

(
2

p

)
− 2

p+ 1

]
.

Otherwise, when a2 ≤ 2/p, we use the fact that

ln(1− ct2) = −
∞∑
i=1

(ct2)i

i
,

where c is a constant such that −1 ≤ ct2 < 1. Setting c = (1− p/2a2), and using the
previous relation, the integral in (4.19) becomes∫ 1

0

tp ln
(

1−
(

1− p

2
a2
)
t2
)
dt = −

∞∑
i=1

(1− p/2 a2)i

i(2i+ p+ 1)
≥ − 1

p+ 1
ln

(
p+ 3

2

)
.



928 GIANNA M. DEL CORSO

In this case, from (4.19) we have∫ 1

0

tp ln

(
1− (1− p/2a2)t2

p/2a2t2

)
dt ≥ 1

p+ 1
ln

(
2

pa2

)
− 1

p+ 1
ln

(
p+ 3

2

)
+

2

(p+ 1)2
,

and then

[erank (A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln

(
1

a2

)
− ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2p− 4

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ ln

(
p(p+ 3)

4

)
− 2

p+ 1

]
,

which concludes the proof for p = r.

The last case is p > r. Setting y = t2/α, the integral f(α) defined by (4.9)
becomes

f(α) =
αr/2

2

∫ q2/α

0

yr/2−1

(y + 1)p/2
dy.

It can be rewritten as

f(α) =
αr/2

2

[∫ ∞
0

yr/2−1

(y + 1)p/2
dy −

∫ ∞
q2/α

yr/2−1

(y + 1)p/2
dy

]
.(4.21)

The first integral of the right-hand side of (4.21) can be solved using [1, eq. 3.194, 3]
and is equal to B(r/2, (p − r)/2). The second integral of (4.21) can be solved using
[1, eq. 3.194, 2] and is equal to(

α

q2

)(p−r)/2
2

p− rF
(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
.

Hence, (4.21) becomes

f(α) =
αr/2

2
B

(
r

2
,
p− r

2

)
− αp/2

(p− r) qp−rF
(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
.(4.22)

By substituting (4.22) into (4.8), and from the definition of α and q we have

[erank (A, p)]p ≥ ar rcr
2cn

B

(
r

2
,
p− r

2

)∫
Bn−r

brr+1 db

− aprcr
(p− r)cn

∫
Bn−r

bpr+1(
1−
∑n
i=r+1 b

2
i

)(p−r)/2F(p2 , p− r2
;
p− r + 2

2
;

a2b2r+1∑n
i=r+1 b

2
i − 1

)
db.

Using again the technique of reducing integrals to one-dimensional integrals, we get

[erank (A, p)]p ≥ ar γ
2
B

(
r

2
,
p− r

2

)
B

(
r + 1

2
,
n− r − 1

2
+ 1

)
− apγ′

∫ 1

0

tp

(1− t2)(p−r)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt,(4.23)
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where γ = rcrcn−r−1/cn and γ′ = Γ ((r + 1)/2 + 1) / ((p− r)Γ (1/2) Γ (r/2)). Con-
sider the integral in (4.23). By setting z = t2/(1− t2), we obtain∫ 1

0

tp

(1− t2)(p−r)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt

=
1

2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz.(4.24)

We notice that

z(p−1)/2

(a2 + z)(r+3)/2
≤ z(p−r)/2

(a2 + z)2
.

Using this inequality and [1, eq. 7.51, 10], (4.24) can be bounded as follows:

1

2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz

≤ 1

2ap−r−2

∫ ∞
0

z(p−r)/2

(a2 + z)2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz

=
1

2ap−r−2

Γ ((p− r)/2 + 1) Γ (r/2 + 1)

Γ (p/2 + 1)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
.(4.25)

Substituting (4.25) in (4.23), we get

[erank (A, p)]1/p ≥ ar Γ ((p− r)/2) Γ ((r + 1)/2 + 1)

Γ (p/2) Γ (1/2)

− ar+2 rΓ ((r + 1)/2 + 1) Γ ((p− r)/2)

Γ (p/2 + 1) Γ (1/2)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
.

This concludes the proof.

4.3. Discussion. Theorems 4.1 and 4.2 state that the randomized error erank (A, p)
must depend on the ratio λr+1/λ1. In addition, these theorems describe the actual
behavior of the rate of convergence for every k, p, and r. We notice that only when
r > p do we have the same rate of convergence as in the asymptotic deterministic case
with

∑r
i=1 b

2
i 6= 0. For the other two cases, r = p and r < p, the rate convergence is

slower. This is due to the fact that Theorems 4.1 and 4.2 deal with the randomized
case. So, in order to compute the randomized error we have to integrate over all
possible starting vectors, even those for which the power method does not converge
or converges very slowly.

To give an intuitive idea about the difference in the rate of convergence between
the asymptotic deterministic case (the rate is then proportional to (λr+1/λ1)k) and
the randomized case, let us analyze the error for p = 1. In this case we have only two
possibilities: r > p or r = p = 1. Assuming

∑r
i=1 b

2
i 6= 0, we have

sin(αk(b)) =

(
λr+1

λ1

)k√b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

+ o

((
λr+1

λ1

))
,

where s is the multiplicity of the second largest eigenvalue.
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If r = 1, the expected value of sin(αk(b)) with respect to b cannot be proportional
to (λ2/λ1)k since ∫

‖b‖=1

√
b22 + · · ·+ b2s+1

b21
µ(db) = +∞.

A more careful analysis shows that we have to lose a factor proportional to ln(λ1/λ2)2k

in order to achieve the convergence of the integral. For r ≥ 2,∫
‖b‖=1

√
b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

µ(db) < +∞,

so we have a rate of convergence proportional to (λr+1/λ1)k, as in the deterministic
case. The explanation of the general case p ≥ 1 is similar.

Analyzing upper and lower bounds together, we see the complete behavior of the
power method for computing a largest eigenvector. In fact, for every p and r, upper
and lower bounds exhibit the same dependence on λr+1/λ1 and on k.

We now comment on the bounds proposed by Kostlan in [2].
Kostlan estimates the number of steps required by the power method to give a

dominant ε-eigenvector, averaged over all the possible starting vectors. However, he
considers another error criterion, so it is not easy to compare these bounds with our
bounds. In particular, we use the Euclidean distance, where in [2] the Riemannian
distance is considered. Moreover, we study the error in the Lp case, while Kostlan
simply integrates the error over the all possible starting vectors.

5. Asymptotic behavior. In section 4 we provide upper and lower bounds for
the randomized error of the power method for each step k. These bounds differ only
by multiplicative constants and by lower order terms. We notice that only for upper
bounds do the constants depend on the size of the matrix, while for the lower bounds
they depend only on p and r. Moreover, if A is a large matrix, the constants of the
upper bound become huge. So, it is natural to ask if these constants are sharp. We
answer this question by analyzing the asymptotic behavior of the randomized error
erank (A, p).

Theorem 5.1. Let A be a symmetric positive definite matrix and let r, r < n,
and s denote the multiplicities of the two largest eigenvalues λ1 and λr+1 of A. Then
for every p, 1 ≤ p <∞, we have

lim
k→+∞

erank (A, p)

xkr+1

=

(
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)

)1/p

for p < r,

lim
k→+∞

erank (A, p)

xkr+1 (2k)1/r [ln (1/xr+1)]
1/r

=

(
Γ ((p+ s)/2)

Γ (p/2) Γ (s/2)

)1/p

for p = r,

lim
k→+∞

erank (A, p)

x
kr/p
r+1

=

(
Γ ((p− r)/2) Γ ((r + s)/2)

Γ (p/2) Γ (s/2)

)1/p

for p > r.

Proof. From (2.9) we have

erank (A, p) =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.
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We can rewrite the previous equation as follows:

erank (A, p) =

 1

cn

∫
Bn

( x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

+ rk(b)

p

db

1/p

,

where

rk(b) =

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)1/2

−
(

x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

.(5.1)

Let

ẽrank (A, p) =

 1

cn

∫
Bn

(
x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)p/2
db

1/p

.

We want to show that

lim
k→+∞

erank (A, p) = lim
k→+∞

ẽrank (A, p).(5.2)

Notice that

ẽrank (A, p) ≤ erank (A, p) ≤ ẽrank (A, p) + ‖rk‖p,

where

‖rk‖p =

(
1

cn

∫
Bn

rk(b)p db

)1/p

.

Since rk(b) → 0 pointwise almost everywhere, and |rk(b)| ≤ 1 for the Lp-dominated
convergence theorem (see [6, p. 312]) we have limk→+∞ ‖rk‖p = 0. This proves (5.2).

Equation (5.2) shows that the asymptotic behavior of erank (A, p) can be studied
by analyzing ẽrank (A, p). Let a = xkr+1. Integrating with respect to br+s+1, . . . , bn, we
have

[ẽrank (A, p)]
p

= ap
cn−r−s
cn

∫
Br+s

( ∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + a2

∑r+s
i=r+1 b

2
i

)p/2(
1−

r+s∑
i=1

b2i

)(n−r−s)/2

db.

Let ‖b‖2 =
∑r
i=1 b

2
i and let ti = bi/(1− ‖b‖2)1/2 for i = r + 1, . . . , r + s, and ‖t‖2 =∑r+s

i=r+1 t
2
i . If we rewrite the last integral as an integral over the balls Br and Bs, we

have

[ẽrank (A, p)]
p

= ap
cn−r−s
cn

∫
Br

∫
Bs

‖t‖p(1− ‖b‖2)(n+p−r)/2(1− ‖t‖2)(n−r−s)/2

[‖b‖2 + a2‖t‖2(1− ‖b‖2)]
p/2

dt db.

Using [1, eq. 4.642] for both integrals, we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

∫ 1

0

ts−1 br−1 tp(1− b2)(n+p−r)/2 (1− t2)(n−r−s)/2

[b2 + a2t2(1− b2)]p/2
dt db

= apγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2
[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]p/2
db

]
dt,(5.3)
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where γ = rscn−r−scrcs/cn.
We have now three cases depending on the relation between p and r. Consider

first the case p < r. Then the last integral of (5.3) is finite even for a = 0. Substituting
a = 0, we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2 dt

∫ 1

0

br−p−1(1− b2)(n+p−r)/2 db.

From the definition of the beta function (2.11) we have

[ẽrank (A, p)]
p

= ap
γ

4
B

(
p+ s

2
,
n− r − s

2
+ 1

)
B

(
r − p

2
,
n+ p− r

2
+ 1

)
.

Using (2.10), we can express ci in terms of the gamma function. We obtain

[ẽrank (A, p)]
p

= ap
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)
.

This proves that for p < r, by using (5.2) we have

lim
k→+∞

erank (A, p)

xkr+1

=

(
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)

)1/p

.

Consider now the case p = r. From (5.3) we have that [ẽrank (A, p)]p is equal to

apγ

∫ 1

0

tp+s−1(1− t2)(n−p−s)/2
[∫ 1

0

bp−1(1− b2)n/2

[b2 + a2t2(1− b2)]p/2
db

]
dt.(5.4)

We expand bp−1(1−b2)n/2 as bp−1−(n/2)bp+1+O
(
bp+3

)
. Since [b2(1−a2t2)+a2t2]p/2

behaves as bp+o
(
a2t2

)
, it is sufficient to consider the first two terms of the expansion.

As a approaches zero, we have∫ 1

0

bp−1(1− b2)n/2

[b2(1− a2t2) + a2t2]p/2
db

=

∫ 1

0

bp−1

[b2(1− a2t2) + a2t2]p/2
db+O

(∫ 1

0

bp+1

[b2(1− a2t2) + a2t2]p/2
db

)
=

∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0

b db

)
.

Observe that (b2 + a2t2)p/2 = bp + (p/2)b2(p/2−1)a2t2(1 + o (1)) as a→ 0. Then from
the last equation we have∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0

b db

)
=

∫ 1

0

bp−1

bp−2 (b2 + p/2 a2t2)
db+O (1)

=

∫ 1

0

b

b2 + p/2 a2t2
db+O (1)

=
1

2
ln
(
b2 +

p

2
a2t2

)∣∣∣∣1
0

+O (1)

= ln

(√
2

pa2t2

)
(1 + o (1)).
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Substituting this equality into (5.4) we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

tp+s−1(1− t2)(n−p−s)/2 ln

(√
2

pa2t2

)
dt

= ap
γ

4
ln

(
2

pa2

)
B

(
p+ s

2
,
n− p− s

2
+ 1

)
+O (ap) .

If we replace the expression for γ in the last equation, from (5.2) we obtain

lim
k→+∞

erank (A, p)

xkr+1(2k)1/r [ln (1/xr+1)]
1/r

=

(
Γ ((p+ s)/2)

Γ (p/2) Γ (s/2)

)1/p

.

The last case is p > r. We want to compute the limit

lim
x→+∞

erank (A, p)

x
kr/p
r+1

=

[
lim

k→+∞

[ẽrank (A, p)]
p

xkrr+1

]1/p
.

From (5.3) we get

lim
k→+∞

[erank (A, p)]
p

xkrr+1

= lim
a→0

[erank (A, p)]
p

ar
(5.5)

= lim
a→0

ap−rγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2

[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]
p/2

db

]
dt.

Observe that for a→ 0 we have∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]
p/2

db

=

∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

[b2 + a2t2]
p/2

db

=

∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

aptp (b2/(a2t2) + 1)
p/2

db.(5.6)

We change variables by setting y = b/(at). Then the integral (5.6) becomes

1

tp−r

∫ 1/(at)

0

yr−1(1− a2t2y2)(n+p−r)/2

(y2 + 1)p/2
dy.

If we set z = y2, this integral can be transformed into

1

2tp−r

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz.

We substitute this integral into (5.5). We get

lim
k→+∞

[ẽrank (A, p)]
p

xkrr+1

= lim
a→0

[erank (A, p)]
p

ar
(5.7)

=
γ

2

∫ 1

0

tr+s−1(1− t2)(n−r−s)/2

[
lim
a→0

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz

]
dt.
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To find the limit of the last integral, we use the following bounds (for a < 1):∫ 1/(at)

0

zr/2−1(1− at)(n+p−r)/2

(z + 1)p/2
dz ≤

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz

and ∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz ≤

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz.

Since

lim
a→0

∫ 1/(at)

0

zr/2−1(1− at)(n+p−r)/2

(z + 1)p/2
dz = lim

a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz,

passing to the limit and then using [1, eq. 3.194, 3], we get

lim
a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz =

∫ +∞

0

zr/2−1

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

Hence, we also have

lim
a→0

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

From (5.7), we get

lim
k→+∞

[erank (A, p)]
p

xkrr+1

=
γ

2
B

(
r

2
,
p− r

2

) ∫ 1

0

tr+s−1(1− t2)(n−r−s)/2dt

=
Γ ((p− r)/2) Γ ((r + s)/2)

Γ (p/2) Γ (s/2)
.

This concludes the proof.
Theorem 5.1 shows that upper and lower bounds provided in section 4 are asymp-

totically optimal. In fact, the analysis of the asymptotic case indicates that the upper
and lower bounds cannot be improved since the constants coincide with those of the
upper bound when we set the multiplicity of the second largest eigenvalue to n − r,
and with those of the lower bound for s = 1. The constants increase with s and 1/r.
This corresponds to the intuitive idea that the convergence is fast if the eigenspace Z
is large and is slow if the eigenspace corresponding to the second largest eigenvalue
is large. Note that if p approaches infinity, the rate of convergence approaches 1 and
even the constant converges to 1. This agrees with (2.8) for p =∞.

6. Numerical tests. We tested the power method for several matrices with
many pseudorandom starting vectors b. The matrix A can be chosen as follows. As
before, let uk(A, b) be the vector computed by the power method applied to the
matrix A with starting vector b. Observe that for any orthogonal matrix Q, we
have uk(QTAQ, QTb) = uk(A, b). Moreover, the uniform distribution on the unit
sphere of the vectors b implies the same distribution of vectors QTb. So, without
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Table 6.1

Quadratic distribution 2 with the eigenvalues λi = 2(1− (i/101)2).

k εran εworst εbest εlb εub p
10 9.737e− 01 9.999e− 01 7.567e− 01 4.782e− 01 7.998e+ 00 1

100 9.111e− 01 9.999e− 01 4.149e− 01 4.850e− 01 7.992e+ 00 1
1000 7.114e− 01 9.999e− 01 6.811e− 02 5.185e− 01 7.685e+ 00 1

10 9.735e− 01 9.999e− 01 7.226e− 01 6.457e− 01 3.522e+ 00 2
100 9.239e− 01 9.999e− 01 3.319e− 01 6.394e− 01 3.474e+ 00 2

1000 7.383e− 01 9.999e− 01 7.003e− 02 5.799e− 01 3.035e+ 00 2

10 9.779e− 01 1.000e+ 00 7.649e− 01 2.712e− 01 1.129e+ 00 10
100 9.412e− 01 9.999e− 01 3.882e− 01 2.729e− 01 1.127e+ 00 10

1000 8.675e− 01 1.000e− 01 5.303e− 02 2.902e− 01 1.097e+ 00 10

loss of generality, we can restrict ourselves only to considering diagonal matrices; see
also [4] and [5]. Vectors uniformly distributed over the unit sphere can be generated
as described in [4] and [5].

The tests were performed on a Sun SPARCsystem 10 using double precision. To
compute the values of the hypergeometric and gamma functions we used the program
Mathematica.

We tested many different matrices of size 100 with the distributions of the eigen-
values chosen as in [5]. We tested the following distributions:

• Chebyshev distribution: λi = 1 + cos(((2i− 1)π)/200);
• quadratic distribution 1: λi = 2 (1− i/101)2;
• quadratic distribution 2: λi = 2(1− (i/101)2);
• uniform distribution: λi = 2(1− i/101);
• logarithmic distribution: λi = 2 log(102− i)/ log(102);

• exponential distribution 1: λi = 2 e−
3√i;

• exponential distribution 2: λi = 1 + e−i.
From the theoretical bounds (see Theorems 4.1 and 4.2), it turns out that the

behavior of the power method depends on the relation between r and p. We tested
the power method for different values of p and r for a fixed ratio between the two
largest eigenvalues.

The main goal of these tests was to verify the results proved in Theorems 4.1 and
4.2 and to see how much upper and lower bounds differ from the experimental values.

In order to approximate the randomized error erank (A, p) we have used 1,000 pseu-
dorandom vectors b. So, the randomized error is replaced by εran obtained as the
mean value among the 1,000 pseudorandom vectors, i.e.,

εran =

(
1

1, 000

1,000∑
i=1

sinp(αk(bi))

)1/p

.

By εworst and εbest we denote, respectively, the worst and best value of sin(αk(bi)).
These values give an indication about how much εran differs from the values sin(αk(bi)).
Let εlb and εub denote the lower and the upper bounds computed using formulas given
by Theorems 4.2 and 4.1. Finally, k and p are the number of iterations and the pa-
rameter of the norm, respectively.

In order to underline the dependence of the rate of convergence on the ratio
between the two largest eigenvalues we report the results obtained for the quadratic
distribution 2 (see Table 6.1) and the exponential distribution 1 (see Table 6.2). In
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Table 6.2

Exponential distribution 1 with the eigenvalues λi = 2 e−i
1/3

.

k εran εworst εbest εlb εub p
10 1.770e− 01 9.999e− 01 9.630e− 04 1.698e− 01 2.124e+ 00 1
30 2.432e− 03 8.996e− 01 1.077e− 06 2.300e− 03 2.864e− 02 1

10 2.509e− 01 9.999e− 01 7.056e− 04 2.368e− 01 9.616e− 01 2
30 2.468e− 02 7.652e− 01 9.823e− 07 2.006e− 02 7.148e− 02 2

10 6.801e− 01 9.999e− 01 2.079e− 03 3.888e− 01 8.715e− 01 10
30 3.562e− 01 7.081e− 01 1.977e− 06 3.421e− 01 5.182e− 01 10

Table 6.3

Modified exponential distribution 2 with the eigenvalues λ1 = λ2 = 1+e−1 and λi = 1+e−(i−1)

for i = 3, . . . , n.

k εran εworst εbest εlb εub p
10 4.100e− 01 9.960e− 01 1.124e− 01 1.276e− 01 1.920e+ 00 1
30 3.765e− 03 1.075e− 01 2.915e− 04 3.693e− 03 4.622e− 02 1

10 4.593e− 01 9.989e− 01 1.171e− 01 1.570e− 01 3.650e+ 00 2
30 7.979e− 03 1.063e− 01 2.693e− 04 7.511e− 03 1.245e− 01 2

10 6.904e− 01 9.973e− 01 1.190e− 01 2.472e− 01 8.850e− 01 10
30 2.551e− 01 5.089e− 01 2.435e− 04 1.950e− 01 4.200e− 01 10

fact, these distributions are those (among the different distributions considered) for
which we have the largest (the smallest) ratio between λ2 and λ1 and then the slowest
(the fastest) convergence, respectively.

From Table 6.1 we see that for three different values of p, even after 1,000 itera-
tions the randomized error is still very close to 1. An important observation concerns
the lower and upper bounds. We notice that the lower bound is a good approximation
of the expected value εran while the upper bound is clearly an overestimate. This is
due to the following reasons.

1. The constants in the upper bounds (see Theorem 4.1) grow with the size of
the matrix.

2. Since the ratio x2 = λ2/λ1 is very close to 1, xk2 goes very slowly to 0 with
k. In this case, the upper bound is more sensitive to the big multiplicative
constants.

Table 6.2 is more interesting since it allows us to see the dependence of the speed
of convergence on p and r. The speed of convergence is now good. In fact, after only
30 iterations we get an error of the order of 10−3 when p = r = 1. In this case, we
have also that εlb and εub are relatively close to each other and that the error εran for
k = 30 is very close to the theoretical lower bound.

In general, it is possible to observe that the values of εran computed with these
tests are very close to the theoretical lower bounds, while they are more distant from
the upper bounds even for small λr+1/λ1. This is due to the importance of the
multiplicity s of λr+1, which results from the asymptotic constants of Theorem 5.1.
Experimental results prove that the power method behaves differently for matrices
with the same two largest eigenvalues but with different multiplicities. In particular,
increasing s, we get bounds closer to the upper bounds.

To understand the role of p and r, we have performed tests with matrices for
which the multiplicity of the largest eigenvalue is r ≥ 2. In Table 6.3 we report the
results for the modified exponential distribution 2 with r = 2.

An important observation concerns the comparison between the three cases, p < r,
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p = r, and p > r. From Table 6.3 it is easy to see that for the same value of k, the
rates of convergence are different. For example, for k = 30 we have an error of the
order of 10−3 for p ≤ r, and of order 10−1 for p > r.

We also performed tests with matrices with only two distinct eigenvalues. These
tests indicate the asymptotic dependence of the randomized error on the multiplicity
s of the second eigenvalue. In particular, they show that εran is closer to εub when s
is big. This is an important consequence of Theorem 5.1.

7. Conclusions. In this paper we have investigated the convergence of the power
method for approximating an eigenvector corresponding to the largest eigenvalue. As
our error measure, we have taken the sine of the acute angle αk(b) between the vec-
tor computed by the power method after k steps with the starting vector b, and
the eigenspace related to the largest eigenvalue. We have analyzed the Lp norm of
sin(αk(·)) for p ∈ [1,+∞]. We have shown that, if the starting vector b is chosen
according to the uniform distribution over the unit sphere, the rate of convergence
depends on the ratio between the two largest eigenvalues. In particular, if r is the
multiplicity of the largest eigenvalue λ1, and the Lp norm is used, then the random-

ized error is proportional to (λr+1/λ1)
k

if p < r, to (λr+1/λ1)
kr/p

if p > r, and to

k1/p (λr+1/λ1)
k

if p = r.
For every p ∈ [1,+∞), we have found asymptotic and nonasymptotic bounds,

and we have shown that the asymptotic constants are equal to those obtained for
the upper and lower bounds when the multiplicity of the second largest eigenvalue is
set to n − r and 1, respectively. We stress that our results hold for a class of norms
and that they show how, by using a different norm, we can have a different speed
of convergence. Our bounds depend on the distribution of the eigenvalues, and we
have proven that this is unavoidable. Comparing with results of [4], we conclude
that approximating a largest eigenvector by the power method is more difficult than
approximating the largest eigenvalue in the randomized setting.

Acknowledgment. I wish to thank Henryk Woźniakowski for the guidance and
valuable help he provided during all the stages of this work.
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Abstract. This paper considers the numerical stability of null-space methods for Karush–
Kuhn–Tucker (KKT) systems, particularly in the context of quadratic programming. The methods
we consider are based on the direct elimination of variables, which is attractive for solving large
sparse systems. Ill-conditioning in a certain submatrix A in the system is shown to adversely affect
the method insofar as it is commonly implemented. In particular, it can cause growth in the residual
error of the solution, which would not normally occur if Gaussian elimination or related methods were
used. The mechanism of this error growth is studied and is not due to growth in the null-space basis
matrix Z, as might have been expected, but to the indeterminacy of this matrix. When LU factors
of A are available it is shown that an alternative form of the method is available which avoids this
residual error growth. These conclusions are supported by error analysis and Matlab experiments
on some extremely ill-conditioned test problems. These indicate that the alternative method is very
robust in regard to residual error growth and is unlikely to be significantly inferior to the methods
based on an orthogonal basis matrix. The paper concludes with some discussion of what needs to
be done when LU factors are not available.
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1. Introduction. A KKT system is a linear system[
G A
AT 0

](
x
y

)
=

(
c
b

)
(1.1)

involving a symmetric matrix of the form

K =

[
G A
AT 0

]
.(1.2)

Such systems are characteristic of the optimization problem

minimize 1
2x

TGx− cTx

subject to ATx = b,(1.3)

in which there are linear equality constraints and the objective is a quadratic function.
The KKT system (1.1) represents the first-order necessary conditions for a solution
of this problem, and y is a vector of Lagrange multipliers (see [6], for example).
Problems like (1.3) arise in many fields of study, such as in Newton’s method for
nonlinear programming (e.g., [6]) and in the solution of partial differential equations
involving incompressible fluid flows, incompressible solids, and the analysis of plates
and shells (e.g., Bathe [1], Brezzi and Fortin [2]). Also, problems with inequality
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constraints are often solved by solving a sequence of equality constrained problems,
most particularly in the active set method for quadratic programming.

In (1.2) and (1.3), G is the symmetric n × n Hessian matrix of the objective
function, A is the n ×m Jacobian matrix of the linear constraints, and m ≤ n. We
assume that A has full rank, for otherwise K would be singular. In some applications,
A does not immediately have full rank but can readily be reduced to a full rank matrix
by a suitable transformation.

There are various ways of solving KKT systems, most of which can be regarded
as symmetry-preserving variants of Gaussian elimination with pivoting (see, for ex-
ample, Gould [9]). This approach is suitable for a one-off solution of a large sparse
KKT system, by incorporating a suitable data structure which permits fill-in in the
resulting factors. Our interest in KKT systems arises in a quadratic programming
(QP) context, where we are using the so-called null-space method to solve the sequence
of equality constrained problems that arise. This method is described in section 2.
An important feature of QP is that the successive matrices K differ only in that one
column is either added to or removed from A. The null-space method allows this
feature to be used advantageously to update factors of the reduced Hessian matrix
that arises when solving the KKT system. However, in this paper we do not consider
the updating issue but concentrate on the solution of a single problem like (1.3), but
in a null-space context. In fact the null-space method is related to one of the above-
mentioned variants of Gaussian elimination, and this point is discussed towards the
end of section 3.

In this paper we study the numerical stability of the null-space method when the
matrix K is ill conditioned. This arises either when the matrix A is close to being
rank deficient or when the reduced Hessian matrix is ill conditioned. It is well known,
however, that Gaussian elimination with pivoting usually enables ill conditioned sys-
tems to be solved with small backward error (that is, the computed solution is the
exact solution of a nearby problem). As Wilkinson [14, Chapter 4] points out, the size
of the backward error depends only on the growth in certain reduced matrices, and
for an ill-conditioned matrix it is usual for the reduced matrices to diminish in size
rather than grow. Although it is possible for exponential growth to occur (we give
an example for a KKT system), this is most unlikely in practice. A consequence of
this is that if the exact solution is of moderate size, then a very small residual error
is obtained from the computed solution. Thus variants of Gaussian elimination with
pivoting usually provide a very stable method for solving ill-conditioned systems.

However, this argument does not carry over to the null-space method and we in-
dicate at the end of section 2 that there are serious concerns about numerical stability
when A is nearly rank deficient. We describe some Matlab experiments in section 6
which support these concerns. In particular, the residual of the KKT system is seen
to be proportional to the condition number of A. We present some error analysis in
section 4 which shows how this arises.

When LU factors of A are available, we show in section 3 that there is an alterna-
tive way of implementing a null-space method, which avoids the numerical instability.
This is also supported by Matlab experiments. The reasons for this are described in
section 5, and we present some error analysis which illustrates the difference in the
two approaches. In practice, when solving large sparse QP problems, LU factors are
not usually available, and it is more usual to use some sort of product form method.
We conclude with some remarks about what can be done in this situation to avoid
numerical instability.
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2. Null-space methods. A null-space method (see, e.g., [6]) is an important
technique for solving QP problems with equality constraints. In this section we show
how the method can be derived as a generalized form of constraint elimination. The
key issue in this procedure is the formation of a basis for the column null space of A.
We determine the basis in such a way that we are able to solve large sparse problems
efficiently. When A is ill conditioned we argue that there is serious concern for the
numerical stability of the method.

The column null space of A may be defined by

N (A) =
{
z |AT z = 0

}
and has dimension n−m when A has full rank. Any matrix

Z = [z1, z2, . . . , zn−m]

whose columns are a basis for N (A) will be referred to as a null-space matrix for A.
Such a matrix satisfies ATZ = 0 and has linearly independent columns. A general
specification for computing a null-space matrix is to choose an n× (n−m) matrix V
such that the matrix

A = [A V ]

is nonsingular. Its inverse is then partitioned in the following way:

A−1 = [A V ]
−1

=

[
Y T

ZT

]
m

n−m
.(2.1)

It follows from the properties of the inverse that ATZ = 0 and ATY = Im. By
construction, the columns of Z are linearly independent, and it follows that these
columns form a basis for N (A).

The value of this construction is that it enables us to parametrize the solution set
of the (usually) underdetermined system ATx = b in (1.3) by

x = Y b + Zv, v ∈ IRn−m.(2.2)

Here Y b is one particular solution of ATx = b and any other solution x differs from
Y b by a vector, Zv say, in N (A). Thus (2.2) provides a general way of eliminating the
constraints, by expressing the problem in terms of the reduced variables v. Hence, if
(2.2) is substituted into the objective function of (1.3), we obtain the reduced problem

minimize 1
2v

T (ZTGZ)v + vTZT (GY b− c).(2.3)

We refer to ZTGZ as the reduced Hessian matrix and ZT (GY b − c) as the reduced
gradient vector (at the point x = Y b). A necessary and sufficient condition for (2.3)
to have a unique minimizer is that ZTGZ is positive definite. In this case there exist
Choleski factors ZTGZ = LLT , and (2.3) can be solved by finding a stationary point,
that is, by solving the linear system

LLTv = ZT (c−GY b).(2.4)

Then substitution of v into (2.2) determines the solution x of (1.3). The vector Gx−c
is the gradient of the objective function at the solution, so a vector y of Lagrange
multipliers satisfying Gx− c +Ay = 0 can then be obtained from

y = Y T (c−Gx)(2.5)
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by virtue of the property that Y TA = I. The vectors x and y also provide the solution
to (1.1), as can readily be verified.

In practice, when A is a large sparse matrix, the matrices Y and Z are usually
substantially dense, and it is impracticable to store them explicitly. Instead, products
with Y and Z or their transposes are obtained by solving linear systems involving
A. For example, the vector x = Y b + Zv in (2.2) could be computed by solving the
linear system

ATx =

(
b
v

)
(2.6)

by virtue of (2.1). Likewise, solving the system

A

(
u1

u2

)
= t(2.7)

provides the products u1 = Y T t and u2 = ZT t. These computations require an
invertible representation of the matrix A to be available.

Solving systems involving A is usually a major cost with the null-space method.
To keep this cost as low as possible, it is preferable to choose the matrix V to be sparse.
Other choices (for example, based on the QR factors of A; see [6]) usually involve
significantly more fill-in and computational expense. In particular, it is attractive to
choose the columns of V to be unit vectors, using some form of pivoting to keep A well
conditioned. In this case, assuming that the row permutation has been incorporated
into A, it is possible to write

A =

[
A1

A2

]
, V =

[
0
I

]
,(2.8)

where A1 is an m×m nonsingular submatrix. Then (2.1) becomes[
Y T

ZT

]
=

[
A1

A2 I

]−1

=

[
A−1

1

−A2A
−1
1 I

]
and provides an explicit expression for Y and Z. In particular, we see that

ZT = [−A2A
−1
1 I ] .(2.9)

We refer to this choice of V as direct elimination, as it corresponds to directly using
the first m variables to eliminate the constraints (see [6]). We shall adopt this choice
of V throughout the rest of the paper.

The reduced Hessian matrix ZTGZ is also needed for use in (2.3) and can be
calculated in a similar way. The method is to compute the vectors ZTGZek for
k = 1, 2, . . . , n − m, where ek denotes column k of the unit matrix In−m. The
computation is carried out from right to left by first computing the vector zk = Zek
by solving the system

AT zk =

(
0
ek

)
.(2.10)

Then the product Gzk is computed, followed by the solution of

Au = Gzk.(2.11)
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The partition u2 is then column k of ZTGZ, as required. The lower triangle of ZTGZ
is then used to calculate the Choleski factor L. A similar approach is essentially used
in an active set method for QP, in which the Choleski factor of ZTGZ is built up over
a sequence of iterations. (If indefinite equality constraint QP problems are solved,
it may be necessary to solve KKT systems in which ZTGZ is indefinite. We note
that such systems can also be solved in a numerically stable way which preserves
symmetry; see Bunch and Parlett [4], Fletcher [5], Bunch and Kaufman [3], and the
important recent contribution of Higham [10]. For inequality QP, the indefinite case
may be avoided by computing a negative curvature search direction (e.g., Forsgren
and Murray [7]). For the purposes of our paper it is immaterial how systems involving
ZTGZ are solved, as long as the method is backward stable.)

An advantage of the null-space approach is that we only need to have available
a subroutine or code for the matrix product Gv. Thus we can take full advantage
of sparsity or structure in G, without, for example, having to allow for fill-in as
Gaussian elimination would require. The approach is most convenient when ZTGZ
is sufficiently small to allow it to be stored as a dense matrix. In fact there is a close
relationship between the null-space method and a variant of Gaussian elimination, as
we shall see in the next section, and the matrix ZTGZ is the same submatrix in both
methods. Thus it would be equally easy (or difficult) to represent ZTGZ in a sparse
matrix format with either method.

To summarize the content of this section we can enumerate the steps implied by
(2.2) through (2.5):

1. Calculate ZTGZ as in (2.10) and (2.11).
2. Calculate s = Y b by a solve with AT as in (2.6) with v = 0.
3. Calculate t = c−Gs requiring a product with G.
4. Calculate u2 = ZT t by a solve with A as in (2.7).
5. Solve ZTGZv = u2 to determine v as in (2.4).
6. Calculate x = Y b + Zv by a solve with AT as in (2.6).
7. Calculate g = c−Gx requiring a product with G.
8. Calculate y = Y Tg by a solve with A, which also provides z = ZTg.

When direct elimination based on (2.9) is used, we shall refer to this as Method 1.
Step 1 requires 2(n − m) solves with either A or AT and n − m products with G
to set up the reduced Hessian matrix. The remaining steps require four solves and
two products, plus a solve with ZTGZ. In some circumstances these counts can be
reduced. If b = 0 then steps 2 and 3 are not required. If the multiplier part y of the
solution is not of interest, then steps 7 and 8 are not needed. Note that Method 1
does not necessarily require LU factors of A and may (in a QP code, for example) be
implemented using a product form (e.g., Suhl [12]) or a Schur complement (e.g., Gill
et al. [8]) representation of A.

We now turn to the concerns about the numerical stability of the null-space
method when A (and hence A1 and A) is ill conditioned. In this case A is close to a
rank deficient matrix, A′ say, which has a null space of higher dimension. When we
solve systems like (2.10) and (2.11), the matrix Z that we are implicitly using is badly
determined. Therefore, because of round-off error, we effectively get a significantly
different Z matrix each time we carry out a solve. Thus the computed reduced Hessian
matrix ZTGZ does not correspond to any one particular Z matrix. As we shall see
in the rest of the paper, this can lead to solutions with significant residual error.
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3. Using LU factors of A. In this section we consider the possibility that we
can readily compute LU factors of A given by[

A1

A2

]
=

[
L1

L2

]
U,(3.1)

where L1 is unit lower triangular and U is upper triangular. We can assume that a
row permutation has been made which enables us to bound the elements of L1 and
L2 by |lij | ≤ 1. As we shall see, these factors permit us to circumvent the difficulties
caused by ill conditioning to a large extent. (Unfortunately, LU factors are not always
available, and some indication is given in section 7 as to what might be done in this
situation.) We also describe how the steps in the null-space method are changed.
Finally, we explore some connections with Gaussian elimination and other methods,
which provide some insight into the likelihood of growth in Z.

A key observation is that if LU factors of A are available, then it is possible to
express Z in the alternative form

ZT = [−L2L
−1
1 I ] ,(3.2)

in which the UU−1 factors arising from (2.9) and (3.1) are canceled out. A minor
disadvantage, compared to (2.9), is that L2 is needed, which is likely to be less sparse
than A2 and also requires additional storage. However, if A is ill conditioned, this is
manifested in U (but not usually L) being ill conditioned, so (3.2) usually enables Z
to be defined in a way which is well conditioned. In calculating the reduced Hessian
matrix it is convenient to define

L =

[
L1

L2 I

]
(3.3)

and replace equations (2.10) and (2.11) by

LT zk =

[
LT1 LT2

I

]
zk =

(
0
ek

)
(3.4)

and

Lu =

[
L1

L2 I

](
u1

u2

)
= Gzk.(3.5)

The steps of the resulting null-space method are as follows (using subscript 1 to denote
the first m rows of a vector or matrix and subscript 2 to denote the last n−m rows).

1. Calculate ZTGZ as in (3.4) and (3.5).

2. Calculate s1 = L−T1 U−Tb and let s =
(

s1

0

)
.

3. Calculate t = c−Gs requiring a product with G.
4. Calculate u2 = ZT t = t2 − L2L

−1
1 t1.

5. Solve ZTGZv = u2 for v.

6. Calculate w = Zv =
(
−L−T1 LT2 v

v

)
.

7. Calculate x = s + w.
8. Calculate g = c−Gx requiring a product with G.
9. Calculate y = U−1L−1

1 g1.
10. Calculate z = ZTg = g2 − L2L

−1
1 g1.
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In the above, inverse operations involving L1 and U are done by forward or backward
substitution. The method is referred to as Method 2 in what follows. (For compara-
bility with Method 1, we have also included the calculation of the reduced gradient
z, although this would not normally be required.) Note that all solves with the n×n
matrix A are replaced by solves with smaller m×m matrices. Also, steps 1, 4, 6, and
10 use the alternative definition (3.2) of Z and so avoid a potentially ill-conditioned
calculation with A (or A1). We consider the numerical stability of both Method 1
and Method 2 in more detail in the next section.

In the rest of this section, we explore some connections between this method and
some variants of Gaussian elimination, and we examine the factored forms that are
provided by these methods. It is readily observed (but not well known) that there
are block factors of K corresponding to any null-space method in this general format.
These are the factors

K =

[
A V

I

]Y TGY Y TGZ I
ZTGY ZTGZ
I

ATV T
I

(3.6)

(using blanks to denote a zero matrix). This result is readily verified by using the
equation AY T + V ZT = I derived from (2.1). Equation (3.6) makes it clear that if
these factors of K are used to solve (1.1), then inverse representations of the matrices
A and ZTGZ will be required. However, these factors are not directly useful as
a method of solution, as they also involve the matrices Y TGY and Y TGZ whose
computation we wish to avoid in a null-space method. Equation (3.6) also shows that
K−1 will become large when either A or ZTGZ is ill conditioned, and we would expect
the spectral condition number of K to behave like κK ∼ κ2

AκM where M = ZTGZ.
When using direct elimination (2.8) we may partition K in the form

K =

 G11 G12 A1

G21 G22 A2

AT1 AT2 0

 .

When A has LU factors (3.1) then it is readily verified that another way of factorizing
K is given by

(3.7) G11 G12 A1

G21 G22 A2

AT1 AT2 0

 =

 L1

L2 I
I

 L−1
1 G11L

−T
1 L−1

1 G1Z U

ZTGT1 L
−T
1 ZTGZ

UT

 LT1 LT2
I

I

 ,
where Z is defined by (3.2) and G1 = [G11 G12]. Note that the matrix U occurs on
the reverse diagonal of the middle factor but that no operations with U−1 are required
in the calculation of the factors. Thus no ill conditioning associated with U manifests
itself until the factors are used in solving the KKT system (1.1). If there is no growth
in Z, then the backward error in (3.7) will be small, indicating the potential for a
small residual solution of the KKT system. We show in section 5 how this can come
about. Another related observation is that if A is rank deficient, then the factors (3.6)
do not exist (since the calculation of Y involves A−1

1 and hence U−1), whereas (3.7)
can be calculated without difficulty.

The factorization (3.7) of K is closely related to some symmetry preserving vari-
ants of Gaussian elimination. Let us start by eliminating A2 and the subdiagonal
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elements of A1 by row operations. (As before, we can assume that row pivoting has
been used.) The outcome of these row operations is that G11 G12 A1

G21 G22 A2

AT1 AT2 0

 =

 L1

L2 I
I

 L−1
1 G11 L−1

1 G12 U
ZTGT1 ZTGT2
AT1 AT2

 ,(3.8)

where G2 = [G21 G22]. Note that these row operations are exactly those used by
Gaussian elimination to form (3.1). To restore symmetry in the factors, we repeat
the above procedure in transposed form; that is, we make column operations on AT1
and AT2 , which gives rise to (3.7).

We can also interleave these row and column operations without affecting the
final result. If we pair up the first row and column operation, then the second row
and column operation, and so on, then we get the method of “HA” pivots described
by Forsgren and Murray [7]. Thus these methods essentially share the same matrix
factors. The difference is that in the null-space method, ZTGZ is calculated by matrix
solves with A, as described in section 2, whereas in these other methods it is obtained
by row and column operations on the matrix K. This result of this paragraph is also
observed by Gill et al. [8].

This association with Gaussian elimination enables us to bound the growth in the
factors of K. The bound is attained for the critical case typified by the matrix

K =



1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 −1 1 0 0
1 1 1 1 1 1 −1 −1 1 0
1 1 1 1 1 1 −1 −1 −1 1
1 1 1 1 1 0 −1 −1 −1 −1
1 1 1 1 0 1 −1 −1 −1 −1

1 −1 −1 −1 −1 −1 0 0 0 0
0 1 −1 −1 −1 −1 0 0 0 0
0 0 1 −1 −1 −1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0


,

for which n = 6 and m = 4. Row operations with pivots in the (1,7), (2,8), (3,9), and
(4,10) positions lead to the matrix



1 1 1 1 1 1 1 0 0 0
2 2 2 2 2 2 0 1 0 0
4 4 4 4 4 4 0 0 1 0
8 8 8 8 8 8 0 0 0 1
16 16 16 16 16 15 0 0 0 0
16 16 16 16 15 16 0 0 0 0

1 −1 −1 −1 −1 −1 0 0 0 0
0 1 −1 −1 −1 −1 0 0 0 0
0 0 1 −1 −1 −1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0


.

Then column operations with pivots in the (7,1), (8,2), (9,3), and (10,4) positions
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give rise to

1 2 4 8 16 16 1 0 0 0
2 4 8 16 32 32 0 1 0 0
4 8 16 32 64 64 0 0 1 0
8 16 32 64 128 128 0 0 0 1
16 32 64 128 256 255 0 0 0 0
16 32 64 128 255 256 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


,

which corresponds to the middle factor in (3.7). In this case U = I, L = A, and the
corresponding matrix Z is given by

ZT =

[
8 4 2 1 1 0
8 4 2 1 0 1

]
.

In general it is readily shown that when m < n, growth of 22m in the maximum
modulus element of K can occur. Of course, if K were factorized using some pivots
from G, this growth would no longer arise, but this would not be a null-space method.
For the null-space method based on (3.2), this example also illustrates the maximum
possible growth of 2m−1 in Z, when |lij | ≤ 1. In practice, however, such growth is
most unlikely and it is usual not to get any significant growth in Z.

4. Numerical stability of Method 1. In this and the next section we consider
the effect of ill conditioning in the matrix K on the solutions obtained by null-space
methods based on direct elimination. In particular, we are interested to see whether
or not we can establish results comparable to those for Gaussian elimination. We
shall show that the forward error in x is not as severe as would be predicted by the
condition number of K. We also look at the residual errors in the solution and show
that Method 2 is very satisfactory in this respect, whereas Method 1 is not.

In order to prevent the details of the analysis from obscuring the insight that we
are trying to provide, we shall adopt the following simple convention. We imagine
that we are solving a sequence of problems in which either κA or κM (the spectral
condition numbers of A and M = ZTGZ) is increasing without bound. We then
use the notation O(h) to indicate a quantity whose norm is bounded by c‖h‖ on this
sequence, where there exists an implied constant c that is independent of κA or κM ,
but may contain a modest dependence on n. Also, we shall assume that the system is
well scaled so that G = O(1) and A ∼ 1 (defined by A = O(1) and ‖A‖−1 = O(1)).
This enables us, for example, to deduce that multiplication of an error bound O(ε)
by A−1 causes the bound to be increased to O(κAε). We also choose to assume that
the KKT system models a situation in which the exact solution vectors x and y exist
and are not unreasonably large in norm; that is, x = O(1) and y = O(1). A similar
assumption is needed in order to show that Gaussian elimination provides accurate
residuals, so we cannot expect to dispense with this assumption. Sometimes it may
be possible to argue that we are solving a physical problem which is known to have a
well-behaved solution. Also, in QP applications it is usual for the iterates x to be of
reasonable magnitude.
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Another assumption that we make is that the choice of the matrix V in (2.8)
(and hence the partitioning of A) is made using some form of pivoting. Now the exact
solution for Z is given by

ZT = [−A2A
−1
1 I ] = [−L2L

−1
1 I ]

from (3.3), using the factors of A defined in (3.1). It follows that

Z = O(κL),(4.1)

where κL is the spectral condition number of L. Assuming that partial pivoting is
used, so that |lij | ≤ 1, and that negligible growth occurs in L−1

1 , it then follows that
negligible growth occurs in Z, and we can assert that

κL = O(1) and Z = O(1).(4.2)

Another consequence of this assumption is that we are able to neglect terms of O(κLε)
relative to terms of O(κAε) when assessing the propagation of errors for Method 2.

We shall now sketch some properties of floating point arithmetic of relative pre-
cision ε. If a nonsingular system of n linear equations Ax = b is solved by Gaussian
elimination, the computed solution x̂ is the exact solution of a perturbed system
(A + E)x̂ = b, where E is referred to as the backward error (Wilkinson [14, section
4.29]). E can be bounded by an expression of the form ρφ(n)ε + O(ε2) in which ρ
measures the growth in A during the elimination and φ(n) is a modest quadratic in
n (Stewart [11, Theorem 5.3]). This bound usually overstates the dependence on n
which is unlikely to be a dominant factor. Also for ill-conditioned systems, and as-
suming that partial pivoting is used, it is usual for the size of the reduced matrices to
diminish (Wilkinson [14, sections 4.40 and 4.31]). Thus significant growth is rare and
to simplify the presentation of our results we assume that it does not occur. Hence,
for the backward error, we may write

E = O(ε).(4.3)

We can measure the accuracy of the solution either by the forward error x̂ − x =
−A−1Ex̂ or by computing the residual r = Ax̂− b = −Ex̂. Using A ∼ 1 we have

x̂ = x +O(κAεx̂),

where κA is some condition number ofA. Since x = O(1), and assuming that κAε� 1,
it follows that x̂ = O(1) and hence

x̂ = x +O(κAε).(4.4)

Likewise, we can deduce that

r = −Ex̂ = O(ε).(4.5)

These bounds are likely to be realistic and tell us that for Gaussian elimination, ill
conditioning affects the forward error in x but not the residual r, as long as x̂ is of
reasonable magnitude.

Wilkinson [13, section 1.26] gives expressions for the backward error in a scalar
product and hence in the product s = b +Ax. The computed product ŝ is the exact
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product of a system in which the relative perturbation in each element of b and A is
no more than nε where n is the dimension of x. We can express this as

ŝ = s +O(ε)(4.6)

if we make the assumption that b and A are O(1).
The first stage in a null-space calculation is the determination of ZTGZ, which

we denote by M . In Method 1, this is computed as in (2.10) and (2.11). In (2.10) a
column zk of the matrix Z is computed which, by applying (4.4), satisfies

ẑk = zk +O(κAε),(4.7)

where κA is the spectral condition number of A. The product with G introduces
negligible error, and the solution of (2.11) together with (4.5) shows that

Aû = Gẑk +O(ε).

Multiplying by L−1 and extracting the û2 partition gives

û2 = ZTGẑk +O(κLε)

= ZTGzk +O(κAε)

using (4.7) and then (4.2). Hence we have established that

M̂ = M +O(κAε).(4.8)

The argument has been given in some detail as it is important to see why the error in
M is O(κAε) and not O(κ2

Aε). We also observe that M = ZTGZ = O(1) and hence

that M̂ = O(1) when κAε� 1.
We now turn to the solution of the KKT system using Method 1. We shall assume

that systems involving A and M are solved in such a way that (4.5) applies. Using
(4.6) and assuming that the computed quantities ŝ, t̂, . . . , ẑ are O(1), the residual
errors in the sequence of calculations are then

AT ŝ =

(
b
0

)
+O(ε),(4.9)

t̂ = c−Gŝ +O(ε),(4.10)

Aû = t̂ +O(ε),(4.11)

M̂ v̂ = û2 +O(ε),(4.12)

AT x̂ =

(
b
v̂

)
+O(ε),(4.13)

ĝ = c−Gx̂ +O(ε),(4.14)

A

(
ŷ
ẑ

)
= ĝ +O(ε).(4.15)

These results, together with (4.8), may be combined to get the forward errors in the
solution vectors x̂ and ŷ. Multiplying through equations (4.9) and (4.13) by A−T

magnifies the error bounds by a factor κA (since we are assuming that A ∼ 1), giving

ŝ = Y b +O(κAε),(4.16)

x̂ = Y b + Zv̂ +O(κAε).(4.17)
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We can get a rather better bound from (4.11) and (4.15) by first multiplying through
by L−1 and using κL = O(1) to give

û2 = ZT t̂ +O(ε),(4.18)

ẑ2 = ZT ĝ +O(ε)(4.19)

from the second partition of the solution. However, the first partition of (4.15) gives

ŷ = Y T ĝ +O(κAε).(4.20)

Combining (4.8) and (4.12) gives

v̂ = M−1û2 +O(κAε) +O(κMε).(4.21)

We can now chain through the forward errors, noting that a product with Z or ZT

does not magnify the order of the error bound in a previously computed quantity (by
virtue of (4.2)). However, the product M−1û2 in (4.21) magnifies the error bound in
û2 by a factor κM , and the product Y T ĝ in (4.20) magnifies the error bound in ĝ by
a factor κA. The outcome is that

x̂ = x +O(κAκMε)(4.22)

and

ŷ = y +O(κ2
AκMε).(4.23)

As we would expect, the forward errors are affected by the condition numbers of A
and M . However, although the condition number of K is expected to be of the order
κ2
AκM , we see that this factor only magnifies the error bound in the y part of the

solution, with the x part being less badly affected.
When K is ill conditioned we must necessarily expect that the forward errors are

adversely affected. A more important question is to ask whether the solution satisfies
the equations of the problem accurately. There are three measures of interest, the
residuals q = Gx+Ay−c and r = ATx−b of the KKT system (1.1) and the reduced
gradient z = ZTg where g = c − Gx is the negative gradient vector at the solution.
We note that the vector z is computed as a by-product of step 8 of Method 1.

If we compute r we obtain r̂ = AT x̂ − b + O(ε) as in (4.6), and it follows from
(4.13) and the definition of A that AT x̂ = b +O(ε). Thus

r̂ = O(ε).(4.24)

When computing q we obtain

q̂ = Gx̂ +Aŷ − c +O(ε)(4.25)

= Aŷ − ĝ +O(ε)(4.26)

= −
(

0
ẑ

)
+O(ε)(4.27)

from (4.14) and (4.15). Thus the accuracy of q̂ depends on that of ẑ. From (4.19)
and (4.14) it follows that

ẑ = ZT c− ZTGx̂ +O(ε)

= ZT c− ZTGY b− ZTGZv̂ +O(κAε)
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from (4.17). (Notice that it is important not to use (4.22) here, which would give an
unnecessary factor of κM .) Then (4.8), (4.12), (4.11), and (4.10) can be used, giving

ẑ = O(κAε).(4.28)

Thus we are able to predict under our assumptions that the reduced gradient ẑ and
the residual q̂ are adversely affected by ill conditioning in A but not by ill conditioning
in M . However, the residual r̂ is unaffected by ill conditioning either in A or M .

Simulations are described in section 6 which indicate that these error bounds
reliably predict the actual effects of ill conditioning. Method 1 is seen to be unsatis-
factory in that an accurate residual q cannot be obtained when A is ill conditioned.
We shall show in the next section that Method 2 does not share this disadvantage.

The main results of this section and the next are summarized and discussed in
section 7.

5. Numerical stability of Method 2. In this section we assess the behavior
of Method 2 in the presence of ill conditioning in K. Although we cannot expect any
improvement for the forward errors, we are able to show that Method 2 is able to give
accurate residuals that are not affected by ill conditioning. The relationship between
Method 2 and Gaussian elimination described towards the end of section 3 gives some
hope of proving this result. However, this is not immediate because Method 2 does
not make direct use of the factors (3.7) in the same way that Gaussian elimination
does.

A fundamental difficulty with the analysis of Method 2 is that we can deduce
from (4.7) that

Ẑ = Z +O(κAε),(5.1)

and this result cannot be improved if LU factors are available. To see this, we know
that the computed factors of any square matrix A satisfy

L̂Û = A+ E = A+O(ε)(5.2)

when there is no growth in Û . If A = LU are the exact factors, it follows that

L−1L̂ = UÛ−1 + L−1EÛ−1 = UÛ−1 +Q+R,

say, where Q is the strict lower triangular part of L−1EÛ−1 and R is the upper
triangular part. Because L−1L̂ is unit lower triangular and UÛ−1 is upper triangular
we can deduce that L−1L̂ = I +Q and UÛ−1 = I − R. Since L−1EÛ−1 involves an
inverse operation with Û we can expect that L̂ and L differ by O(κAε). This result
has been confirmed by computing the LU factors of a Hilbert matrix in single and
double precision Fortran. On applying the result to our matrix A, it follows that
(5.1) holds.

Fortunately all is not lost because we are still able to compute a null-space matrix
which accurately satisfies the equation ZTA = 0. Let Z̃ denote the null-space matrix
obtained from L̂ in exact arithmetic. It follows that Z̃T L̂ = 0 and hence from (5.2)
that

Z̃TA = O(ε).(5.3)

We also have Z̃ = O(1) as long as κAε � 1. Because we use the matrix L̂ in

computing the solutions of (5.7), (5.9), and (5.13) below, we can use Z̃ rather than Z
in the analysis, and this enables us to avoid the κA factor in the residuals.
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The first step in Method 2 is to compute M = ZTGZ as in (3.4) and (3.5). In

this section we denote M̃ = Z̃TGZ̃ as the value computed from Z̃ in exact arithmetic
and retain M̂ to denote the computed value of M . It readily follows, using results
like (4.2), that

M̂ = M̃ +O(ε).(5.4)

We now consider the solution of the KKT system using Method 2. As in equations
(4.9) through (4.15) we assume that the computed quantities ŝ, t̂, . . . , ẑ are O(1).
Then the residual errors in the sequence of calculations are

AT1 ŝ1 = b +O(ε) and ŝ2 = 0,(5.5)

t̂ = c−Gŝ +O(ε),(5.6)

û2 = Z̃T t̂ +O(ε),(5.7)

M̂ v̂ = û2 +O(ε),(5.8)

ŵ = Z̃v̂ +O(ε),(5.9)

x̂ = ŝ + ŵ +O(ε),(5.10)

ĝ = c−Gx̂ +O(ε),(5.11)

A1ŷ = ĝ1 +O(ε),(5.12)

ẑ = Z̃T ĝ +O(ε).(5.13)

It is readily seen from these equations that the forward errors will propagate in a
similar way to Method 1.

Turning to the residual errors, the computed value of the residual r is

r̂ = AT x̂− b +O(ε) = AT ŝ +AT Z̃v̂ − b +O(ε) = O(ε)(5.14)

from (5.10), (5.9), (5.5), and (5.3). When computing q we obtain q̂ = Aŷ− ĝ +O(ε)
as for Method 1, and it follows from (5.12) that q̂1 = O(ε). From (5.3) we can deduce

that Z̃T q̂ = −Z̃T ĝ +O(ε). But Z̃T q̂ = q̂2 − L̂−1
1 L̂2q̂1 = q̂2 +O(ε), so it follows that

q̂2 = −Z̃T ĝ +O(ε) = −ẑ +O(ε).(5.15)

Thus the accuracy of the residual q̂ depends on that of ẑ, as for Method 1. For ẑ we
can use (5.13), (5.11), (5.10), and (5.9) to get

ẑ = Z̃T c− Z̃TGŝ− Z̃TGZ̃v̂ +O(ε).

Now we can invoke (5.4) and (5.8), giving

ẑ = Z̃T c− Z̃TGŝ− û2 +O(ε) = O(ε)(5.16)

from (5.7) and (5.6). Thus we have established under our assumptions that all three
measures of accuracy for the KKT system are O(ε) for Method 2 and are not af-
fected by ill conditioning in either A or M . These results are again supported by the
simulations in the next section.
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Fig. 1. Condition numbers of K, A, and L.

6. Numerical experiments. In order to check the predictions of sections 4
and 5, some experiments have been carried out on artificially generated KKT systems.
These experiments have been carried out in Matlab, for which the machine precision is
ε ' 10−16. They suggest that the upper bounds given by the error analysis accurately
reflect the actual behavior of an ill-conditioned system. Another phenomenon that
occurs when the ill conditioning is very extreme is also explained.

The KKT systems have been constructed in the following way. To make A ill
conditioned we have chosen it as the first m columns of the n×n Hilbert matrix, where
n = 2m. Choosing m = 2, 3, . . . , 10 provides a sequence of problems for which the
condition number of A increases exponentially. Factors PA = LU are calculated by
the Matlab routine lu, which uses Gaussian elimination with partial pivoting, and A
is replaced by PA. In the first instance the matrix G is generated by random numbers
in the range [−1, 1]. However, to make M = ZTGZ positive definite, a multiple of the
unit matrix is added to the G22 partition of G, chosen so that the smallest eigenvalue
of M is changed to 101−k for some positive integer k. The assumptions of the analysis
require that the KKT system has a solution that is O(1). To achieve this, exact
solutions x and y are generated by random numbers in [−1, 1], and the right-hand
sides c and b are calculated from (1.1). For each value of m, 10 runs are made with
a different random number seed and the statistics are averaged over these 10 runs.

First, we examine the effect of increasing the condition number of A while keeping
M well conditioned. To do this we increase m from 2 up to 10, while fixing k = 1. The
resulting condition numbers of K, A, and L are plotted in Figure 1. It can be seen
that the slope of the unbroken line (κK) is about twice that of the dashed line (κA).
Since κM ∼ 1, this is consistent with the estimate κK ∼ κ2

AκM that we deduced in
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section 3. The condition number of L (dotted line) shows negligible increase, showing
that there is no growth in L−1

1 , thus enabling us to assert that Z = O(1). The leveling
out of the κK graph for m = 8, 9, and 10 is due to round-off error corrupting the least
eigenvalue of K.

Fig. 2. Error growth vs. κA for Method 1.

The effect of the conditioning of A on the different types of error is illustrated in
Figures 2 and 3. The forward error is shown by the two unbroken lines, the upper line
being the error in y and the lower line being the error in x. The upper line has a slope
of about 2 on the log-log scale, and the lower line has a slope of about 1, and both
have an intercept with the y-axis of about 10−16. This is precisely in accordance with
(4.23) and (4.22). It can also be seen that both methods exhibit the same pattern of
behavior in the forward error. The computed value of the residual error r = ATx−b
is shown by the dashed line and both methods show the O(ε) behavior as predicted
by (4.24) and (5.14), with the increasing condition number having no effect.

The difference between Methods 1 and 2 is shown by the computed values of the
residual q = Gx + Ay − c (dotted line) and the reduced gradient z = ZTg (dash-
dot line). As we would expect from (4.27), these graphs are superimposed, and they
clearly show the influence of κA on the error growth for Method 1, as predicted by
(4.28). Negligible error growth is observed for Method 2 as predicted by (5.16), except
for an increase in q for κA greater than about 109. This feature is explained later in
the section.

We now turn to see the influence of ill conditioning in M on the errors. To do
this we fix m = 5, for which κA ' 105, and carry out a sequence of calculations with
k = 1, 2, . . . , 10, which causes κM to increase exponentially. Each calculation is the



954 ROGER FLETCHER AND TOM JOHNSON

Fig. 3. Error growth vs. κA for Method 2.

average of 10 runs, as above. The results are illustrated in Figures 4 and 5, using the
same key. The forward errors are again seen to be similar for both methods and they
both have a slope of about 1 on the log-log scale, corresponding to the κM factor in
(4.22) and (4.23). The upper line for the forward error in y lies about 105 units above
that for the forward error in x, as the extra factor of κA in (4.23) would predict. The
residual r is seen to be unaffected by the conditioning of M as above. The residual q
and the reduced gradient z are also unaffected by κM , but the graphs for Method 1
lie above those for Method 2, due to the κA factor in (4.28). All these effects are in
accordance with what the error analysis predicts.

To examine the anomalous behavior of q in Figure 3 in more detail, we turn to a
sequence of more ill-conditioned test problems obtained by using the last m columns
of the Hilbert matrix to define A. The results for Method 2 are illustrated in Figure
6, and the anomalous behavior (dotted line) is now very evident. The reason for this
becomes apparent when it is noticed that it sets in when the forward error in y, and
hence the value of ŷ, becomes greater than unity. This possibility has been excluded
in our error analysis by the assumption that ŷ = O(1). The anomalous behavior
sets in when κ2

AκMε ' 1, that is, κA ' (κMε)
−1/2, or in this case κA ' 108, much

as Figures 3 and 6 illustrate. For greater values of κA there is a term O(ŷε) in the
expression for q̂ indicating that the error is of the form κ2

AκMε
2. The fact that this

part of the graph of q̂ is parallel to the graph of the forward error in y supports this
conclusion.

The above calculations have also been carried out using a Vandermonde matrix
in place of the Hilbert matrix, and very similar results have been obtained.
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Fig. 4. Error growth vs. κM for Method 1.

In this paper we have examined the effect of ill conditioning on the solution of a
KKT system by null-space methods based on direct elimination. Such methods are
important because they are well suited to take advantage of sparsity in large systems.
However, they have often been criticized for a lack of numerical stability, particularly
when compared to methods based on QR factors. We have studied two methods:
Method 1, in which an invertible representation of A in (2.8) is used to solve systems,
and Method 2, in which LU factors (3.1) of A are available. We have presented error
analysis backed up by numerical simulations which, under certain assumptions on
growth and the size of the solutions, provide the following conclusions.

• Both methods have the same forward error bounds, with x̂ = x +O(κAκMε)
and ŷ = y +O(κ2

AκMε).
• Both methods give accurate residuals if A is well conditioned, even if M is ill

conditioned.
• Method 2 always gives an accurate residual q = Gx + Ay − c, whereas

q = O(κAε) for Method 1.
• Both methods give an accurate residual r = ATx− b if A is ill conditioned.

These conclusions do indicate that Method 1 is adversely affected by ill conditioning
in A, even though the technique for solving systems involving A is able to provide
accurate residuals. The reasons for this are particularly interesting. For example,
one might expect that when A is ill conditioned, then A−1 would be large and we
might, therefore, expect from (2.1) that Z would be large. In fact, we have seen that
as long as V is chosen suitably, then growth in Z is very unlikely (the argument is
similar to that for Gaussian elimination). Of course, if V is badly chosen then Z can
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Fig. 5. Error growth vs. κM for Method 2.

be large and this will cause significant error. One might also expect that because the
forward error in computing Z is necessarily of order O(κAε), it would follow that no
null-space method could provide accurate residuals.

The way forward, which is exploited in the analysis for Method 2, is that Method 2
determines a matrix Z̃ for which Z̃TA = O(ε). Thus, although the null space is in-
evitably badly determined when A is ill conditioned, Method 2 fixes on one particular
basis matrix Z̃ that is well behaved. This basis is an exact basis for an O(ε) per-
turbation to A. Method 2 is able to solve this perturbed problem accurately. On
the other hand, Method 1 essentially obtains a different approximation to Z for every
solve with A. Thus the computed reduced Hessian matrix ZTGZ does not correspond
accurately to any one particular Z matrix.

In passing, it is interesting to remark that computing the factors

A = Q

[
R
0

]
= [Q1 Q2 ]

[
R
0

]
,

and defining Z = Q2, also provides a stable approach, not so much because it avoids
the growth in Z (we have seen that this is rarely a problem), but because it also
provides a fixed null-space reference basis, which is an exact basis for an O(ε) pertur-
bation to A.

In the context of quadratic programming, a common solution method for large
sparse systems is to use some sort of product form method (Gauss–Jordan, Bartels–
Golub–Reid, Forrest–Tomlin, etc. (see, for example, Suhl [12])). It is not clear that
such methods provide O(ε) solutions to the systems involving A that are solved
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Fig. 6. Error growth for Method 2 for a more ill-conditioned matrix.

in Method 1 (although B–G–R may be stable in this respect). However, the main
difficulty comes when the product form becomes too unwieldy and is reinverted. If
A is ill conditioned, the refactorization of A is likely to determine a basis matrix
Z that differs by O(κAε) from that defined by the old product form. Thus the old
reduced Hessian matrix ZTGZ would not correspond accurately to that defined by
the new Z matrix after reinversion. The only recourse would be to re-evaluate ZTGZ
on reinversion, which might be very expensive. Thus we do not see a product form
method on its own as being suitable. Our paper has shown that if a fixed reference
basis is generated, then accurate residuals are possible. We hope to show how this
might be done in a subsequent paper by combining a product form method with
another method such as LU factorization.
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Abstract. Let H and H + ∆H be positive definite matrices. It was shown by Barlow and
Demmel and Demmel and Veselić that if one takes a componentwise approach one can prove much
stronger bounds on λi(H)/λi(H + ∆H) and the components of the eigenvectors of H and H + ∆H
than by using the standard normwise perturbation theory. Here a unified approach is presented
that improves on the results of Barlow, Demmel, and Veselić. It is also shown that the growth
factor associated with the error bound on the components of the eigenvectors computed by Jacobi’s
method grows linearly (rather than exponentially) with the number of Jacobi iterations required for
convergence.
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1. Introduction. If the positive definite matrix H can be written as H = DAD,
where D is diagonal and A is much better conditioned than H, then the eigenvalues
and eigenvectors of H are determined to a high relative accuracy if the entries of the
matrix H are determined to a high relative accuracy. This was shown by Demmel and
Veselić [2], building on work of Barlow and Demmel [1]. In this paper we strengthen
some of the perturbation bounds in [2] and present a unified approach to proving
these results. We also show that, just as conjectured in [2], the growth factor that
arises in the bound on the accuracy of the components of the eigenvectors computed
by Jacobi’s method is linear rather than exponential.

We now give an outline of the paper and the main ideas in it and then define
the notation. In section 2 we quickly reprove some of the eigenvalue and eigenvector
perturbation bounds from [2] in a perhaps more unified way and derive bounds on
the sensitivity of the eigenvalues to perturbations in any given entry of the matrix.
The main idea in this section is that the analysis is reduced to standard perturbation
theory if one can express additive perturbations as multiplicative perturbations. In
this respect our approach is similar to that of Eisenstat and Ipsen in [4], except that
they assume a multiplicative perturbation and then go on to derive bounds, whereas
we assume an additive perturbation, which we rewrite as a multiplicative perturbation,
before performing the analysis. Our results are the same as those in [4] for eigenvalues
but not for eigenvectors. We briefly compare our approach to relative perturbation
bounds with those in [1, 2, 4] in section 2.1. We also show that the relative gap
associated with an eigenvalue is a very good measure of the distance (in the scaled
norm) to the nearest matrix with a repeated eigenvalue.

In section 3 we consider the components of the eigenvectors of a graded positive
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definite matrix.1 The key idea here is that if H is a graded positive definite matrix and
U is orthogonal such thatH1 = UTHU is also graded, then U has a “graded” structure
related to that of H and H1.2 This fact can be systematically applied to obtain
componentwise perturbation bounds for the eigenvectors of graded positive definite
matrices and componentwise bounds on the accuracy of the eigenvectors computed
by Jacobi’s method. The fact that the matrix of eigenvectors is “graded” has been
observed in [1] and [2]; however, the results there were weaker than ours, and these
papers did not exploit this graded structure to any great extent. The basic results on
gradedness of eigenvectors are in section 3.1 and the applications are in section 3.2.

Let Mm,n denote the space of m×n real matrices , and let Mn ≡Mn,n. For a sym-
metric matrix H we let λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H) denote its eigenvalues, ordered
in decreasing order. For X ∈ Mm,n we let σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin{m,n}(X) de-
note its singular values. The only norm that we use is the spectral norm (or 2-norm),
and we denote it by ‖ · ‖, i.e., ‖X‖ = σ1(X). When we say that a matrix has unit
columns we mean that its columns have unit Euclidean norm.

For a matrix or vector X, |X| denotes its entrywise absolute value. For two
matrices or vectors X and Y of the same dimensions we use min{X,Y } to denote
their entrywise minimum, and we use X ≤ Y to mean that each entry of X is smaller
than the corresponding entry of Y . To differentiate between the componentwise and
positive semidefinite orderings we use A � B to mean that A and B are symmetric
and B − A is positive semidefinite. We use E to denote a matrix of ones and e to
denote a column vector of ones—the dimension will be apparent from the context.

In studying the perturbation theory of eigenvectors we use the two notions of the
relative gap between the eigenvalues that were introduced in [1], but we use different
notation. Given a positive vector λ we define

relgap(λ, i) = min
j 6=i

|λi − λj |√
λiλj

and

relgap∗(λ, i) = min
j 6=i

|λi − λj |
λi + λj

.

One similarity between the two relative gaps is that it is sufficient to take the minimum
over j = i − 1, i + 1 in either case. However, it is easy to see that relgap∗(λ, i) is at
most 1, while relgap(λ, i) can be arbitrarily large and that

relgap(λ, i) ≥ 2 · relgap∗(λ, i).

If λ′k = λk(1 + αk) where |αk| ≤ δ, then, as we show at the end of the section,

relgap∗(λ′, i) ≥ relgap∗(λ, i)− δ.(1.1)

Unfortunately the result for the perturbation to relgap is more complicated, and
this sometimes complicates analysis and results involving relgap. (See [2, proof of
Proposition 2.6] for such an instance.)

1 We say that the positive definite matrix H is graded if H = DAD, where D is diagonal and A
is much better conditioned than H.

2 By this we mean that both ‖D−1UD1‖ and ‖DUD−1
1 ‖ are not much larger than 1, where D

and D1 are diagonal matrices such that the diagonal elements of D−1HD−1 and D−1
1 H1D

−1
1 are all

1. We use quotes because this is not the usual definition of gradedness, but, nonetheless it is related
to the gradedness of H and H1.
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It is not clear which relative gap one should use, or whether one should use both,
or perhaps the relative gap used in [4]. In [2] it was suggested that relgap(λ(H), i)
is the appropriate measure of the relative gap between λi(H) and the rest of the
eigenvalues of H and that relgap(σ(G), i) is the appropriate measure of the relative
gap between σi(G) and the rest of the singular values of G. The eigenvector results in
Theorems 3.5 and 2.9 and Corollary 2.10 and the singular vector results in Theorem
2.8 suggest that this is not the case.

Luckily, one is most interested in the relative gap when it is small, and in this
case it doesn’t make much difference which definition one chooses. For example, if
relgap(λ, i) ≤ 1.5, then one can check that

2 · relgap∗(λ, i) ≤ relgap(λ, i) ≤ 2.5 relgap∗(λ, i).(1.2)

One can also check that the left-hand inequality is always valid by a simple application
of the arithmetic–geometric mean inequality.

Let us now prove (1.1). Define f on (0,∞)2 by

f(x1, x2) =
|x1 − x2|
x1 + x2

.

Then

relgap∗(λ, i) = max
j 6=i

f(λi, λj).

So in order to prove (1.1) it is sufficient to prove that for any λ1, λ2, α1, α2, δ for which

max{|α1|, |α2|} ≤ δ ≤
|λ1 − λ2|
λ1λ2

,(1.3)

we must have

f(λ̃1, λ̃2) ≥ f(λ1, λ2)− δ.(1.4)

Without loss of generality λ1 > λ2. The bound (1.3) implies that λ̃1 ≥ λ̃2. Since
λ1 ≥ λ2 and λ̃1 ≥ λ̃2 it follows that

f(λ1, λ2) =
λ1 − λ2

λ1 + λ2
= 1− 2λ2

λ1 + λ2
,(1.5)

f(λ̃1, λ̃2) =
λ̃1 − λ̃2

λ̃1 + λ̃2

= 1− 2λ̃2

λ̃1 + λ̃2

.(1.6)

In writing (1.6) as

f(λ̃1, λ̃2) = 1− 2

(
λ̃1

λ̃2

+ 1

)−1

one sees that f(λ̃1, λ̃2), thought of as a function of α1 and α2, is minimized when
α1 = −δ and α2 = δ. Substituting these values for α1 and α2 and substituting the
expressions (1.5) and (1.6) in (1.4), we see that it is sufficient to prove

− 2λ2

λ− 1 + λ2
+

2λ2(1 + δ)

λ1(1− δ) + λ2(1 + δ)
≤ δ(1.7)
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or, equivalently,

4λ1λ2δ

(λ− 1 + λ2)(λ1(1− δ) + λ2(1 + δ))
≤ δ,(1.8)

which is equivalent to

4λ1λ2

(λ− 1 + λ2)(λ1(1− δ) + λ2(1 + δ))
≤ 1.(1.9)

The left-hand side of (1.9) is an increasing function of δ, and so in order to verify
(1.9) it is sufficient to verify it when δ is as large as possible—that is, when

δ =
λ1 − λ2

λ1 + λ2
.

Straightforward algebra shows that (1.9) holds with equality when one substitutes
this value of δ. Thus we have verified (1.1). The bound (1.1) is a slight improvement
over [7, Proposition 3.3, equation (3.8)] in the case p = 1.

2. A unified approach. In this section we give a unified approach to some of
the inequalities in [2] and [1]. This approach also allows one to bound the relative
perturbation in the eigenvalues of a positive definite matrix caused by a perturbation
in a particular entry.

The key idea in this section is to express the additive perturbation H + ∆H as
a multiplicative perturbation of H. Given a multiplicative perturbation of a matrix
it is quite natural that the perturbation of the eigenvalues and eigenvectors is also
multiplicative. It is then a small step from this multiplicative perturbation to the
componentwise perturbation bounds that we desire. There are two ways to write
H + ∆H as a multiplicative perturbation:

H + ∆H = [(H + ∆H)
1
2H−

1
2 ] H [(H + ∆H)

1
2H−

1
2 ]T(2.10)

and

H + ∆H = Y (I + Y −1(∆H)Y −T )Y T ,(2.11)

where H = Y Y T . (One possible choice of Y is H
1
2 .) If one wants to prove eigenvalue

inequalities it seems that both representations give the same bounds. If one uses
the representation (2.10), then Ostrowski’s theorem [6, Theorem 4.5.9] yields the
relation between the eigenvalues of H and H + ∆H—this is the route taken in [4].
We shall use (2.11) and the monotonicity principle (Theorem 2.1) because the proofs
are slightly quicker. Demmel and Veselić [2] and Barlow and Demmel [1] used the
Courant–Fisher min-max representation of the eigenvalues of a Hermitian matrix to
derive similar results.

In Jacobi’s method one encounters positive definite matrices H = DAD and
∆H = D(∆A)D, where D is diagonal and A can be much better conditioned than
H. For this reason Demmel and Veselić assumed the matrices H = DAD and ∆H =
D(∆A)D with D diagonal to be the data in their work [2]. We consider a slightly
more general situation and just assume that H and H+∆H are positive definite. We
consider this more general setting first to show that one can prove relative perturbation
bounds for positive definite matrices without assuming that the matrices are graded
and second because the results are slightly cleaner in the general case. (For example,
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the statement of Theorem 2.9, which deals with the general case, is cleaner than the
statement of Corollary 2.10, which deals with the special case where D is diagonal.)
Lemma 2.2 allows us to derive their results as corollaries of ours.

Theorem 2.1 (Monotonicity Principle [6, Corollary 4.3.3]). Let A,B ∈ Mn. If
A � B, then

λi(A) ≤ λi(B), i = 1, . . . , n.

The following lemma will be useful in applying our general results in special
situations.

Lemma 2.2. Let H be positive definite and let ∆H be arbitrary. Let Y ∈Mn be
such that H = Y Y T . Then

‖Y −1(∆H)Y −T ‖ = ‖H− 1
2 (∆H)H−

1
2 ‖.

Furthermore, if H = DADT and ∆H = D(∆A)DT , then

‖H− 1
2 (∆H)H−

1
2 ‖ = ‖A− 1

2 (∆A)A−
1
2 ‖.

Proof. Since Y Y T = H
1
2 (H

1
2 )T there must be an orthogonal matrix Q such that

Y = H
1
2Q. Thus

‖Y −1∆HY −T ‖ = ‖QTH− 1
2 ∆HH−

1
2Q‖ = ‖H− 1

2 ∆HH−
1
2 ‖.

For the second part of the lemma take Y = DA
1
2 and apply the first part. Then we

have

‖H− 1
2 (∆H)H−

1
2 ‖ = ‖A− 1

2D−1D(∆A)DTD−TA−
1
2 ‖ = ‖A− 1

2 (∆A)A−
1
2 ‖,

as required.
Note that if D is diagonal, as it will be in applications, then D = DT . Also, using

the notation of Lemma 2.2 we have

η = ‖A− 1
2 (∆A)A−

1
2 ‖ ≤ ‖A− 1

2 ‖ ‖∆A‖ ‖A− 1
2 ‖ = ‖A−1‖ ‖∆A‖.

Our bounds are in terms of η while those of Demmel and Veselić in [2] are in terms
of the larger quantity ‖A−1‖ ‖∆A‖. They assumed that the diagonal elements of A
are all 1. This is not always necessary, though it is a good choice of A in that it
approximately minimizes ‖A−1‖ ‖∆A‖. We only assume that the diagonal elements
of A are 1 when it is necessary.

2.1. Eigenvalues and singular values. Here is our main eigenvalue perturba-
tion theorem.

Theorem 2.3. Let H, H+∆H ∈Mn be positive definite and let η = ‖H− 1
2 ∆HH−

1
2 ‖.

Then

(1− η)λi(H) ≤ λi(H + ∆H) ≤ (1 + η)λi(H).

Proof. Write H + ∆H = H
1
2 (I +H−

1
2 (∆H)H−

1
2 )H

1
2 . Since

−ηI ≤ H− 1
2 (∆H)H−

1
2 ≤ ηI
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we have

(1− η)H ≤ H + ∆H ≤ (1 + η)H.

The monotonicity principle (Theorem 2.1) now gives the required bounds. 2

Using the second part of Lemma 2.2 we obtain a result that is essentially the
same as [2, Theorem 2.3].

Theorem 2.4. Let H = DAD, Ĥ = D(A + ∆A)D ∈ Mn be positive definite,

assume that D diagonal, and let η = ‖A− 1
2 ∆AA−

1
2 ‖. Then

1− η ≤ λi(Ĥ)

λi(H)
≤ 1 + η, i = 1, . . . , n.(2.12)

As another corollary of the monotonicity principle we have a useful relation be-
tween the diagonal elements of a positive definite matrix and its eigenvalues [2, Propo-
sition 2.10].

Corollary 2.5. Let H = DAD ∈Mn be a positive definite matrix and assume
that D is diagonal and that the main diagonal entries of A are all 1 while the main
diagonal entries of H are ordered in decreasing order. Then

λn(A) ≤ λi(H)

hii
≤ λ1(A), i = 1, . . . , n.(2.13)

Proof. Since λn(A)I ≤ A ≤ λ1(A)I it follows that λn(A)D2 ≤ DAD ≤ λ1(A)D2.
The matrix D2 is diagonal so its eigenvalues are its diagonal elements and these are
hii, 1, . . . , n. The result now follows from the monotonicity principle. 2

One would expect that the eigenvalues of H are more sensitive to perturbations in
some entries of H and less sensitive to perturbations in others. Stating the bound in
terms of η = ‖A− 1

2 (∆A)A−
1
2 ‖ allows one to derive stronger bounds on the sensitivity

of the eigenvalues of H to a perturbation in any one of the entries (or two corre-
sponding off-diagonal entries) of H than if we had replaced η by ‖∆A‖ ‖A−1‖. Let
us assume the notation of the theorem. Let Eij = eie

T
j (ei is the unit n-vector with

ith component equal to 1). Suppose that ∆A = εEjj , that is a relative perturbation
of ε in the jth main diagonal entry, then

‖A− 1
2 (∆A)A−

1
2 ‖ = ‖εA− 1

2 eje
T
j A
− 1

2 ‖ = |ε| ‖eTj A−
1
2A−

1
2 ej‖ = |ε|(A−1)jj ,

and so

1− |ε|(A−1)jj ≤
λi(H + ∆H)

λi(H)
≤ 1 + |ε|(A−1)jj , i = 1, . . . , n.(2.14)

In fact, we can say more. If ε > 0, then H ≤ H + ∆H, and so from the monotonicity
principle we know that λi(H) ≤ λi(H + ∆H), and so the lower bound in (2.14) can
be taken as 1, and vice versa if ε < 0. If ‖A−1‖ � (A−1)jj , as is quite possible for
some values of j, then the bound (2.14) is much better than (2.12) with η replaced
by ‖A−1‖ ‖∆A‖.

If ∆A = ε(Eij +Eji), a symmetric perturbation in entries ij and ji, then for any
α > 0

−|ε|(αEii + α−1Ejj) � ∆A � |ε|(αEii + α−1Ejj).
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Now taking α =
√

(A−1)jj/(A−1)ii we have

‖A− 1
2 ∆AA−

1
2 ‖ ≤ |ε| ‖A− 1

2 (αEii + α−1Ejj)A
− 1

2 ‖
≤ |ε| (α(A−1)ii + α−1(A−1)jj)

= 2
√

(A−1)ii(A−1)jj |ε|

and so for i = 1, . . . , n

1− 2|ε|
√

(A−1)ii(A−1)jj ≤
λi(Ĥ)

λi(H)
≤ 1 + 2|ε|

√
(A−1)ii(A−1)jj .(2.15)

One may hope to prove a bound with |(A−1)ij | instead of [(Aii)
−1(Ajj)

−1]
1
2 . To

see that such a bound is not possible consider the case A = I. Then the off-diagonal
elements of A−1 are 0, but clearly perturbing an off-diagonal element of A does change
the eigenvalues of DAD.

One can obtain similar bounds on the perturbation of the eigenvectors, singular
values, and singular vectors caused by a perturbation in one of the elements of the
matrix. In the case of eigenvectors and singular vectors one can obtain normwise and
componentwise bounds. The bounds for singular values and singular vectors involve
a row of B−1 (or B† if B ∈Mm,n and B is of full rank) rather than just one element
of the inverse (or pseudoinverse).

2.2. Eigenvectors and singular vectors. Now let us see how this approach
gives normwise perturbation bounds for the eigenvectors of a graded positive definite
matrix in terms of the relative gap between the eigenvalues. LetH be positive definite.
Let U be an orthogonal matrix with the jth column an eigenvector of H corresponding
to λj(H), and let Λ be a diagonal matrix with ii element λi(H). Then

H + ∆H = UΛ
1
2 (I + ∆)Λ

1
2UT ,

where ∆ = Y −1(∆H)Y −T and Y = UΛ
1
2 . Since Y Y T = H, the first part of Lemma

2.2 implies that

‖∆‖ = ‖H− 1
2 (∆H)H−

1
2 ‖ ≡ η.(2.16)

Let û be an eigenvector of Λ
1
2 (I + ∆)Λ

1
2 . Then ũ = Uû is an eigenvector of H + ∆H.

The vector u = Uej is an eigenvector of H, and so the normwise difference between
u and ũ is

‖u− ũ‖ = ‖U(ej − û)‖ = ‖ej − û‖.(2.17)

So to show that ũ can be chosen such that ‖u− ũ‖ is small we must show that û can
be chosen to be close to ej . We do this in Lemma 2.6, which follows easily from the
standard perturbation theory given in [5, pp. 345–346].

We have used the fact that U is orthogonal in (2.17), and hence has norm 1, to
obtain a normwise bound on u− ũ. In section 3.2 we use the componentwise bounds
(2.18–2.19) on U to derive a componentwise bound on u− ũ.

Lemma 2.6. Let Λ = diag(λ) have main diagonal elements ordered in decreasing
order and assume that λj+1 < λj < λj−1. Let X be a symmetric matrix and let
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H(ε) = Λ + εX. Then for ε sufficiently small λj(ε) = λj(H(ε)) is distinct, and one
can choose û(ε) to be an eigenvector of H(ε) such that

û(ε)j = 1 +O(ε2),(2.18)

|û(ε)i| ≤ ε
|xij |
|λi − λj |

+O(ε2), i 6= j,(2.19)

and so

‖û(ε)− ej‖ ≤ ε

∑
i6=j

|xij |2
|λi − λj |2

 1
2

+O(ε2).(2.20)

If we take X = Λ
1
2 ∆Λ

1
2 in Lemma 2.6, then one can see that the coefficient of ε

on the right-hand side of (2.20) is bounded by∑
i6=j

|δij |2λiλj
|λi − λj |2

 1
2

≤ relgap−1(λ, j)

∑
i6=j
|δij |2

 1
2

≤ relgap−1(λ, j)‖∆‖,

where δij is the ij element of ∆. Substituting η for ‖∆‖ from (2.16) we get

‖û− ej‖ ≤
η ε

relgap(λ, j)
+O(ε2).

From (2.17) it follows that we have the same bound on ‖u− ũ‖.
We summarize the argument in the following theorem.
Theorem 2.7. Let H ∈ Mn be positive definite and let ‖H− 1

2 ∆HH−
1
2 ‖. Let

H(ε) = H + ε∆H. Let λj(ε) = λj(H(ε)). Assume that λj(0) is a simple eigenvalue
of H. Let u be a corresponding unit eigenvector of H. Then, for sufficiently small ε,
there is an eigenvector u(ε) of H(ε) corresponding to λj(ε) such that

‖u− u(ε)‖ ≤ ε‖H− 1
2 (∆H)H−

1
2 ‖

relgap(λ, j)
+O(ε2).(2.21)

As mentioned earlier, we may replace η by ‖A−1‖‖∆A‖. The resulting bound
improves the bound in [2, Theorem 2.5] by a factor of

√
n− 1.

Eisenstat and Ipsen also give a bound on the perturbation of eigenvectors which
involves a relative gap [4, Theorem 2.2]. Their bound relates the eigenvectors of H
and those of KHKT , where K ∈ Mn is nonsingular. It is an absolute bound—not a
first-order bound. To obtain a bound of the form (2.21) from [4, Theorem 2.2] one

must find a bound on ‖(H + ε∆H)
1
2H−

1
2 − I‖ of the form

‖(H + ε∆H)
1
2H−

1
2 − I‖ ≤ cε‖H− 1

2 (∆H)H−
1
2 ‖+O(ε2).(2.22)

It is shown in [9] that if (2.22) is to hold for all n × n H and ∆H with H positive
definite, then the constant c must depend on n and must grow like logn. That is, a
direct application of [4, Theorem 2.2] to the present situation does not yield (2.21).
However, one can derive (2.21) using the idea behind the proof of [4, Theorem 2.2]
and a more careful argument [3].
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Veselić and the author have used ideas similar to those in this section to prove a
nonasymptotic relative perturbation bound on the eigenvectors of a positive definite
matrix [13].

One can apply Lemma 2.6 to GGT and GTG and thereby remove the factor√
n− .5 from the bound on the perturbation of the right and left singular vectors

given in [2, Theorem 2.16]. Note that one must apply Lemma 2.6 directly in order to
obtain the strongest result. If one applies Theorem 2.7 to GTG the resulting bound
contains an extra factor (1−‖∆GG†‖)−1. Notice that the bound on the right and left
singular vectors is not the same—the bound on the right singular vectors is potentially
much smaller since relgap can be much larger than relgap∗.

Theorem 2.8. Let G,G + ∆G ∈ Mm,n and let G† be the pseudoinverse of G.
Assume that G is of rank q = min{m,n} and that ∆G = ∆GG†G.

Let G(ε) = G + ε∆G. Take j between 1 and q and assume that σj(G) is simple.
Let u and v be left and right singular vectors of G corresponding to σj(G). Then for
sufficiently small ε, there are left and right singular vectors of G(ε), u(ε), and v(ε)
corresponding to σj(G(ε)) such that

‖u− u(ε)‖ ≤ 2‖∆GG†‖ε
relgap(σ2(G), j)

+O(ε2),(2.23)

‖v − v(ε)‖ ≤
√

2‖∆GG†‖ε
relgap∗(σ2(G), j)

+O(ε2).(2.24)

Proof. Let UΣV T be a singular value decomposition of G; here u and V are
square and Σ is rectangular. First let us consider the right singular vectors, which
are the eigenvectors of GTG.

GT (ε)G(ε) = GT (I + ε∆GG†)T (I + ε∆GG†)G

= V ΣT (I + ε(UTG†T∆GTU + UT∆GG†U))ΣV T +O(ε2)

= V ΣT (I + εF )ΣV T +O(ε2),

where F = UTG†T∆GTU +UT∆GG†U and hence has norm at most 2‖∆GG†‖ = 2η.
Now from (2.20) one can choose ũ as a jth eigenvector of ΣT (I + εF )Σ that differs in
norm from ej by at most

ε

∑
i6=j

|fij |2σ2
i σ

2
j

|σ2
i − σ2

j |2

 1
2

≤ relgap−1(σ2, j)‖F‖ε ≤ 2relgap−
1
2 (σ2, j)ηε

to first order in ε. Hence, we have the same bound on ‖u − V ũ‖ to first order in ε.
The vector V ũ is an eigenvector (corresponding to jth eigenvalue) of

V ΣT (I + εF )ΣV T ,

which is equal to GT (ε)G(ε) up to O(ε2) terms. Since the jth singular value of G(ε)
is simple, it follows that V ũ is a right singular vector of of G(ε) up to O(ε2).

Now let us consider the left singular vectors. As above we can show that

G(ε)G(ε)T = U(ΣΣT + ε(FΣΣT + ΣΣTFT ))UT +O(ε2),
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where F = (∆G)G†U and has norm at most η. So by (2.20) there is an eigenvector
of ΣσT + ε(FΣΣT + ΣΣTF ) that differs from ej in norm by at most

ε

∑
i6=j

(σifij + σjfji)
2

(σ2
i − σ2

j )2

 1
2

≤ ε

∑
i6=j

(σ2
i + σ2

j )(f2
ij + f2

ji)

(σ2
i − σ2

j )2

 1
2

≤ ε
(

max
i6=j

σ2
i + σ2

j

|σ2
i − σ2

j |2

) 1
2

∑
i6=j

f2
ij + f2

ji

 1
2

≤ relgap∗−1(σ2, j)η ε

to first order in ε. In the same way as before, we can now deduce that there is a vector
v(ε) with this distance of v. 2

2.3. Distance to nearest ill-posed problem. It was shown in [1, Proposition
9] that relgap(λ(H), i) is approximately the distance from H to the nearest matrix
with a multiple ith eigenvalue in the case that H is a scaled diagonally dominant
symmetric matrix and distances are measured with respect to the grading of H. We
show that there is a similar result for positive definite matrices. In Theorem 2.9 we
show that relgap(λ(H), i) is exactly the distance to the nearest matrix with a repeated

ith eigenvalue when we use the norm N(X) = ‖H− 1
2XH−

1
2 ‖. We strengthen [1,

Proposition 9] in Corollary 2.10 — our upper and lower bounds on the distance differ
by a factor of κ(A) while those in [1, Proposition 9] differ by a factor of about κ4(A),
a potentially large difference. Our bound is considerably simpler than that in [1]; it
doesn’t involve factors of n (although one could replace λ1(A) by n) and its validity
doesn’t depend on the value of the relative gap (the bound in [1] has the requirement
relgap ≤ 1

2 ). Block diagonal examples show that not every eigenvalue of H will have
the maximum sensitivity λ−1

n (A) and so this difference in the upper and lower bounds
is to be expected. That is to say that one cannot hope to improve the bound (2.26)
by more than a factor of λ1(A) ≤ n. Our bound involves relgap∗ while the bound in
[1] involves relgap. All these reasons suggest that relgap∗−1, and not relgap−1, is the
right measure of the distance to the nearest problem with a repeated ith eigenvalue.

Theorem 2.9. Let H be positive definite. Let λi(H) be a simple eigenvalue of
H, so that relgap∗(λi(H)) > 0. Let

δ = min{‖H− 1
2 (∆H)H−

1
2 ‖ : λi(H + ∆H) is a multiple eigenvalue of H + ∆H}.

Then

δ = relgap∗(λ(H), i).

Proof. First we show that δ ≥ relgap∗(λ(H), i). Let ∆H be a perturbation

that attains the minimum in the definition of δ. Then δ = ‖H− 1
2 (∆H)H−

1
2 ‖. Let

λk = λk(H) and λ′k = λk(H + ∆H) for k = 1, . . . , n. By Theorem 2.3 we know that

λ′k = λk(1 + αk), where |αk| ≤ δ.(2.25)

Since ∆H has a multiple ith eigenvalue there is an index j 6= i for which λ′i = λ′j . By
(2.25) we must have λj(1 + αj) = λi(1 + αi) and so

|λi − λj | ≤ (λi + λj)δ,



PERTURBATION BOUNDS FOR POSITIVE DEFINITE MATRICES 969

which implies

relgap∗(λ(H), i) ≤ |λi − λj |
λi + λj

≤ δ.

Now we show that δ = relgap∗(λ(H), i) is attainable. Choose a value j such that
j ∈ {i− 1, i+ 1}

|λi − λj |
λi + λj

= relgap∗(λ, i).

(One can easily show that this is possible.) Set α = λj/(λi + λj) and take

∆H = (λi − λj)[αxjxTj − (1− α)xix
T
i ],

where xi and xj are unit eigenvectors of H corresponding to λi and λj . One can check

that λi(H + ∆H) = λj(H + ∆H). Because xi and xj are eigenvectors of H−
1
2

H−
1
2 (∆H)H−

1
2 = (λi − λj)[αλ−1

j xjx
T
j − (1− α)λ−1

i xix
T
i ].

Because xi and xj are orthogonal it follows that

‖H− 1
2 (∆H)H−

1
2 ‖ = |λi − λj | ·max{αλ−1

j , (1− α)λ−1
i } =

|λi − λj |
λi + λj

as required. 2

Corollary 2.10. Let H = DAD ∈ Mn be positive definite and assume that
D is diagonal and that the main diagonal entries of A are 1. Let λi(H) be a simple
eigenvalue of H, so that relgap∗(λi(H)) > 0. Let

δD = min{‖D−1(∆H)D−1‖ : λi(H+∆H) is a multiple eigenvalue of H+∆H}.

Then

λn(A) relgap∗(λ(H), i) ≤ δ ≤ λ1(A) · relgap∗(λ(H), i).(2.26)

Proof. Because

λn(A)‖A− 1
2D−1∆HD−1A−

1
2 ‖ ≤ ‖D−1∆HD−1‖ ≤ λ1(A)‖A− 1

2D−1∆HD−1A−
1
2 ‖

and because, by Lemma 2.2, we have

‖A− 1
2D−1∆HD−1A−

1
2 ‖ = ‖H− 1

2 ∆HH−
1
2 ‖

it follows that

λn(A)δ ≤ δD ≤ λ1(A)δ.

The result now follows from Theorem 2.9. 2

3. Eigenvector components. It was shown in [1] that the eigenvectors of a
scaled diagonally dominant matrix are scaled in the same way as the matrix. Es-
sentially the same proof yields [2, Proposition 2.8]. We strengthen these by a factor
κ(A) in Corollaries 3.2 and 3.3. In section 3.2 we strengthen many of the results in
[2] by using the stronger results in section 3.1 and show that the growth factor in the
error bound on the eigenvectors computed by Jacobi’s method is linear rather than
exponential (Theorem 3.8). We also give improved componentwise bounds for the
perturbation of singular vectors (Theorems 3.6 and 3.7). It is essential that the Di

be diagonal in this section as we are considering the components of the eigenvectors.
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3.1. Gradedness of eigenvectors. Here we give some simple results on the
graded structure of an orthogonal matrix that transforms one graded positive definite
matrix into another and use this to derive results on the eigenvectors of a graded
positive definite matrix.

Lemma 3.1. Let H1 = CTH0C and let Hi = DiAiDi, where the main diagonal
entries of the Ai are 1 and the Di are diagonal. Assume that H0 ∈Mn and H1 ∈Mm

are positive definite. Then

‖D0CD
−1
1 ‖ ≤ λ

1
2
1 (A1)λ

− 1
2

n (A0) ≤
√
m λ

− 1
2

n (A0).(3.27)

Proof. It is easy to check that

A1 = D−1
1 H1D

−1
1 = (D−1

1 CTD0)A0(D0CD
−1
1 ).

Now, using the fact that the main diagonal entries of A1 ∈Mm are all 1 for the first
inequality and the monotonicity principle (Theorem 2.1) applied to λn(A0)KTK �
KTA0K with K = D0CD

−1
1 for the second, we have

m ≥ ‖A1‖ ≥ λn(A0)‖D0CD
−1
1 ‖2.

Taking square roots and dividing by λ
1
2
n (A0) gives the asserted bound. 2

If the matrix C is orthogonal, then H1 = UTH0U implies that H0 = UH1U
T and

so we have a companion bound stated in the next result.
Corollary 3.2. Let H1 = UTH0U ∈ Mn and let Hi = DiAiDi, where the

main diagonal entries of the Ai are 1 and the Di are diagonal. Assume that U is
orthogonal. Then

‖D0UD
−1
1 ‖ ≤ λ

1
2
1 (A1)λ

− 1
2

n (A0) ≤
√
n λ
− 1

2
n (A0),(3.28)

‖D−1
0 UD1‖ ≤ λ

1
2
1 (A0)λ

− 1
2

n (A1) ≤
√
n λ
− 1

2
n (A1).(3.29)

This says that if an orthogonal matrix U transformsH0 intoH1 and λn(D−1
i HiD

−1
i ) =

λn(Ai), i = 0, 1 are not too small, then U has a graded structure.
In the special case that U is the matrix of eigenvectors of H = DAD, then A1 = I

and we obtain

‖DUΛ−
1
2 ‖ ≤ λ−

1
2

n (A), ‖D−1UΛ
1
2 ‖ ≤ λ

1
2
1 (A) ≤

√
n.(3.30)

It is useful to have bounds on the individual entries of U and we state a variety
of such bounds in (3.31)–(3.33) but note that they are actually weaker than the
normwise bounds in (3.30). The bounds (3.31)–(3.33) are stronger than those in [2,

Proposition 2.8] and [1, Proposition 6], which have a factor κ
3
2 (A) rather than κ

1
2 (A)

on the right-hand side. The result in [1] is, however, applicable to scaled diagonally
dominant symmetric matrices while our result is only for positive definite matrices.

Corollary 3.3. Let H = DAD ∈ Mn be positive definite and assume that D
is diagonal and that the main diagonal entries of A are 1. Let U be an orthogonal
matrix such that Λ = UTHU is diagonal with diagonal entries λi. Then

|uij | ≤ min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1/2
1 (A)

√
hii
λj

}
,(3.31)
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|uij | ≤ κ
1
2 (A)min

{√
λi
λj
,

√
λj
λi

}
,(3.32)

|uij | ≤ κ
1
2 (A)min

{√
hii
hjj

,

√
hjj
hii

}
(3.33)

and the first inequality is stronger than the second and third.
Proof. The fact that |uij | is no larger than the first (second) quantity on the right-

hand side of (3.31) follows from the first (second) inequality in (3.30). The remaining
inequalities can be derived from (3.31) using the relations between the eigenvalues
of H and its main diagonal entries in Corollary 2.5. This also shows that they are
weaker than (3.31). 2

Another way to state the bound in (3.31) is

|U | ≤ min{λ−
1
2

n (A)D−1EΛ
1
2 , λ

1
2
1 (A)DEΛ−

1
2 },(3.34)

where the minimum is taken componentwise. Recall that E is the matrix of ones.

3.2. Applications of graded eigenvectors. Now we use the results in section
3.1 to give another proof of the fact that components of the eigenvectors of a graded
positive definite matrix are determined to a high relative accuracy. We then show
that relgap∗(λ(H), i) is a good measure of the distance of a graded matrix from the
nearest matrix with a multiple ith eigenvalue, where the distance is measured in a
norm that respects that grading. Finally we show that Jacobi’s method does indeed
compute the eigenvectors to this accuracy (improving on [2, Theorem 3.4]).

We now combine Lemma 2.6 with the general technique used in section 2 to obtain
a lemma that will be useful in proving componentwise bounds for eigenvectors and
singular vectors.

Lemma 3.4. Let Λ = diag(λ) have main diagonal elements ordered in decreasing
order and assume that λj+1 < λj < λj−1. Let X be a symmetric matrix and let U be

an orthogonal matrix. Let H(ε) = UΛ
1
2 (I + εX)Λ

1
2U . Let u = Uej be an eigenvector

of H ≡ H(0) associated with λj. Let ū be the upper bound on the jth eigenvector ;
that is,

ūi = min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1
2
1 (A)

√
hii
λj

}
.

Then, for ε sufficiently small, λj(ε) = λj(H(ε)) is simple, and one can choose u(ε) to
be a unit eigenvector of H(ε) corresponding to λj(ε) such that

|u− u(ε)| ≤
√
n− 1 ‖X‖ ε

relgap∗(λ, j)
ū + O(ε2).(3.35)

Proof. Since U is the matrix of eigenvectors of H, the bound (3.31) gives

|uik| ≤ ūik ≡ min

{
λ
− 1

2
n (A)

√
λk
hii

, λ
1
2
1 (A)

√
hii
λk

}
.(3.36)

Note that the vector ū defined in the statement of the theorem is just the jth column
of the matrix Ū just defined in (3.36). From Lemma 2.6 it follows that there is an
eigenvector û(ε) such that

|û(ε)− ej | ≤ εr +O(ε2),
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where r is the vector given by

rk ≡


0, k = j,∣∣∣∣∣xkjλ

1
2
k
λ

1
2
j

λk−λj

∣∣∣∣∣ , k 6= j,

where xij is the i, j element of X. Let u(ε) = Uû(ε). So

|u− u(ε)| = |U(ej − û(ε))| ≤ |U | |ej − û(ε)| ≤ εŪ r +O(ε2),

and we must now bound Ūr. The ith element of Ūr is

n∑
k=1

ūikrk ≤
∑
k 6=j

min

{
λ
− 1

2
n (A)

√
λk
hii

, λ
1
2
1 (A)

√
hii
λk

}
|εxkj |

√
λkλj

|λk − λj |
+O(ε2)

= ε
∑
k 6=j

min

{
λ
− 1

2
n (A)

√
λj
hii

λk
|λk − λj |

, λ
1
2
1 (A)

√
hii
λj

λj
|λk − λj |

}
|xkj |+O(ε2)

≤ ε
∑
k 6=j

λj + λk
|λj − λk|

min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1
2
1 (A)

√
hii
λj

}
|xkj |+O(ε2)

≤ ε · relgap∗−1(λ, j)
∑
k 6=j

min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1
2
1 (A)

√
hii
λj

}
|xkj |+O(ε2)

= ε · relgap∗−1(λ, j) · ūi
∑
k 6=j
|xkj |+O(ε2)

≤ ε · relgap∗−1(λ, j)
√
n− 1‖X‖ ūi +O(ε2).

For the final equality note that the quantity

min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1
2
1 (A)

√
hii
λj

}

is now independent of k and is ūi as defined in the statement of this lemma. 2

This result gives componentwise perturbation bounds for eigenvectors and singu-
lar vectors as simple corollaries.

Theorem 3.5. Let H = DAD be positive definite and let H(ε) = D(A+ ε∆A)D.

Let η = ‖H− 1
2 (∆H)H−

1
2 ‖ and let λj(ε) = λj(H(ε)). Let λj = λj(0) and assume that

it is a simple eigenvalue of H. Let u be a corresponding unit eigenvector of H. Let ū
be the upper bound on the jth unit eigenvector ; that is,

ūi = min

{
λ
− 1

2
n (A)

√
λj
hii

, λ
1
2
1 (A)

√
hii
λj

}
.

Then, for sufficiently small ε, λj(ε) is simple and there is a unit eigenvector u(ε) of
H(ε) corresponding to λj(ε) such that

|u− u(ε)| ≤
√
n− 1 εη

relgap∗(λ, j)
ū+O(ε2).
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Proof. Write

H(ε) = UΛ
1
2 (I + ε∆)Λ

1
2UT ,

where U is the matrix of eigenvectors of H and ∆ = Λ−
1
2UT (∆H)UΛ−

1
2 . Lemma 2.2

implies that ‖∆‖ = η. The asserted bound now follows from Lemma 3.4. 2

Lemma 3.4 also yields a componentwise bound on singular vectors.
Theorem 3.6. Let G = BD ∈ Mm,n be of rank n and let G(ε) = (B + ε∆B)D.

Let η = ‖(∆B)B†‖. Let σ = σ(G) and let σj(ε) = σi(G(ε)). Assume that σj is simple
and that v is a corresponding unit right singular vector. Let v̄ be the upper bound on
the jth right unit singular vector ; that is,

v̄i = min

{
σ−1
n (B)

σj
di
, σ1(B)

di
σj

}
.

Then, for sufficiently small ε, σj(ε) is simple and there is a unit right singular vector
v(ε) of G(ε) corresponding to σj(ε) such that

|v − v(ε)| ≤ 2
√
n− 1 εη

relgap∗(σ2, j)
v̄ +O(ε2).(3.37)

Proof. Let G = UΣV T where U ∈ Mm,n has orthonormal columns, Σ ∈ Mn is
positive diagonal, and V ∈Mn is orthogonal. We may write

G(ε)TG(ε) = V ΣT (I + εF )ΣV T +O(ε2),

where F = UTB†T∆BTU + UT∆BB†U , and B† is the pseudoinverse of B. Note
that ‖F‖ ≤ 2η. Since the jth singular value of G is simple the corresponding singular
vector is differentiable and so, in particular, v(ε), the jth singular vector of G(ε) (and
eigenvector of G(ε)TG(ε)), and v̂, the jth eigenvector of V ΣT (I + εF )ΣV T , differ by
at most O(ε2). According to Lemma 3.4, we know that

|v̂ − v| ≤
√
n− 1 ‖F‖ε

relgap∗(σ2, j)
v̄ +O(ε2)

and hence the bound on v(ε). 2

This improves [2, Proposition 2.20] in two ways. First, our upper bound v̄j is
smaller than that in [2] by a factor of about σ−1

n (B). Second, we have a factor σn(B)
in the denominator while in [2] there is a factor σ2

n(B), so overall our bound is smaller
by a factor of about σ−2

n (B). The latter difference arises because in [2] the authors
used the equivalent of Theorem 3.5 applied to GTG, whereas we use Lemma 3.4.

The quantity relgap∗(σ2, j) can be hard to deal with when one perturbs G and
hence also its singular values. It would be more convenient to have relgap∗(σ, j) in
the bound. It is easy to check that relgap∗(σ, j) ≤ relgap∗(σ2, j). Thus (3.37) implies

|v − v(ε)| ≤ 2
√
n− 1 ‖∆B‖ ε

σn(B)relgap∗(σ, j)
v̄ +O(ε2).(3.38)

It is worth stating the stronger form of the inequality (3.37), as this is more natural
when G is the Cholesky factor of a positive definite H (as is the case in [12]). In this
case σ2(G) = λ(H).
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Because we have no componentwise bound on the left singular vectors of G = BD
we cannot get a componentwise bound on the difference between the left singular
vectors of BD and (B + ∆B)D.

We now give a result on componentwise perturbations of singular vectors. Our
bound is stronger than [2, Propositions 2.19 and 2.20] by a factor of about σ−3

n (B).
(Our upper bound v̄ is smaller than in [2] by a factor of σ−2

n (B), and the denominator
here contains a factor σn(B) while that in [2] contained σ2

n(B).) We could give an
improved bound for eigenvectors also, but we restrict ourselves to the case of singular
vectors because that is what is important when one uses one-sided Jacobi to compute
eigenvectors of a positive definite matrix to high componentwise relative accuracy.

Theorem 3.7. Let G = BD ∈ Mm,n have rank n and assume that D =
diag(d1, . . . , dn), where the di are positive and that B has unit columns. Choose
j ∈ {1, . . . , n} and let v be a unit right singular vector corresponding to σi(G). Let

v̄ = min{σ−1
n (B)σj(G)D−1e, σ1(B)σ−1

j (G)De, }.

Let ∆G = ∆BD and set δ = ‖∆B‖σ−1
n (B) and assume that δ < relgap∗(σ(G), j).

Then |v| ≤ v̄ and there is a vector v̂ that is a right singular vector of G + ∆G such
that

|v − v̂| ≤ 4
√
n− 1 (1− ‖∆B‖)−2(1− δ)−2

σn(B) · (relgap∗(σ(G), j)− δ) ‖∆B‖ v̄.(3.39)

Proof. The statement that v̄ is an upper bound on v follows from (3.31). Let
G(t) = G+ t∆G. The condition δ < relgap∗(σ(G), j) ensures that σi(G(t)) is simple
for t ∈ [0, 1] so there is a differentiable v(t) that is a right singular vector of G(t) such
that v(0) = v, and from (3.38) we have the componentwise bound∣∣∣∣ ddtv(t)

∣∣∣∣ ≤ 2
√
n− 1

σn(B(t)) · relgap∗(σ(G(t)), j)
‖∆B‖ v̄(t),(3.40)

where G(t) = B(t)D(t) and B(t) has unit columns and D(t) is positive diagonal. So
for a bound on |v− v̂| = |v(0)− v(1)| we need only bound each of the quantities that
depend on t and then integrate the bound. Using the fact

1− δ ≤ σi(G(t))

σi(G)
≤ 1 + δ,

one can show that for t ∈ [0, 1]

relgap∗(σ(G(t)), j) ≥ relgap∗(σ(G), j)− δ.

One can check that B(t) = (B + t∆B)(DD(t)−1) so

σn(B(t)) ≥ σn(B + t∆B)σn(DD(t)−1)

≥ σn(B + t∆B)(1− ‖∆B‖) ≥ σn(B)(1− δ)(1− ‖∆B‖).

The condition δ < relgap∗(σ(G), j) implies 1 + δ < 2 because relgap∗(σ(G), j) is
necessarily less than 1. We use this in the final inequality in the following display.
Using (3.31) for the first inequality and bounds on σj(G(t)), σn(B(t)), and di(t) for
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the subsequent inequalities, we have

|vj(t)| ≤ min

{
σ−1
n (B(t))

σj(G(t))

di(t)
,

di(t)

σj(G(t))

}
≤ min

{
(1− δ)−1(1− ‖∆B‖)−1σ−1

n (B(t))
σj(G(t))(1 + δ)

di(t)(1− ‖∆B‖)
,
di(t)(1 + ‖∆B‖)
σj(G(t))(1− δ)

}
≤ (1− δ)−1(1− ‖∆B‖)−1(1 + δ)min

{
σ−1
n (B)

σj(G)

di
,

di
σj(G)

}
≤ 2(1− δ)−1(1− ‖∆B‖)−1v̄j .

Substituting these bounds into (3.40) gives∣∣∣∣ ddtv(t)

∣∣∣∣ ≤ 4
√
n− 1 (1− ‖∆B‖)−2(1− δ)−2

σn(B) · (relgap∗(σ(G), j)− δ) ‖∆B‖ v̄,

which when integrated yields the asserted inequality. 2

In right-handed Jacobi one computes the singular values of G0 ∈Mn by generat-
ing a sequence Gi+1 = GiJi, where Ji is an orthogonal matrix chosen to orthogonalize
two columns of Gi. One stops when

|(GM )Ti,·(GM )j,·| ≤ tol · ‖(GM )i,·‖ ‖(GM )j,·‖, i 6= j.(3.41)

One can obtain the right singular vectors of G by accumulating the Ji. Demmel and
Veselić show in [2, Theorem 3.4] that when implemented in finite precision arithmetic,
this algorithm gives the individual components of the eigenvectors to a high accuracy
relative to their upper bounds (actually this is for two-sided Jacobi, but the proof is
essentially the same for one-sided Jacobi). However, their bound contains a factor
for which they say “linear growth is far more likely than exponential growth.” In the
next result we show that the growth is indeed linear. One can prove an analogous
result for two-sided Jacobi applied to a positive definite matrix.

Let us denote the product JiJi+1 · · · Jk by Ji:k. The key idea that allows us
to derive a growth factor that is linear in M rather than exponential in M is that
we bound Ji:k directly, rather than bound it by |Ji:k| ≤ |Ji||Ji+1| · · · |Jk| and then
bounding each of the terms on the right-hand side. This idea has been used profitably
in [11] also.

Theorem 3.8. Let Gi = BiDi ∈Mn, i = 0, 1, . . . ,M , where Bi has unit columns
and Di is diagonal. Assume that

Gi+1 = (Gi + ∆Gi)Ji,

where Ji is orthogonal and

‖∆GiD−1
i ‖ ≤ η.

Assume further that the columns of GM are almost orthogonal in the sense that GM
satisfies (3.41) with tolerance tol. Let

σmin ≡ mini=0,...,M−1σn(Bi)

and assume that δ ≡ M
√
nησ−1

min < relgap∗(σ(G), j). Let û be the computed column
of J0:M−1 corresponding to σj(G). Then there is a unit right singular vector uT of G
corresponding to σj(G) such that, to first order in η, ε, and tol,

|u− û| ≤
[
Mn3/2

σ−2
min

ε+
2
√
n− 1(Mσ−1

minη + n · tol)
relgap∗(σ(G), j)− 2Mσ−1

minη − n · tol

]
ū,(3.42)
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where

ū = min{σ−1
n (B)σj(G)D−1e, σ1(B)σ−1

j (G)De}

is the upper bound on u from (3.31).
The bound (3.42) is a first-order bound. The proof below would also yield a

bound that takes into account all the higher-order terms, but the resulting inequality
would be much more complicated and probably not any more useful.

If the Gi and Ji arise from right-handed Jacobi applied to G in finite precision
arithmetic with precision ε, then one can take η = 12ε [10, Theorem 4.2 and the
ensuing discussion].

Let us compare our bound with

q(M,n)
(tol + ε) · n

relgap∗(σ(G), j) σ2
min

¯̄u,(3.43)

which is essentially the bound on the computed right singular values from [2, Theorem
4.4] stated in our notation. Our bound is stronger in several respects. The term
q(M,n) is a growth factor that is exponential in M , while our bound is linear in M .
As we have mentioned earlier, the upper bound vector ¯̄u in (3.43) is larger than ū by
a factor of about σ−2

n (B), which could be quite significant. Also, we have two terms,
one in σ−2

min and the other in (σmin · relgap∗(σ(G), j)−1; both these quantities are less
than (σ2

minrelgap∗(σ(G), j)−1, which occurs in (3.43).
A weakness of both bounds is that they contain the factor σ−1

min (defined in the
statement of the theorem) rather than σ−1

n (B). It has been observed experimentally
[2, section 7.4] that σmin/σn(B) is generally 1 or close to 1, but no rigorous proof of
this fact is known. Mascarenhas has shown that the ratio can be as large as n/4 [8].

One can also see that for a given ε we can take tol, the stopping tolerance, as large
as εσ−1

n (B) without significantly increasing the right-hand side of (3.42). Typically, it
is suggested that one take tol to be a modest multiple of ε when one wants to compute
the eigenvectors or eigenvalues to high relative accuracy [2]. Thus this larger value of
tol may be useful in practice to save a little computation through earlier termination.

The rest of the paper is devoted to the rather lengthy proof of this theorem.
Proof. The outline of the proof is as follows. First we will bound |u − û|, where

u is the value of the jth column of J0:M−1 computed in exact arithmetic. Next,
we will bound |u − uT |, where uT (T is for true) is an exact singular vector of G
associated with σj(G). The inequality (3.42) follows by combining these two bounds.
Throughout we will use the facts that σj(GM ) = σj(G)(1+αj), where |αj | ≤Mησ−1

min

and |σn(BM )− 1| ≤ n · tol and drop second-order terms.
Now consider |u − û|. This bound depends only on the scaling of the Ji:k and

is independent of relgap∗(σ(G), j). If X,Y ∈ Mn are multiplied in floating point
arithmetic with precision ε, the result is XY + ∆, where

|∆| ≤ 2nε|X||Y |.

Using this fact, one can show by induction that

J0:M−1 − Ĵ0:M−1 ≤ 2nε
M−1∑
i=1

EiJi+1:M−1 +O(ε2),(3.44)

where |Ei| ≤ |J0:i−1||Ji|. Here Ei is the error in multiplying J0:i−1 and Ji, and
EiJi+1:M−1 is the first-order effect of this error in the computed value of J0:M . Taking
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absolute values in (3.44) gives the componentwise error bound

|J0:M−1 − Ĵ0:M−1| ≤ 2nε
M−1∑
i=1

|J0:i−1||Ji||Ji+1:M−1|+O(ε2).(3.45)

Now

D0|J0:i−1||Ji||Ji+1:M−1|D−1
M = (D0|J0:i−1|D−1

i )(Di|Ji|D−1
i+1)(Di+1|Ji+1:M−1|D−1

M )

≤ (D0|J0:i−1|D−1
i )(Di|Ji|D−1

i+1) · σ−1
n (Bi+1)E

≤ ‖D0|J0:i−1|D−1
i ‖ ‖Di|Ji|D−1

i+1‖
√
nσ−1

n (Bi+1)E

≤
√
nσ−1

n (B0) ·
√
nσ−1

n (Bi)
√
nσ−1

n (Bi+1)E

≤ n3/2σ−1
n (B0)σ−2

minE.

Recall that E denotes the matrix of ones. We have used the first term in (3.34) and the
fact that, up to first order, Ji+1:M−1 diagonalizes GTi+1Gi+1 for the first inequality
and we have used (3.28) twice for the third inequality. Since GM has orthogonal
columns up to O(tol) and the singular values of GM are the same as those of G to
O(η), it follows that DM = Σ at least to first order. So, multiplying by D0 and Σ−1,
we have, to first order,

D0|J0:M−1 − Ĵ0:M−1|Σ−1 ≤Mn3/2σ−1
n (B0)σ−2

minεE.

In the same way, we obtain the first-order bound

D−1
0 |J0:M−1 − Ĵ0:M−1|Σ ≤Mn3/2σ−2

minεE.

These two bounds can be combined to give

|J0:M−1 − Ĵ0:M−1| ≤Mn3/2σ−2
min · ε · min{σ−1

n (B0)D−1EΣ, DEΣ−1},

where the minimum is taken componentwise. (Note that D0 = D.) The jth column
of this is the inequality we desire:

|u− û| ≤Mn3/2σ−2
minε min{σ−1

n (B0)σj(G)D−1e, σ−1
j (G)De} = Mn3/2σ−2

minεū.

This completes the first step.
Now let us bound the error between u and a singular vector of G. If the columns of

GM were orthogonal, then ej , in particular, would be a right singular vector associated
with σj(GM ). If, in addition, all the ∆Gi were 0, then GM = G0J0:M−1 and so
u = J0:M−1ej would be a right singular vector associated with σj(G). Neither of
these hypotheses is true, though in each case they are “almost true” and so u is close
to being a singular vector of G0. We now bound the difference.

First we will consider the fact that the columns of GM are not exactly orthogonal.
Write

GTMGM = DM (I +A)DM = DM (I +A)
1
2 (I +A)

1
2DM .(3.46)

Then each entry of A is at most tol in absolute value and so ‖A‖ ≤ n·tol. The equation

(3.46) implies that there is an orthogonal matrix Q such that QGM = (I + A)
1
2DM .

One can check that

‖I − (I +A)
1
2 ‖ = max

i
{|1−

√
1 + λi(A)|} ≤ ‖A‖ ≤ n · tol;
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we will use this bound later.
Now consider the effect of the ∆Gi. It is easy to check by induction, for example,

that

GM = G0J0:M−1 + ∆G,(3.47)

where

∆G =

M−1∑
i=0

∆GiJi:M−1.

Now, using the assumption ‖∆GiD−1
i ‖ ≤ η for the first inequality and (3.28) for the

second, we have

‖∆GiJi:M−1D
−1
M ‖ = ‖∆GiD−1

i DiJi:M−1D
−1
M ‖

≤ ‖∆GiD−1
i ‖ ‖DiJi:M−1D

−1
M ‖

≤ ησ−1
min.

Together with (3.47) this yields

‖∆GD−1
M ‖ ≤Mσminη.

Now we will combine these two results to show that GM +∆G has a right singular
vector close to ej and hence that G0 = (GM + ∆G)JT0:M−1 has a right singular vector
close to u = J0:M−1ej . The right singular vectors of GM + ∆G are the same as those
of Q(GM + ∆G) where Q is the orthogonal matrix introduced after equation (3.46).
Also,

Q(GM + ∆G) = (I +A)
1
2DM +Q∆G

= DM + [(I +A)
1
2 − I +Q∆GD−1

M ]DM .

The jth right singular vector of DM is ej and

‖(I +A)
1
2 − I +QT∆GD−1

M ‖ ≤ ‖(I +A)
1
2 − I‖+ ‖QT∆GD−1

M ‖
≤ n · tol + ‖∆GD−1

M ‖
≤ n · tol +Mσminη

≡ τ.

So by Theorem 3.7 there is a right singular vector v of G+ ∆G corresponding to its
jth singular value such that

|ej − v| ≤
√
n− 1(1− τ)−2(1− σ−1

n (BM )τ)−2

σn(BM ) · [relgap∗(σ(GM ), j)− τσn(BM )]
τ v̄,(3.48)

where

v̄ = min{σ−1
n (BM )σj(GM )D−1

M e, σ1(BM )σ−1
j (GM )Dme}.

Now let us drop the second-order terms in (3.48) and v̄. The term τ is O(η) +
O(tol)σ1(BM ), so we may drop all first-order terms in v̄ and in the ratio in (3.48). In
particular, we may replace σn(BM ), 1 − τ , and 1 − σ−1

n (BM )τ all by 1. We do not
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assume that relgap∗(σ(GM ), j) is large with respect to η and τ so we cannot replace
relgap∗(σ(GM ), j)− τ by relgap∗(σ(G), j)− τ . However, as was shown at the end of
the introduction, we have

relgap∗(σ(GM ), j) ≥ relgap∗(σ(G), j)−Mησ−1
min,

and hence

relgap∗(σ(GM ), j)− τ ≥ relgap∗(σ(G), j)− γ,

where γ = 2Mσminη + n · tol. With these substitutions we obtain the bound that is
equivalent to (3.48) up to first order

|ej − v| ≤
2
√
n− 1(Mησ−1

min + n · tol)
relgap∗(σ(GM ), j)− γ

¯̄v,(3.49)

where

¯̄v = min{σj(G)D−1
M e, σ−1

j (G)DMe}.

For convenience, let the coefficient of ¯̄v in (3.49) be denoted by c.
Let uT = J0:M−1v. By construction it is a right singular vector of G0 correspond-

ing to σj(G0). Now we can complete the proof by bounding |u− uT |.

|u− uT | = |J0:M−1ej − J0:M−1v| ≤ |J0:M−1| |ej − v| ≤ c · |J0:M−1|¯̄v.

So

D|u− uT | ≤ c ·D|J0:M−1|¯̄v
≤ c ·D|J0:M−1|D−1

M DM ¯̄v

≤ c · [D|J0:M−1|D−1
M ]σj(G)e

≤ c · [σ1(BM )σ−1
n (B)E]σj(G)e

≤ c · nσ−1
n (B)σj(G)e.

We have used a slight generalization of (3.31) for the penultimate inequality and have
dropped second-order terms in the last inequality. Similarly,

D−1|u− uT | ≤ c ·D−1|J0:M−1|¯̄v ≤ c · n · σ−1
j (G)e,

and so

|u− uT | ≤ c · n ·min{σ−1
n (B)σj(G)D−1e, σ−1

j (B)De} = cnū.

Now combine the bound on |u− uT | and |u− û|. 2
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[13] R. Mathias and K. Veselić, A relative perturbation bound for positive definite matrices,

Linear Algebra Appl., to appear.



NUMERICAL CONDITION OF DISCRETE WAVELET
TRANSFORMS∗

RADKA TURCAJOVÁ†

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 4, pp. 981–999, October 1997 012

Abstract. The recursive algorithm of a (fast) discrete wavelet transform, as well as its gener-
alizations, can be described as repeated applications of block-Toeplitz operators or, in the case of
periodized wavelets, multiplications by block circulant matrices. Singular values of a block circulant
matrix are the singular values of some matrix trigonometric series evaluated at certain points. The
norm of a block-Toeplitz operator is then the essential supremum of the largest singular value curve
of this series. For all reasonable wavelets, the condition number of a block-Toeplitz operator thus
is the lowest upper bound for the condition of corresponding block circulant matrices of all possible
sizes. In the last section, these results are used to study conditioning of biorthogonal wavelets based
on B-splines.
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1. Introduction. Orthogonality is a very strong property. It might exclude
other useful properties like, for example, symmetry in the case of compactly sup-
ported wavelets [6, 7]. Consequently, in many applications biorthogonal wavelets
have been used rather than the orthogonal ones. Stability of such bases has been
studied and conditions for Riesz bounds to be finite were established [2, 3, 4, 5].
However, when dealing with applications, one would like to have some quantitative
information about sensitivity to such things like noise in the data or quantization.
Some relevant estimates can be found in the engineering literature on multirate filter
banks, where noise is modeled as a random process and its transmission through the
system is studied; see, e.g., [12]. However, most of these results concern particular
designs and implementations. Here we will use an alternative approach—we will look
at discrete wavelet transforms from the point of view of linear algebra.

For example, let us consider the process of image compression using wavelets
(see, e.g., [1, 11, 14]). The algorithm has three steps. First, the discrete wavelet
transform is applied to the image, then the resulting data is quantized, and finally
it is coded in some efficient way. The purpose of the transform is to increase the
compressibility of the data and to restructure the data so that, after decompression,
the error caused by quantizing is less disturbing for a human viewer than if the image
were quantized directly without a transform. The encoded image can be manipulated
in different ways (e.g., transmitted over networks) which can cause further distortions.
To decompress the image we just need to decode the data and to apply the inverse
transform. Let us denote the error vector that is added to the transformed data y
before the reconstruction by u and let us suppose that we know the magnitude of the
relative error, ‖u‖/‖y‖ = α. Then, if x denotes the original image, the relative error
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in the reconstructed image is

‖T−1u‖
‖x‖ ≤ ‖T

−1‖ ‖u‖
‖x‖ =

‖T−1‖ α‖y‖
‖x‖ ≤ ‖T

−1‖ α ‖T‖‖x‖
‖x‖ = ‖T−1‖ ‖T‖ α.

If no further assumptions are imposed on the image and type of the error, this estimate
is the best possible. Also, in other applications, the sensitivity to errors can be shown
to be naturally related to the condition number of the transform matrix with respect
to solving a system of linear equations,

cond(T ) = ‖T‖ ‖T−1‖.(1.1)

Condition number depends on the norm. For finite matrices we will use here the
matrix 2-norm, which is induced by the Euclidean vector norm. When necessary, we
will use subscript 2 to emphasize that we deal with these norms. We will speak also
about the condition number of an operator l2(Z) −→ l2(Z). We define it also by (1.1);
the norm is the operator norm induced by the norm of l2(Z).

Due to the translational character of wavelet bases, matrices and operators in-
volved happen to have a characteristic structure—they are block circulant and block-
Toeplitz, respectively. This structure can be employed when the condition numbers
are computed; Fourier techniques can be used to transform them to a block diagonal
form. This then leads to studying the (pointwise) singular values of certain trigono-
metric matrix series. In section 3 we study the finite case. The singular values of
a block circulant matrix are shown to be the singular values of small matrices aris-
ing from the “block discrete Fourier transform” of the first block row of the block
circulant matrix. In section 4 we generalize this result for block-Toeplitz operators
l2(Z) −→ l2(Z). The situation is rather more complicated there, because the Fourier
transform maps the discrete space l2(Z) onto the functional space L2([0, 2π)). As the
main result we show there that

‖C(A)‖B(l2(Z)) = ess sup
ξ∈[0,2π)

σmax(A(ξ)),

where C(A) is the block-Toeplitz operator the infinite matrix of which is generated
by the strip

A = ( · · · A−1 A0 A1 A2 · · · )

(Aj , j ∈ Z, being square blocks) and

A(ξ) =
∑
k∈Z

Ake
ikξ.

The proof is based on the pointwise singular decomposition of A; some difficulties
arising from the fact that we have to ensure that the singular vector we want to con-
struct has square integrable components must be overcome on the way. For reasonable
wavelets, the curves of singular values ofA have some smoothness, and essential supre-
mum and infimum become supremum and infimum or even maximum and minimum.
The condition number of C(A) is then the lowest upper bound on the condition of
periodized wavelet transforms for all possible lengths of data. We also describe how
some particular properties of the wavelets imply a certain structure of the singular
values. These observations can be used to further improve the efficiency of computing
the condition numbers.
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In the last section of this paper, we apply this technique to study conditioning
of biorthogonal B-spline wavelets constructed by Cohen, Daubechies, and Feauveau
[5], which are probably the most often applied biorthogonal wavelets today. We show
there that the condition number increases exponentially with the order of the spline.
Conditioning can be significantly improved by suitable scaling of the wavelet functions,
but, even for the optimal scaling, the growth has exponential character.

After finishing the first version of this paper, we became familiar with related
works by Keinert [8] and Strang [9]. While Strang’s work concerns mostly Riesz
bounds for subspaces in a multiresolution analysis and wavelet decomposition, Keinert
concentrates on conditioning of finitely sized transforms and asymptotic estimates for
deep recursive transforms. He also presents a number of numerical experiments that
show how these estimates are realistic when some specific types of introduced errors
are considered (e.g., white noise). In this revised version we have tried to emphasize
results that are complementary to those of Keinert and Strang.

2. Translational and wavelet bases and the operators of the change
of a basis. Let us consider some translation-invariant subspace of L2(R) with a
translational Riesz basis {uk(x − hn), k = 1, . . . , r, n ∈ Z} generated by some r-
tuple of functions uk, k = 1, . . . , r, h being the translation step. Let this subspace
have another, similar, basis {vk(x − hn), k = 1, . . . , r, n ∈ Z}. Each of the functions
vk, k = 1, . . . , r, can be expressed in terms of the first basis; there exist sequences

{a(k,l)
n }n∈Z ∈ l2(Z) such that

vk(x) =
∑
n∈Z

r∑
l=1

a(k,l)
n ul(x− hn).

Let us form from these coefficients r× r matrices An, n ∈ Z; a
(k,l)
n will be the element

of An in the kth row and lth column. We denote by A the infinite strip of concatenated
matrices An, n ∈ Z,

A = ( · · · A−1 A0 A1 A2 · · · ) ,

and we define C(A) to be an infinite block-Toeplitz matrix

C(A) =



. . .
...

...
...

...
· · · A0 A1 A2 A3 · · ·
· · · A−1 A0 A1 A2 · · ·
· · · A−2 A−1 A0 A1 · · ·
· · · A−3 A−2 A−1 A0 · · ·

...
...

...
...

. . .


.

We will also denote by C(A) an operator l2(Z) −→ l2(Z) that can be represented by
such a matrix. If∑

n∈Z

r∑
k=1

αnr+k−1uk(x− hn) =
∑
n∈Z

r∑
k=1

βnr+k−1vk(x− hn)

for some l2(Z) sequences {αn}n∈Z and {βn}n∈Z, then C(A)∗ maps {βn}n∈Z to {αn}n∈Z;
that is, it is the operator of the change of a basis.
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Because of practical reasons (handling of finite data), periodized bases are often
used in the wavelet context. If, for some integer N , we denote

uperk (x) =
∑
l∈Z

uk(x−Nhl), vperk (x) =
∑
l∈Z

vk(x−Nhl),

then {uperk (x− n), k = 1, . . . , r, n = 0, . . . , N − 1} and {vperk (x− n), k = 1, . . . , r, n =
0, . . . , N − 1} are bases for some subspace of L2([0, Nh)), and the operator of the
change of basis from the latter to the former can be represented by a block circulant
matrix

CN (A) =


S0 S1 S2 · · · SN−1

SN−1 S0 S1 · · · SN−2

SN−2 SN−1 S0 · · · SN−3

...
...

...
. . .

...
S1 S2 S3 · · · S0

 ,

where

Sk =
∑
l∈Z

Ak+lN .

A multiresolution analysis is a sequence of embedded subspaces of L2(R) gener-
ated by the translations of an appropriately dilated scaling function. In particular,

Vj = Span{2j/2ϕ(2jx− k), k ∈ Z}.

There are wavelet subspaces generated by a wavelet function,

Wj = Span{2j/2ψ(2jx− k), k ∈ Z},

and these subspaces satisfy

Vj = Vj−1 ⊕Wj−1.

The scaling and wavelet functions thus have to conform to the two-scale relations that
are usually written as

ϕ(x) =
√

2
∑
k∈Z

hkϕ(2x− k), ψ(x) =
√

2
∑
k∈Z

gkϕ(2x− k).(2.1)

In the (fast) discrete wavelet transform, we perform recursively the change of basis
from {2j/2ϕ(2jx − k), k ∈ Z} to {2(j−1)/2ϕ(2j−1x − k), k ∈ Z} ∪ {2(j−1)/2ψ(2j−1x −
k), k ∈ Z}, j = J, J − 1, J − 2, . . . . We can consider both bases to be generated by
two functions, the former by u1 = 2j/2ϕ(2jx) and u2 = 2j/2ϕ(2jx − 1), the latter
by v1 = 2(j−1)/2ϕ(2j−1x) and v2 = 2(j−1)/2ψ(2j−1x). The translation step h is
2−(j−1) here. The recursive inverse transform can thus be associated with repeated
applications of C(A)∗, where

An =

(
h2n h2n+1

g2n g2n+1

)
;

that is,

A =

(
· · · h−2 h−1 h0 h1 h2 h3 · · ·
· · · g−2 g−1 g0 g1 g2 g3 · · ·

)
.
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In fact, C(A)∗ = C(Ã)−1 for some Ã, and the recursive transform itself can be seen
as repetitive applications of a block-Toeplitz operator. As in the case of A,

Ã =

(
· · · h̃−2 h̃−1 h̃0 h̃1 h̃2 h̃3 · · ·
· · · g̃−2 g̃−1 g̃0 g̃1 g̃2 g̃3 · · ·

)
;

sequences {h̃n}n∈Z and {g̃n}n∈Z determine the biorthogonal counterparts of the scal-
ing and wavelet functions, ϕ̃ and ψ̃, by relations analogous to (2.1).

Although the conditioning of this basic step of the recursive transform is crucial,
we also want to study how the error accumulates in the recursive transform. Since all
the bases involved have translational character, we can use the same approach as for
one step for the transform of any finite depth; we can always find a common translation
step. For example, let us consider two steps of recursion. We perform, in fact, the
change of basis in Vj from {2j/2ϕ(2jx − k), k ∈ Z} to {2(j−2)/2ϕ(2j−2x − k), k ∈
Z}∪{2(j−2)/2ψ(2j−2x−k), k ∈ Z}∪{2(j−1)/2ψ(2j−1x−k), k ∈ Z}. All these bases can
be considered to be translational bases with translation step h = 2−(j−2) generated
by four functions. We have

un = 2j/2ϕ(2jx− (n− 1)), n = 1, . . . , 4,

and

v1 = 2(j−2)/2ϕ(2j−2x), v3 = 2(j−1)/2ψ(2j−1x),

v2 = 2(j−2)/2ψ(2j−2x), v4 = 2(j−1)/2ψ(2j−1x− 1).

The infinite strip A will thus have four rows; the entries can be easily found by
recursive applications of (2.1). In particular, if we denote the sequences that form

rows of A by {b(s)n }n∈Z, s = 1, . . . , 4, b
(s)
0 = a

(s,1)
0 , we have

b(1)
n =

∑
k∈Z

hkhn−2k, b(3)
n = gn,

b(2)
n =

∑
k∈Z

gkhn−2k, b(4)
n = gn−2.

An analogous approach can be used for generalizations of classical wavelet trans-
forms like those based on more than one scaling and wavelet function and general
integer dilation parameter m ≥ 2 (multiwavelets, higher multiplicity wavelets) or
nonstationary wavelets, where different block-Toeplitz operators applied in the re-
cursive algorithm. Also, wavelet packets transforms, where wavelet spaces are also
further decomposed, can be described in a similar way.

3. Numerical condition of block circulant matrices. Any circulant matrix
is unitarily similar to a diagonal matrix. This matrix has (up to scale) the discrete
Fourier transform of the first row of the original matrix on the diagonal, and the
similarity matrix is the matrix of the discrete Fourier transform itself. This fact can
be generalized for block circulant matrices as follows.

Theorem 3.1. Each block circulant matrix is unitarily similar to a block diagonal
matrix. In particular, CN (A) is similar to a matrix with diagonal blocks equal to
A(2πin/N), n = 0, . . . , N − 1, where A(ξ) =

∑
k∈Z Ake

ikξ.
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Proof. Let ωN be the primitive Nth root of unity, ωN = e2πi/N , and let us first
create the matrix of the “block discrete Fourier transform”;

Ωr,N =
1√
N


ω0
NI ω0

NI ω0
NI · · · ω0

NI

ω0
NI ω−1

N I ω−2
N I · · · ω

−(N−1)
N I

ω0
NI ω−2

N I ω−4
N I · · · ω

−2(N−1)
N I

...
...

...
. . .

...
ω0
NI ω

−(N−1)
N I ω

−2(N−1)
N I · · · ω

−(N−1)(N−1)
N I

 ,(3.1)

I being the r× r identity matrix. Such a matrix is unitary, and the r× r block in the
(m+ 1)th block row and (n+ 1)th block column of Ωr,NCN (A)Ω∗r,N equals

1

N

N−1∑
l=0

N−1∑
s=0

ω−lmN ωsnN
∑
k∈Z

An−l+kN

=
1

N

N−1∑
l=0

ω
(n−m)l
N

N−1∑
s=0

∑
k∈Z

ω
n(s−l+kN)
N As−l+kN =

1

N

(
N−1∑
l=0

ω
(n−m)l
N

)
A(2πin/N)

= δm,nA(2πin/N),

δ being the Kronecker delta.
Since the singular values are preserved by unitary transformations and the sin-

gular values of a block diagonal matrix are the singular values of the diagonal blocks,
the theorem above has the following corollary.

Corollary 3.2. A number σ is a singular value of CN (A) if and only if it is a
singular value of A(2πin/N) for some n = 0, 1, . . . , N − 1.

Let us note here that the 2-norm of a matrix M equals its largest singular value,
which we will denote σmax(M). Similarly, σmin(M) will stand for the smallest singular
value, the 2-norm of M−1.

Corollary 3.3.

cond(CN (A)) =
maxn=0,...,N−1 σmax(A(2πin/N))

minn=0,...,N−1 σmin(A(2πin/N))
.

If N1 is a divisor of N , cond2(CN1
(A)) ≤ cond2(CN (A)), because all the singular

values of CN1
(A) are simultaneously singular values of CN (A). This means that, for

the recursive transform, we could estimate the condition in each step by the condition
number of the largest block circulant matrix involved, applied in the first step of the
recursion, since in each next step just an m-times smaller matrix is used, m being the
dilation factor.

It would be useful to have some estimate completely independent of the size of
the block circulant matrix. One such estimate is straightforward,

cond(CN (A)) ≤
supξ∈[0,2π) σmax(A(ξ))

infξ∈[0,2π) σmin(A(ξ))
.(3.2)

Notice that if the curves of the largest and smallest singular values are continuous
(which happens, for example, for compactly supported wavelets, when A contains only
a finite number of nonzero entries), this is the lowest upper bound for cond(CN (A))
independent of N . We will show in the next section that for any reasonable wavelet
the right-hand side of (3.2) represents, in fact, the condition number of C(A).
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4. Norm and condition number of block-Toeplitz operators. As in the
previous section, we will apply here a “block Fourier transform.” However, here the
situation is a little more complicated than in the case of finite matrices.

Let us denote by l2r(Z) the Hilbert space of (column) vectors of length r with all
components in l2(Z). We can see this space also as a space of vector-valued sequences.
The inner product is

〈a, b〉l2r(Z) =
r∑
s=1

〈a(s), b(s)〉l2(Z) =
r∑
s=1

∑
k∈Z

a
(s)
k b

(s)

k =
∑
k∈Z

b∗kak;

subscripts determine entries of sequences, while superscripts determine entries of vec-
tors. Similarly, L2

r([0, 2π)) is the Hilbert space of r-vectors of square integrable func-
tions on [0, 2π) with the inner product

〈f , g〉L2
r([0,2π)) =

r∑
s=1

〈f (s), g(s)〉L2([0,2π)) =
r∑
s=1

∫ 2π

0

f (s)(ξ)g(s)(ξ) dξ

=

∫ 2π

0

g(ξ)∗f(ξ) dξ.

To find the norm of the operator C(A) induced by the norm of l2(Z), we employ
Hilbert space isomorphisms of these spaces. First, there is a trivial isomorphism
between l2(Z) and l2r(Z); {ck}k∈Z −→ {ck}k∈Z, ck = ( crk crk+1 · · · crk+r−1 )

T
.

Second, componentwise Fourier transform is a Hilbert space isomorphism l2r(Z) −→
L2
r([0, 2π)). For a sequence c ∈ l2(Z) the Fourier transform ĉ ∈ L2([0, 2π)) is defined

as

ĉ(ξ) =
1√
2π

∑
k∈Z

cke
−ikξ,

where the sum converges in the L2([0, 2π)) sense. Since 1√
2π
e−ikξ, k ∈ Z, is an

orthonormal basis for L2([0, 2π)), the inverse mapping is given by

ck =

〈
ĉ ,

1√
2π
e−ikξ

〉
=

1√
2π

∫ 2π

0

ĉ(ξ)eikξ dξ

and the Fourier transform as defined above is a Hilbert space isomorphism l2(Z) −→
L2([0, 2π)). The extension to the vector case is obvious.

Infinite Toeplitz matrices represent convolution operators. For sequences a, b ∈
l2(Z), the convolution c = a ∗ b has entries

cl =
∑
k∈Z

akbl−k, l ∈ Z.

Convolution operators are closely related to multipliers. The link is the Fourier trans-
form.

Lemma 4.1. Let a, b ∈ l2(Z) and let a ∗ b ∈ l2(Z) or â b̂ ∈ L2([0, 2π)). Then

â ∗ b =
√

2π â b̂.(4.1)

Proof. For any l ∈ Z,

̂(
{bl−k}k∈Z

)
(ξ) =

∑
k∈Z

bl−ke
−ikξ = eilξ

∑
k∈Z

bke−ikξ = eilξ b̂(ξ).
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Because the Fourier transform is a Hilbert space isomorphism,∑
k∈Z

akbl−k = 〈{ak}k∈Z, {bl−k}k∈Z〉l2(Z) =
〈
â, eilξ b̂(ξ)

〉
L2([0,2π))

=

∫ 2π

0

â(ξ)̂b(ξ) eilξ.

The last term represents the lth entry of the inverse Fourier transform of
√

2π â b̂.
Theorem 4.2. The operator l2(Z) −→ l2(Z) represented by C(A) is isomorphic

with a matrix multiplier A(ξ) =
∑
k∈Z Ake

ikξ that maps L2
r([0, 2π)) −→ L2

r([0, 2π)),
u(ξ) −→ A(ξ)u(ξ).

Proof. By the former isomorphism, C(A) is isomorphic with the operator l2r(Z)→
l2r(Z), for which d, the image of c, is given by the formula

dl =
∑
k∈Z

Ak−lck, l ∈ Z.

We will slightly abuse the notation and denote this operator also by C(A).
Since we assume that C(A) represents the change from one Riesz basis to another,

{a(k,l)
n }n∈Z ∈ l2(Z) and the series A(ξ) =

∑
k∈Z Ake

ikξ converges componentwise in
the L2([0, 2π)) sense. A straightforward calculation shows that (4.1) can be extended
to the matrix/vector case (the Fourier transform being defined componentwise). Be-

cause ({̂A−k}k∈Z)(ξ) = Â(−ξ),

̂(C(A)c)(ξ) =
√

2πÂ(−ξ)ĉ(ξ),

whenever C(A)c ∈ l2r(Z) or Â(−ξ)ĉ(ξ) ∈ L2
r([0, 2π)). A convolution-type operator

C(A) thus becomes in the Fourier domain, indeed, the matrix multiplier A.
The norm of C(A) induced by l2(Z) thus equals the norm of the matrix multiplier

A as an operator L2
r([0, 2π)) −→ L2

r([0, 2π)). The following theorem gives formulas
for the norm of a multiplier and its inverse.

Theorem 4.3. Let A be an r× r matrix multiplier with measurable components.
Then

sup
‖u‖

L2
r([0,2π))

=1

‖Au‖L2
r([0,2π)) = ess sup

ξ∈[0,2π)

max
‖y‖2=1

‖A(ξ)y‖2,(4.2)

inf
‖u‖

L2
r([0,2π))

=1
‖Au‖L2

r([0,2π)) = ess inf
ξ∈[0,2π)

min
‖y‖2=1

‖A(ξ)y‖2.(4.3)

Proof. Let us set

Λ = ess sup
ξ∈[0,2π)

max
‖y‖2=1

‖A(ξ)y‖2

and let x ∈ L2
r([0, 2π)). Then

‖Ax‖2L2
r([0,2π)) =

∫ 2π

0

‖A(ξ)x(ξ)‖22dξ ≤
∫ 2π

0

‖A(ξ)‖22 ‖x(ξ)‖22dξ ≤ Λ2‖x‖2L2
r([0,2π)),

and hence

sup
‖u‖

L2
r([0,2π))

=1

‖Au‖L2
r([0,2π)) ≤ Λ.
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We need to show that we have the lowest upper bound, in other words, that for each
ε > 0 we can find xε such that ‖xε‖L2

r([0,2π)) = 1 and

‖Axε‖L2
r([0,2π)) > Λ− ε.

Let us take pointwise the singular value decomposition of A,

A(ξ) = V(ξ)∗Σ(ξ)U(ξ),

where V(ξ) and U(ξ) are r× r unitary matrices and Σ(ξ) is the diagonal matrix with
the singular values of A(ξ) on the diagonal, in decreasing order. We will denote these
singular values σj(ξ), j = 1, . . . , r. To construct xε we need a path of right singular
vectors corresponding to the largest singular value (something like the first column of
U), but we have to ensure that this path is square integrable.

First, σ1(ξ) = ‖A(ξ)‖2 is a measurable function, because A has measurable com-
ponents and the matrix norm is a continuous function of the entries. Let us define

C(ξ) = 1
σ1(ξ)2A(ξ)∗A(ξ), when σ1(ξ) 6= 0,

= I , otherwise.

Then C has measurable components and, for k → +∞, C(ξ)k −→ P(ξ), where

P(ξ) = U(ξ)∗D(ξ)U(ξ)

and D(ξ) is a diagonal matrix with the elements on the diagonal equal to either 1 or 0;
if σ1(ξ) is of multiplicity m (m depending on ξ), then first m elements are 1 and all the
others are 0. Notice that P(ξ) is the orthogonal projector onto the subspaces spanned
by all right singular vectors corresponding to singular values σ1(ξ) = · · · = σm(ξ).
Because P is the limit of a sequence of matrices with measurable components, its
components are measurable too.

Now, for any ε > 0, the set

Sε = {ξ ∈ [0, 2π) : σ1(ξ) > Λ− ε}

is a measurable set and µ(Sε) > 0. Since P(ξ) 6= 0 for any ξ, there exist j and a set
S̃ε ⊂ Sε, µ(S̃ε) > 0 such that p(ξ), the jth column of P(ξ), is nonzero for ξ ∈ S̃ε. Let
us set

xε(ξ) = 1√
µ(S̃ε)‖p(ξ)‖2

p(ξ), ξ ∈ S̃ε,

= 0, otherwise.

Because xε has measurable components and |x̃(s)
ε (ξ)|2 ≤ ‖xε(ξ)‖22 ∈ {0, 1/µ(S̃ε)}, we

have xε ∈ L2
r([0, 2π)). A simple calculation shows that ‖xε‖L2

r([0,2π)) = 1. We have

A(ξ)P(ξ) = V(ξ)∗Σ(ξ)U(ξ) U(ξ)∗D(ξ)U(ξ) = σ1(ξ) V(ξ)∗D(ξ)U(ξ)

= σ1(ξ) V(ξ)∗U(ξ) P(ξ);

consequently,

A(ξ)xε(ξ) = σ1(ξ) V(ξ)∗U(ξ) xε(ξ)

and

‖A(ξ)xε(ξ)‖2 = σ1(ξ)‖xε(ξ)‖2.
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Finally,

‖Axε‖2L2
r([0,2π)) =

∫ 2π

0

‖A(ξ)xε(ξ)‖22 dξ =

∫ 2π

0

σ1(ξ)2‖xε(ξ)‖22 dξ

=

∫
S̃ε

σ1(ξ)2

µ(S̃ε)
dξ > (Λ− ε)2,

which finishes the proof of the first part of the theorem.
Now, let us concentrate on the second part of the statement. Let us denote

Λ̃ = ess inf
ξ∈[0,2π)

min
‖y‖2=1

‖A(ξ)y‖2.

Clearly, for any u, ‖u‖L2
r([0,2π)) = 1,

‖Au‖L2
r([0,2π)) =

∫ 2π

0

‖A(ξ)u(ξ)‖22dξ ≥
∫ 2π

0

(
min
‖y‖2=1

‖A(ξ)y‖2
)2

‖u(ξ)‖22dξ

≥ Λ̃2‖u‖2L2
r([0,2π)) = Λ̃2.

We now have to show that for every ε > 0 there exists xε, ‖xε‖L2
r([0,2π)) = 1, such

that

‖Axε‖L2
r([0,2π)) < Λ̃ + ε.

In order to do that we first need to construct a square integrable path of right singular
vectors corresponding to the path of the smallest singular values, σr.

Let us take, again, the pointwise singular value decomposition of A,

A(ξ) = V∗(ξ)Σ(ξ)U(ξ).

Now, for a positive integer k, let us consider a matrix A(ξ)∗A(ξ) + 1
k I. We have

A(ξ)∗A(ξ) +
1

k
I = U(ξ)∗

(
Σ(ξ)2 +

1

k
I

)
U(ξ);

therefore, such a matrix is invertible and the norm of the inverse is (σr(ξ)
2 + 1

k )−1.
If we set

Ck(ξ) =

(
σr(ξ)

2 +
1

k

)(
A(ξ)∗A(ξ) +

1

k
I

)−1

,

then Ck has measurable components and Ck(ξ)l −→ P(ξ), k → +∞, l→ +∞, where

P(ξ) = U(ξ)∗D(ξ)U(ξ);

D(ξ) is, again, a diagonal matrix with the elements on the diagonal equal to either 1
or 0. But now, if σr(ξ) is of multiplicity m, then the first r −m elements are 0 and
all the others are 1. The components of the matrix P are measurable functions and
the matrix P(ξ) is now the orthogonal projector onto the subspace spanned by right
singular vectors corresponding to the singular values σr−m+1(ξ) = · · · = σr(ξ) and,
for any vector x(ξ) of unit norm from its range,

‖A(ξ)x‖2 = σr(ξ) = min
‖y‖2=1

‖A(ξ)y‖2.
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The rest of the proof would follow the lines of the proof of the first part, with Sε being
chosen as

Sε = {ξ ∈ [0, 2π) : σr(ξ) < Λ̃ + ε};

we would have

‖Axε‖2L2
r([0,2π)) =

∫ 2π

0

‖A(ξ)xε(ξ)‖22 dξ =

∫ 2π

0

σr(ξ)
2‖xε(ξ)‖22 dξ

=

∫
S̃ε

σr(ξ)
2

µ(S̃ε)
dξ < (Λ̃ + ε)2.

The norm of A induced by the norm of L2
r([0, 2π)) thus is

‖A‖B(L2
r([0,2π))) = ess sup

ξ∈[0,2π)

σmax(A(ξ));

the mapping is invertible if and only if

0 < ess inf
ξ∈[0,2π)

min
‖y‖2=1

‖A(ξ)y‖2

and the norm of the inverse equals

‖A−1‖B(L2
r([0,2π))) = ess inf

ξ∈[0,2π)
σmin(A(ξ)).

Combining the results above we obtain the following theorem.
Theorem 4.4. The condition of the operator C(A) (in the norm induced by the

norm of l2(Z)) is

cond(C(A)) =
ess supξ∈[0,2π) σmax(A(ξ))

ess infξ∈[0,2π) σmin(A(ξ))
.

For all wavelets of practical interest, A has only a finite number of nonzero en-
tries or at least the sequences forming its rows decay very fast. This implies some
smoothness of entries of A and, consequently, the essential supremum of σmax and
essential infimum of σmin coincide with the supremum and infimum, respectively. As
we already pointed out, cond(C(A)) then represents supN cond(CN (A)).

Let us make a few comments about the structure of singular values of A(ξ) in
relation to some special properties of A. First, when the underlying bases comprise
real functions, the entries of A are real and, consequently, A(ξ) = A(2π − ξ). This
means that the singular values in π − ξ and π + ξ are the same, and we can restrict
our attention onto interval [0, π], only.

Another interesting effect is caused by all the scaling and wavelet functions and
their biorthogonal counterparts being compactly supported. This corresponds to the
fact that only a finite number of square blocks both in A and in Ã that generate
C(Ã) = (C(A)∗)−1 are nonzero. It is well known, particularly in the filter bank
context (see, e.g., [12], [13]), that this happens if and only if there exist a nonzero
constant α and an integer p such that

det

(∑
k∈Z

Akz
−k

)
= αz−p
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for any z ∈ C, z 6= 0. Because the determinant is the product of singular values, the
equation above implies that ∏

j

σj(A(ξ)) = β

for some positive constant β independent of ξ. This is particularly useful when A has
only two rows. The singular values of A(ξ) are then inversely proportional and the
maximum and minimum over ξ then occur at the same point. That is,

cond(C(A)) = max
ξ∈[0,2π)

cond(A(ξ)).

5. Alternative expression. Let the sequences that form the rows of A be

{b(s)n }n∈Z, s = 1, . . . , r; b
(s)
0 = a

(s,1)
0 . Sometimes it is easier to deal with Fourier series

b(s)(ξ) =
1√
r

∑
n∈Z

b(s)n e−inξ, s = 1, . . . , r

than with A. We will see an example in section 6, when we will study conditioning
of biorthogonal spline wavelets. In these cases it is better to use a different matrix
function.

Theorem 5.1. A number σ is a singular value of A(ξ) if and only if it is a
singular value of B(−ξ/r), where

B(ξ) =


b(1)(ξ) b(1)(ξ + 2π

r ) · · · b(1)(ξ + (r−1)2π
r )

b(2)(ξ) b(2)(ξ + 2π
r ) · · · b(2)(ξ + (r−1)2π

r )
...

... · · ·
...

b(r)(ξ) b(r)(ξ + 2π
r ) · · · b(r)(ξ + (r−1)2π

r )

 .

Proof. Using the notation introduced in the proof of Theorem 3.1, we have, for
any s = 1, . . . , r and any k = 0, . . . , r − 1,

1√
r

r−1∑
l=0

b(s)
(
ξ +

2πl

r

)
ωlkr =

1

r

r−1∑
l=0

∑
n∈Z

b(s)n e−inξe−il(n−k)2π/r

=
1

r

∑
n∈Z

b(s)n e−inξ

(
r−1∑
l=0

ωl(n−k)
r

)
=
∑
n∈Z

b
(s)
nr+ke

−i(nr+k)ξ = e−ikξ
∑
n∈Z

a(s,k+1)
n e−in(rξ).

This is because
∑r−1
l=0 ω

l(n−k)
r equals r if n− k is divisible by r, and it is 0 otherwise.

Consequently,

B(ξ)Ω∗1,r =
√
rA(−rξ)Dr(ξ),

where Ω1,r is the r × r matrix of the discrete Fourier transform and Dr(ξ) is the
diagonal matrix with the diagonal entries equal to e−ikξ, k = 0, . . . , r − 1 (in this
particular order). Since Ω1,r is unitary and so is Dr(ξ) (for any ξ), the statement of
the theorem holds.
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Just let us point out here that, instead of considering each row of A separately,
we could use block rows, each of them comprising, say, p rows. We would then

obtain similar results with some p× p matrices B
(s)
n instead of scalars b

(s)
n ; instead of

Ω1,r we would use Ωp,r/p and, similarly, Dr(ξ) would be replaced by a matrix with

p × p diagonal blocks equal to e−ikξI, k = 0, . . . , r/p. This might be useful for the
case of multiwavelets (more than one scaling function) when the two-scale equations
analogous to (2.1) have matrix coefficients (see, e.g., [10]).

6. Conditioning of biorthogonal wavelets based on B-splines. Biorthogo-
nal wavelets based on B-splines were introduced by Cohen, Daubechies, and Feauveau
in [5]. To the B-spline basis function of a particular order (which represents a scal-
ing function) there exists a whole family of possible biorthogonal counterparts with
different size of support and regularity. We will use here the notation of [2], where
the sequences determining the scaling and wavelet functions through the two-scale
equations of type (2.1) are given in terms of trigonometric polynomials:

m0(ξ) =
√

2
∑
k

hke
−ikξ, m̃0(ξ) =

√
2
∑
k

h̃ke
−ikξ,

m1(ξ) =
√

2
∑
k

gke
−ikξ, m̃1(ξ) =

√
2
∑
k

g̃ke
−ikξ.

Since the scaling function ϕ equals the B-spline of order n,

m0(ξ) =

(
1 + e−iξ

2

)n+1

.

For any integer K such that 2K ≥ n+ 1,

m̃0(ξ) = cos2K(ξ/2)PK(sin2(ξ/2))

(
1 + eiξ

2

)−n−1

determines a biorthogonal scaling function; PK is the solution of the Bezout problem

yKPK(1− y) + (1− y)KPK(y) = 1;(6.1)

in particular,

PK(y) =
K−1∑
j=0

(
K − 1 + j

j

)
yj .

The trigonometric polynomials m1 and m̃1 corresponding to the wavelet filters are
then defined as

m1(ξ) = e−iξ m̃0(ξ + π), m̃1(ξ) = e−iξ m0(ξ + π).(6.2)

We have

B(ξ) =

(
m0(ξ) m0(ξ + π)
m1(ξ) m1(ξ + π)

)
and, because we deal with compactly supported real classical wavelets with dilations
by 2, we are interested in the maximum of the condition number of B(ξ) on [0, π/2].
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Table 1

Condition numbers for spline biorthogonal wavelets of order n; K = dn+1
2
e+ L.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
·103 ·103 ·103

L
0 1.00 2.62 4.00 10.9 16.0 102. 91.6 1227. 834. 15878. 8.77 213. 99.4
1 1.28 2.00 4.00 8.00 16.0 32.0 64.0 166. 333. 1336. 2.51 12.5 22.0
2 1.42 2.00 4.00 8.00 16.0 32.0 64.0 128. 259. 691. 1.47 5.06 10.6
3 1.52 2.00 4.00 8.00 16.0 32.0 64.0 128. 256. 536. 1.13 3.16 6.89
4 1.59 2.00 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.03 2.43 5.29
5 1.64 2.00 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.13 4.53
6 1.68 2.00 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.18
7 1.72 2.03 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
8 1.75 2.07 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
9 1.78 2.11 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
10 1.80 2.15 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
11 1.82 2.19 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
12 1.84 2.23 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
13 1.86 2.26 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
14 1.88 2.29 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
15 1.89 2.32 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
16 1.91 2.35 4.00 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
17 1.92 2.38 4.01 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
18 1.93 2.41 4.03 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
19 1.95 2.43 4.05 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10
20 1.96 2.45 4.07 8.00 16.0 32.0 64.0 128. 256. 512. 1.02 2.05 4.10

Table 2

Condition numbers for spline biorthogonal wavelets of order n, K = dn+1
2
e + L, optimally

scaled wavelet.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

L
0 1.00 2.41 2.00 6.16 4.39 20.1 12.2 70.0 38.1 252. 125. 924. 425.
1 1.28 1.41 2.00 2.83 4.00 5.66 8.00 13.7 18.7 39.2 51.7 121. 153.
2 1.42 1.41 2.00 2.83 4.00 5.66 8.00 11.3 16.1 26.6 38.6 72.2 104.
3 1.50 1.41 2.00 2.83 4.00 5.66 8.00 11.3 16.0 23.2 33.8 56.5 83.3
4 1.57 1.41 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.1 49.4 72.9
5 1.62 1.41 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 46.3 67.4
6 1.66 1.43 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.7
7 1.69 1.46 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
8 1.72 1.48 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
9 1.74 1.51 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
10 1.76 1.53 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
11 1.78 1.55 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
12 1.80 1.57 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
13 1.81 1.59 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
14 1.83 1.60 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
15 1.84 1.62 2.00 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
16 1.85 1.63 2.01 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
17 1.87 1.65 2.01 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
18 1.88 1.66 2.02 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
19 1.89 1.67 2.03 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
20 1.89 1.68 2.04 2.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.0
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Table 3

Optimal scaling parameters.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
/10 /10 /10 /10 /10 /102 /102 /102 /102 /103 /103 /103 /103

L
0 10.0 7.07 5.00 3.16 2.40 9.95 9.16 2.86 2.99 7.93 9.20 2.18 2.72
1 9.70 7.07 5.00 3.54 2.50 17.7 12.5 7.33 5.35 25.5 19.4 8.30 6.56
2 9.42 7.07 5.00 3.54 2.50 17.7 12.5 8.83 6.20 37.6 25.9 13.9 9.65
3 9.22 7.07 5.00 3.54 2.50 17.7 12.5 8.84 6.25 43.1 29.6 17.7 12.0
4 9.07 7.07 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.2 20.2 13.7
5 8.95 7.07 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 21.7 14.9
6 8.85 6.99 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.5
7 8.77 6.86 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
8 8.70 6.74 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
9 8.64 6.64 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
10 8.58 6.54 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
11 8.54 6.45 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
12 8.49 6.37 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
13 8.45 6.30 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
14 8.42 6.24 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
15 8.39 6.18 5.00 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
16 8.36 6.13 4.98 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
17 8.33 6.08 4.97 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
18 8.30 6.03 4.95 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
19 8.28 5.99 4.93 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
20 8.26 5.95 4.91 3.54 2.50 17.7 12.5 8.84 6.25 44.2 31.3 22.1 15.6
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Fig. 1. Typical shapes of the curves of singular values of A(ξ), ξ ∈ [0, 2π), for spline biorthog-
onal wavelets (order n, K = dn+1

2
e+ L, unscaled).
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Fig. 2. Singular value curves for different scaling parameters α; order of spline n = 5, K = 13.
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Fig. 3. Singular value curves for optimally scaled spline biorthogonal wavelets.
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Fig. 4. Singular value curves for classical wavelet (left) and full tree wavelet packet transform
(right) of depth 1, 2, 3 (from top to bottom); order of spline n = 5, K = 13, unscaled.
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Fig. 5. Singular value curves for classical wavelet (left) and full tree wavelet packet transform
(right) of depth 1, 2, 3 (from top to bottom); order of spline n = 5, K = 13, optimal scaling for depth
1.
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Squares of the singular values of B(ξ) are the eigenvalues of the matrix B(ξ)B(ξ)∗,
and they satisfy a quadratic equation

λ2 − tr(B(ξ)B(ξ)∗)λ+ det(B(ξ)B(ξ)∗) = 0.

Fairly straightforward, although somewhat tedious, calculations show that the coeffi-
cients of this equation are

det(B(ξ)B(ξ)∗) = | det(B(ξ))|2 = | − e−iξ|2 = 1

and

tr(B(ξ)B(ξ)∗) = |m0(ξ)|2 + |m0(ξ + π)|2 + |m1(ξ)|2 + |m1(ξ + π)|2,

where

|m0(ξ)|2 = (cos2(ξ/2))n+1, |m1(ξ)|2 = (sin2(ξ/2))2K−n−1P 2
K(cos2(ξ/2)),

|m0(ξ + π)|2 = (sin2(ξ/2))n+1, |m1(ξ + π)|2 = (cos2(ξ/2))2K−n−1P 2
K(sin2(ξ/2)).

Theorem 6.1. The numerical condition of one level of the (fast) discrete wavelet
transform based on B-spline biorthogonal wavelets of order n defined above is at least
2n, independently of the value of K.

Proof. Since

PK(cos2(π/4)) = PK(sin2(π/4)) = PK(1/2) = 2K−1

(cf. (6.1)), substituting ξ = π/2 into the formulae above we obtain

tr(B(π/2)B(π/2)∗) = 2−n + 2n.

Squares of the singular values of B(π/2) thus equal 2n and 2−n, respectively, and the
condition of this matrix is 2n. The condition hence must be at least 2n.

Numerical experiments show that the condition number often equals 2n. From
the point of view of conditioning, it is better to choose K smaller for low order splines
and larger for higher order splines; see Table 1.

Once the scaling filters m0 and m̃0 are given, (6.2) is not the only possibility for
the corresponding wavelet filters. The entire freedom can be described as follows:

m1(ξ) = αe−i(2k+1)ξ m̃0(ξ + π), m̃1(ξ) = (1/α)e−i(2k+1)ξ m0(ξ + π),

k ∈ Z, α 6= 0. The choice of k is, from the point of view of the numerical condition,
irrelevant, but the scaling by α can be used to improve the condition. In the case
of the spline wavelets improvement can be significant. However, it turns out that
whatever scaling we choose, we can’t beat the exponential growth with the order of
the spline.

Theorem 6.2. For any scaling factor α, the condition of one step of a discrete
wavelet transform with a spline biorthogonal wavelet of order n is at least 2n/2.

Proof. Instead of the condition of B(ξ) we need to study here the condition of

Bα(ξ) =

(
m0(ξ) m0(ξ + π)
αm1(ξ) αm1(ξ + π)

)
,

where m1(ξ) = e−iξ m̃0(ξ + π) as before, in (6.2). For ξ = π/2,

tr(Bα(π/2)Bα(π/2)∗) = 2−n + |α|2 2n,



NUMERICAL CONDITION OF DISCRETE WAVELET TRANSFORMS 999

the singular values of Bα(π/2) are |α| 2n/2 and 2−n/2 and its condition hence is |α| 2n
for |α| ≥ 2−n and 1/(|α|2n) for |α| < 2−n. On the other hand, for ξ = 0,

Bα(0) =

(
1 0
0 −α

)
,

and its condition is |α| for |α| ≥ 1 and 1/|α| for |α| < 1. Combining these results
we see that the condition of the wavelet transform cannot be better than |α|2n if
|α| ≥ 2−n/2, and 1/|α| if |α| < 2−n/2. Consequently, whatever |α| we choose, the
condition is at least 2n/2.

The optimal scaling parameter is usually equal or close to 2−n/2; see Tables 2
and 3. Notice that this is true especially for the wavelets that have condition number
equal to 2n. The condition of the optimally scaled wavelet then equals 2n/2, in most
cases.

Figures 1–5 show some typical behavior of the singular value curves depending
on the order of the spline, parameter K, scaling of the wavelet, and depth of the
transform. There are some interesting details here, for example, the presence of points
where the plot looks almost as if two curves were intersecting each other, while, in
fact, we have two different curves that have turning points and are well separated.
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Abstract. This paper contains estimates concerning the block structure of Hermitian matrices
H and M , which make a scaled diagonally dominant definite pair. The obtained bounds are expressed
in terms of relative gaps in the spectrum of the pair (H,M) and norms of certain blocks of the matrices
DHD and DMD, where D is either [|diag(H)|]−1/2 or [diag(M)]−1/2. If either of the matrices H,
M is diagonal, the new results assume simple and applicable form. For scaled diagonally dominant
Hermitian matrices, the new estimates compare favorably with the existing ones for accurate location
of the smallest eigenvalues.

Key words. almost-diagonal matrices, scaled matrices, eigenvalue location
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Introduction. An almost-diagonal Hermitian matrix has several important prop-
erties. First, its diagonal elements approximate its eigenvalues with an error which
is quadratic with respect to the average off-diagonal element. Second, in the case
of multiple eigenvalues, the matrix has a special block structure: those off-diagonal
elements which link the diagonals that approximate the same eigenvalues are quadrat-
ically small. Hence, if a diagonalization method is applied to such a matrix, then this
property has an impact on the rate of convergence of the method and on the accu-
racy of the computed eigenvalues/eigenvectors (cf. [7, 14, 8]). These properties of an
almost-diagonal matrix have several generalizations [6, 5, 7, 4, 9], especially to the
pairs of almost-diagonal matrices. However, all these results make use of the absolute
gaps in spectrum and are therefore less satisfactory in the case of close eigenvalues.

In this paper we derive appropriate estimates for a definite pair (H,M) of Her-
mitian matrices which are almost diagonal in the scaled sense, as defined in [1]. The
obtained bounds depend on the relative gaps in spectrum, hence the new results are
especially applicable when the eigenvalues of (H,M) cluster around the origin. The
results are simplified provided H or M is diagonal. For example, if M = In and
H = (hij) is Hermitian with h11 ≥ · · · ≥ hnn, then for the nonincreasingly ordered
eigenvalues of H we obtain

|hii − λi|/|λi| ≤ (C/γ) ω2, 1 ≤ i ≤ n, C of order unity,

provided that ω < γ/4. Here γ = minλi 6=λj |λi − λj |/(|λi|+ |λj |) and

ω = ‖D−1/2 (H − diag (h11, . . . , hnn))D−1/2‖2 , D = diag(|h11|, . . . , |hnn|).

Estimates of this type have already been derived for skew-Hermitian matrices [10]
and for Hermitian positive definite matrix pairs [3]. The estimates presented in this
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paper have nice applications in the quadratic convergence theory of scaled iterates by
Hermitian Jacobi methods.

The paper is divided into three sections. In section 1 we introduce notation and
present some known results on almost diagonal and on scaled diagonally dominant
matrices. In section 2 we derive new estimates for the scaled diagonally dominant def-
inite matrix pairs. Finally, in section 3 we apply the new results to a single Hermitian
matrix and provide two examples.

1. A pair of almost-diagonal matrices. Consider the generalized eigenvalue
problem

Hx = λMx, x 6= 0,(1.1)

with Hermitian H and Hermitian positive definite M , both of order n. Let the eigen-
values of the pair (H,M), that is, of the problem (1.1), be ordered nonincreasingly,

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,(1.2)

where sp = n. Then for each 1 ≤ i ≤ p, ni = si − si−1, (s0
def
= 0) is the multiplicity

of λsi , respectively. For the pair (H,M) we assume

h11

m11
≥ h22

m22
≥ · · · ≥ hnn

mnn
,(1.3)

where H = (hij), M = (mij). To get such an arrangement one can apply to H and M
the congruence transformation with a suitably chosen permutation matrix. According
to the partition n = n1 + · · ·+ np we define the block matrix partition

X = (xij) =

 X11 · · · X1p

...
. . .

...
Xp1 · · · Xpp

 , Xii ∈ Cni×ni , 1 ≤ i ≤ p.

In order to move the block Xii to the (1, 1) position we make use of the permutation
matrices Pi, defined by

P1 = In, Pi =
[
esi−1+1, . . . , esi , e1, . . . , esi−1 , esi+1, . . .

]
, 2 ≤ i ≤ p,(1.4)

where In = [e1, . . . , en] is the identity matrix. Then

P ∗i XPi =

[
πi(X) τi(X)
τ ci (X) πci (X)

]
}ni
}n− ni

,

with

πi(X) = Xii, τi(X) =
[

Xi1 . . . Xi,i−1 Xi,i+1 . . .
]
,

τ ci (X) =



X1i

...
Xi−1,i

Xi+1,i

...

 , πci (X) =



X11 · · · X1,i−1 X1,i+1 · · ·
...

. . .
...

...
...

Xi−1,1 · · · Xi−1,i−1 Xi−1,i+1

Xi+1,1 · · · Xi+1,i−1 Xi+1,i+1

... · · · · · · · · · . . .

 .

Below, we use the following notation: Ω(X) = X − diag(X) is the off-diagonal part
of X, π(X) = diag(X11, . . . , Xpp) is the block-diagonal, and τ(X) = X − π(X) is the
off-block-diagonal part of X. By ‖X‖F , ‖X‖2, and ‖X‖∞ are denoted the Frobenius,

the spectral (operator), and the infinity norm of X. As usual, X∗ = X
T

.
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1.1. Structure of an almost-diagonal pair. Let λ(H,M) denote the spec-
trum of (H,M). Then for each 1 ≤ i ≤ p

δi = min
1≤j≤p
j 6=i

| λsi − λsj |

is the (absolute) gap or separation of λsi from λ(H,M) \ {λsi}. The minimum sepa-
ration in the spectrum λ(H,M) is δ, where

δ = min
1≤i≤p

δi.

Let M = ∆MMS∆M with ∆M = [diag (M)]
1/2

. The following result from [7, Theo-
rem 3.1] reveals the special structure of an almost-diagonal pair (H,M):

(R1) If ‖Ω(∆−1
M H∆−1

M − λsiMS)‖2 ≤ 1
3δi, 1 ≤ i ≤ p, then

∥∥πi (∆−1
M H∆−1

M − λsiMS

)∥∥
F
≤ 3

δi

∥∥τi (∆−1
M H∆−1

M − λsiMS

)∥∥2

F
, 1 ≤ i ≤ p.

In the case M = In this result has the refinement [7], which provides information on
the location of the eigenvalues of H:

(R2) If ‖Ω(H)‖F ≤ δ/3, then

‖Hii − λsiIni‖F ≤ (1.32/δi)
∑p

j=1

j 6=i
‖Hij‖2F , 1 ≤ i ≤ p.

Both results played essential roles in deriving sharp quadratic convergence estimates
for appropriate Jacobi methods (see [5, 8, 11, 4]). Note that for tiny δi the appropriate
bounds in (R1) and (R2) become large and therefore useless.

1.2. Pair of scaled diagonally dominant matrices. Here we recall the notion
of scaled diagonally dominant matrices and matrix pairs from [1] and state some
appropriate results. If A = D + N , where D is diagonal and N has zero diagonal,
then A = (aij) is α-diagonally dominant with respect to a norm ‖ · ‖ if ‖N‖ ≤
αmin1≤i≤n |aii|, with 0 ≤ α < 1. Now, let A = D +N with |aii| = 1, 1 ≤ i ≤ n, and
let ∆1, ∆2 be arbitrary nonsingular diagonal matrices. Then B = ∆1A∆2 is α-scaled
diagonally dominant (α-s.d.d.) with respect to a given norm, if A is α-diagonally
dominant with respect to that norm. If B is Hermitian, it is presumed that ∆1 = ∆2.
Note that an α-s.d.d matrix has nonzero diagonal elements.

The pair (H,M) of Hermitian matrices is (α, β)-scaled diagonally dominant
definite1 ((α, β)-s.d.d.d.) with respect to a given norm if H is α-s.d.d., M is
β-s.d.d., both with respect to that norm, and M is positive definite. If H is pos-
itive definite as well, (H,M) is (α, β)-s.d.d. positive definite ((α, β)-s.d.d.p.d.).

The spectral absolute value [H2]1/2 of a Hermitian matrix H, is denoted as in
[15] by ||||H||||. The standard absolute value of H is denoted by |H|, |H| = (|hij |). The
following result [15, Theorem 2.1] has nice applications for (ηH , ηM )-s.d.d.d. pairs.

(R3) Let (H,M) be a pair of Hermitian matrices such that M is positive definite.
Let δH and δM be Hermitian matrices satisfying

| x∗δHx |≤ ηHx∗||||H||||Mx, ηH < 1 and | x∗δMx |≤ ηMx∗Mx, ηM < 1

1 This is a slight modification of the definition from [1].
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for all x ∈ Cn. Here ||||H||||M = Z||||Z−1HZ−∗||||Z∗, where Z is any square matrix satisfy-
ing M = ZZ∗. If λ1 ≥ · · · ≥ λn and λ′1 ≥ · · · ≥ λ′n are the eigenvalues of (H,M) and
(H + δH,M + δM), respectively, then for any 1 ≤ i ≤ n, either λi = λ′i = 0 or

1− ηH
1 + ηM

≤ λ′i
λi
≤ 1 + ηH

1− ηM
.

We recall the result [2, Proposition 2.10], which refines [1, Proposition 2], and also (R3)
for the pair (diag(H), In) with perturbation (Ω(H), 0), provided that H is positive
definite.

(R4) If H is positive definite and HS = ∆−1
H H∆−1

H , ∆H = [diag(H)]
1/2

, then

1− ‖Ω(HS)‖2 ≤ λmin(HS) ≤ λi
hii
≤ λmax(HS) ≤ 1 + ‖Ω(HS)‖2, 1 ≤ i ≤ n,

where λmin(HS) and λmax(HS) are the smallest and the largest eigenvalues of HS ,
respectively.

The results (R3) and (R4) will be used in sections 2 and 3, respectively.

2. Scaled almost-diagonal matrix pairs. Here we derive a result similar to
(R1), but using scaled matrices and relative gaps in λ(H,M). Relative gaps are
defined in a number of ways (cf. [1, 15, 12, 10]). For technical reasons we use the
following (relative) measure of eigenvalue separation.

Definition 2.1. Let λsi , 1 ≤ i ≤ p, be the eigenvalues of the pair (H,M),
satisfying the condition (1.2). The relative gap of λsi from λ(H,M) \ {λsi} is

γi = min
1≤j≤p
j 6=i

| λsi − λsj |
| λsi | + | λsj |

.

The minimum relative gap in λ(H,M) is

γ = min
1≤i≤p

γi.

Note that γi ≤ 1, 1 ≤ i ≤ p, and γi = 1 if either λsi = 0 or λsi is a single point
of λ(H,M) in (−∞, 0) or (0,∞).

The following theorem generalizes and improves [3, Theorem 2.24], which has
been formulated for (α, α)-s.d.d.p.d. pairs.

Theorem 2.2. Let (H,M) be an (α, β)-s.d.d.d. pair satisfying the condition

(1.3). Let H = ∆HHS∆H , M = ∆MMS∆M with ∆H = (|diag (H)|)1/2
, ∆M =

(diag (M))
1/2

. If

α+ β

1− α <
1

3
γ,(2.1)

then for each 1 ≤ i ≤ p it holds that

(i) ‖πi
(
HS − λsi∆−1

H M∆−1
H

)
‖F ≤

4

γi
‖τi
(
HS − λsi∆−1

H M∆−1
H

)
‖2F ,

(ii) ‖πi (H − λsiM) ‖F ≤
4

γi
‖τi
(
H∆−1

H − λsiM∆−1
H

)
‖2F ,

(iii) ‖πi
(
λ−1
si ∆−1

M H∆−1
M −MS

)
‖F ≤

2

γi
‖τi
(
λ−1
si ∆−1

M H∆−1
M −MS

)
‖2F ,
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(iv) ‖πi
(
λ−1
si H −M

)
‖F ≤

2

γi
‖τi
(
λ−1
si H∆−1

M −M∆−1
M

)
‖2F .

Proof. By the assumption we have

HS = Jn +Ω(HS), ‖Ω(HS)‖2 ≤ α < 1,

MS = In +Ω(MS), ‖Ω(MS)‖2 ≤ β < 1,

where Jn = Ik
⊕
−In−k for some 0 ≤ k ≤ n. Using substitutions y = ∆Hx and

z = ∆Mx we obtain for arbitrary x ∈ Cn

| x∗Ω(H)x | = | x∗∆HΩ(HS)∆Hx |=| y∗Ω(HS)y |≤ αy∗y = αx∗∆2
Hx,(2.2)

| x∗Ω(M)x | = | x∗∆MΩ(MS)∆Mx |=| z∗Ω(MS)z |≤ βz∗z = βx∗∆2
Mx.(2.3)

Consider (H,M) as the perturbed pair
(
∆HJn∆H ,∆

2
M

)
. Since

||||∆HJn∆H ||||∆2
M

= ∆M ||||∆−1
M ∆HJn∆H∆−1

M ||||∆M = ∆2
H ,

the relations (2.2) and (2.3) imply that the result (R3) can be applied to the pair(
∆HJn∆H ,∆

2
M

)
with (Ω(H),Ω(M)) as perturbation. One obtains

1− α
1 + β

≤ λsi
hjj/mjj

≤ 1 + α

1− β , j ∈ Si, 1 ≤ i ≤ p,

where Si = { j ; si−1 + 1 ≤ j ≤ si}, 1 ≤ i ≤ p. Hence

| hjj/mjj − λsi |
| λsi |

≤ α+ β

1− α , j ∈ Si, 1 ≤ i ≤ p.(2.4)

Now, consider the intervals

Di =

{
ξ :
| ξ − λsi |
| λsi |

<
γi
3

}
, 1 ≤ i ≤ p.

Since for ξ ∈ Dk, k 6= i,

|ξ − λsi |
|λsi |

≥ |λsi − λsk ||λsi |+ |λsk |

(
1 +
|λsk |
|λsi |

)
− |ξ − λsk ||λsk |

|λsk |
|λsi |

(2.5)

≥ max{γi, γk}+
2

3

|λsk |
|λsi |

max{γi, γk} ≥ max{γi, γk},

we see that ξ 6∈ Di. Thus, Di, 1 ≤ i ≤ p, are mutually disjoint. If (2.1) holds, then
the relation (2.4) implies hjj/mjj ∈ Di, j ∈ Si, 1 ≤ i ≤ p.

Let i ∈ {1, . . . , p} be fixed. Consider Ci = H − λsiM . If Pi is as in (1.4), then

PTi CiPi =

[
πi(Ci) τi(Ci)
τ ci (Ci) πci (Ci)

]
has rank n− ni and the rank argument (cf. [7, 17]) implies

πi(Ci) = τi(Ci) [πci (Ci)]
−1
τ ci (Ci),(2.6)

provided that πci (Ci) is nonsingular.
Now we prove the assertions (i)–(iv) of the theorem.
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(i) We use πi(∆
−1
H ) and πci (∆

−1
H ) as scaling matrices for modifying (2.6). We

obtain

πi(C̃i) = τi(C̃i)
[
πci (C̃i)

]−1

τ ci (C̃i)(2.7)

with C̃i = ∆−1
H Ci∆

−1
H . Note that πci (C̃i) = πci (∆

−1
H )πci (Ci)π

c
i (∆

−1
H ) is nonsingular if

and only if πci (Ci) is nonsingular; hence (2.6) holds if and only if (2.7) holds. Let µ
be the smallest by modulus eigenvalue of πci (C̃i). If we show

| µ |> γi
4
,(2.8)

then (2.7) holds with ‖
[
πci (C̃i)

]−1‖2 < 4/γi. Then, applying the Frobenius matrix

norm to (2.7) and using τ ci (C̃i) = τi(C̃i)
∗, we obtain the assertion (i) of the theorem.

Let πci (C̃i)w = µw, w 6= 0. This can be written as πci (Ci)w
′ = µπci (∆

2
H)w′, w′ =

πci (∆
−1
H )w 6= 0. Hence

[πci (∆H(Jn − µIn)∆H) +Ω (πci (H))]w′ = λsi
[
πci (∆

2
M ) +Ω (πci (M))

]
w′,

implying that λsi is an eigenvalue of the pair
(
πci (H − µ∆2

H) , πci (M)
)
, which depends

on µ. If we let y = πci (∆H)x and z = πci (∆M )x, we have for arbitrary x ∈ Cn−ni

| x∗Ω (πci (H))x | = | y∗Ω (πci (HS)) y |≤ ‖Ω (πci (HS)) ‖2y∗y ≤ ‖Ω(HS)‖2y∗y
≤ αy∗y = αx∗πci (∆

2
H)x =

α

1− |µ|x
∗ (1− |µ|)πci (∆2

H)x

≤ α

1− |µ|x
∗πci (∆H |Jn − µIn|∆H)x

=
α

1− |µ|x
∗||||πci (∆H(Jn − µIn)∆H) ||||πc

i
(∆2

M
)x,

| x∗Ω (πci (M))x | = | z∗Ω (πci (MS)) z |≤ ‖Ω (πci (MS)) ‖2z∗z ≤ ‖Ω(MS)‖2z∗z
≤ βz∗z = βx∗πci (∆

2
M )x.

Here we have used the inequality (1−|µ|)In ≤ |Jn−µIn| and the fact that the spectral
norm of a submatrix is not larger than the norm of the whole matrix. The latest two re-
lations imply that the result (R3) can be applied to

(
πci (∆H(Jn − µIn)∆H), πci (∆

2
M )
)

with (Ω(πci (H)),Ω(πci (M))) as perturbation, provided that |µ| < 1−α. If this is the
case we obtain (since λsi is an eigenvalue of

(
πci (H − µ∆2

H) , πci (M)
)
)

1− α

1− |µ|
1 + β

≤ λsi
hjj
mjj

(1− µ̃)

≤
1 +

α

1− |µ|
1− β for some j ∈

⋃
k 6=i
Sk,

with µ̃ = µ sign(hjj). Using elementary calculus one obtains

|hjj/mjj − λsi |
|λsi |

≤ α+ β + |µ|
1− α− |µ| for some j ∈

⋃
k 6=i
Sk.(2.9)

By (2.5) we have | hjj/mjj − λsi | /|λsi | > γi. Hence (2.9) and (2.1) imply

γi <
α+ β + |µ|
1− α− |µ| <

(1− α)1
3γ + |µ|

1− α− |µ| ,
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and we obtain |µ| > (1−α) 3γi−γ
3(γi+1) . Since β ≥ 0 the assumption (2.1) implies 1−α >

3/(3 + γ). We also have 3γi − γ ≥ 2γi. Hence |µ| > γi/4.
If |µ| ≥ 1− α one obtains straightforwardly |µ| > 3/(3 + γ) ≥ 3/4 > γi/4. Since

i is arbitrary the proof of the assertion (i) is completed.
(ii) Here we scale only the right-hand side of (2.6) with πci (∆

−1
H ) and obtain

πi(Ci) = τi(Ci∆
−1
H )

[
πci (C̃i)

]−1

τ ci (∆−1
H Ci).(2.10)

By the relation (2.8) we know that ‖
[
πci (C̃i)

]−1‖2 ≤ 4/γi. We also have [τi(Ci∆
−1
H )]∗

= τ ci (∆−1
H Ci). Hence, (ii) follows by applying the Frobenius norm to (2.10).

(iii) We scale (2.6) with πi(∆
−1
M ) and πci (∆

−1
M ) and multiply both sides of the

obtained equality by λ−1
si . We obtain

πi(C
′
i) = τi(C

′
i) [πci (C

′
i)]
−1
τ ci (C ′i),

where C ′i = λ−1
si ∆−1

M H∆−1
M −MS . Let ν be an eigenvalue of πci (C

′
i) such that 1/ | ν |

= ‖[πci (C ′i)]−1‖2. Then πci (C
′
i)v = νv for some v 6= 0. With v′ = πci (∆

−1
M )v we have

πci (H)v′ = λsi
[
(ν + 1)πci

(
∆2
M

)
+Ω (πci (M))

]
v′, v′ 6= 0.

Thus λsi is an eigenvalue of the pair
(
πci (H) , πci (M + ν∆2

M )
)
. As above, one can

show that for an arbitrary x ∈ Cn−ni

| x∗Ω (πci (H))x | ≤ αx∗πci (∆2
H)x = αx∗||||πci (∆HJn∆H) ||||πc

i
((1+ν)∆2

M
)x,

| x∗Ω (πci (M))x | ≤ β

1 + ν
x∗πci ( (1 + ν)∆2

M )x.

If ν > β− 1 one can apply (R3) to the pair
(
πci (∆HJn∆H), (1 + ν)πci (∆

2
M )
)

with
(Ω(πci (H)) , Ω(πci (M))) as perturbation, to obtain

1− α

1 +
β

ν + 1

<
λsi
hjj

(ν + 1)mjj

<
1 + α

1− β

ν + 1

for some j ∈
⋃
k 6=i
Sk.

The latest relation together with the condition (2.1) implies

|hjj/mjj − λsi |
|λsi |

<
α+ β + ν

1− α <
1

3
γ +

ν

1− α.

By (2.5), we obtain

γi −
1

3
γ <

ν

1− α,(2.11)

implying ν > 0. Since 1/(1 − α) < 1 + γ/3, we have ν/(1 − α) < (1 + γ/3)ν. This
inequality together with (2.11) implies |ν| > γi/2.

If ν < β − 1, we have | ν |> 1 − β > 1 − γ/3 > 2/3 > γi/2. Hence, in any case,
| ν | > γi/2. This proves (iii), since i is arbitrary.

(iv) The proof follows the lines of the proof of (ii), except that ∆M and the
assertion (iii) are used instead of ∆H and the assertion (i), respectively.
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Note that any unitarily invariant matrix norm can be applied to both sides of (2.7).
In the case of the spectral norm one obtains (cf. Example 3.3 and Corollary 3.2) the
claim on the first page of the paper.

If both matrices H and M are positive definite, we can further improve the latest
result.

Corollary 2.3. Suppose the pair (H,M) is (α, β)-s.d.d.p.d. and let HS, ∆H ,
MS, and ∆M be as in Theorem 2.2.

(a) If in (2.1) the denumerator 1 − α is replaced by 1 − β, then the constants 4
and 2 in the assertions (i), (ii) and (iii), (iv), respectively, interchange their
places.

(b) If in (2.1) the denumerator 1− α is replaced by 1−max {α, β}, then all the
assertions of Theorem 2.2 hold with the same constant 2 on the right-hand
sides.

Proof. (a) The pair (M,H) is (β, α)-s.d.d.p.d. with eigenvalues λ−1
sp = · · · =

λ−1
sp−1+1 > · · · > λ−1

s1 = · · · = λ−1
1 and with the appropriate gaps γj(M,H) =

γp+1−j(H,M), 1 ≤ j ≤ p. Hence the assertion (iii) of Theorem 2.2 for the pair
(M,H) takes the form

‖πj
(

(λ−1
sj )−1∆−1

H M∆−1
H −HS

)
‖ ≤ 2

γj
‖τj
(

(λ−1
sj )−1∆−1

H M∆−1
H −HS

)
‖2F , 1 ≤ j ≤ p

and this is (i) with 4 replaced by 2. In the same way, starting with the assertion (i)
of Theorem 2.2, one can prove that (iii) holds with the constant 4 instead of 2. The
same argument applies to the assertions (ii) and (iv) as well.

(b) The proof follows directly from the assertions (iii) and (iv) of Theorem 2.2
and the assertion (a) of this corollary.

3. Some applications. When M or H is diagonal we can use the congruence
transformation with ∆M or ∆H , to reduce it to In or Jn. This leads us to the pairs
(∆−1

M H∆−1
M , In) and (∆−1

H M∆−1
H , J), that is, to the estimates for Hermitian and J-

Hermitian matrices. We shall consider in detail only the case of Hermitian matrices.
The estimates for J-Hermitian matrices can be obtained in a similar way.

Scaled almost-diagonal Hermitian matrix. Let λj , 1 ≤ j ≤ n, be the eigenvalues
of the Hermitian matrix H ordered nonincreasingly, as indicated by the relation (1.2).
We further assume the nonincreasing ordering of the diagonal elements of H. This
assumption corresponds to the relation (1.3). The sets Si are defined as above. Note
also the definition of π and τ just before section 1.1.

Corollary 3.1. Let H be an α-s.d.d. Hermitian matrix and let H = ∆HHS∆H ,
∆H = [|diag(H)|]1/2. If α < γ/(γ + 3), then

(i)
∑
j∈Si

∣∣∣∣1− λsi
hjj

∣∣∣∣2 + ‖Ω (πi(HS)) ‖2F ≤
16

γ2
i

‖τi(HS)‖4F , 1 ≤ i ≤ p,

(ii)

n∑
j=1

∣∣∣∣1− λj
hjj

∣∣∣∣2 + ‖Ω (π(HS)) ‖2F ≤
8

γ2
‖τ(HS)‖4F ,

(iii)
∑
j∈Si

| hjj − λsi |2 +‖Ω (πi(H)) ‖2F ≤
4

γ2
i

min

{
4‖τi(H∆−1

H )‖4F ,
‖τi(H)‖4F

λ2
si

}
,

1 ≤ i ≤ p.

(iv)

n∑
j=1

| hjj − λj |2 +‖Ω (π(H)) ‖2F ≤
2

γ2
min

{
8‖τ(H∆−1

H )‖4F ,
‖τ(H)‖4F

min1≤i≤p λ2
si

}
.
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Proof. (i) The proof follows directly from Theorem 2.2 by inserting M = MS =
∆M = In. (ii) If we sum the left- and right-hand sides of the inequality in (i) and use
γi ≥ γ, ‖τi(HS)‖2 ≤ ‖τ(HS)‖2/2 for 1 ≤ i ≤ p, we obtain (ii). (iii) The proof follows
by combining the assertions (ii) and (iii) (or (ii) and (iv)) of Theorem 2.2. (iv) The
proof is similar to the proof of (ii). We use (iii) and the fact that ‖τi(H∆−1

H )‖ ≤
‖τ(H∆−1

H )‖, 1 ≤ i ≤ p.
If λsi is simple, then the terms ‖Ω (πi(HS)) ‖2F and ‖Ω (πi(H)) ‖2F in (i) and (iii)

are omitted. Similarly, if all the eigenvalues of H are simple, then ‖Ω (π(HS)) ‖2F and
‖Ω (π(H)) ‖2F in (ii) and (iv) are omitted. We have included in (iii) and (iv) the term
containing the eigenvalue(s) λsi because knowledge of rough lower bound(s) for λsi
may considerably improve the bound (see Example 3.3 below). If H is, in addition,
positive definite, we can further sharpen the latest result.

Corollary 3.2. Let H be an α-s.d.d. Hermitian positive definite matrix and let
H = ∆HHS∆H , ∆H = [diag(H)]1/2. If α < γ/3, then

(i)
∑
j∈Si

∣∣∣∣1− λsi
hjj

∣∣∣∣2 + ‖Ω (πi(HS)) ‖2F ≤
4

γ2
i

‖τi(HS)‖4F , 1 ≤ i ≤ p,

(ii)

n∑
j=1

∣∣∣∣1− λj
hjj

∣∣∣∣2 + ‖Ω (π(HS)) ‖2F ≤
2

γ2
‖τ(HS)‖4F .

If α < γ/(γ + 3), then

(iii)
∑
j∈Si

| hjj − λsi |2 +‖Ω (πi(H)) ‖2F ≤
4

γ2
i

min

{
‖τi(H∆−1

H )‖4F ,
‖τi(H)‖4F

λ2
si

}
,

1 ≤ i ≤ p,

(iv)

n∑
j=1

| hjj − λj |2 +‖Ω (π(H)) ‖2F ≤
2

γ2
min

{
2‖τ(H∆−1

H )‖4F ,
‖τ(H)‖4F

min1≤i≤p λ2
si

}
.

Proof. Consider the pairs (H, In) and (In, H) and apply already derived estimates
(or equivalently, use Corollaries 2.3 and 3.1).

In the following example we shall comparatively investigate to what relative ac-
curacy the diagonals of H reveal the eigenvalues of H if the results (R2), (R4), and
Corollary 3.2 are applied.

Example 3.3. Let (cf. [3, Example 2.8])

H =

 1 10−8 10−8

10−8 10−6 10−11

10−8 10−11 10−8

 , M = I3.

Since ‖Ω(H)‖2 ≤ ‖Ω(H)‖∞ = 2 · 10−8 the perturbation theorem for the eigenvalues
of symmetric matrices (or simply the Gerschgorin theorem) implies | λi − hii | ≤
2 · 10−8. Hence the absolute gaps can be bounded from below using the formula
δi ≥ minj, j 6=i |hii − hjj | − 2 · (2 · 10−8). One obtains δ1 > 9.999 · 10−1, δ2 = δ3 = δ >
9.500 · 10−7. Therefore, the result (R2) implies

| λ1 − h11 |< 1.321 · 10−16, max{| λ2 − h22 |, | λ3 − h33 |} < 1.390 · 10−10.(3.1)

Let ri =| λi − hii | /λi, 1 ≤ i ≤ 3. Since λ1 > h11 − 1.321 · 10−16 and λj >
hjj − 1.390 · 10−10, 2 ≤ j ≤ 3, the relation (3.1) implies

r1 < 1.322 · 10−16, r2 < 1.31 · 10−4, r3 < 1.410 · 10−2.

Thus, only two (four) significant digits of λ3 (λ2) can be revealed.
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Let us now apply the result (R4) to H. Since

HS = ∆−1
H H∆−1

H =

 1 10−5 10−4

10−5 1 10−4

10−4 10−4 1

,
we have ‖Ω(HS)‖2 ≤ ‖Ω(HS)‖∞ = 2 · 10−4 ≡ α. Hence 1 − α < λi/hii < 1 + α,
1 ≤ i ≤ 3, implying

| λi − hii |
λi

<
2 · 10−4

1− 2 · 10−4
< 2.001 · 10−4, 1 ≤ i ≤ 3.

The result (R4) enables us to reveal two more digits in λ3 than (R2). However, for
the largest eigenvalue λ1 the result (R2) yields better information than (R4).

Consider now the estimates based on Gerschgorin disks2 for DHD−1, where D is
a suitably chosen diagonal matrix (see [16, sections 2.14, 2.15] or [13, section IV 2.2]).
In particular, if D = diag(d1, 1, 1), then the smallest value of d1 for which the disk
around 1 remains isolated from other disks is approximately 1.00000100001 · 10−8.
The Gerschgorin theorem applied to DHD−1 yields r1 < 2.0000021 · 10−16. If D =
diag(1, d2, 1), then the optimal value for d2 is approximately 1.02040826962 · 10−5,
and it yields r2 < 1.02143 ·10−7. Finally, if D = diag(1, 1, d3), then the optimal value
for d3 is again 1.02040826962 ·10−5, and it yields r3 < 1.02144 ·10−5. We see that this
technique yields better bounds than the result (R4) and, except for r1, much better
bounds than the result (R2).

Let us apply the estimates of Corollary 3.2 to H. The basic estimates | λi − hii |
≤ 2 · 10−8, 1 ≤ i ≤ 3, yield the following lower bounds for the relative gaps in the
spectrum of H:

γ1 =
λ1 − λ2

λ1 + λ2
>
h11 − h22− | λ1 − h11 | − | λ2 − h22 |
h11 + h22+ | λ1 − h11 | + | λ2 − h22 |

> 0.9999979,

γ = γ2 = γ3 =
λ2 − λ3

λ2 + λ3
>
h22 − h33− | λ2 − h22 | − | λ3 − h33 |
h22 + h33+ | λ2 − h22 | + | λ3 − h33 |

> 0.9047619.

Consider first the estimates based on Corollary 3.2 (iii). Using the above bounds for
γi we obtain

| h11 − λ1 | ≤
2

γ1
min

{
(10−10 + 10−8),

10−16 + 10−16

1− 2 · 10−8

}
< 4.00001 · 10−16,

| h22 − λ2 | ≤
2

γ2
min

{
10−16 + 10−14,

10−16 + 10−22

10−6 − 2 · 10−8

}
< 2.23264 · 10−14,

| h33 − λ3 | ≤
2

γ3

(
10−16 + 10−16

)
< 4.42106 · 10−16.

All these bounds are pretty sharp and, except for | h11 − λ1 |, much better than
those based on the result (R2). Let us now apply Corollary 3.2 (i) to H. Since
(2/γ1)(1 + 10−2) · 10−8 < 2.021 · 10−8, we have∣∣∣∣ λ1

h11
− 1

∣∣∣∣ < 2.021 · 10−8 implying r1 <
2.021 · 10−8

1− 2.021 · 10−8
< 2.022 · 10−8.

2 The authors would like to thank one of the referees for reminding them of this technique.
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In a similar way we obtain

r2 < 2.23263 · 10−8, r3 < 4.422 · 10−8.

The latest two bounds might have been improved slightly had γ2 = γ3 been computed
via the estimates (3.1). In that case we would have obtained r2 < 2.063 · 10−8 and
r3 < 4.084 · 10−8. Since3 (λ3 − h33)/λ3 ≈ −2.01008085848 · 10−8 the bound for the
smallest eigenvalue is realistic. In general, the first (third) assertion of Corollary 3.2
will yield better bounds for the smallest (largest) eigenvalues of a positive definite
matrix.

Although in Example 3.3 the technique with Gerschgorin circles gave better
bounds than the result (R4), the latter is much more convenient on some occasions
(e.g., verifying convergence of the Jacobi eigenreduction method).

The next example shows how good the new estimates are when H is two by two.
Example 3.4. Let

H =

[
a b
b̄ c

]
, a ≥ c,

be a two by two Hermitian matrix. Since

λ1 = a+ | b | tan ϕ,
λ2 = c− | b | tan ϕ,

tan 2ϕ =
2 | b |
a− c , | ϕ |≤ π

4
,

we can calculate exactly

1− λ1

a
= −| b |

a
tan ϕ = − 2 | b |2

a
[
a− c+

√
(a− c)2 + 4 | b |2

] if a 6= 0,

1− λ2

c
=
| b |
c

tan ϕ =
2 | b |2

c
[
a− c+

√
(a− c)2 + 4 | b |2

] if c 6= 0.

Suppose first that H is definite; that is, a and c are of the same sign and ac >| b |2.
The latest relations show that∣∣∣∣1− λ1

a

∣∣∣∣ ≤ 1

| a |
| b |2
a− c ,

∣∣∣∣1− λ2

c

∣∣∣∣ ≤ 1

| c |
| b |2
a− c .

On the other hand, since

γ1 = γ2 = γ =
| λ1 − λ2 |
| λ1 | + | λ2 |

=
a− c+ 2 | b | tan ϕ

| a+ c | ,

the requirement ‖Ω(HS)‖2 ≡ α < γ/3 of Corollary 3.2 reads

3
| b |√
ac

<
a− c
| a+ c | + 2

| b | tan ϕ

| a+ c | .

If the latest inequality holds, Corollary 3.2(i) implies

max

{∣∣∣∣1− λ1

a

∣∣∣∣ , ∣∣∣∣1− λ2

c

∣∣∣∣} ≤ 2
| a+ c |
a− c

| b |2
ac

= 2
| a+ c |
ac

| b |2
a− c .

3 We have computed the eigenvalues of H with accuracy 10−80 by the interactive system
MATHEMATICA.
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Since

max

{
1

| a | ,
1

| c |

}
≤ 1

2

{
2
| a+ c |
a− c

}
,

the bound of Corollary 3.2(i) is at least twice as large as the actual bound. Note also
that the condition α < γ/3 is superfluous.

Yet, consider the case a > 0 > c. Now H is indefinite, and therefore γ1 = γ2 =
γ = 1. Hence the requirement α < γ/(γ + 3) of Corollary 3.1 reads 4 | b |<

√
a | c |.

So, under that condition, Corollary 3.1(i) implies

max

{∣∣∣∣1− λ1

a

∣∣∣∣ , ∣∣∣∣1− λ2

c

∣∣∣∣} ≤ 4

1

| b |2
a | c | .

Since

max

{
| b |2

a2 + a | c | ,
| b |2

c2 + a | c |

}
≤ | b |

2

a | c | ,

the bound in Corollary 3.1(i) can be sharp. However, the requirement α < γ/(γ + 3)
appears to be superfluous.

Remark 3.5. Our estimates can easily be applied to a class of non-Hermitian
matrices which are Hermitian up to diagonal scaling. More precisely, we refer to
H ∈ Cn×n as hidden Hermitian if H = D1AD2 for some nonsingular real diagonal
matrices D1, D2 and Hermitian A. Since the eigenvalue problem Hx = λx is equiv-
alent to the generalized eigenvalue problem for the Hermitian pair (A,D−1

1 D−1
2 ), our

results can be applied provided that either A or D1D2 is positive definite.

Appendix. Here we prove relation (2.9). Since 1− µ̃ > 0, the latest relation is
equivalent to

−l ≡ −
−µ̃+ 1−µ̃

1−|µ|α+ β

1− µ̃+ 1−µ̃
1−|µ|α

≤
hjj
mjj
− λsi
λsi

≤
µ̃+ 1−µ̃

1−|µ|α+ β

1− µ̃− 1−µ̃
1−|µ|α

≡ u.

If µ̃ = |µ|, then

l =
−|µ|+ α+ β

1− |µ|+ α
≤ α+ β + |µ|

1− α− |µ| = u.

If µ̃ = −|µ|, then we have

l =
α+ 1−|µ|

1+|µ| (β + |µ|)
1− |µ|+ α

≤ α+ β + |µ|
1− α− |µ|

and

u =
t+ β

1− t with t =
1 + |µ|
1− |µ|α− |µ|.

Since the condition α/(1− |µ|) < 1 is equivalent to t < α+ |µ|, we obtain

u ≤ α+ β + |µ|
1− α− |µ| .

Hence, in both cases, we have proven

|hjj/mjj − λsi |
|λsi |

≤ α+ β + |µ|
1− α− |µ| for some j ∈

⋃
k 6=i
Sk.
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Abstract. We consider the solution of the homogeneous equation (J − λI)x = 0, where J is
a tridiagonal matrix, λ is a known eigenvalue, and x is the unknown eigenvector corresponding to
λ. Since the system is underdetermined, x could be obtained by setting xk = 1 and solving for
the rest of the elements of x. This method is not entirely new, and it can be traced back to the
times of Cauchy [Oeuvres Complétes (IIe Série), Vol. 9, Gauthier–Villars, Paris, 1841]. In 1958,
Wilkinson demonstrated that, in finite-precision arithmetic, the computed x is highly sensitive to
the choice of k; the traditional practice of setting k = 1 or k = n can lead to disastrous results. We
develop algorithms to find optimal k which require an LDU and a UDL factorization (where L is
lower bidiagonal, D is diagonal, and U is upper bidiagonal) of J − λI and are based on the theory
developed by Fernando [On a Classical Method for Computing Eigenvectors, Numerical Algorithms
Group Ltd, Oxford, 1995] for general matrices. We have also discovered new formulae (valid also for
more general Hessenberg matrices) for the determinant of J−τI, which give better numerical results
when the shifted matrix is nearly singular. These formulae could be used to compute eigenvalues
(or to improve the accuracy of known estimates) based on standard zero finders such as Newton and
Laguerre methods. The accuracy of the computed eigenvalues is crucial for obtaining small residuals
for the computed eigenvectors. The algorithms for solving eigenproblems are embarrassingly parallel
and hence suitable for modern architectures.

Key words. eigenvalues, eigenvectors, perturbation analysis, tridiagonal matrices, deflation,
inverse iteration

AMS subject classifications. 15A18, 15A23, 15A24

PII. S0895479895294484

1. Introduction and summary. It appears that there are not many algorithms
to compute eigenvectors of a matrix once the eigenvalues are determined. In fact,
inverse iteration seems to be the only mainstream algorithm in the repertoire of readily
available software. Although inverse iteration [13] is a very powerful tool, there are
many well-known shortcomings. Some of them include the following:

1. the use of random vectors which defies deterministic analysis;
2. the need for reorthogonalization of computed vectors using Gram–Schmidt or

otherwise which can be expensive, especially on parallel platforms;
3. the inability to obtain orthogonal vectors when the eigenvalues are clustered;
4. the excessive reliance on heuristics.

The method we are proposing is not entirely new; the basic idea has been in existence
for nearly two centuries since the times of Cauchy [4] and is based on the definition of
an eigenvector. However, in the late 1950s this method went into disrepute because
Wilkinson [17] uncovered a fundamental obstacle to this classical approach; more de-
tails are given later in this section. The essentials of the method are based on the
solution of the set of homogeneous equations (F − λI)x = 0, where F is a general
square matrix and x is the unknown eigenvector corresponding to the known eigen-
value λ. The same approach has been used for the generalized eigenvalue problem

∗ Received by the editors November 8, 1995; accepted for publication (in revised form) by A.
Greenbaum October 31, 1996. A preliminary version of this paper appeared in Proc. of the Third
International Congress on Industrial and Applied Mathematics, Zeitschrift für Angewandte Mathe-
matik und Mechanik, Hamburg, 1995.

http://www.siam.org/journals/simax/18-4/29448.html
† Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill, Oxford OX2 8DR, UK

(vince@nag.co.uk).

1013



1014 K. V. FERNANDO

(F − λG)x = 0. Since these are underdetermined systems of equations, at least one
equation in the system is redundant. If the kth equation is redundant, then one may
assume that xk, the kth element of x, is unity and solve the rest of the equations. It
has been the normal practice to assume that the superfluous equation is the nth or
the first. The Holzer method in vibration analysis [12], which has been in existence
since the turn of this century, also follows this tradition.

Is it possible to drop any one of the n equations and obtain a good approximation
to an eigenvector? This question has been asked by many in the past; see Fernando
[7], which also gives a detailed historical account. Note that if the matrix F is dense,
then the nth equation does not have a particular significance since any equation can
be given the ordinal count n after a trivial permutation of the equations. However,
for tridiagonal and other structured matrices, reordering the equations may destroy
the structure. Thus, dropping the first or the nth equation has become entrenched
for tridiagonal matrices and pencils.

In a pioneering paper [17], Wilkinson showed that not all equations of a homoge-
neous system are equal; some have a higher degree of redundancy than others. The
removal of an equation which is less redundant than others can lead to disastrous
results. This is not a problem which afflicts only large matrices; it can happen even
if n = 2. We recall the example of Wilkinson (see section 51 of [19]):

F =

(
0.713263 0.000984
0.000984 0.121665

)
, λ1 = 0.71326463, λ2 = 0.12166336.

Wilkinson took the approximation λ ≈ τ = 0.713265 which has an approximate error
of 0.36 × 10−6. By omitting the second equation of the nearly homogeneous system
(F − τI)z ≈ 0, he obtained the computed eigenvector

zt = (1, 0.002033) .(1)

When he dropped the first equation, the eigenvector was

zt = (1, 0.00166329) .(2)

The eigenvector given by (1) is accurate only to 3 decimal places while the eigenvector
(2) is accurate to 8 decimal places.

In [7], Fernando1 studied in depth the theoretical issues concerning the choice
of k for general dense matrices, and the results of Wilkinson were reconfirmed and
extended. The basic idea is to compute the diagonal entries of the matrix M , which
is obtained by elementwise reciprocation of the inverse of the matrix (F −λI)t. Thus,
for the Wilkinson example

M =

(
−0.00000036 −0.00021844
−0.00021844 −9.3047491

)
.

The diagonal element of M with the smallest magnitude points to the equation which
should be dropped. Thus, k = 1 is the optimal choice.

One of the main objectives of this paper is to develop algorithms to compute
the diagonal elements of M for tridiagonal matrices. This is based on an LDU and
a UDL factorization of the shifted tridiagonal matrix J − τI which give all possible

1 The technical report [7] is not a prerequisite to follow this paper; however, for a deeper under-
standing, it should be consulted.
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burn at both ends (BABE) factorizations. This report was motivated by an article by
Henrici [11] who seems to be the first person to use BABE factorizations. We study
the accuracy of BABE factorizations of tridiagonal matrices elsewhere [6].

We also encounter a variable defined by Babus̆ka [2], which is present in his error
analysis of tridiagonal equation solvers. In our notation, this variable is µk, the kth
diagonal element of the matrix M .

Suppose that the LDU factorization of J−τI exists. It can be shown that the last
pivot dn of the LDU factorization of J−τI is zero if the shift τ is an exact eigenvalue
of J . However, in finite precision arithmetic dn can be huge even if the shift is very
accurate. We explain this phenomenon of the nonvanishing dn. The algorithm for
finding the optimal kth equation which should be dropped from a nearly homogeneous
system was discovered while this problem was studied.

One of the highlights of this paper is the formulae we have discovered for the
determinant of a shifted tridiagonal matrix in terms of the leading/trailing principal
minors and the µk(τ) (the kth diagonal element of M). In fact, our results are valid
for a wider class of problems defined by Hessenberg matrices; thus we formulate our
problem in terms of the Hessenberg matrix H. The formulae are

det(H − τI) = µk(τ) det(H − τI)1:k−1 det(H − τI)k+1:n, 1 ≤ k ≤ n.

The significance of this result is due to the fact that if the shifted matrix is singular
then it is often possible to obtain, in floating-point arithmetic, a zero (or a tiny)
determinant provided we choose k such that |µk(τ)| is minimal. In exact arithmetic,
if the matrix H − τI is singular then all µk(τ) values are zero; but in floating-point
arithmetic, the convergence of µk(τ) to zero can be uneven for different values of k as
indicated by the 2×2 example. Since many eigenvalue solvers are based on the premise
of a vanishing determinant when the shift is an exact eigenvalue, these formulae
provide a means to achieve that objective in floating-point arithmetic. We have
already applied Newton and Laguerre zero-finding techniques to the determinants
given by the new formulae; we hope to discuss these experiments elsewhere.

In floating-point arithmetic, the determinant of a matrix is not a good indicator
of the singularity of that matrix (see section 2.7.3 of Golub and Van Loan [10]).
However, by choosing k such that |µk| is minimal it is possible to estimate nearly
singular determinants more accurately.

The kth diagonal entry µk of M can be interpreted as the perturbation required
to make the matrix J − τI singular when τ is not an exact eigenvalue of J ; that is,

det(J − τI − µkeke∗k) = 0,

where ek is the unit vector with unity at the kth entry and zeros elsewhere. However,
if the tridiagonal matrix has zero diagonals, which is the case if the matrix is related
to a bidiagonal singular value decomposition (SVD) problem, perturbation of the
diagonal elements is contraindicated. We remove this difficulty by perturbing a pair
of off-diagonal elements instead of a diagonal element.

This paper is organized as follows. In section 2, the notation and the preliminaries
are established. The basic theory concerning near homogeneous systems of equations
is developed in section 3. The formulae for computing the diagonal values of M
which indicate the levels of redundancy are derived in section 4. The algorithms for
computing eigenvectors, once the optimal k is known, are covered in section 5. In
section 6, diagonal perturbations are avoided by transferring the disturbance to a
pair of off-diagonal elements. The quality of the computed eigenvectors is assessed
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in section 7. Finally, in section 8, the mystery of the nonvanishing pivot dn with an
ideal shift is investigated and solved.

The algorithms for computing eigenvectors are embarrassingly parallel, and they
are suitable for modern architectures. Elsewhere we treat the problems associated
with eigenvectors corresponding to clustered eigenvalues.

2. Notation and preliminaries. Scalars are denoted by lowercase Greek and
Roman characters. Eigenvalues are shown as λi’s and singular values as σi’s.

Vectors are denoted by bold Roman characters such as x, y, and z. The unit
vector ek has a one in the kth element and zeros elsewhere. The kth element of x is
xk, the transpose of x is xt, and the complex conjugate transpose of x is x∗.

Matrices are shown as uppercase Roman characters. The submatrix of F con-
taining the rows from i to j and columns from k to l is indicated by Fi:j,k:l, which is
consistent with Fortran and Matlab notations; the contracted form Fi:j is used for
Fi:j,i:j . We use the shorthand notation F[k,l] for the matrix obtained by removing kth
row and the lth column of the matrix F . Similarly, y[k] is the vector we get if the kth
element is omitted.

We use J to denote an n×n (possibly complex) tridiagonal matrix. The nonzero
elements of the ith row of J are (ci−1, ai, bi) with ai centered on the diagonal (except
that c0 does not exist in the first row and bn does not exist in the nth row). We assume
that the tridiagonal matrix is unreduced; that is, none of the off-diagonal elements bi
and ci are zero.

It is presumed that the reader knows the LDU factorization of a tridiagonal
matrix where L is lower bidiagonal, U is upper bidiagonal, and D is diagonal. The
diagonal values of L and U are all unity.

We consider the LDU factorization of the unreduced tridiagonal matrix J − τI
where the scalar τ is a shift. Here we use the notation L(τ), D(τ), and U(τ) for the
factors, to emphasize their dependence on τ . The following recursion for computing
the pivots di(τ) (which are the diagonal values of D(τ)) is well known:

di(τ) = ai − τ − bi−1ci−1/di−1(τ), i = 2, . . . , n with d1(τ) = a1 − τ.(3)

The (i + 1, i) element of L(τ) is ci/di(τ), and the (i, i + 1) element of U(τ) is
bi/di(τ). We often suppress the argument τ from di(τ) and similar variables.

If J is a Hermitian matrix (or a matrix which can be made Hermitian via a
diagonal similarity transformation—that is, bici > 0 for i = 1, . . . , n − 1), then the
number of positive (negative) di gives the number of eigenvalues of J which are greater
(less) than τ . Thus the recursion (3) can be found in the inner loop of most bisection
algorithms for finding eigenvalues of symmetric tridiagonal matrices. See Golub and
Van Loan [10, section 8.4.1] and Kahan [14]. Let the number of negative di (the
inertia count) be ν(τ).

If the UDL factorization of J − τI is defined as Ũ(τ)∆(τ)L̃(τ), then the pivots
δi(τ) (the diagonal elements of ∆(τ)) are given by

δi(τ) = ai − τ − bici/δi+1(τ), i = n− 1, . . . , 1 with δn(τ) = an − τ.(4)

The (i + 1, i) element of L̃(τ) is ci/δi+1(τ), and the (i, i + 1) element of Ũ(τ) is
bi/δi+1(τ).

We use the following simple but useful result extensively, without explicitly in-
voking the lemma.

Lemma 2.1. If L is unit lower triangular and Lx = en, then x = en. Similarly,
if U is unit upper triangular and Ux = e1, then x = e1.
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Most of our developments are based on LDU and UDL factorization of subma-
trices J − τI. However, it is possible to use orthogonal factorizations, instead of
Gaussian factorizations, without any major problems. Since the cost of orthogonal
factorizations is high, many would prefer to use Gaussian factorizations with nearest
neighbor pivoting to minimize forward errors. However, since QR/QL factorizations
are the basis of the QR/QL algorithms for computation of eigenvalues and eigen-
vectors, the formulae for computing µk are paramount in the understanding of the
QR/QL algorithms. This topic is studied elsewhere.

We denote the diagonal elements of the matrix R of the QR factorization of
(J − τI)1:k by {r1, r2, . . . , rk−1, r̂k}. Note that the corresponding values for (J −
τI)1:k+1 are {r1, . . . , rk, r̂k+1}, where rk =

√
r̂2k + c2k and r̂1 = a1 − τ .

Similarly, let QL = (J − τI)k:n be the QL factorization of (J − τI)k:n, where the

diagonal elements of L are designated as {l̂k, lk+1, . . . , ln} with lk =
√
l̂2k + b2k−1 and

l̂n = an − τ .

The following lemma which gives the ratios of principal minors is easy to verify.

Lemma 2.2.

det(J − τI)1:k−1

det(J − τI)1:k
=

r̂k−1

rk−1r̂k
=

cosαk−1

r̂k
=

1

dk
,

det(J − τI)k+1:n

det(J − τI)k:n
=

l̂k+1

lk+1 l̂k
=

cosβk+1

l̂k
=

1

δk
,

(
cosαk eıθ sinαk
−e−ıθ sinαk cosαk

)(
r̂k
ck

)
=

(
rk
0

)
,

(
cosβk −e−ıγ sinβk
eıγ sinβk cosβk

)(
bk−1

l̂k

)
=

(
0
lk

)
,

where ı2 = −1.

If nearest neighbor pivoting of rows is incorporated, then the following formulae
may be used. We use the prefix P in LDU and UDL to indicate row pivoting. See
section 47, Chapter 5 of Wilkinson [19] for further details. The proof of the lemma is
left as an exercise for the reader.

Lemma 2.3. Let d̂k−1 be the last pivot in the PLDU factorization of (J −
τI)1:k−1 with nearest neighbor pivoting and, similarly, δ̂k+1 be the last pivot of the
PUDL factorization (J − τI)k+1:n. If no pivoting takes place at the kth step in the

computation of d̂k then

det(J − τI)1:k−1

det(J − τI)1:k
=

1

d̂k
.

Similarly, if pivoting is not present in the evaluation of δ̂k at that step,

det(J − τI)k+1:n

det(J − τI)k:n
=

1

δ̂k
.
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However, if pivoting is present at these steps, then

det(J − τI)1:k−1

det(J − τI)1:k
= − d̂k−1

ck−1d̂k
,

det(J − τI)k+1:n

det(J − τI)k:n
= − δ̂k+1

bk δ̂k
.

3. Solution of a nearly homogeneous system. Suppose that an eigenvalue,
λ, of the (dense) matrix F is known exactly; the eigenvector x corresponding to λ is
given by the homogeneous system of equations and is given by

(F − τI)x = 0 with τ = λ.(5)

This system can be solved by assuming an arbitrary nonzero value for xk for a par-
ticular k, k = 1, . . . , n. This is a reasonable assumption since not all elements of x
can be zero. Thus, the rest of the solution is given by(

F1:k−1 − τI F1:k−1,k+1:n

Fk+1:n,1:k−1 Fk+1:n − τI

)(
x1:k−1

xk+1:n

)
= −xk

(
F1:k−1,k

Fk+1:n,k

)
.(6)

The kth equation of (5) is of the form

(F − τI)k,1:nx = 0.(7)

However, in practice, eigenvalues are not known exactly and hence the shift τ is not
an exact eigenvalue of F . Thus, equation (7) will not be satisfied exactly even if the
solution of (6) is known exactly. That is, instead of (7), we get

(F − τI)k,1:nx(τ) = µk(τ),(8)

where µk(τ) is the residual. Thus, instead of (5), we are effectively solving the system
of equations

(F − τI)y(k, τ) = µk(τ)ek,

where we have changed the notation from x to y(k, τ) to emphasize that we are
now solving for an approximate eigenvector y(k, τ) corresponding to the approximate
eigenvalue τ . From now on we often suppress the arguments k and τ of y(k, τ) and
similar vectors to avoid cluttering.

We now specialize our results for the tridiagonal matrix J for which a fundamen-
tal simplification is possible. The submatrices J1:k−1,k+1:n and Jk+1:n,1:k−1 are null
matrices and thus (6) gives two decoupled systems of equations

(J − τI)1:k−1y1:k−1 = −ck−1ykek−1(9)

and

(J − τI)k+1:nyk+1:n = −bkyke1.(10)

The residual equation (8) for the tridiagonal J is

ck−1yk−1 + (ak − τ)yk + bkyk+1 = µk(τ).(11)
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Lemma 3.1. If (J−τI)1:k−1 and (J−τI)k+1:n are nonsingular, then the equation

(J − τI)y = µk(τ)ek

has a nonzero solution y if and only if yk is not zero.
Proof. From (9), y1:k−1 is zero if and only if yk is zero since (J − τI)1:k−1 is

nonsingular. Similarly from (10), yk+1,n is zero if and only if yk is zero. Thus y is
zero if and only if yk is zero.

The previous result indicates that yk can be taken as a nonzero value for the
solution of y whenever the two leading/trailing principal submatrices (J − τI)1:k−1

and (J − τI)k+1:n are nonsingular. We now show that eigenvectors can have zero
elements, but there are certain restrictions.

Lemma 3.2. Let x be an eigenvector of the unreduced tridiagonal matrix J cor-
responding to the eigenvalue λ. Then no two contiguous elements of (xi−1, xi, xi+1)
can be zero, where 1 ≤ i ≤ n, with the extended end conditions x0 = xn+1 = 0 (which
we assume for notational convenience). Furthermore, xi−1 and xi+1 cannot be both
zero if ai − λ 6= 0.

Proof. The proof is by contradiction. The ith equation of (J − λI)x = 0 is

ci−1xi−1 + (ai − λ)xi + bixi+1 = 0.

If xi−1 and xi are zero, then xi+1 is zero since bi is nonzero. Thus, xj = 0 for j < i−1
and j > i+1. This violates the property that any eigenvector has at least one nonzero
element. A similar contradiction manifests itself if xi and xi+1 are zero.

To prove the second part, assume that xi−1 and xi+1 are zero. Then xi = 0 since
ai − λ 6= 0; in that case all the elements of x become zero.

Remark. The first part of the lemma shows that x1 6= 0 and xn 6= 0. According
to the second part, x2 6= 0 if a1 6= λ and xn−1 6= 0 if an 6= λ.

Theorem 3.3. Let (J − τI)1:k−1 and (J − τI)k+1,n be nonsingular and

(J − τI)z(k, τ) = µk(τ)ek with zk = 1.(12)

Then the perturbed matrix J − µk(τ)eke
∗
k − τI is singular. Furthermore, τ is an

exact eigenvalue of the perturbed matrix J − µk(τ)eke
∗
k and z is the corresponding

eigenvector.
Proof. Since zk = 1, (12) can be written in the form

(J − τI)z = µk(τ)eke
∗
kz

and thus

[J − µk(τ)eke
∗
k − τI]z = 0.

Since z is nonzero (from Lemma 3.1), J − µk(τ)eke
∗
k − τI is singular.

The preceding theorem suggests that τ should be chosen such that µk(τ) is as
tiny as possible if accurate eigenvectors are required. That is,

z(k, τ)→ x, τ → λ as µk(τ)→ 0

for any k provided x is unique (up to a scalar multiple).
The next three results are stated without a proof.
Corollary 3.4. If µk(τ) is zero for a fixed k, then µi(τ) is zero for all i.
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Corollary 3.5. If τ is an exact eigenvalue of the matrix J , then µi(τ) is zero
for all i, i = 1, . . . , n.

Corollary 3.6. If J is real, then

(J − τ̄)z̄(k, τ̄) = µ̄k(τ̄)ek with z̄k = 1.

Remark. If an eigenvalue has a complex conjugate partner, the µk have to be
computed only once for both eigenvalues.

The following formula may be used for computing the residual µk(τ) for a par-
ticular k. The essential idea, which is also valid for dense matrices, can be traced to
Sherman and Morrison [15]. See Fernando [7].

Theorem 3.7. Let (J − τI)1:k−1 and (J − τI)k+1,n be nonsingular and

(J − τI)z(k, τ) = µk(τ)ek with zk = 1.

Then µk(τ) = 1/e∗k(J − τI)−1ek.
Proof. z is given by z = µk(τ)(J − τI)−1ek. Multiplying both sides of the above

equation by e∗k we arrive at the stated result.
Remark. Thus, µk(τ) is the reciprocal of the kth diagonal entry of the inverse of

J − τI.
The following algorithm may be used for computing the approximate eigenvector

y and the residual µk(τ) for a particular k.
Algorithm 1 (the basic method).
1. Choose an index k
2. Set τ to an estimate of an eigenvalue of J
3. Set yk = 1
4. If k 6= 1, solve the equations (J − τI)1:k−1y1:k−1 = −ck−1ek−1 for y1:k−1

5. If k 6= n, solve the equations (J − τI)k+1:nyk+1:n = −bke1 for yk+1:n

6. Compute µk = ck−1yk−1 + (ak − τ)yk + bkyk+1 .
The easiest way to solve the system of equations in step 4 of Algorithm 1 is to

use the LDU factorization without pivoting. However, nearest neighbor pivoting can
be used to avoid forward errors, in which case the U matrix becomes triangular with
three upper diagonals. The QR factorization is a more expensive alternative which
also creates a matrix R with three upper diagonals.

Similarly, for the solution of the set of equations in step 5, the UDL factorization
is the obvious choice. If nearest neighbor pivoting is used, then L is tridiagonal and
triangular. The most suitable orthogonal factorization for the solution is the QL.

So far we have not answered an important issue: how to find the index k such
that the residual |µk(τ)| is the smallest without computing the inverse of (J − τI)−1

or equation (11) for every k.

4. Formulae for the residual µk(τ ). It is possible to derive many interesting
formulae to compute the residual µk(τ).

Theorem 4.1. Let (J − τI)1:k−1 and (J − τI)k+1,n be nonsingular and

(J − τI)z(k, τ) = µk(τ)ek with zk = 1.(13)

Then µk(τ) is given by

µk(τ) = (ak − τ)− bk−1ck−1
det(J − τI)1:k−2

det(J − τI)1:k−1
− bkck

det(J − τI)k+2:n

det(J − τI)k+1:n
.
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Proof. The first step is to expand the determinant of J − τI − µk(τ)eke
∗
k along

the kth column. Note that

det{J − τI − µk(τ)eke
∗
k}[k−1,k] = ck−1det(J − τI)1:k−2det(J − τI)k+1:n,

det{J − τI − µk(τ)eke
∗
k}[k,k] = det(J − τI)1:k−1det(J − τI)k+1:n,

det{J − τI − µk(τ)eke
∗
k}[k+1,k] = bkdet(J − τI)1:k−1det(J − τI)k+2:n.

Then,

det{J − τI − µk(τ)eke
∗
k} = {ak − τ − µk(τ)}det(J − τI)1:k−1det(J − τI)k+1:n

−bk−1ck−1det(J − τI)1:k−2det(J − τI)k+1:n

−bkckdet(J − τI)1:k−1det(J − τI)k+2:n.

However, the determinant of J−τI−µk(τ)eke
∗
k is zero (see Theorem 3.3) which leads

to the stated result.
It is easy to establish three more formulae for µk(τ).
Corollary 4.2.

µk(τ) =
det(J − τI)1:k

det(J − τI)1:k−1
− bkck

det(J − τI)k+2:n

det(J − τI)k+1:n
,(14)

µk(τ) =
det(J − τI)k:n

det(J − τI)k+1:n
− bk−1ck−1

det(J − τI)1:k−2

det(J − τI)1:k−1
,(15)

µk(τ) =
det(J − τI)1:k

det(J − τI)1:k−1
+

det(J − τI)k:n
det(J − τI)k+1:n

− (ak − τ).(16)

Remark. The above formulae are independent of any factorizations, and hence are
superior to any other derived formulae which require the existence of factorizations
of the submatrices. Also note that µk can approach a finite limit even if the minors
in the denominator vanish provided the ratios of minors exist as limits.

Corollary 4.3.

µk(τ) = (ak − τ)− bk−1ck−1

dk−1
− bkck
δk+1

,(17)

µk(τ) = dk −
bkck
δk+1

,(18)

µk(τ) = δk −
bk−1ck−1

dk−1
,(19)

µk(τ) = dk + δk − (ak − τ).(20)
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Proof. This is a direct consequence of Lemma 2.2.
The way to derive the formulae for µk with nearest neighbor pivoting is obvious

from Lemma 2.3.
Further formulae can be derived by replacing dk by r-values of the QR factoriza-

tions and δk by l-values of the QL factorizations using Lemma 2.2.
Corollary 4.4.

µk(τ) = (ak − τ)− bk−1 cosαk−2 tanαk−1 − ck cosβk+2 tanβk+1,

µk(τ) =
r̂k

cosαk−1
− ck cosβk+2 tanβk+1,

µk(τ) =
l̂k

cosβk+1
− bk−1 cosαk−2 tanαk−1,

µk(τ) =
r̂k

cosαk−1
+

l̂k
cosβk+1

− (ak − τ).

The next result is stated for a more general matrix. Note that a tridiagonal
matrix is both upper and lower Hessenberg.

Theorem 4.5. Let H be a Hessenberg matrix, and

(H − τI)z = µk(τ)ek, zk = 1.

The determinant of the matrix H − τI is then given by

det(H − τI) = µk(τ)det(H − τI)1:k−1det(H − τI)k+1:n.

Furthermore, if the LDU factorization of (H − τI)1:k−1 and the UDL factorization of
(H − τI)k+1:n exist, then the determinant of H − τI is given by the determinant of
the diagonal matrix

diag(D1:k−1, µk,∆k+1:n),

where D1:k−1 and ∆k+1:n denote the pivots of LDU and UDL factorizations of
(H − τI)1:k−1 and (H − τI)k+1:n, respectively.

Proof. Cramer’s rule gives

zk = µk(τ)
det(H − τI)[k,k]

det(H − τI)
.

Since zk = 1 and det(H − τI)[k,k] = det(H − τI)1:k−1det(H − τI)k+1:n, we get the
proposed result.

The following result is immediate.
Corollary 4.6. The eigenvalues of H are given by the zeros of µk(τ),

µk(τ) =
det (H − τI)

det (H − τI)1:k−1det (H − τI)k+1:n
.
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Corollary 4.7. µkδk+1 = dkµk+1, 1 ≤ k ≤ n− 1.
Proof. From Theorem 4.5,

det(H − τI) = diag (D1:k−1, µk,∆k+1:n) = diag (D1:k, µk+1,∆k+2:n).

A simple comparison of the two formulae for the determinant gives the stated result
since di, i = 1, . . . , k − 1 and δi, i = k + 2, . . . , n are not zero.

The above corollary gives two more ways to compute µk.

µk+1 = µkδk+1/dk, k = 1, . . . , n− 1 with µ1 = δ1,(21)

µk = µk+1dk/δk+1, k = n− 1, . . . , 1 with µn = dn,(22)

and these formulae are valid for Hessenberg matrices too. We have assumed the
existence of the LDU and UDL factorizations of the matrix H − τI to avoid division
by zero in (21) and (22). The main advantage of the above formulae compared with
formulae (17) to (20) is the absence of subtractions (hence no cancellations).

Example 1. We have computed2 the µi-values for the Wilkinson matrix W−21 using
formula (19). See Table 1. For the zero shift, µi is zero for i = 10, . . . , 14 and hence
the computed determinant is zero according to Theorem 4.5. For the shift computed
by the LAPACK routine SSTEQR (see [1]), no µi is zero. However, µ10 and µ12

are near zero to working precision (i.e., smaller than ‖J − τI‖ ∗macheps), and hence
they could be thresholded to zero. Thus, the double factorization could be a more
reliable method to determine near singularity of matrices. We have also computed the
µi-values using (21). Note the disappearance of the zero values of µi when computed
using this formula. We recall that according to Corollary 3.4, the µi cannot have zero
values for a subset of indices i. Thus equation (21) could be used to replace zero
values with more realistic estimates. However, note the change of sign of µi from
i = 9 onward for the zero shift in the relevant columns in the table. This shows that
formulae (21) and (22) should be used with extra care.

In floating-point arithmetic, the inertia counts determined by LDU and UDL fac-
torizations of J−τI might not be identical since the floating-point errors in computing
the di and the δi will not be identical except for trivial problems. Thus, inconsistent
results can be obtained if these formulae for the µk are used in an haphazard way. The
erratic sign reversals can be avoided by using formula (21) for i = 1, . . . , k and formula
(22) for i = n, . . . , k − 1 to compute µk with k ≈ 12. Accuracy issues concerning the
computation of the µk are studied in [6].

5. Computation of eigenvectors. The following result indicates how to com-
pute good approximations to eigenvectors.

Theorem 5.1. If the LDU factorization of (J − τI)1:k−1 exists with dk−1 6= 0
and the UDL factorization of (J − τI)k+1:n exists with δk+1 6= 0, and

(J − τI)z = µkek, zk = 1,(23)

then

zj = −(bj/dj)zj+1 for j = k − 1, . . . , 1,(24)

2 We have used IEEE single precision arithmetic (24 bit mantissa) on an SGI workstation.
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Table 1

µi-values for 11th eigenvalue of W−21.

τ 0 2.25453E−07 0 2.25453E−07
Eqn. (19) (19) (21) (21)
i µi µi µi µi

1 9.87915E+00 9.88732E+00 9.87915E+00 9.88732E+00
2 8.17441E+00 8.77475E+00 8.17441E+00 8.77475E+00
3 1.26584E+00 7.87189E+00 1.26584E+00 7.87189E+00
4 2.42356E−02 6.33561E+01 2.42356E−02 6.33561E+01
5 5.14835E−04 −1.63197E−01 5.14834E−04 −1.63197E−01
6 1.50204E−05 −4.63223E−03 1.50219E−05 −4.63223E−03
7 6.25849E−07 −1.98454E−04 6.44136E−07 −1.98438E−04
8 5.96046E−08 −1.37985E−05 4.47743E−08 −1.37928E−05
9 −2.98023E−08 −1.84774E−06 5.97978E−09 −1.84208E−06
10 0.00000E+00 −7.15256E−07 2.23815E−09 −6.89463E−07
11 0.00000E+00 −4.76837E−06 1.48509E−08 −4.57484E−06
12 0.00000E+00 −7.15256E−07 2.23815E−09 −6.89463E−07
13 0.00000E+00 −2.02656E−06 5.97978E−09 −1.84207E−06
14 0.00000E+00 −1.52588E−05 4.47743E−08 −1.37927E−05
15 −7.15256E−07 −2.20299E−04 6.44136E−07 −1.98414E−04
16 −1.47820E−05 −5.13029E−03 1.50219E−05 −4.62231E−03
17 −5.14984E−04 −1.70722E−01 5.14834E−04 −1.53811E−01
18 −2.42357E−02 −3.71081E+00 2.42356E−02 −3.34322E+00
19 −1.26584E+00 −7.62706E+00 1.26584E+00 −6.87153E+00
20 −8.17441E+00 −8.77079E+00 8.17441E+00 −7.90197E+00
21 −9.87915E+00 −9.88727E+00 9.87914E+00 −8.90785E+00

zj = −(cj−1/δj)zj−1 for j = k + 1, . . . , n.(25)

Proof. Consider the LDU factorization (J − τI)1:k−1 = L1:k−1D1:k−1U1:k−1. The
first k − 1 equations of (23) can be written in the form

L1:k−1D1:k−1U1:k−1z1:k−1 = −bk−1zkek−1 = −bk−1ek−1.

Thus,

D1:k−1U1:k−1z1:k−1 = −bk−1ek−1,

U1:k−1z1:k−1 = −(bk−1/dk−1)ek−1,

which gives (24). Similarly, by considering the trailing n− k equations of (23) we get
(25).

Remark 1. Once k is chosen, it is not necessary to know the value of µk for the
solution of the system of equations (23). In fact, it is possible to compute µk once
zk−1 = −bk−1/dk−1 and zk+1 = −ck/δk+1 are known. See (11) and (17).

Remark 2. Since µk is not required for the solution of (23) and we are not
interested in the norm of the solution y, instead of (23) one may solve the set of
equations

(J − τI)y = αek

for any convenient nonzero constant α (e.g., α set to a small value to avoid overflow
problems). If the constant term is chosen as unity, then y is given by the kth column
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Table 2

Computed eigenvectors in single precision.

τ 1.07461942E+01
Eqn. (19) (24),(25) (24),(25)

Drop k 1 21
i µi zi ẑi Difference

1 4.768372E−07 1.000000E+00 1.000000E+00 0.000000E+00
2 8.344650E−07 7.461944E−01 7.461939E−01 4.768372E−07
3 5.245209E−06 3.030000E−01 3.029992E−01 8.046627E−07
4 6.556511E−05 8.590253E−02 8.590069E−02 1.832843E−06
5 1.370430E−03 1.880749E−02 1.880145E−02 6.042421E−06
6 4.323769E−02 3.361466E−03 3.334617E−03 2.684933E−05
7 2.650068E+00 5.081474E−04 3.599074E−04 1.482400E−04
8 −8.027469E+00 6.659435E−05 −9.066119E−04 9.732062E−04
9 −8.519791E+00 7.705368E−06 −7.382698E−03 7.390403E−03
10 −9.536426E+00 7.982861E−07 −6.366390E−02 6.366470E−02
11 −1.055664E+01 7.488273E−08 −6.130980E−01 6.130981E−01
12 −1.157332E+01 6.418178E−09 −6.524806E+00 6.524806E+00
13 −1.258726E+01 5.064417E−10 −7.602853E+01 7.602853E+01
14 −1.359910E+01 3.702578E−11 −9.625497E+02 9.625497E+02
15 −1.460928E+01 2.521772E−12 −1.315537E+04 1.315537E+04
16 −1.561812E+01 1.607630E−13 −1.930290E+05 1.930290E+05
17 −1.662589E+01 9.632481E−15 −3.026317E+06 3.026317E+06
18 −1.763276E+01 5.444324E−16 −5.048626E+07 5.048626E+07
19 −1.863889E+01 2.912115E−17 −8.929124E+08 8.929124E+08
20 −1.964449E+01 1.478382E−18 −1.668822E+10 1.668822E+10
21 −2.069541E+01 7.126039E−20 −3.286360E+11 3.286360E+11

of (J − τI)−1, which is a step of inverse iteration with the right-hand side of the
equation set to ek.

Remark 3. If di−1 = 0, then di = ±∞ for a particular i, i ≤ k − 1. In
that case, zi = −(bi/di)zi+1 = 0. The element zi−1 can be obtained via zi−1 =
−(bi−1/di−1)zi = ((bi−1bi)/(di−1di))zi+1 and noting that di−1di = −bi−1ci−1 in the
limit. See Lemma 8.2. Then zi−1 = −(bi/ci−1)zi+1. Similar formulae can be derived
if δi+1 = 0 for a particular i, i ≥ k + 1.

Remark 4. In floating-point arithmetic, the di and similarly the δi should be
thresholded to θ if these quantities are tiny

if θ ≤ di ≤ −θ then di ← θ, θ ≥ η,

where η is the smallest representable number in the machine. See Kahan [14] for
further details.

If |µk| is tiny, we could expect very good approximations to eigenvectors from
Theorem 5.1. However, if |µk| is not tiny then we are computing the eigenvectors of
the perturbed matrix J −µk(τ)eke

∗
k, and in that case the computed eigenvectors will

not closely approximate the eigenvectors of J .
Example 2. We have repeated an experiment done by Wilkinson [17], [18], [19]

for the matrix W−21. Table 2 shows the computed eigenvectors corresponding to the
largest eigenvalue in IEEE single precision arithmetic. The vectors z and ẑ denote the
eigenvectors computed by dropping the first and the 21st equations, respectively. The
vector ẑ is scaled such that the first element is unity. Since |µ1| is the smallest and
|µ21| is the largest, z and the ẑ represent the best and the worst possible solutions.
Note that the worst case does not have any correspondence to the best case.

Table 3 shows the same results in IEEE double precision arithmetic (53-bit man-
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Table 3

Computed eigenvectors in double precision.

τ 1.0746194182903357D+01
Eqn. (19) (24),(25) (24),(25)

Drop k 1 21
i µi zi ẑi Difference

1 3.330669D−16 1.000000D+00 1.000000D+00 0.000000D+00
2 6.661338D−16 7.461942D−01 7.461942D−01 2.220446D−16
3 3.552714D−15 3.029999D−01 3.029999D−01 5.551115D−16
4 4.218847D−14 8.590249D−02 8.590249D−02 1.179612D−15
5 8.766321D−13 1.880748D−02 1.880748D−02 3.864964D−15
6 2.743761D−11 3.361465D−03 3.361465D−03 1.717550D−14
7 1.200664D−09 5.081471D−04 5.081471D−04 9.482627D−14
8 6.990788D−08 6.659431D−05 6.659431D−05 6.225412D−13
9 5.221731D−06 7.705362D−06 7.705358D−06 4.727499D−12
10 4.865260D−04 7.982854D−07 7.982447D−07 4.072508D−11
11 5.557997D−02 7.488266D−08 7.449047D−08 3.921870D−10
12 2.152249D+01 6.418173D−09 2.244380D−09 4.173793D−09
13 −1.271972D+01 5.064412D−10 −4.812755D−08 4.863399D−08
14 −1.359992D+01 3.702574D−11 −6.156875D−07 6.157245D−07
15 −1.460928D+01 2.521769D−12 −8.415233D−06 8.415235D−06
16 −1.561812D+01 1.607628D−13 −1.234770D−04 1.234770D−04
17 −1.662589D+01 9.632470D−15 −1.935877D−03 1.935877D−03
18 −1.763276D+01 5.444317D−16 −3.229510D−02 3.229510D−02
19 −1.863889D+01 2.912112D−17 −5.711792D−01 5.711792D−01
20 −1.964449D+01 1.478380D−18 −1.067514D+01 1.067514D+01
21 −2.069541D+01 7.126029D−20 −2.102222D+02 2.102222D+02

tissa). Because of the improved accuracy of the shift and perhaps also due to the
higher precision of the arithmetic, the smallest |µi| are considerably smaller than in
single precision. Also note that the difference between the best and the worst case
is converging as the precision goes up. By comparing z computed in single precision
and in double precision, it can be seen that the single precision result is very accurate.

The 2-norm of the matrix is equal to the 21st eigenvalue. In both precisions, |µ1|
is smaller than ‖J‖2 ∗macheps. Thus z should be a good approximation to the 21st
eigenvector.

Example 3. We have contrived a tridiagonal matrix to illustrate the form of
µi-values for nonsymmetric matrices. In the Wilkinson matrix W−21, all off-diagonal
elements are equal to unity. We define a new matrix by setting

ci = 1, bi = −1 for i = 11, . . . , 20,

ci = −1, bi = 1 for i = 1, . . . , 10

but with the same diagonal values as the W−21 matrix. This new tridiagonal, which
we call the unsymmetric W matrix, has two pairs of complex conjugate eigenvalues.
We have computed in IEEE single precision the µi-values for one of the complex
eigenvalues (shifts) τ . See Table 4. The minimal µk is when k = 20. The optimal k
for the eigenvalue τ̄ is the same as for τ ; see Corollary 3.6.

Although Theorem 5.1 gives the principal algorithm for computation of eigen-
vectors, there are other secondary ways to compute them. Suppose that zk−1 was
computed using (24), then it is possible to compute the rest of the elements zj ,
j = k − 2, . . . , 1 via the three-term recurrence

cj−2zj−2 + (aj−1 − τ)zj−1 + bj−1zj = 0.
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Table 4

Computed µi-values for the unsymmetric W matrix.

τ −9.056515 −ı 0.7829880

i real {µi} imag {µi} |µi|
1 1.911162E+01 7.806144E−01 1.912755E+01
2 1.816720E+01 7.781793E−01 1.818386E+01
3 1.717351E+01 7.776191E−01 1.719111E+01
4 1.618077E+01 7.769318E−01 1.619941E+01
5 1.518897E+01 7.761040E−01 1.520879E+01
6 1.419833E+01 7.750947E−01 1.421947E+01
7 1.320911E+01 7.738469E−01 1.323175E+01
8 1.222165E+01 7.722794E−01 1.224602E+01
9 1.123641E+01 7.702739E−01 1.126278E+01
10 1.025406E+01 7.676529E−01 1.028275E+01
11 9.275450E+00 7.641196E−01 9.306871E+00
12 8.304144E+00 7.610373E−01 8.338943E+00
13 7.246818E+00 6.419530E−01 7.275196E+00
14 3.339067E+00 6.002015E+00 6.868301E+00
15 7.866935E−02 −1.669632E−01 1.845686E−01
16 −7.753968E−04 6.662467E−03 6.707437E−03
17 −8.402765E−05 −3.510378E−04 3.609546E−04
18 1.999736E−05 2.475828E−05 3.182557E−05
19 −5.066395E−06 −1.542270E−06 5.295938E−06
20 1.728535E−06 −1.102686E−06 2.050304E−06
21 1.072884E−06 2.920628E−06 3.111454E−06

See the proof of Lemma 3.2 for details. Similarly, if zk+1 is determined by (25), the
above recursion could be used to compute zj for j = k + 2, . . . , n.

6. Perturbation of the offdiagonals. We have already considered the case of
perturbing a diagonal element of J to make the perturbed matrix singular. However,
for tridiagonal matrices with zero diagonals, such perturbations will destroy the matrix
structure. It is well known that zero diagonal tridiagonal matrices are paramount in
the study of the SVD of bidiagonal matrices. See Golub and Kahan [9], Kahan [14],
Demmel and Kahan [5]. They are also important in vibration analysis. See Bishop et
al. [3].

It is possible to perturb the product bkck for a particular k such that µ̂k (the
µk of the perturbed matrix) is zero in which case the perturbed matrix is singular.
Alternatively, the product bk−1ck−1 can be perturbed such that µ̃k (the µk of the
perturbed matrix) is zero.

Theorem 6.1. Consider the perturbation of the off-diagonal element product of
J ,

bkck → b̂k ĉk = bkck + ρ̂k(τ)

for a particular k, 1 ≤ k ≤ n− 1. Then µ̂k(τ) (the µk(τ) of the perturbed matrix) is
zero if

ρ̂k(τ) = µk(τ)δk+1.(26)

Similarly, if the product bk−1ck−1 is perturbed,

bk−1ck−1 → b̃k−1c̃k−1 = bk−1ck−1 + ρ̃k−1(τ), 2 ≤ k ≤ n,

then µ̃k(τ) (the µk(τ) of the perturbed matrix) is zero if

ρ̃k−1(τ) = µkdk−1(τ).(27)
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Furthermore,

ρ̃k(τ) = ρ̂k(τ), 1 ≤ k ≤ n− 1.

Proof. For the unperturbed matrix, equation (18) is

µk = dk − bkck/δk+1

and for the perturbed case

µ̂k = 0 = dk − (bkck + ρ̂k)/δk+1.

A simple comparison of the above two equations gives the first result

ρ̂k = µkδk+1, 1 ≤ k ≤ n− 1.(28)

Similarly, equation (19) leads to the second result

ρ̃k−1 = µkdk−1, 2 ≤ k ≤ n,

which could be also written in the form

ρ̃k = µk+1dk, 1 ≤ k ≤ n− 1.

Using Corollary 4.7

ρ̃k = µk+1dk = µkδk+1, 1 ≤ k ≤ n− 1.

By comparing the above equation with (28) we arrive at the final result.
Remark 1. Since ρ̂k(τ) = ρ̃k(τ), it is no longer necessary to have embellishments

over the ρk. However, in inexact arithmetic different formulae for ρk could give
different results.

Remark 2. Recall that

b̂k ĉk = bkck + ρk

and hence

(b̂k/bk)(ĉk/ck) = 1 + ρk/(bkck).

If the relative perturbations of bk and ck are equal, (b̂k/bk) = (ĉk/ck), then

(b̂k/bk) = (ĉk/ck) =
√

1 + ρk/(bkck).

7. Quality of the computed eigenvalues and eigenvectors. The proofs of
the first two theorems in this section can be found in [7] for any square matrix.

Theorem 7.1. Let J be a matrix with linear elementary divisors

(J − τI)z(k, τ) = µk(τ)ek, zk = 1,

where τ is not an eigenvalue of J . Then

min
i
|λi − τ | ≤ |µk(τ)|||X||2||yk||2/||z||2,
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where J = XΛY , Y = X−1, and x(i) denotes the ith column of X. Furthermore, if
J is normal, then

min
i
|λi − τ | ≤ |µk(τ)|/||z||2.

Corollary 7.2. If µk(τ)→ 0, then mini |λi − τ | → 0.
The angle between the computed eigenvector z and the desired eigenvector x is

a good indicator of the quality of the approximation.
Theorem 7.3. Let J be a normal matrix, (J−τI)z = µk(τ)ek, and zk = 1 where

τ is not an eigenvalue of J . Then the angle between z and the eigenvector x(= x(j))
corresponding to the eigenvalue λ(= λj) nearest to τ is given by

| cos 6 | = |x∗z|
||x||2||z||2

= 1

/1 +
∑
i6=j

∣∣∣∣∣x(i)
k

x
(j)
k

λ− τ
λi − τ

∣∣∣∣∣
2
 1

2

if x
(j)
k 6= 0.
Remark 1. This theorem confirms the Wilkinson’s analysis [17], which specifies

that k should be chosen such that |xk| is maximal if a good approximation to an
eigenvector is required.

Remark 2. This theorem also shows that if the gap = mini6=j |λ − λi| is large,
then the computed eigenvector z is a good approximation to x.

Another way to compare the accuracy of the computed eigenvector z is to estimate
||z − x||1:k−1 and ||z − x||k+1:n, where x is the desired eigenvector with xk = 1.

Theorem 7.4. Let (J − τI)z = µk(τ)ek, zk = 1 where τ is not an eigenvalue of
J . Then

|λ− τ | ||x1:k−1||
||(J − τI)1:k−1||

≤ ||(z − x)1:k−1|| ≤ |λ− τ | ||{(J − τI)1:k−1}−1|| ||x1:k−1||,

|λ− τ | ||xk+1:n||
||(J − τI)k+1:n||

≤ ||(z − x)k+1:n|| ≤ |λ− τ | ||{(J − τI)k+1:n}−1|| ||xk+1:n||,

where x is an eigenvector of J with xk = 1 and λ is the corresponding eigenvalue.
Proof. From (J − τI)z = µk(τ)ek, we get

(J − τI)(z − x) = (τ − λ)x+ µk(τ)ek.(29)

By removing the kth equation of (29), we obtain

(J − τI)[k,k](z − x)[k] = (τ − λ)x[k].(30)

However, the submatrices J1:k−1,k+1:n and Jk+1:n,1:k−1 are null matrices and hence
we get two decoupled systems

(J − τI)1:k−1(z − x)1:k−1 = (τ − λ)x1:k−1,(31)

(J − τI)k+1:n(z − x)k+1:n = (τ − λ)xk+1:n.(32)
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By taking the norms of the last two equations we get the lower bounds. If the inverse
of the matrix (J − τI)1:k−1 exists then from (31),

(z − x)1:k−1 = (τ − λ){(J − τI)1:k−1}−1x1:k−1,

which gives one of the upper bounds. Similarly, the second upper bound can be
obtained using (32).

An immediate corollary is as follows.
Corollary 7.5.

|λ− τ | ||x1:k−1||2
σmax{(J − τI)1:k−1}

≤ ||(z − x)1:k−1||2 ≤
|λ− τ | ||x1:k−1||2
σmin{(J − τI)1:k−1}

,

|λ− τ | ||xk+1:n||2
σmax{(J − τI)k+1:n}

≤ ||(z − x)k+1:n||2 ≤
|λ− τ | ||xk+1:n||2
σmin{(J − τI)k+1:n}

.

Remark. This corollary indicates that good approximations can be obtained if
the minimum singular values of (J − τI)1:k−1 and (J − τI)k+1:n are large.

8. Deflation using an ideal shift. It is well known that it is possible to deflate
a matrix using a shift exactly equal to an eigenvalue of that matrix provided that exact
arithmetic is used. The following result indicates how this could be achieved using
the LDU factorization.

Lemma 8.1. If the LDU factorization of the matrix J − τI exists where the shift
τ is an exact eigenvalue of J , then dn is zero.

Proof. If the factorization exists, then none of the di (except perhaps dn) can be
zero. However, the determinant of J − τI is given by the product of the di which is
zero for an exact eigenvalue. Hence the determinant can vanish only if dn is zero.

We now show that the above result is true in the limit even if the factorization
does not exist.

Lemma 8.2. Suppose that the LDU factorization of J − τI does not exist as
τ → τ̂ since di−1 → 0 for a particular i, 2 ≤ i ≤ n where τ̂ is an exact eigenvalue of
J . Then, in the limiting case, dn → 0 as τ → τ̂ .

Proof. By multiplying (3) by di−1,

didi−1 = (ai − τ)di−1 − bi−1ci−1

and by taking the limit

didi−1 → −bi−1ci−1 as τ → τ̂ .

Thus the determinant is finite in the limit, and by using an argument similar to
Lemma 8.1 we get the stated result.

Remark. If there is more than one i such that di−1 → 0, then the limit can be
evaluated repeatedly for each i.

In floating-point arithmetic, the assertion that the determinant is zero can break
down due to two reasons. First, in general, an eigenvalue is not known or even
representable to full accuracy. Second, because of rounding errors the ideal outcome,
dn = 0, can happen only accidentally. However, an optimist might expect that if the
shift represents an eigenvalue to its full machine precision, then dn and hence the
determinant would be tiny.
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Table 5

Pivots for the 11th eigenvalue of W−21.

τ 0 2.25453E−07
ν(τ) 11 11
eqn. (3) (3)
i di di difference

21 −9.87915E+00 −9.88727E+00 8.12531E−03

Table 6

Pivots for the 13th eigenvalue of W−21.

τ 1.99999988E+00 2.0000000E+00
ν(τ) 12 13
eqn. (3) (3)
i di di difference

21 −1.19082E+01 −1.19082E+01 0.00000E+00

If dn is zero (or tiny), then the following result provides an algorithm to compute
an eigenvector x of J . The proof is straightforward.

Theorem 8.3. If τ is an exact eigenvalue of J , then the eigenvector correspond-
ing to the eigenvalue τ is given by

xj = −(bj/dj)xj+1 for j = n− 1, . . . , 1 with xn = 1.

Remark. The residual vector corresponding to the vector x is given by dnen and
hence the norm of this residual is |dn|. To obtain a zero residual it is necessary and
sufficient that dn is zero.

Example 4. We have computed the recurrence for the Wilkinson matrix W−21
with the 11th eigenvalue as the shift τ . This eigenvalue is zero in exact arithmetic
and hence known to full precision. The second column of Table 5 gives the dn with
the shift equal to zero, and the third column gives the dn with the shift set to the
eigenvalue given by the LAPACK routine SSTEQR. See [1] for a description of this
routine. It can be seen that dn is not zero or tiny in either column.

Example 5. Table 6 shows the pivot dn for the Wilkinson W−21 matrix for two
values of the shift which are separated by one ulp (units in the last place held). These
two shifts straddle the 13th eigenvalue, which can be observed by the change in the
inertia ν(τ) which counts the negative di. Again, the dn do not vanish as prescribed
by Lemma 8.1.

If the determinant is zero, then it indicates a singular matrix. However, nearly
singular matrices (i.e., the smallest singular value is tiny) do not always have nearly
zero determinants. See section 2.7.3 of Golub and Van Loan [10] for further details.
In Examples 3 and 4, the determinants (as computed by d1d2 . . . dn) are not zero (in
fact they are huge) although the matrices are almost singular.

Theorem 8.3 gives an algorithm for computing eigenvectors which relies on the
fact that dn is zero. In Examples 3 and 4, the computed dn is far from zero. There
are many unanswered questions. Is it reasonable to expect dn to be zero or tiny in
floating-point arithmetic? Is it due to “forward instability” that dn is not zero?

We have proved that with an exact eigenvalue shift, dn and the determinant are
zero in exact arithmetic. How do we measure this deviation from the mathematically
ideal case when the shift is not an exact eigenvalue and when the arithmetic is not
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exact?
Note that the forward recurrence (3) can be written as the backward recurrence

di−1 = bi−1ci−1/(ai − τ − di), i = n, . . . , 2.(33)

In the ideal case with an exact eigenvalue shift, dn = 0. Suppose that we assume this
ideal initial value dn = 0 and run the recurrence (33) backward. In exact arithmetic
with the exact eigenvalue shift, both (3) and (33) should give identical di provided
the LDU factorization exists. However, for a general shift τ , the di given by (33) will
be different from that of (3). To differentiate these two di recurrences, the one which
goes in the backward direction will be renamed ďi.

ďn = 0, ďi−1 = bi−1ci−1/(ai − τ − ďi), i = n, . . . , 2.(34)

This backward recurrence (34) for the ďi is probably unfamiliar to some readers
although similar recurrences are not so uncommon in continued fractions literature.
See Chapter 12 of Wall [16].

Our objective is to find out how the forward recurrence and the backward recur-
rence differ by comparing each di with the corresponding ďi.

Definition 8.4. The deviation of each di (given by (3) ) from ďi (as given by
(34) ) is defined as ωi(τ):

ωi(τ) = di − ďi, i = 1, . . . , n.(35)

By definition, ωn(τ) = dn = 0 and hence ωn(τ) is a candidate in studying the
problem of nonvanishing dn.

Theorem 8.5. The deviation ωi(τ) is given by

ωi(τ) = di + δi − (ai − τ), i = 1, . . . , n,(36)

where the di are the pivots of the LDU factorization of (J − τI)1:i and the δi are the
pivots of the UDL factorization of (J − τI)i:n. Furthermore, ωi(τ) = µi(τ) where
µi(τ) is as defined in Theorem 3.3.

Proof. Consider the transformation

fi = −ďi + ai − τ, i = 1, . . . , n.(37)

The backward recurrence (34) can be written in terms of the fi as

fi−1 = ai−1 − τ − bi−1ci−1/fi, i = n, . . . , 2.(38)

The assumed initial condition ďn = 0 can be translated to fn using (37) to give

δn = an − τ.(39)

It is not difficult to recognize that the fi recursion (38), together with the initial
condition (39), give the diagonal pivots of the UDL factorization of J − τI. That is,
δi = fi. See (4). Equation (36) then follows from (37) and (35). By comparing (36)
with (20), we get the stated equality.

The deviation ωi(τ) (or, equivalently, µi(τ)) for a particular i is not a totally new
variable. In fact, it was defined by Babus̆ka in his study of the numerical stability
of tridiagonal solvers. However, this variable is well hidden in a set of 19 equations
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pertaining to two-sided elimination. In his notation, ωs(0) is πs. See equation (5.29)
of [2]. Since π is often used as the positive inertia count of a Hermitian matrix (i.e.,
the number of positive di or δi), we avoid his notation.

We have already established that, in exact arithmetic, µi(τ) = 0 for all i if τ is
an exact eigenvalue of J . However, in inexact arithmetic and when the shift τ is not
identical to an eigenvalue, all the µi(τ) might not be zero or tiny.

We recall that the vanishing dn was proved by considering the determinant of
J − τI with the eigenvalue shift τ . In particular, we used the formula

det(J − τI) = d1 . . . dn−1dn = d1 . . . dn−1µn

to prove that dn is zero if the LDU factorization of J − τI exists. Similarly, it is
possible to show that δ1 is zero if the UDL factorization exists since

det(J − τI) = δ1δ2 . . . δn = µ1δ2 . . . δn.

However, Theorem 4.5 gives further n− 2 formulae for the computation of the deter-
minant

det(J − τI) = d1 . . . dk−1µkδk+1 . . . δn, k = 1, . . . , n.(40)

We have proved that µk is zero for any k if the shift τ is an exact eigenvalue of J .
See Corollary 3.5. In inexact arithmetic, instead of expecting a tiny dn or δ1, it is
more reasonable to watch for a tiny µk with k chosen such that |µk| = minni |µi|.
See Example 1 and Table 1 where µk = 0 for k = 10, . . . , 14. Thus, we get a zero
determinant without a vanishing dn in floating-point arithmetic.
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Abstract. We consider least-squares problems where the coefficient matrices A, b are unknown
but bounded. We minimize the worst-case residual error using (convex) second-order cone program-
ming, yielding an algorithm with complexity similar to one singular value decomposition of A. The
method can be interpreted as a Tikhonov regularization procedure, with the advantage that it pro-
vides an exact bound on the robustness of solution and a rigorous way to compute the regularization
parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be
solved in polynomial-time using semidefinite programming (SDP). We also consider the case when
A, b are rational functions of an unknown-but-bounded perturbation vector. We show how to mini-
mize (via SDP) upper bounds on the optimal worst-case residual. We provide numerical examples,
including one from robust identification and one from robust interpolation.

Key words. least-squares problems, uncertainty, robustness, second-order cone programming,
semidefinite programming, ill-conditioned problem, regularization, robust identification, robust in-
terpolation

AMS subject classifications. 15A06, 65F10, 65F35, 65K10, 65Y20

PII. S0895479896298130

Notation. For a matrix X, ‖X‖ denotes the largest singular value and ‖X‖F
the Frobenius norm. If x is a vector, maxi |xi| is denoted by ‖x‖∞. For a matrix A,
A† denotes the Moore–Penrose pseudoinverse of A. For a square matrix S, S ≥ 0
(resp., S > 0) means S is symmetric and positive semidefinite (resp., definite). For
S ≥ 0, S1/2 denotes the symmetric square root of S. For S > 0, and given vector
x, we define ‖x‖S = ‖S−1/2x‖. The notation Ip denotes the p × p identity matrix;
sometimes the subscript is omitted when it can be inferred from context. For given
matrices X,Y, the notation X ⊕ Y refers to the block-diagonal matrix with X,Y as
diagonal blocks.

1. Introduction. Consider the problem of finding a solution x to an overdeter-
mined set of equations Ax ' b, where the data matrices A ∈ Rn×m, b ∈ Rn are
given. The least squares (LS) fit minimizes the residual ‖∆b‖ subject to Ax = b+∆b,
resulting in a consistent linear model of the form (A, b + ∆b) that is closest to the
original one (in the Euclidean norm sense). The total least squares (TLS) solution
described by Golub and Van Loan [17] finds the smallest error ‖[∆A ∆b]‖F subject to
the consistency equation (A+ ∆A)x = b+ ∆b. The resulting closest consistent linear
model (A + ∆A, b + ∆b) is even more accurate than the LS one, since modifications
of A are allowed.

Accuracy is the primary aim of LS and TLS, so it is not surprising that both
solutions may exhibit very sensitive behavior to perturbations in the data matrices
(A, b). Detailed sensitivity analyses for the LS and TLS problems may be found
in [12, 18, 2, 44, 22, 14]. Many regularization methods have been proposed to decrease
sensitivity and make LS and TLS applicable. Most regularization schemes for LS,
including Tikhonov regularization [43], amount to solve a weighted LS problem for
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Huffel November 4, 1996.
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France (elghaoui@ensta.fr, lebret@ensta.fr).

1035



1036 LAURENT EL GHAOUI AND HERVÉ LEBRET

an augmented system. As pointed out in [18], the choice of weights (or regularization
parameter) is usually not obvious and application dependent. Several criteria for
optimizing the regularization parameter(s) have been proposed (see, e.g., [23, 11,
15]). These criteria are chosen according to some additional a priori information, of
deterministic or stochastic nature. The extensive surveys [31, 8, 21] discuss these
problems and some applications.

In contrast with the extensive work on sensitivity and regularization, relatively
little has been done on the subject of deterministic robustness of LS problems in which
the perturbations are deterministic and unknown but bounded (not necessarily small).
Some work has been done on a qualitative analysis of the problem, where entries of
(A, b) are unspecified except for their sign [26, 39]. In many papers mentioning least
squares and robustness, the latter notion is understood in some stochastic sense; see,
e.g., [20, 47, 37]. A notable exception concerns the field of identification, where the
subject has been explored using a framework used in control system analysis [40, 9],
or using regularization ideas combined with additional a priori information [34, 42].

In this paper, we assume that the data matrices are subject to (not necessarily
small) deterministic perturbations. First, we assume that the given model is not a
single pair (A, b) but a family of matrices (A+∆A, b+∆b), where ∆ = [∆A ∆b] is an
unknown-but-bounded matrix; precisely, ‖∆‖ ≤ ρ, where ρ ≥ 0 is given. For x fixed,
we define the worst-case residual as

r(A, b, ρ, x)
∆
= max
‖∆A ∆b‖F≤ρ

‖(A+ ∆A)x− (b+ ∆b)‖.(1)

We say that x is a robust least squares (RLS) solution if x minimizes the worst-case
residual r(A, b, ρ, x). The RLS solution trades accuracy for robustness at the expense
of introducing bias. In our paper, we assume that the perturbation bound ρ is known,
but in section 3.5 we also show that TLS can be used as a preliminary step to obtain
a value of ρ that is consistent with data matrices A, b.

In many applications, the perturbation matrices ∆A, ∆b have a known structure.
For instance, ∆A might have a Toeplitz structure inherited from A. In this case, the
worst-case residual (1) might be a very conservative estimate. We are led to consider
the following structured RLS (SRLS) problem. Given A0, . . . , Ap ∈ Rn×m, b0, . . . , bp
∈ Rn, we define, for every δ ∈ Rp,

A(δ)
∆
= A0 +

p∑
i=1

δiAi, b(δ)
∆
= b0 +

p∑
i=1

δibi.(2)

For ρ ≥ 0 and x ∈ Rm, we define the structured worst-case residual as

rS(A,b, ρ, x)
∆
= max
‖δ‖≤ρ

‖A(δ)x− b(δ)‖.(3)

We say that x is an SRLS solution if x minimizes the worst-case residual rS(A,b, ρ, x).
Our main contribution is to show that we can compute the exact value of the

optimal worst-case residuals using convex, second-order cone programming (SOCP)
or semidefinite programming (SDP). The consequence is that the RLS and SRLS
problems can be solved in polynomial time and with great practical efficiency using,
e.g., recent interior-point methods [33, 46]. Our exact results are to be contrasted with
those of Doyle et al. [9], who also use SDP to compute upper bounds on the worst-
case residual for identification problems. In the preliminary draft [5] sent to us shortly
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after submission of this paper, the authors provide a solution to an (unstructured)
RLS problem, which is similar to that given in section 3.2.

Another contribution is to show that the RLS solution is continuous in the data
matrices A, b. RLS can thus be interpreted as a (Tikhonov) regularization technique
for ill-conditioned LS problems: the additional a priori information is ρ (the per-
turbation level), and the regularization parameter is optimal for robustness. Similar
regularity results hold for the SRLS problem.

We also consider a generalization of the SRLS problem, referred to as the linear-
fractional SRLS problem in what follows, in which the matrix functions A(δ), b(δ)
in (2) depend rationally on the parameter vector δ. (We describe a robust interpo-
lation problem that falls in this class in section 7.6.) Using the framework of [9], we
show that the problem is NP-complete in this case, but we may compute and optimize
upper bounds on the worst-case residual using SDP. In parallel with RLS, we interpret
our solution as one of a weighted LS problem for an augmented system, the weights
being computed via SDP.

The paper’s outline is as follows. The next section is devoted to some technical
lemmas. Section 3 is devoted to the RLS problem. In section 4, we consider the SRLS
problem. Section 5 studies the linear-fractional SRLS problem. Regularity results are
given in section 6. Section 7 shows numerical examples.

2. Preliminary results.

2.1. Semidefinite and second-order cone programs. We briefly recall some
important results on semidefinite programs (SDPs) and second-order cone programs
(SOCPs). These results can be found, e.g., in [4, 33, 46].

A linear matrix inequality is a constraint on a vector x ∈ Rm of the form

F(x) = F0 +
m∑
i=1

xiFi ≥ 0,(4)

where the symmetric matrices Fi = FTi ∈ RN×N , i = 0, . . . ,m, are given. The
minimization problem

minimize cTx subject to F(x) ≥ 0,(5)

where c ∈ Rm, is called an SDP. SDPs are convex optimization problems and can be
solved in polynomial time with, e.g., primal-dual interior-point methods [33, 45].

The problem dual to problem (5) is

maximize −TrF0Z
subject to Z ≥ 0, TrFiZ = ci, i = 1, . . . ,m,

(6)

where Z is a symmetric N ×N matrix and ci is the ith coordinate of vector c. When
both problems are strictly feasible (that is, when there exists x,Z which satisfy the
constraints strictly), the existence of optimal points is guaranteed [33, Thm. 4.2.1],
and both problems have equal optimal objectives. In this case, the optimal primal-
dual pairs (x,Z) are those pairs (x,Z) such that x is feasible for the primal problem,
Z is feasible for the dual one, and F(x)Z = 0.

An SOCP problem is one of the form

minimize cTx
subject to ‖Cix+ di‖ ≤ eTi x+ fi, i = 1, . . . , L,

(7)
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where Ci ∈ Rni×m, di ∈ Rni , ei ∈ Rm, fi ∈ R, i = 1, . . . , L. The dual problem of
problem (7) is

maximize −
L∑
i=1

(
dTi zi + fisi

)
subject to

L∑
i=1

(
CTi zi + eisi

)
= c, ‖zi‖ ≤ si, i = 1, . . . , L,

(8)

where zi ∈ Rni , si ∈ R, i = 1, . . . , L are the dual variables. Optimality conditions
similar to those for SDPs can be obtained for SOCPs. SOCPs can be expressed as
SDPs; therefore, they can be solved in polynomial time using interior-point methods
for SDPs. However, the SDP formulation is not the most efficient numerically, as
special interior-point methods can be devised for SOCPs [33, 28, 1].

Precise complexity results on interior-point methods for SOCPs and SDPs are
given by Nesterov and Nemirovsky [33, pp. 224, 236]. In practice, it is observed that
the number of iterations is almost constant, independent of problem size [46]. For the
SOCP, each iteration has complexity O((n1 + · · · + nL)m2 + m3); for the SDP, we
refer the reader to [33].

2.2. S-procedure. The following lemma can be found, e.g., in [4, p. 24]. It is
widely used, e.g., in control theory and in connection with trust region methods in
optimization [41].

Lemma 2.1 (S-procedure). Let F0, . . . , Fp be quadratic functions of the variable
ζ ∈ Rm:

Fi(ζ)
∆
= ζTTiζ + 2uTi ζ + vi, i = 0, . . . , p,

where Ti = TTi . The following condition on F0, . . . , Fp:

F0(ζ) ≥ 0 for all ζ such that Fi(ζ) ≥ 0, i = 1, . . . , p,

holds if

there exist τ1 ≥ 0, . . . , τp ≥ 0 such that

[
T0 u0

uT0 v0

]
−

p∑
i=1

τi

[
Ti ui
uTi vi

]
≥ 0.

When p = 1, the converse holds, provided that there is some ζ0 such that F1(ζ0) > 0.
The next lemma is a corollary of the above result in the case p = 1.
Lemma 2.2. Let T1 = TT1 , T2, T3, T4 be real matrices of appropriate size. We

have det(I − T4∆) 6= 0 and

T (∆) = T1 + T2∆(I − T4∆)−1T3 + TT3 (I − T4∆)−T∆TTT2 ≥ 0(9)

for every ∆, ‖∆‖ ≤ 1, if and only if ‖T4‖ < 1 and there exists a scalar τ ≥ 0 such
that [

T1 − τT2T
T
2 TT3 − τT2T

T
4

T3 − τT4T
T
2 τ(I − T4T

T
4 )

]
≥ 0.(10)
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Proof. If T2 or T3 equal zero, the result is obvious. Now assume T2, T3 6= 0. Then,
(10) implies τ > 0, which in turn implies ‖T4‖ < 1. Thus, for a given τ , (10) holds if
and only if ‖T4‖ < 1, and for every (u, p) we have

uT (T1u+ 2TT3 p)− τ(qT q − pT p) ≥ 0,

where q = TT2 u + TT4 p. Since T2 6= 0, the constraint qT q ≥ pT p is qualified, that is,
satisfied strictly for some (u0, p0) (choose p0 = 0 and u0 such that TT2 u0 6= 0). Using
the S-procedure, we obtain that there exists τ ∈ R such that (10) holds if and only
if ‖T4‖ < 1, and for every (u, p) such that qT q ≥ pT p we have uT (T1u + 2TT3 p) ≥ 0.
We end our proof by noting that for every pair (p, q), p = ∆T q for some ∆, ‖∆‖ ≤ 1
if and only if pT p ≤ qT q.

The following lemma is a “structured” version of the above, which can be traced
back to [13].

Lemma 2.3. Let T1 = TT1 , T2, T3, T4 be real matrices of appropriate size. Let D
be a subspace of RN×N and denote by S (resp., G) the set of symmetric (resp., skew-
symmetric) matrices that commute with every element of D. We have det(I−T4∆) 6=
0 and (9) for every ∆ ∈ D, ‖∆‖ ≤ 1, if there exist S ∈ S, G ∈ G such that[

T1 − T2ST
T
2 TT3 − T2ST

T
4 + T2G

T3 − T4ST
T
2 −GTT2 S −GTT4 + T4G− T4ST

T
4

]
> 0, S > 0.

If D = RN×N , the condition is necessary and sufficient.
Proof. The proof follows the scheme of that of Lemma 2.2, except that pT p ≤ qT q

is replaced with pTSp ≤ qTSq, pTGq = 0, for given S ∈ S, S > 0, G ∈ G. Note that
for G = 0, the above result is a simple application of Lemma 2.2 to the scaled matrices
T1, T2S

−1/2, S1/2T3, S1/2T4S
−1/2.

2.3. Elimination lemma. The last lemma is proven in [4, 24].
Lemma 2.4 (elimination). Given real matrices W = WT , U, V of appropriate

size, there exists a real matrix X such that

W + UXV T + V XTUT > 0(11)

if and only if

ŨTWŨ > 0 and Ṽ TWṼ > 0,(12)

where Ũ , Ṽ are orthogonal complements of U, V . If U, V are full column rank, and (12)
holds, a solution X to the inequality (11) is

X = σ(UTQ−1U)−1UTQ−1V,(13)

where Q
∆
= W + σV V T , and σ is any scalar such that Q > 0 (the existence of which

is guaranteed by (12)).

3. Unstructured RLS. In this section, we consider the RLS problem, which is
to compute

φ(A, b, ρ)
∆
= min

x
max

‖∆A ∆b‖F≤ρ
‖(A+ ∆A)x− (b+ ∆b)‖.(14)

For ρ = 0, we recover the standard LS problem. For every ρ > 0, φ(A, b, ρ) =
ρφ(A/ρ, b/ρ, 1), so we take ρ = 1 in what follows, unless otherwise stated. In the re-
mainder of this paper, φ(A, b) (resp., r(A, b, x)) denotes φ(A, b, 1) (resp., r(A, b, 1, x)).
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In the preceding definition, the norm used for the perturbation bound is the Frobenius
norm. As will be seen, the worst-case residual is the same when the norm used is the
largest singular value norm.

3.1. Optimizing the worst-case residual. The following results yield a nu-
merically efficient algorithm for solving the RLS problem in the unstructured case.

Theorem 3.1. When ρ = 1, the worst-case residual (1) is given by

r(A, b, x) = ‖Ax− b‖+
√
‖x‖2 + 1.

The problem of minimizing r(A, b, x) over x ∈ Rm has a unique solution xRLS, referred
to as the RLS solution. This problem can be formulated as the SOCP

minimize λ subject to ‖Ax− b‖ ≤ λ− τ,
∥∥∥∥[ x

1

]∥∥∥∥ ≤ τ.(15)

Proof. Fix x ∈ Rm. Using the triangle inequality, we have

r(A, b, x) ≤ ‖Ax− b‖+
√
‖x‖2 + 1.(16)

Now choose ∆ = [∆A ∆b] as

[∆A ∆b] =
u√

‖x‖2 + 1

[
xT 1

]
, where u =


Ax− b
‖Ax− b‖ if Ax 6= b,

any unit-norm vector otherwise.

Since ∆ is rank one, we have ‖∆‖F = ‖∆‖ = 1. In addition, we have

‖(A+ ∆A)x− (b+ ∆b)‖ = ‖Ax− b‖+
√
‖x‖2 + 1,

which implies that ∆ is a worst-case perturbation (for both the Frobenius and max-
imum singular value norms) and that equality always holds in (16). Finally, unicity
of the minimizer x follows from the strict convexity of the worst-case residual.

Using an interior-point primal-dual potential reduction method for solving the
unstructured RLS problem (15), the number of iterations is almost constant [46].
Furthermore, each iteration takes O((n + m)m2) operations. A rough summary of
this analysis is that the method has the same order of complexity as one singular
value decomposition (SVD) of A.

3.2. Analysis of the optimal solution. Using duality results for SOCPs, we
have the following theorem.

Theorem 3.2. When ρ = 1, the (unique) solution xRLS to the RLS problem is
given by

xRLS =

{
(µI +ATA)−1AT b if µ

∆
= (λ− τ)/τ > 0,

A†b else,
(17)

where (λ, τ) are the (unique) optimal points for problem (15).
Proof. Using the results of section 2.1, we obtain that the problem dual to (15) is

maximize bT z − v subject to AT z + u = 0, ‖z‖ ≤ 1,

∥∥∥∥[ u
v

]∥∥∥∥ ≤ 1.
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Since both primal and dual problems are strictly feasible, there exist optimal
points for both of them. If λ = τ at the optimum, then Ax = b, and

λ = τ =
√
‖x‖2 + 1.

In this case, the optimal x is the (unique) minimum-norm solution toAx = b: x = A†b.
Now assume λ > τ . Again, both primal and dual problems are strictly feasible;

therefore, the primal- and dual-optimal objectives are equal:

‖Ax− b‖+
∥∥[xT 1

]∥∥ = λ = bT z − v = −(Ax− b)T z −
[
xT 1

] [ −AT z
v

]
.(18)

Using ‖z‖ ≤ 1, ‖[uT v]T ‖ ≤ 1, u = −AT z, we get

z = − Ax− b
‖Ax− b‖ and

[
uT v

]
= −

[
xT 1

]√
‖x‖2 + 1

.

Replace these values in AT z + u = 0 to obtain the expression of the optimal x:

x =
(
ATA+ µI

)−1
AT b, with µ =

λ− τ
τ

=
‖Ax− b‖√
‖x‖2 + 1

.

Remark 3.1. When λ > τ , the RLS solution can be interpreted as the solution
of a weighted LS problem for an augmented system:

xRLS = arg min

∥∥∥∥∥∥
 A
I
0

x−
 b

0
1

∥∥∥∥∥∥
Θ

,

where Θ = diag((λ−τ)I, τI, τ). The RLS method amounts to computing the weighting
matrix Θ that is optimal for robustness via the SOCP (15). We shall encounter a
generalization of the above formula for the linear-fractional SRLS problem of section 5.

Remark 3.2. It is possible to solve the problem when only A is perturbed (∆b =
0). In this case, the worst-case residual is ‖Ax − b‖ + ‖x‖, and the optimal x is
determined by (17), where µ‖x‖ = ‖Ax− b‖. (See the example in section 7.2.)

3.3. Reduction to a one-dimensional search. When the SVD of A is avail-
able, we can use it to reduce the problem to a one-dimensional convex differentiable
problem. The following analysis will also be useful in section 6.

Introduce the SVD of A and a related decomposition for b:

A = U

[
Σ 0
0 0

]
V T , UT b =

[
b1
b2

]
,

where Σ = diag(σ1, . . . , σr) ∈ Rr×r, Σ > 0, and b1 ∈ Rr, r = RankA.
Assume that λ > τ at the optimum of problem (15). From (18), we have

λ = bT z − v =
bT (b−Ax)

‖Ax− b‖ +
1√

‖x‖2 + 1

=
1

τ
+

bT2 b2
λ− τ + bT1 ((λ− τ)I + τΣ2)−1b1.
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Since λ = 0 is never feasible, we may define θ = τ/λ. Multiplying by λ, we obtain
that

λ2 =
1

θ
+
bT2 b2
1− θ + bT1 ((1− θ)I + θΣ2)−1b1.

From λ ≤ ‖b‖+1 and τ ≥ 1, we deduce θ ≥ θmin

∆
= 1/(‖b‖+1). Thus, the optimal

worst-case residual is

φ(A, b)2 = inf
θmin≤θ<1

f(θ),(19)

where f is the following function:

f(θ)
∆
=


1

θ
+ bT ((1− θ)I + θAAT )−1b if θmin ≤ θ < 1,

∞ if θ = 1, b 6∈ Range(A),
1 + ‖A†b‖2 if θ = 1, b ∈ Range(A).

(20)

The function f is convex and twice differentiable on [θmin 1[. If b 6∈ Range(A), f
is infinite at θ = 1; otherwise, f is twice differentiable on the closed interval [θmin 1].
Therefore, the minimization of f can be done using standard Newton methods for
differentiable optimization.

Theorem 3.3. When ρ = 1, the solution of the unstructured RLS can be com-
puted by solving the one-dimensional convex differentiable problem (19) or by comput-
ing the unique real root inside [θmin 1] (if any) of the equation

1

θ2
=
‖b2‖2

(1− θ)2
+

r∑
i=1

b21i(1− σ2
i )

(1 + θ(σ2
i − 1))

2 .

The above theorem yields an alternative method for computing the RLS solution.
This method is similar to the one given in [5]. A related approach was used for
quadratically constrained LS problems in [19].

The above solution, which requires one SVD of A, has cost O(nm2 + m3). The
SOCP method is only a few times more costly (see the end of section 3.1), with the
advantage that we can include all kinds of additional constraints on x (nonnegativity
and/or quadratic constraints, etc.) in the SOCP (15), with low additional cost. Also,
the SVD solution does not extend to the structured case considered in section 4.

3.4. Robustness of LS solution. It is instructive to know when the RLS and
LS solutions coincide, in which case we can say the LS solution is robust. This happens
if and only if the optimal θ in problem (19) is equal to 1. The latter implies b2 = 0
(that is, b ∈ Range(A)). In this case, f is differentiable at θ = 1, and its minimum
over [θmin 1] is at θ = 1 if and only if

df

dθ
(1) = bT1 Σ−4b1 − (1 + bT1 Σ−2b1) ≤ 0.

We obtain a necessary and sufficient condition for the optimal θ to be equal to 1. This
condition is

b ∈ Range(A), bT (AAT )2†b ≤ 1 + bT (AAT )†b.(21)
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If (21) holds, then the RLS and LS solutions coincide. Otherwise, the optimal θ < 1,
and x is given by (17). We may write the latter condition in the case when the norm
bound of the perturbation ρ is different from 1 as the following: ρ > ρmin, where

ρmin(A, b)
∆
=


√

1 + ‖A†b‖2
‖(AAT )†b‖ if b ∈ Range(A), A 6= 0, b 6= 0,

0 otherwise.

(22)

Thus, ρmin can be interpreted as the perturbation level that the LS solution allows.
We note that when b ∈ Range(A), the LS and TLS solutions also coincide.

Corollary 3.4. The LS, TLS, and RLS solutions coincide whenever the norm
bound on the perturbation matrix ρ satisfies ρ ≤ ρmin(A, b), where ρmin(A, b) is defined
in (22). Thus, ρmin(A, b) can be seen as a robustness measure of the LS (or TLS)
solution.

When A is full rank, the robustness measure ρmin is nonzero and decreases as the
condition number of A increases.

Remark 3.3. We note that the TLS solution xTLS is the most accurate, in the
sense that it minimizes the distance function (see [18])

a(A, b, x) =
‖Ax− b‖√
‖x‖2 + 1

,

and is the least robust, in the sense of the worst-case residual. The LS solution,
xLS = A†b, is intermediate (in the sense of accuracy and robustness). In fact, it can
be shown that

r(A, b, xRLS, ρ) ≤ r(A, b, xLS, ρ) ≤ r(A, b, xTLS, ρ),
a(A, b, xTLS) ≤ a(A, b, xLS) ≤ a(A, b, xRLS),

‖xRLS‖ ≤ ‖xLS‖ ≤ ‖xTLS‖.

3.5. RLS and TLS. The RLS framework assumes that the data matrices (A, b)
are the “nominal” values of the model, which are subject to unstructured perturbation,
bounded in norm by ρ. Now, if we think of (A, b) as “measured” data, the assumption
that (A, b) correspond to a nominal model may not be judicious. Also, in some
applications, the norm bound ρ on the perturbation may be hard to estimate. The
TLS solution, when it exists, can be used in conjunction with RLS to address this
issue.

Assume that the TLS problem has a solution. Let ∆ATLS, ∆bTLS, xTLS be mini-
mizers of the TLS problem

minimize ‖∆A ∆b‖F subject to (A+ ∆A)x = b+ ∆b,

and let

ρTLS = ‖∆ATLS ∆bTLS‖F , ATLS = A+ ∆ATLS, bTLS = A+ ∆bTLS.

TLS finds a consistent, linear system that is closest (in Frobenius norm sense) to the
observed data (A, b). The underlying assumption is that the observed data (A, b)
is the result of a consistent, linear system which, under the measurement process,
has been subjected to unstructured perturbations, unknown but bounded in norm by
ρTLS. With this assumption, any point of the ball

{(A′, b′) | ‖A′ −ATLS b
′ − bTLS‖F ≤ ρTLS}
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can be observed, just as well as (A, b). Thus, TLS computes an “uncertain linear sys-
tem” representation of the observed phenomenon: (ATLS, bTLS) is the nominal model,
and ρTLS is the perturbation level.

Once this uncertain system representation (ATLS, bTLS, ρTLS) is computed, choo-
sing xTLS as a “solution” to Ax ' b amounts to finding the exact solution to the
nominal system. Doing so, we compute a very accurate solution (with zero residual),
which does not take into account the perturbation level ρTLS. A more robust solution
is given by the solution to the following RLS problem:

min
x

max
‖∆A ∆b‖F≤ρTLS

‖(ATLS + ∆A)x− (bTLS + ∆b)‖.(23)

The solution to the above problem coincides with the TLS one (that is, in our case,
with xTLS) when ρTLS ≤ ρmin(ATLS, bTLS). (Since bTLS ∈ Range(ATLS), the latter
quantity is strictly positive, except when ATLS = 0, bTLS = 0.)

With standard LS, the perturbations that account for measurement errors are
structured (with ∆A = 0). To be consistent with LS, one should consider the following
RLS problem instead of (23):

min
x

max
‖∆b‖≤ρLS

‖ALSx− (bLS + ∆b)‖.(24)

It turns out that the above problem yields the same solution as LS itself.
To summarize, RLS can be used in conjunction with TLS for “solving” a linear

system Ax ' b. Solve the TLS problem to build an “uncertain linear system” repre-
sentation (ATLS, bTLS, ρTLS) of the observed data. Then, take the solution xRLS to the
RLS problem with the nominal matrices (ATLS, bTLS), and uncertainty size ρTLS. Note
that computing the TLS solution (precisely, ATLS, bTLS, and ρTLS) only requires the
computation of the smallest singular value and associated singular subspace [17].

4. Structured Robust Least Squares (SRLS). In this section, we consider
the SRLS problem, which is to compute

φS(A,b, ρ)
∆
= min

x
max
‖δ‖≤ρ

‖A(δ)x− b(δ)‖,(25)

where A,b are defined in (2). As before, we assume with no loss of generality that
ρ = 1 and denote rS(A,b, 1, x) by rS(A,b, x). Throughout the section, we use the
following notation:

M(x)
∆
=
[
A1x− b1 . . . Apx− bp

]
.(26)

4.1. Computing the worst-case residual. We first examine the problem of
computing the worst-case residual rS(A,b, x) for a given x ∈ Rm. Define

F
∆
= M(x)TM(x), g

∆
= M(x)T (A0x− b0), h

∆
= ‖A0x− b0‖2.(27)

With the above notation, we have

rS(A,b, x)2 = max
δT δ≤1

[
1
δ

] [
h gT

g F

] [
1
δ

]
.(28)

Now let λ ≥ 0. Using the S-procedure (Lemma 2.1), we have[
1
δ

] [
h gT

g F

] [
1
δ

]
≤ λ
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for every δ, δT δ ≤ 1 if and only if there exists a scalar τ ≥ 0 such that[
1
δ

] [
λ− τ − h −gT
−g τI − F

] [
1
δ

]
≥ 0 for every δ ∈ Rp.

Using the fact that τ ≥ 0 is implied by τI ≥ F , we may rewrite the above condition
as

F(λ, τ)
∆
=

[
λ− τ − h −gT
−g τI − F

]
≥ 0.(29)

The consequence is that the worst-case residual is computed by solving an SDP with
two scalar variables. A bit more analysis shows how to reduce the problem to a
one-dimensional, convex differentiable problem and how to obtain the corresponding
worst-case perturbation.

Theorem 4.1. For every x fixed, the squared worst-case residual (for ρ = 1)
rS(A,b, x)2 can be computed by solving the SDP in two variables

minimize λ subject to (29),

or, alternatively, by minimizing a one-dimensional convex differentiable function

rS(A,b, x)2 = h+ inf
τ≥λmax(F )

f(τ),(30)

where

f(τ)
∆
=

 τ + gT (τI − F )−1g if τ > λmax(F ),
∞ if τ = λmax(F ) is (F, g)-controllable,
λmax(F ) + gT (τI − F )†g if τ = λmax(F ) is not (F, g)-controllable.

(31)
If τ is optimal for problem (30), the equations in δ

(τI − F )δ = g, ‖δ‖ = 1

have a solution, any of which is a worst-case perturbation.
Proof. See Appendix A, where we also show how to compute a worst-case per-

turbation.

4.2. Optimizing the worst-case residual. Using Theorem 4.1, the expression
of F, g, h given in (27), and Schur complements, we obtain the following result.

Theorem 4.2. When ρ = 1, the Euclidean-norm SRLS can be solved by comput-
ing an optimal solution (λ, τ, x) of the SDP

minimize λ subject to

 λ− τ 0 (A0x− b0)T

0 τI M(x)T

A0x− b0 M(x) I

 ≥ 0,(32)

where M(x) is defined in (26).
Remark 4.1. Straightforward manipulations show that the results are coherent

with the unstructured case.
Although the above SDP is not directly amenable to the more efficient SOCP for-

mulation, we may devise special interior-point methods for solving the problem. These
special-purpose methods will probably have much greater efficiency than general-
purpose SDP solvers. This study is left for the future.

Remark 4.2. The discussion of section 3.5 extends to the case when the perturba-
tions are structured. TLS problems with (affine) structure constraints on perturbation
matrices are discussed in [7]. While the structured version of the TLS problem becomes
very hard to solve, the SRLS problem retains polynomial-time complexity.
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5. Linear-fractional SRLS. In this section, we examine a generalization of the
SRLS problem. Our framework encompasses the case when the functions A(δ), b(δ)
are rational. We show that the computation of the worst-case residual is NP-complete
but that upper bounds can be computed (and optimized) using SDP. First, we need
to motivate the problem and develop a formalism for posing it. This formalism was
introduced by Doyle et al. [9] in the context of robust identification.

5.1. Motivations. In some structured robust least-squares problems such as (3),
it may not be convenient to measure the perturbation size with Euclidean norm. In-
deed, the latter implies a correlated bound on the perturbation. One may instead
consider an SRLS problem in which the bounds are not correlated; that is, the per-
turbation size in (3) is measured by the maximum norm

min
x

max
‖δ‖∞≤1

‖A(δ)x− b(δ)‖.(33)

Also, in some RLS problems, we may assume that some columns of [A b] are
perfectly known. For instance, the error [∆A ∆b] has the form [∆A 0], where ∆A
is bounded and otherwise unknown. More generally, we may be interested in SRLS
problems, where the perturbed data matrices write[

A(∆) b(∆)
]

=
[
A b

]
+ L∆

[
RA Rb

]
,(34)

where A, b, L,RA, Rb are given matrices, and ∆ is a (full) norm-bounded matrix. In
such a problem, the perturbation is not structured, except via the matrices L,RA, Rb.
(Note that a special case of this problem is solved in [5].)

Finally, we may be interested in SRLS problems in which the matrix functions
A(δ), b(δ) in (3) are rational functions of the parameter vector δ. One example is
given in section 7.6.

It turns out that the extensions described in the three preceding paragraphs can
be addressed using the same formalism, which we now detail.

5.2. Problem definition. Let D be a subspace of RN×N , A ∈ Rn×m, b ∈ Rn,
L ∈ Rn×N , RA ∈ RN×m, Rb ∈ RN , D ∈ RN×N . For every ∆ ∈ D such that
det(I −D∆) 6= 0, we define the matrix functions[

A(∆) b(∆)
]

=
[
A b

]
+ L∆(I −D∆)−1

[
RA Rb

]
.

For a given x ∈ Rm, we define the worst-case residual by

rD(A,b, ρ, x)
∆
=

{
max

∆∈D, ‖∆‖≤ρ
‖A(∆)x− b(∆)‖ if det(I −D∆) 6= 0,

∞ else.
(35)

We say that x is an SRLS solution if x minimizes the worst-case residual above.
As before, we assume ρ = 1 with no loss of generality and denote rD(A,b, 1, x) by
rD(A,b, x).

The above formulation encompasses the three situations referred to in section 5.1.
First, the maximum-norm SRLS problem (33) is readily transformed into problem (35)

as follows. Let Li ∈ Rn×N , Ri ∈ RN×(m+1) be such that [Ai bi] = LiRi, RankLi =
RankRi = ri, where ri = Rank[Ai bi]. Set D = 0, and let

L =
[
L1 . . . Lp

]
, RT =

[
RT1 . . . RTp

]
,

D = {
⊕p

i=1 δiIsi | δi ∈ R, 1 ≤ i ≤ p} .(36)
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Problem (33) can be formulated as the minimization of (35), with D defined as above.
Also, we recover the case when the perturbed matrices write as in (34) when we

allow ∆ to be any full matrix (that is, D = RN×N ). In particular, we recover the
unstructured RLS problem of section 3 as follows. Assume n > m. We have[

∆A ∆b
]

= L
[

∆A ∆b ×
]
R,

where L = I, RT = [I 0]. (The symbol × refers to dummy elements that are added
to the perturbation matrix in order to make it a square, n× n matrix.) In this case,
the perturbation set D is Rn×n.

Finally, the case when A(δ) and b(δ) are rational functions of a vector δ (well
defined over the unit ball {δ | ‖δ‖∞ ≤ 1}) can be converted (in polynomial time) into
the above framework (see, e.g., [48] for a conversion procedure). We give an example
of such a conversion in section 7.6.

5.3. Complexity analysis. In comparison with the SRLS problem of section 4,
the linear-fractional SRLS problem offers two levels of increased complexity.

First, checking whether the worst-case residual is finite is NP-complete [6]. The
linear-fractional dependence (that is, D 6= 0) is a first cause of increased complexity.

The SRLS problem above remains hard even when matrices A(δ), b(δ) depend
affinely on the perturbation elements (D = 0). Consider, for instance, the SRLS
problem with D = 0 and in which D is defined as in (36). In this case, the problem
of computing the worst-case residual can be formulated as

max
‖δ‖∞≤1

[
1
δ

] [
h gT

g F

] [
1
δ

]
for appropriate F, g, h. The only difference with the worst-case residual defined in (28)
is the norm used to measure perturbation. Computing the above quantity is NP-
complete (it is equivalent to a MAX CUT problem [36, 38]). The following lemma,
which we provide for the sake of completeness, is a simple corollary of a result by
Nemirovsky [32].

Lemma 5.1. Consider the problem P(A,b,D, x) defined as follows: given a
positive rational number λ, matrices A, b, L,RA, Rb, D of appropriate size, and an m-
vector x, all with rational entries, and a linear subset D, determine whether rD(A,b, x)
≤ λ. Problem P(A,b,D, x) is NP-complete.

Proof. See Appendix B.

5.4. An upper bound on the worst-case residual. Although our problem is
NP-complete, we can minimize upper bounds in polynomial time using SDP. Introduce
the following linear subspaces:

B ∆
= {B ∈ RN×N | B∆ = ∆B for every ∆ ∈ D} ,
S ∆

=
{
S ∈ B

∣∣ S = ST
}
, G ∆

=
{
G ∈ B

∣∣ G = −GT
}
.

(37)

Let λ ∈ R. The inequality λ > rD(A,b, x) holds if and only if, for every ∆ ∈ D,
‖∆‖ ≤ 1, we have det(I −D∆) 6= 0 and[

λI Ax− b
(Ax− b)T λ

]
+

[
L
0

]
∆(I −D∆)−1

[
0 RAx−Rb

]
+

[
0

(RAx−Rb)T
]

(I −D∆)−T∆T
[
LT 0

]
> 0.
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Using Lemma 2.3, we obtain that λ > rD(A,b, x) holds if there exist S ∈ S, G ∈ G,
such that

F(λ, S,G, x) =

 Θ
Ax− b

RAx−Rb
(Ax− b)T (RAx−Rb)T λ

 > 0,(38)

where

Θ
∆
=

[
λI − LSLT −LSDT + LG

−DSLT +GTLT S +DG−GDT −DSDT

]
.(39)

Minimizing λ subject to the above semidefinite constraint yields an upper bound for
rD(A,b, x). It turns out that the above estimate of the worst-case residual is actually
exact in some “generic” sense.

Theorem 5.2. When ρ = 1, an upper bound on the worst-case residual rD(A,b, x)
can be obtained by solving the SDP

inf
S,G,λ

λ subject to S ∈ S, G ∈ G, (38).(40)

The upper bound is exact when D = RN×N . If Θ > 0 at the optimum, the upper
bound is also exact.

Proof. See Appendix C.

5.5. Optimizing the worst-case residual. Since x appears linearly in the
constraint (38), we may optimize the worst-case residual’s upper bound using SDP.
We may reduce the number of variables appearing in the previous problem, using the
elimination Lemma 2.4. Inequality in (38) can be written as in (11) with

W =

 Θ
−b
−Rb

−b −Rb λ

 , U =

 A
RA
0

 , V =

 0
0
1

 ,
where Θ is defined in (39).

Denote by N the orthogonal complement of [AT RTA]T . Using the elimination
Lemma 2.4, we obtain an equivalent condition for (38) to hold for some x ∈ Rm;
namely,

S ∈ S, G ∈ G, Θ > 0, (N
⊕

1)
T

 Θ
−b
−Rb

−b −Rb λ

 (N
⊕

1) > 0.(41)

For every λ, S,G that are strictly feasible for the above constraints, an x that satis-
fies (38) is given, when RA is full rank, by

x =

([
AT RTA

]
Θ−1

[
A
RA

])−1 [
AT RTA

]
Θ−1

[
b
Rb

]
.(42)

(To prove this, we applied formula (13) and took σ →∞.)
Theorem 5.3. When ρ = 1, an upper bound on the optimal worst-case residual

can be obtained by solving the SDP

inf
S,G,λ,x

λ subject to S ∈ S, G ∈ G, (38),(43)
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or, alternatively, the SDP

inf
S,G,λ

λ subject to (41).(44)

The upper bound is always exact when D = RN×N . If Θ > 0 at the optimum, the
upper bound is also exact. The optimal x is then unique and given by (42) when RA
is full rank.

Proof. See Appendix C.

Remark 5.1. In parallel to the unstructured case (see Remark 3.1), the linear-
fractional SRLS can be interpreted as a weighted LS for an augmented system. Pre-
cisely, when Θ > 0, the linear-fractional SRLS solution can be interpreted as the
solution of a weighted LS problem

xSRLS ∈ arg min

∥∥∥∥[ A
RA

]
x−

[
b
Rb

]∥∥∥∥
Θ

.

The SRLS method amounts to computing the weighting matrix Θ that is optimal for
robustness.

Remark 5.2. Our results are coherent with the unstructured case: replace L by
I, R by [I 0]T , variable S by τI, and set G = 0. The parameter µ of Theorem 3.2 can
be interpreted as the Schur complement of λI − LSLT in the matrix Θ.

Remark 5.3. We emphasize that the above results are exact (nonconservative)
when the perturbation structure is full. In particular, we recover (and generalize)
the results of [5] in the case when only some columns of A are affected by otherwise
unstructured perturbations.

Remark 5.4. When D = 0, it is possible to use the approximation method
of [16] to obtain solutions (based on the SDP relaxations given in Theorem 5.3) that
have expected value within 14% of the true value.

6. Link with regularization. The standard LS solution xLS is very sensitive
to errors in A, b when A is ill conditioned. In fact, the LS solution might not be
a continuous function of A, b when A is near deficient. This has motivated many
researchers to look for ways to regularize the LS problem, which is to make the
solution x unique and continuous in the data matrices (A, b). In this section, we
briefly examine the links of our RLS and SRLS solution with regularization methods
for standard LS.

Beforehand, we note that since all our problems are formulated as SDPs, we could
invoke the quite complete sensitivity analysis results obtained by Bonnans, Cominetti,
and Shapiro [3]. The application of these general results to our SDPs is considered
in [35].

6.1. Regularization methods for LS. Most regularization methods for LS
require imposing an additional bound on the solution vector x. One way is to minimize
‖Ax− b‖2+Ω(x), where Ω is some squared norm (see [23, 43, 8]). Another way is to
use constrained least squares (see [18, pp. 561–571]).

In a classical Tikhonov regularization method, Ω(x) = µ‖x‖2, where µ > 0 is
some “regularization” parameter. The modified value of x is obtained by solving an
augmented LS problem

minimize ‖Ax− b‖2 + µ‖x‖2(45)
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and is given by

x(µ) = (µI +ATA)−1AT b.(46)

(Note that for every µ > 0, the above x is continuous in (A, b).)
The above expression also arises in the Levenberg–Marquardt method for opti-

mization or in the Ridge regression problem [17]. As mentioned in [18], the choice of
an appropriate µ is problem dependent and in many cases not obvious.

In more elaborate regularization schemes of the Tikhonov type, the identity ma-
trix in (46) is replaced with a positive semidefinite weighting matrix (see for in-
stance [31, 8]). Again, this can be interpreted as a (weighted) least-squares method
for an augmented system.

6.2. RLS and regularization. Noting the similarity between (17) and (46), we
can interpret the (unstructured) RLS method as that of Tikhonov regularization. The
following theorem yields an estimate of the “smoothing effect” of the RLS method.
Note that improved regularity results are given in [35].

Theorem 6.1. The (unique) RLS solution xRLS and the optimal worst-case resid-
ual are continuous functions of the data matrices A, b. Furthermore, if K is a compact
set of Rn, and dK = max {‖b‖ | b ∈ K} , then for every uncertainty size ρ > 0, the
function

Rn×m ×K −→ [1 dK + 1],
(A, b) 7−→ φ(A, b, ρ)

is Lipschitzian, with Lipschitz constant 1 + dK/ρ.
Theorem 6.1 shows that any level of robustness (that is, any norm bound on per-

turbations ρ > 0) guarantees regularization. We describe in section 7 some numerical
examples that illustrate our results.

Remark 6.1. In the RLS method, the Tikhonov regularization parameter µ is
chosen by solving a second-order cone problem in such a way that µ is optimal for
robustness. The cost of the RLS solution is equal to the cost of solving a small number
of least-squares problems of the same size as the classical Tikhonov regularization
problem (45).

Remark 6.2. The equation that determines µ in the RLS method is

µ =
‖Ax(µ)− b‖
ρ
√
‖x(µ)‖2 + 1

.

This choice resembles Miller’s choice [30], where µ is determined recursively by the
equations

µ =
‖Ax(µ)− b‖
ρ‖x(µ)‖ .

This formula arises in RLS when there is no perturbation in b (see Remark 3.2). Thus,
Miller’s solution corresponds to an RLS problem in which the perturbation affects only
the columns of A. We note that this solution is not necessarily regular (continuous).

TLS deserves a special mention here. When the TLS problem has a solution,
it is given by xTLS = (ATA − σ2I)−1AT b, where σ is the smallest singular value of
[A b]. This corresponds to µ = −σ2 in (46). The negative value of µ implies that
the TLS is a “deregularized” LS, a fact noted in [17]. In view of our link between
regularization and robustness, the above is consistent with the fact that RLS trades
off the accuracy of TLS with robustness and regularity, at the expense of introducing
bias in the solution. See also Remark 3.3.
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6.3. SRLS and regularization. Similarly, we may ask whether the solution to
the SRLS problem of section 4 is continuous in the data matricesAi, bi, as was the case
for unstructured RLS problems. We only discuss continuity of the optimal worst-case
residual with respect to (A0, b0) (in many problems, the coefficient matrices Ai, bi for
i = 1, . . . , p are fixed).

In view of Theorem 4.2, continuity holds if the feasible set of the SDP (32) is
bounded. Obviously, the objective λ is bounded above by

max
δT δ≤1

∥∥∥∥∥b0 +

p∑
i=1

δibi

∥∥∥∥∥ ≤ ‖b0‖+

p∑
i=1

‖bi‖.

Thus the variable τ is also bounded, as (32) implies 0 ≤ τ ≤ λ. With λ, τ bounded
above, we see that (32) implies that x is bounded if∥∥ A0x− b0 A1x− b1 . . . Apx− bp

∥∥ bounded implies x bounded.

The above property holds if and only if [AT0 AT1 . . . A
T
p ]T is full rank.

Theorem 6.2. A sufficient condition for continuity of the optimal worst-case
residual (as a function of (A0, b0)) is that [AT1 . . . A

T
p ]T is full rank.

6.4. Linear-fractional SRLS and regularization. Precise conditions for con-
tinuity of the optimal upper bound on worst-case residual in the linear-fractional case
are not known. We may, however, regularize this quantity using a method described
in [29] for a related problem. For a given ε > 0, define the bounded set

Sε
∆
=

{
S ∈ S

∣∣∣∣ εI ≤ S ≤ 1

ε
I

}
,

where S is defined in (37). It is easy to show that restricting the condition number
of variable S also bounds the variable G in the SDP (44). This yields the following
result.

Theorem 6.3. An upper bound on the optimal worst-case residual can be obtained
by computing the optimal value λ(ε) of the SDP

min
S,G,λ

λ subject to S ∈ Sε, G ∈ G, (41).(47)

The corresponding upper bound is a continuous function of [A b]. As ε → 0, the
corresponding optimal value λ(ε) has a limit, equal to the optimal value of SDP (44).

As noted in Remark 5.1, the linear-fractional SRLS can be interpreted as a
weighted LS and so can the above regularization method. Thus, the above method
belongs to the class of Tikhonov (or weighted LS) regularization methods referred to
in section 6.1, the weighting matrix being optimal for robustness.

7. Numerical examples. The following numerical examples were obtained us-
ing two different codes: for SDPs, we used the code SP [45], and a Matlab interface
to SP called LMITOOL [10]. For the (unstructured) RLS problems, we used the
SOCP described in [28].

7.1. Complexity estimates of RLS. We first did “large-scale” experiments for
the RLS problem in section 3. As mentioned in section 2.1, the number of iterations is
almost independent of the size of the problem for SOCPs. We have solved problem (15)
for uniformly generated random matrices A and vectors b with various sizes of n,m.
Figure 1 shows the average number of iterations as well as the minimum and maximum
number of iterations for various values of n,m. The experiments confirm the fact that
the number of iterations is almost independent of problem size for the RLS problem.
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Fig. 1. Average, minimum, and maximum number of iterations for various RLS problems using
the SOCP formulation. In the left figure, we show these numbers for values of n ranging from 100
to 1000. For each value of n, the vertical bar indicates the minimum and maximum values obtained
with 20 trials of A, b, with m = 100. In the right figure, we show these numbers for values of m
ranging from 11 to 100. For each value of n, the vertical bar indicates the minimum and maximum
values obtained with 20 trials of A, b, with n = 1000. For both plots, the plain curve is the mean
value.

7.2. LS, TLS, and RLS. We now compare the LS, TLS, and RLS solutions for

A =
[

1 2 3 4
]T
, b =

[
3 7 1 3

]T
.

On the left and right plots in Fig. 2, we show the four points (Ai, bi) indicated
with “+” signs, and the corresponding linear fits for LS problems (solid line), TLS
problems (dotted line), and RLS problems for ρ = 1, 2 (dashed lines). The left plot
gives the RLS solution with perturbations [A + ∆A, b + ∆b], whereas the right plot
considers perturbation in A only, [A+ ∆A, b]. In both plots, the worst-case points for
the RLS solution are indicated by “o” for ρ = 1 and “∗” for ρ = 2. As ρ increases, the
slope of the RLS solution decreases and goes to zero when ρ→∞. The plot confirms
Remark 3.3: the TLS solution is the most accurate and the least robust, and LS is
intermediate.

In the case when we have perturbations in A only (right plot), we obtain an
instance of a linear-fractional SRLS (with a full perturbation matrix), as mentioned
in section 5.1. (It is also possible to solve this problem directly, as in section 3.) In
this last case, of course, the worst-case perturbation can only move along the A-axis.

7.3. RLS and regularization. As mentioned in section 6, we may use RLS to
regularize an ill-conditioned LS problem. Consider the RLS problem for

A =


3 1 4
0 1 1
−2 5 3
1 4 α

 , b =


0
2
1
3

 .
The matrix A is singular when α = 5.

Figure 3 shows the regularizing effect of the RLS solution. The left (resp., right)
figure shows the optimal worst-case residual (resp., norm of RLS solution) as a func-
tion of the parameter α for various values of ρ. When ρ = 0, we obtain the LS
solution. The latter is not a continuous function of α, and both the solution norm
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Fig. 2. Least-squares (solid), total least-squares (dotted), and robust least-squares (dashed)
solutions. The + signs correspond to the nominal [A b]. The left plot gives the RLS solution with
perturbations [A+ ∆A, b+ ∆b], whereas the right plot considers perturbation in A only, [A+ ∆A, b].
The worst-case perturbed points for the RLS solution are indicated by “o” for ρ = 1 and “∗” for
ρ = 2.

Fig. 3. Optimal worst-case residual and norm of RLS solution versus α for various values of
perturbation level ρ. For ρ = 0 (standard LS), the optimal residual and solution are discontinuous.
The spike is smoothed as more robustness is asked for (that is, when ρ increases). On the right plot
the curves for ρ = .001 and .0001 are not visible.

and residual exhibit a spike for α = 5 (when A becomes singular). For ρ > 0, the RLS
solution is smooth. The spike is more and more flattened as ρ grows, which illustrates
Theorem 6.1. For ρ =∞, the optimal worst-case residual becomes flat (independent
of α), and equal to ‖b‖+ 1, with xRLS = 0.

7.4. Robustness of LS solution. The next example illustrates that sometimes
(precisely, if b ∈ Range(A)) the LS solution is robust up to the perturbation level
ρmin defined in (22). This “natural” robustness of the LS solution degradates as the
condition number of A grows. For εA > 0, consider the RLS problem for

A =

[
1 0
0 εA

]
, b =

[
1
.1

]
.

We have considered six values of εA (which equals the inverse of the condition
number of A) from .05 to .55. Table 1 shows the values of ρmin (as defined in (22))
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Table 1

Values of ρmin for various εA.

curve # 1 2 3 4 5 6
εA .05 .15 .25 .35 .45 .55
ρmin 0.06 0.34 0.78 1.12 1.28 1.35

Fig. 4. The left plot shows function f(θ) (as defined in (20)) for the six values of εA (for
ρ = 1). The right plot gives the optimal RLS residuals versus ρ for the same values of εA. The
labels 1, . . . , 6 correspond to values of εA given in Table 1.

for the six values of εA. When the condition number of A grows, the robustness of
the LS solution (measured by ρmin) decreases.

The right plot of Fig. 4 gives the worst-case residual versus the robustness pa-
rameter ρ for the six values of εA. The plot illustrates that for ρ > ρmin, the LS
solution (in our case, A−1b) differs from the RLS one. Indeed, for each curve, the
residual remains equal to zero as long as ρ ≤ ρmin. For example, the curve labeled
“1” (corresponding to εA = 0.05) quits the x-axis for ρ ≥ ρmin = 0.06.

The left plot of Fig. 4 corresponds to the RLS problem with ρ = 1 for various
values of εA. This plot shows the various functions f(θ) as defined in (20). For each
value of εA, the optimal θ (hence the RLS solution) is obtained by minimizing the
function f . The three smallest values of εA induce functions f (as defined in (20))
that are minimal for θ < 1. For the three others, the optimal θ is 1. This means that
ρmin is smaller than 1 in the first three cases and larger than 1 in the other cases.
This is confirmed in Table 1.

7.5. Robust identification. Consider the following system identification prob-
lem. We seek to estimate the impulse response h of a discrete-time system from its
input u and output y. Assuming that the system is single input and single output,
linear, and of order m and that u is zero for negative time indices, y, u, and h are
related by the convolution equations Uh = y, where

h =

 h(1)
...

h(m)

 , y =

 y(1)
...

y(m)

 , u =

 u(1)
...

u(m)

 ,
and U is a lower-triangular Toeplitz matrix whose first column is u. Assuming y, U are
known exactly leads to a linear equation in h, which can be computed with standard
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LS.

In practice, however, both y and u are subject to errors. We may assume, for
instance, that the actual value of y is y+ δy and that of u is u+ δu, where δu, δy are
unknown-but-bounded perturbations. For the perturbed matrices U, y write

U(δ) = U +

m∑
i=1

δuiUi, y(δ) = y +

m∑
i=1

δyiei,

where ei, i = 1, . . . ,m is the ith column of the m × m identity matrix and Ui are
lower-triangular Toeplitz matrices with first column equal to ei.

We first assume that the sum of the input and output energies is bounded, that is,
‖δ‖ ≤ ρ, where δ = [δuT δyT ]T ∈ R2m, and ρ ≥ 0 is given. We address the following
SRLS problem:

min
h∈Rm

max
‖δ‖≤ρ

‖U(δ)h− y(δ)‖.(48)

As an example, we consider the following nominal values for y, u:

u =
[

1 2 3
]T
, y =

[
4 5 6

]T
.

In Fig. 5, we have shown the optimal worst-case residual and that corresponding to
the LS solution as given by solving problems (30) and (32), respectively. Since the LS
solution has zero residual (U is invertible), we can prove (and check on the figure) that
the worst-case residual grows linearly with ρ. In contrast, the RLS optimal worst-case
residual has a finite limit as ρ→∞.

Fig. 5. Worst-case residuals of LS and Euclidean-norm SRLS solutions for various values of
perturbation level ρ. The worst-case residual for LS has been computed by solving problem (30) with
x = xLS fixed.

We now assume that the perturbation bounds on y, u are not correlated. For
instance, we consider problem (48), with the bound ‖δ‖ ≤ ρ replaced with

‖δy‖ ≤ ρ, ‖δu‖∞ ≤ ρ.

Physically, the above bounds mean that the output energy and peak input are bounded.
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This problem can be formulated as minimizing the worst-case residual (35), with

[A b] =

 1 0 0 4
2 1 0 5
3 2 1 6

,
L =

 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 0 1

,

RT =


1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

,
and ∆ has the following structure:

∆ = diag

δu1I3, δu2I2, δu3,

 δy1 × ×
δy2 × ×
δy3 × ×

 .

Here, the symbols × denote dummy elements of ∆ that were added in order to work
with a square perturbation matrix. The above structure corresponds to the set D
in (36), with s = [3 2 1].

Fig. 6. Upper and lower bounds on worst-case residuals for LS and RLS solutions. The upper
bound for LS has been computed by solving the SDP (38) with x = xLS fixed. The lower bounds
correspond to the largest residuals ‖U(δtrial)x−y(δtrial)‖ among 100 trial points δtrial with x = xLS

and x = xRLS.

In Fig. 6, we show the worst-case residual versus ρ, the uncertainty size. We
show the curves corresponding to the values predicted by solving the SDP (43), with
x variable (RLS solution), and x fixed to the LS solution xLS. We also show lower
bounds on the worst case, obtained using 100 trial points. This plot shows that, for the
LS solution, our estimate of the worst-case residual is not exact, and the discrepancy
grows linearly with uncertainty size. In contrast, for the RLS solution the estimate
appears to be exact for every value of ρ.

7.6. Robust interpolation. The following example is a robust interpolation
problem that can be formulated as a linear-fractional SRLS problem. For given inte-
gers n ≥ 1, k, we seek a polynomial of degree n − 1, p(t) = x1 + · · · + xnt

n−1 that
interpolates given points (ai, bi), i = 1, . . . , k; that is,

p(ai) = bi, i = 1, . . . , k.
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If we assume that (ai, bi) are known exactly, we obtain a linear equation in the un-
known x, with a Vandermonde structure 1 a1 . . . an−1

1
...

...
...

1 ak . . . an−1
k


 x1

...
xn

 =

 b1
...
bn

 ,
which can be solved via standard LS.

Now assume that the interpolation points are not known exactly. For instance,
we may assume that the bi’s are known, while the ai’s are parameter dependent:

ai(δ) = ai + δi, i = 1, . . . , k,

where the δi’s are unknown but bounded, |δi| ≤ ρ, i = 1, . . . , k, where ρ ≥ 0 is given.
We seek a robust interpolant, that is, a solution x that minimizes

max
‖δ‖∞≤ρ

‖A(δ)x− b‖,

where

A(δ) =

 1 a1(δ) . . . a1(δ)n−1

...
...

...
1 ak(δ) . . . ak(δ)n−1

 .
The above problem is a linear-fractional SRLS problem. Indeed, it can be shown

that [
A(δ) b

]
=
[

A(0) b
]

+ L∆(I −D∆)−1
[
RA 0

]
,

where

L =

k⊕
i=1

[
1 ai . . . an−2

i

]
, RA =

 R1

...
Rk

 , D =

k⊕
i=1

Di, ∆ =
k⊕
i=1

δiIn−1,

and, for each i, i = 1, . . . , k,

Ri =


0 1 ai . . . an−2

i
...

. . .
. . .

. . .
...

...
. . .

. . . ai
0 . . . . . . 0 1

 ∈ R(n−1)×n,

Di =



0 1 ai . . . an−3
i

...
. . .

. . .
. . .

...
...

. . .
. . . ai

...
. . . 1

0 . . . . . . . . . 0


∈ R(n−1)×(n−1).

(Note that det(I −D∆) 6= 0, since D is strictly upper triangular.)
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Fig. 7. Interpolation polynomials: LS and RLS solutions for ρ = 0.2. The LS solution interpo-
lates the points exactly, while the RLS one guarantees a worst-case residual error less than 1.1573.
For ρ =∞, the RLS solution is the zero polynomial.

In Fig. 7, we have shown the result n = 3, k = 1, and

a1 =

 1
2
4

, b1 =

 1
−0.5

2

, ρ = 0.2.

The LS solution is very accurate (zero nominal residual: every point is interpolated
exactly) but has a (predicted) worst-case residual of 1.7977. The RLS solution trades
off this accuracy (only one point interpolated and nominal residual of 0.8233) for
robustness (with a worst-case residual less than 1.1573). As ρ → ∞, the RLS inter-
polation polynomial becomes more and more horizontal. (This is consistent with the
fact that we allow perturbations on vector a only.) In the limit, the interpolation
polynomial is the solid line p(t) = 0.

8. Conclusions. This paper shows that several RLS problems with unknown-
but-bounded data matrices are amenable to (convex) SOCP or SDP. The implication
is that these RLS problems can be solved in polynomial time and efficiently in practice.

When the perturbation enters linearly in the data matrices, and its size is mea-
sured by Euclidean norm, or in a linear-fractional problem with full perturbation
matrix ∆, the method yields the exact value of the optimal worst-case residual. In
the other cases we have examined (such as arbitrary rational dependence of data
matrices on the perturbation parameters), computing the worst-case residual is NP-
complete. We have shown how to compute and optimize, using SDP, an upper bound
on the worst-case residual that takes into account structure information.

In the unstructured case, we have shown that both the worst-case residual and
the (unique) RLS solution are continuous. The unstructured RLS can be interpreted
as a regularization method for ill-conditioned problems. A striking fact is that the
cost of the RLS solution is equal to a small number of least-squares problems arising
in classical Tikhonov regularization approaches. This method provides a rigorous way
to compute the optimal parameter from the data and associated perturbation bounds.
Similar (weighted) least-squares interpretations and continuity results were given for
the structured case.
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In our examples, we have demonstrated the use of an SOCP code [27] and a
general-purpose semidefinite programming code SP [45]. Future work could be de-
voted to writing special code that exploits the structure of these problems in order
to further increase the efficiency of the method. For instance, it seems that in many
problems the perturbation matrices are sparse and/or have special (e.g., Toeplitz)
structure.

The method can be used for several related problems.
• Constrained RLS. We may consider problems where additional (convex) cons-

traints are added on the vector x. (Such constraints arise naturally in, e.g.,
image processing.) For instance, we may consider problem (1) with an ad-
ditional linear (resp., quadratic convex) constraint (Cx)i ≥ 0, i = 1, . . . , q
(resp., xTQx ≤ 1), where C (resp., Q ≥ 0) is given. To solve such a prob-
lem, it suffices to add the related constraint to corresponding SOCP or SDP
formulation. (Note that the SVD approach of section 3.3 fails in this case.)
• RLS problems with other norms. We may consider RLS problems in which

the worst-case residual errors measured in other norms such as the maximum
(l∞) norm.
• Matrix RLS. We may, of course, derive similar results when the constant term
b is a matrix. The worst-case error can be evaluated in a variety of norms.

• Error-in-variables RLS. We may consider problems where the solution x is
also subject to uncertainty (due to implementation and/or quantization er-
rors). That is, we may consider a worst-case residual of the form

max
‖∆x‖≤ρ1

max
‖∆A ∆b‖F≤ρ2

‖(A+ ∆A)(x+ ∆x)− (b+ ∆b)‖,

where ρi, i = 1, 2, are given. We may compute (and optimize) upper bounds
on the above quantity using SDP. This subject is examined in [25].

Appendix A. Proof of Theorem 4.1. Introduce the eigendecomposition of F
and a related decomposition for g:

F = τI − U
[
τ − λmax(F ) 0

0 τI − Σ

]
UT , UT g =

[
g1

g2

]
,

where τ > ‖Σ‖, Σ ∈ Rr×r, Σ > 0, and g2 ∈ Rr. When τ > λmax(F ), inequality (29)
writes

λ ≥ h+ τ +
gT1 g1

τ − λmax(F )
+ gT2 (τI − Σ)−1g2.(A.49)

If τ = λmax(F ) at the optimum, then g1 = 0, and there exists a nonzero vector
u such that (τI − F )u = 0. From inequality (29), we conclude that gTu = 0. In
other words, λmax(F ) is not (F, g)-controllable, and u is an eigenvector that proves
this uncontrollability. Using g1 = 0 in (A.49), we obtain the optimal value of λ in this
case:

λ = h+ τ + gT2 (τI − Σ)−1g2.

Thus, the worst-case residual can be computed as claimed in the theorem.
For every pair (λ, τ) that is optimal for problem (29), we can compute a worst-case

perturbation as follows. Define

δ0 = (τI − F )†g.
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We have τ > λmax(F ) at the optimum if and only if λmax(F ) is (F, g)-controllable
(that is, g2 6= 0) or if λmax(F ) is not (F, g)-controllable and the function f defined
in (31) satisfies

df

dτ
(λmax(F )) = 1− gT (λmax(F )I − F )2†g < 0.

In this case, the optimal τ satisfies

1 = gT (τI − F )−2g;(A.50)

that is, ‖δ0‖ = 1. Using this and (A.50), we obtain[
1
δ0

]T [
h gT

g F

] [
1
δ0

]
= λ.

This proves that δ0 is a worst-case perturbation.
If τ = λmax(F ) at the optimum, then

df

dτ
(λmax(F )) = 1− gT (λmax(F )I − F )2†g ≥ 0,

which implies that ‖δ0‖ ≤ 1. Since τ = λmax(F ), there exists a vector u such that
(τI − F )u = 0, gTu = 0. Without loss of generality, we may assume that the vector
δ = δ0 + u satisfies ‖δ‖ = 1. We have[

1
δ

]T [
h gT

g F

] [
1
δ

]
= τδT δ − δT (τI − F )δ + 2δT0 g + h

= h+ τ + gT (τI − F )†g − 2uT (τI − F )δ0 − uT (τI − F )u = λ.

This proves that δ defined above is a worst-case perturbation.
In both cases seen above (τ equals λmax(F ) or not), a worst-case perturbation is

any vector δ such that

(τI − F )δ = g, ‖δ‖ = 1.

(We have just shown that the above equations always have a solution δ when τ is
optimal.) This ends our proof.

Appendix B. Proof of Lemma 5.1. We use the following result, due to Ne-
mirovsky [32].

Lemma B.1. Let Γ(p, a) be a scalar function of positive integer p and p-dimensio-
nal vector a such that, first, Γ is well defined and takes rational values from (0, ‖a‖−2)
for all positive integers p and all p-dimensional vectors a with ‖a‖ ≤ 0.1 and, second,
the value of this function at a given pair (p, a) can be computed in time polynomial
in p and the length of the standard representation of the (rational) vector a. Then
the problem PΓ(p, a): given an integer p ≥ 0 and a ∈ Rp, ‖a‖ ≤ 0.1, with rational
positive entries, determine whether

p ≤ max
‖δ‖∞≤1

δT (I − Γ(p, a)aaT )δ(B.51)

is NP-complete. Besides this, either (B.51) holds, or

p− Γ(p, a)

d(a)2
≥ max
‖δ‖∞≤1

δT (I − aaT )δ,
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where d(a) is the smallest common denominator of the entries of a.
To prove our result, it suffices to show that for some appropriate function Γ

satisfying the conditions of Lemma B.1, for any given p, a, we can reduce the problem
PΓ(p, a) to problem P(A,b,D, x) in polynomial time. Set

Γ(p, a) =
2aTa+ 1

(aTa+ 1)2
.

This function satisfies all requirements of Lemma B.1, so problem PΓ(p, a) is NP-hard.
Given p, a, ‖a‖ ≤ 0.1 with rational positive entries, set A, b, D and x as follows.

First, set D to be the set of diagonal matrices of Rp×p. Set A = 0, b = 0, RA = 0,
Rb = [1 . . . 1]T , D = 0, x = 0, and

L = I − aaT

1 + aTa
.

Finally, set A, b as in (34) and λ = p − Γ(p, a)/d(a)2. When ρ = 1, the worst-case
residual for this problem is

rD(A,b, 1, x)2 = max
‖δ‖∞≤1

‖Lδ‖2 = max
‖δ‖∞≤1

δT (I − Γ(p, a)aaT )δ.

Our proof is now complete.

Appendix C. Proof of Theorem 5.3. In this section, we only prove Theo-
rem 5.3. The proof of Theorem 5.2 follows the same lines. We start from problem (43),
the dual of which is the maximization of 2(bTw +RTb u) subject to

Z =

 Z Y w
Y T V u
wT uT t

 ≥ 0(C.52)

and the linear constraints

TrZ = 1− t,(C.53)

∀S ∈ S, TrS(V − LTZL−DTY TL− LTY D −DTV D) = 0,(C.54)

ATw +RTAu = 0,(C.55)

∀G ∈ G, TrG(Y L− LTY T −DTV + V D) = 0.(C.56)

Since both primal and dual problems are strictly feasible, all primal and dual
feasible points are optimal if and only if ZF(λ, S,G, x) = 0, where F is defined
in (38) (see [46]). One obtains, in particular,

Jw + t(Ax− b)− LΓu = 0,(C.57)

(Ax− b)Tw + tλ+ zTRTu = 0,(C.58)

−ΓTLTw +Rz + Σu = 0,(C.59)

where z = [xT −1]T , J = λI−LSLT , Σ = S+DG−GDT−DSDT , and Γ = SDT−G.
Using equation (C.58) and (C.55), we obtain

tλ = −(Ax− b)Tw − zTRTu = bTw +RTb u,(C.60)
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which implies that t = 1/2 from equality of the primal and dual objectives (the trivial
case λ = 0 can be easily ruled out).

Assume that the matrix Θ defined in (39) is positive definite at the optimum.
From equations (C.57)–(C.59), we deduce that the dual variable Z is rank one:

Z = 2vvT with v =
[
w u 1/2

]T
.(C.61)

Using (C.57) and (C.59), we obtain

Θ

[
w
u

]
=

1

2

[
Ax− b

RAx−Rb

]
.

From (C.55), it is easy to derive the expression (42) for the optimal x in the case
when Θ > 0 at the optimum and RA is full rank.

We now show that the upper bound is exact at the optimum in this case. If we
use condition (C.54) and the expression for Z, V deduced from (C.53), we obtain

uTSu = (LTw +DTu)TS(LTw +DTu) for every S ∈ S.

This implies that there exists ∆ ∈ D, ∆T∆ = I, such that u = ∆T (LTw + DTu).
Since Θ > 0, a straightforward application of Lemma 2.3 shows that det(I−D∆) 6= 0,
so we obtain

uT = wTL∆(I −D∆)−1.

Define M = [A b] and recall z = [xT − 1]T . Since Z = 2wwT (from (C.61)) and
TrZ = 1− t = 1/2 (from (C.53)), we have ‖w‖ = 1/2. We can now compute

wT (M + L∆(I −D∆)−1R)z = wT (Ax− b) + wTL∆(I −D∆)−1Rz

= wT (Ax− b) + uTRz

= −λ
2

(from (C.55) and (C.60)).

Therefore,

λ

2
=
∣∣wT (M + L∆(I −D∆)−1R)z

∣∣ ≤ ‖w‖ ∥∥(M + L∆(I −D∆)−1R)z
∥∥

≤ ‖w‖λ (since ∆ ∈ D, ‖∆‖ ≤ 1)

=
λ

2

(
from‖w‖ =

1

2

)
.

We obtain λ =
∥∥(M + L∆(I −D∆)−1R)z

∥∥, which proves that the matrix ∆ is a
worst-case perturbation.
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PARTIAL PIVOTING ∗
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Abstract. This paper presents a new partitioned algorithm for LU decomposition with partial
pivoting. The new algorithm, called the recursively partitioned algorithm, is based on a recursive
partitioning of the matrix. The paper analyzes the locality of reference in the new algorithm and
the locality of reference in a known and widely used partitioned algorithm for LU decomposition
called the right-looking algorithm. The analysis reveals that the new algorithm performs a factor of

Θ(
√
M/n) fewer I/O operations (or cache misses) than the right-looking algorithm, where n is the

order of the matrix and M is the size of primary memory. The analysis also determines the optimal
block size for the right-looking algorithm. Experimental comparisons between the new algorithm
and the right-looking algorithm show that an implementation of the new algorithm outperforms a
similarly coded right-looking algorithm on six different RISC architectures, that the new algorithm
performs fewer cache misses than any other algorithm tested, and that it benefits more from Strassen’s
matrix-multiplication algorithm.

Key words. LU factorization, Gaussian elimination, partial pivoting, locality of reference, cache
misses

AMS subject classifications. 15A23, 65F05, 65Y10, 65Y20

PII. S0895479896297744

1. Introduction. Algorithms that partition dense matrices into blocks and op-
erate on entire blocks as much as possible are key to obtaining high performance
on computers with hierarchical memory systems. Partitioning a matrix into blocks
creates temporal locality of reference in the algorithm and reduces the number of
words that must be transferred between primary and secondary memories. This pa-
per describes a new partitioned algorithm for LU factorization with partial pivoting,
called the recursively partitioned algorithm. The paper also analyzes the number
of data transfers in a popular partitioned LU-factorization algorithm, the so-called
right-looking algorithm, which is used in LAPACK [1]. The performance character-
istics of other popular partitioned LU-factorization algorithms, in particular Crout
and the left-looking algorithm used in the NAG library [4], are similar to those of the
right-looking algorithm so they are not analyzed.

The analysis of the two algorithms leads to two interesting conclusions. First,
there is a simple system-independent formula for choosing the block size for the right-
looking algorithm which is almost always optimal. Second, the recursively partitioned
algorithm generates asymptotically less memory traffic between memories than the
right-looking algorithm, even if the block size for the right-looking algorithm is chosen
optimally. Numerical experiments indicate that the recursively partitioned algorithm
generates fewer cache misses and runs faster than the right-looking algorithm.

The recursively partitioned algorithm computes the LU decomposition with par-
tial pivoting of an n-by-m matrix while transferring only Θ(nm2/

√
M + nm lgm)
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words between primary and secondary memories, where M is the size of the pri-
mary memory. The right-looking algorithm, on the other hand, transfers at least
Θ(max(nm2/

√
M,nm1.5)) words. The number of words actually transferred by con-

ventional algorithms depends on a parameter r, which is not chosen optimally in
LAPACK. The new algorithm is optimal in the sense that the number of words that
it transfers is asymptotically the same as the number transferred by partitioned (or
blocked) algorithms for matrix multiplication and solution of triangular systems (at
least when the number of columns is not very small compared with the size of pri-
mary memory). The right-looking algorithm achieves such performance only when
the matrix is so large that a few rows fill the primary memory.

The recursively partitioned algorithm has other advantages over conventional al-
gorithms. It has no block-size parameter that must be tuned in order to achieve high
performance. Since it is recursive, it is likely to perform better when the memory
system has more than two levels, for example, on computer systems with two levels
of cache or with both cache and virtual memory.

To understand the main idea behind the new algorithm, let us look first at the
conventional right-looking LU-factorization algorithm. The algorithm decomposes
the input matrix into dn/re blocks of at most r columns. Starting from the leftmost
block of columns, the algorithm iteratively factors a block of r columns using a column-
oriented algorithm. After a block is factored, the algorithm updates the entire trailing
submatrix. The parameter r must be carefully chosen to minimize the number of
words transferred between memories. If r is larger than M/n, many words must
be transferred when a block of columns is factored. If r is too small, many trailing
submatrices must be updated, and most of the updates require the entire trailing
submatrix to be read from secondary memory.

The main insight behind the recursively partitioned algorithm is that there is
no need to update the entire trailing submatrix after a block of columns is factored.
After factoring the first column of the matrix, the algorithm updates just the next
column to the right, which enables it to proceed. Once the second column is factored,
we must apply the updates from the first two columns before we can proceed. The
algorithm updates two more columns and proceeds. Once four columns are factored,
they are used to update four more, and so on. In other words, the algorithm does not
look all the way to the right every time a few columns are factored. As we shall see
below, this short-sighted approach pays off.

From another point of view, the new algorithm is a recursive algorithm. We
know that the larger r (the number of columns in a block), the smaller the number
of data transfers required for updating trailing submatrices. The algorithm therefore
chooses the largest possible size, r = m/2. If that many columns do not fit within
primary memory, they are factored recursively using the same algorithm, rather than
being factored using a naive column-oriented algorithm. Once the left m/2 columns
are factored, they are used to update the right m/2 columns which are subsequently
factored.

The rest of the paper is organized as follows. Section 2 describes and analyzes the
recursively partitioned algorithm. Section 3 analyzes the block-column right-looking
algorithm. The actual performance of LAPACK’s right-looking algorithm and the
performance of the recursively partitioned algorithm are compared in section 4 on
several high-end workstations. Section 5 concludes the paper with a discussion of the
results and of related research.
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2. Recursively partitioned LU factorization. The recursively partitioned
algorithm is not only more efficient than conventional partitioned algorithms, but it
is also simpler to describe and analyze. This section first describes the algorithm, and
then analyzes the complexity of the algorithm in terms of arithmetic operations and
in terms of the amount of data transferred between memories during its execution.

The algorithm. The algorithm factors an n-by-m matrix A into an n-by-n permu-
tation matrix P , an n-by-m unit lower triangular matrix L (that is, L’s upper triangle
is all zeros), and an m-by-m upper triangular matrix U , such that PA = LU . A is
treated as a block matrix

A =

[
A11 A21

A21 A22

]
,

where A11 is a square matrix of order m/2-by-m/2.
1. If m = 1 then factor (that is, perform pivoting and scaling)

P1

[
A11

A21

]
=

[
L11

L21

]
U11

and return.
2. Else, recursively factor

P1

[
A11

A21

]
=

[
L11

L21

]
U11.

3. Permute [
A′12
A′22

]
← P1

[
A12

A22

]
.

4. Solve the triangular system L11U12 = A′12 for U12.
5. A′′22 ← A′22 − L21U12.
6. Recursively factor P2A

′′
22 = L22U22.

7. Permute L′21 ← P2L21.
8. Return

P2P1

[
A11 A12

A21 A22

]
=

[
L11 0
L′21 L22

] [
U11 U12

0 U22

]
.

Complexity analysis. It is not hard to see that the algorithm is numerically equiv-
alent to the conventional column-oriented algorithm. Therefore, the algorithm has the
same numerical properties as the conventional algorithm, and it performs same num-
ber of floating point operations, about nm2 −m3/3. In fact, all the variants of the
LU-factorization algorithm discussed in this paper are essentially different schedules
for the same algorithm. That is, they all have the same data-flow graph.

We now analyze the number of words that must be transferred between the pri-
mary and secondary memories for n ≥ m. The size of primary memory is denoted by
M . For ease of exposition, we assume that the number of columns is a power of two.
We denote the number of words that the algorithm must transfer between memories
by IORP(n,m). We denote the number of words that must be transferred to solve an
n-by-n triangular linear system with m right-hand sides where the solution overwrites
the right-hand side by IOTS(n,m). We denote the number of words that must be
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transferred to multiply an n-by-m matrix by an m-by-k matrix and add the result to
an n-by-k matrix by IOMM(n,m, k).

Since the factorization algorithm uses matrix multiplication and solution of tri-
angular linear system as subroutines, the number of I/Os it performs depends on the
number of I/Os performed by these subroutines. A partitioned algorithm for solving
triangular linear systems performs at most

IOTS(m,m) ≤
{

2.5m2 if m ≤
√
M/3,

m3√
M/3

+m2 if m ≥
√
M/3(2.1)

I/Os. The actual number of I/Os performed is smaller, since the real crossover point is√
M/2, not

√
M/3. Incorporating the improved bound into the analysis complicates

the analysis with little effect on the final outcome. The number of I/Os performed by
a standard matrix-multiplication algorithm is at most

IOMM(n, n,m) ≤
{

3nm+m2 if m ≤
√
M/3,

2 nm2√
M/3

+ 2nm if m ≥
√
M/3.(2.2)

The bound for matrix multiplication holds for all values of n ≥ m. The analysis
here assumes the use of a conventional triangular solver and matrix multiplication,
rather than so-called “fast” or Strassen-like algorithms. The asymptotic bounds for
fast matrix-multiplication algorithms are better [5].

We analyze the recursively partitioned algorithm using induction. Initially, the
analysis that does not take into account the permutation of rows that the algorithm
performs. We shall return to these permutations later in this section. The recurrence
that governs the total number of words that are transferred by the algorithm is

IORP(n, 1) = 2n ,

IORP(n,m) = IORP(n,m/2) + IORP(n−m/2,m/2)

+IOTS(m/2,m/2)

+IOMM(n−m/2,m/2,m/2) .

We first prove by induction that if 1/2 ≤ m/2 ≤
√
M/3, then IORP(n,m) ≤ 2nm(1+

lgm). The base case m = 1 is true. Assuming that the claim is true for m/2, for
m ≥ 2 we have

IORP(n,m) ≤ 2n
m

2
lgm+ 2(n−m/2)

m

2
lgm

+
2.5m2

4

+
3nm

2
− 3m2

4
+
m2

4

≤ 2nm lgm+
3nm

2
+ (0.5− 2 lgm)

m2

4
≤ 2nm(1 + lgm) .

We now prove by induction that

IORP(n,m) ≤ 2nm

(
m

2
√
M/3

+ lgm

)
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for m/2 ≥
√
M/3. The claim is true for the base case m/2 =

√
M/3 since m/2 ≤√

M/3 and since m/(2
√
M/3) = 1. Assuming that the claim is true for m/2, we have

IORP(n,m) ≤ 2nm

(
m

4
√
M/3

+ lgm− 1

)

+
m3

8
√
M/3

+
m2

4

+
2(n−m/2)m2

4
√
M/3

+
2(n−m/2)m

2

≤ 2nm

(
m

4
√
M/3

+ lgm− 1

)

+
m3

8
√
M/3

+
m2

4

+
nm2

2
√
M/3

− m3

4
√
M/3

+ nm− m2

2

≤ 2nm

(
m

4
√
M/3

+ lgm− 1

)

+
nm2

2
√
M/3

− m3

8
√
M/3

+ nm− m2

4

≤ 2nm

(
m

4
√
M/3

+ lgm

)

+
nm2

2
√
M/3

= 2nm

(
m

2
√
M/3

+ lgm

)
.

To bound the number word transfers due to permutations we compute the number
of permutations a column undergoes during the algorithm. Each column is permuted
either in the factorization in step 2 and in the permutation in step 7, or in the
permutation in step 3 and in the factorization in step 6. It follows that each column
is permuted 1 + lgm times. If each word is brought from secondary memory, then
the total number of I/Os required for permutations is at most 2n2(1 + lgm). This
bound can be achieved when n < M by reading entire columns to primary memory
and permuting them in primary memory.

The following theorem summarizes the main result of this section.
Theorem 2.1. Given a matrix multiplication subroutine whose I/O performance

satisfies equation (2.2) and a subroutine for solving triangular linear systems whose
I/O performance satisfies equation (2.1), the recursively partitioned LU decomposition
algorithm running on a computer with M words of primary memory computes the LU
decomposition with partial pivoting of an n-by-m matrix using at most

IORP(n,m) ≤ 2nm

(
m

2
√
M/3

+ lgm

)
+ 2n2(1 + lgm)
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I/Os.

3. Analysis of the right-looking LU factorization. To put the performance
of the recursively partitioned algorithm in perspective, we now analyze the perfor-
mance of the column-block right-looking algorithm. We first describe the algorithm
and then analyze the number of data transfers, or I/Os, it performs. While the
bounds we obtain are asymptotically tight, we focus on lower bounds in terms of the
constants. The number of I/Os required during the solution of triangular linear sys-
tems is smaller than the number of I/Os required during the updates to the trailing
submatrix (a rank-r update to a matrix), so we ignore the triangular solves in the
analysis.

Right-looking LU. The algorithm factors an n-by-m matrix A such that PA =
LU , where n ≥ m. The algorithm factors r columns in every iteration. In the kth
iteration we decompose A into

PA =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

where A11 is a square matrix of order (k− 1)r and A22 is a square matrix of order r.
In the kth iteration the algorithm performs the following steps.

1. Factor

P2

[
A22

A32

]
=

[
L22

L32

]
U22 .

2. Permute [
A23

A33

]
← P2

[
A23

A33

]
.

3. Permute [
L21

L31

]
← P2

[
L21

L31

]
.

4. Solve the triangular system L22U23 = A23.
5. Update A33 ← A33 − L32U23.

The number of I/Os required to factor an n-by-r matrix using the column-by-
column algorithm is

nr2

4
≤ IOCF(n, r) ≤ nr2

2
,

when M ≤ nr/2, but only

IOCF(n, r) = 2nr

when M ≥ nr. To simplify the analysis, we ignore the range of M in which more than
half the matrix fits within primary memory but less than the entire matrix. (Using
one level of recursion leads to Θ(nr) I/Os in this range.) We use the facts that for
r ≤ s

IOTS(r, s) =

{
2rs+ r2

2 if r <
√
M/3,

r2s√
M/3

+ rs if r ≥
√
M/3,

(3.1)
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and that for r ≤ s ≤ t

IOMM(t, r, s) =

{
2ts+ rs+ rt if r <

√
M/3,

2 trs√
M/3

+ 2ts if r ≥
√
M/3.(3.2)

The bound 2ts + rs + rt is an underestimate when M < rs. We ignore this small
slack in the analysis.

The number of I/Os the algorithm performs depends on the relation of r to the
dimensions of the matrix and to the size of memory. If r is so small that M ≥ nr,
then the updates to the trailing submatrix dominate the number of I/Os the algorithm
performs. The (m/r)− 1 updates to the trailing submatrix require at least

Θ(nm2/r) = Ω(n2m2/M)

I/Os. In particular, the first m/2r updates require at least

m

2r
2
(
n− m

2

) m
2
≥ nm

M

(
n− m

2

) m
2

=
n2m2

2M
− nm3

4M
≥ n2m2

4M
.

If r is larger, factoring the m/r blocks of r columns requires at least

m

r

nr2

4
=
nmr

4

I/Os. The number of I/Os required for the rank-r updates depends on the value of
r. If M/n ≤ r ≤

√
M/3, then the total number of I/Os performed by the rank-r

updates is at least

m

2r
2
(
n− m

2

) m
2
.

Therefore, the number of I/Os performed by the algorithm is at least

nmr

4
+
m

2r
2
(
n− m

2

) m
2
,

which is minimized at

ropt =
√

2m−m2/n .

For n ≥ m, the optimal value of r lies between

√
m ≤ ropt ≤

√
2m .

(The exact value might deviate slightly from this range, since the expression we derived
for the number of I/Os is only a lower bound.) Substituting the optimal value of r,
we find that the algorithm performs at least(

1

4
+

1

2
√

2

)
nm1.5 − 1

4
√

2
m2.5 ≥

(
1

4
+

1

4
√

2

)
nm1.5

I/Os in this range. If
√
m < M/n, then the value r = M/n yields better performance

than
√
m. If

√
m >

√
M/3, then the value r =

√
M/3 yields better performance

than
√
m.
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If r is yet larger, r ≥
√
M/3, then the rank-r updates require

Θ((m/r)nmr/
√
M/3) = Θ(nm2/

√
M/3)

I/Os. In particular, the first m/2r updates require at least

m

2r

2(n−m/2)(m/2)r√
M/3

≥ nm2

2
√
M/3

− m3

4
√
M/3

≥ nm2

4
√
M/3

I/Os. The total number of I/Os in this range, including both the updates and the
factoring of blocks of columns, is therefore at least

nm2

4
√
M/3

+
nmr

4

if r ≥
√
M/3,M/n. The number of I/Os is minimized by choosing the smallest

possible r, ropt =
√
M/3.

If the matrix is not very large compared with the size of main memory, n2/3 ≤M ,
it is also possible to choose r such that

√
M/3 ≤ r ≤ M/n. In this case, the total

number of I/Os is at least

nm2

4
√
M/3

+ 2nm ≥ n2m2

4M
+ 2nm .

The analysis can be summarized as follows. A value of r close to max(M/n,
√
m)

is optimal for almost all cases. The only exception is for truly huge matrices, where
M/3 ≤ m. For such matrices, r =

√
M/3 is better than r =

√
m. Combining the

results, we obtain the following theorem.
Theorem 3.1. Given a matrix multiplication subroutine whose I/O performance

satisfies equation (3.1) and a subroutine for solving triangular linear systems whose
I/O performance satisfies equation (3.2), the right-looking LU decomposition algo-
rithm running on a computer with M words of primary memory computes the LU
decomposition with partial pivoting of an n-by-m matrix using at least

IORL(n,m) ≥


1
4
n2m2

M if r = M/n,
1
4nm

1.5 if r ≈
√
m <

√
M/3,

1
4nm

1.5 if r =
√
M/3

I/Os.
The first case, r = M/n, leads to better performance only when more than√

m columns fit within primary memory. Although these are lower bounds, they are
asymptotically tight. The value 1/4 is a lower bound on the actual constant, which
is higher than that.

4. Experimental results. We have implemented and tested the recursively
partitioned algorithm1. The goal of the experiments was to determine whether the
recursively partitioned algorithm is more efficient than the right-looking algorithm in

1Our Fortran 90 implementation is available online by anonymous ftp from theory.lcs.mit.edu as
/pub/people/sivan/dgetrf90.f. The code can be compiled by many Fortran 77 compilers, including
compilers from IBM, Silicon Graphics, and Digital, by removing the RECURSIVE key word and
using a compiler option that enables recursion (see [11] for details).
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practice. The results of the experiments clearly show that the recursively partitioned
algorithm performs less I/O and is that it is faster, at least on the computer on which
the experiments were conducted.

The results of the experiments complement our analysis of the two algorithms.
The analysis shows that the recursively partitioned algorithm performs less I/O than
the right-looking algorithm for most values of n and M . The analysis stops short of
demonstrating that one algorithm is faster than another in three respects. First, the
bounds in the analysis are not exact. Second, the analysis counts the total number
of I/Os in the algorithm, but the distribution of the I/O within the algorithm is
significant. Finally, the analysis uses a simplified model of a two-level hierarchical
memory that does not capture all the subtleties of actual memory systems. The
experiments show that even though our analysis is not exact in these respects, the
recursively partitioned algorithm is indeed faster.

Three sets of experiments are presented in this section. The first set presents and
analyzes in detail experiments on IBM RS/6000 workstations. The goal of this set of
experiments is to establish that the recursively partitioned algorithm is faster than the
right-looking algorithm. The second set of experiments show, in less detail, that the
recursively partitioned algorithm outperforms LAPACK’s right-looking algorithm on
a wide range of architectures. The goal of the second set of experiments is to establish
the robustness of the performance of the recursively partitioned algorithm. The third
set of experiments shows that using Strassen’s matrix-multiplication algorithm speeds
up the recursively partitioned algorithm but does not seem to speed up the right-
looking algorithm.

Some of the technical details of the experiments, such as operating system ver-
sions, compiler versions, and compiler options are omitted from this paper. These
details are fully described in our technical report [11].

Detailed experimental analyses. The first set of experiments was performed
on an IBM RS/6000 workstation with a 66.5 MHz POWER2 processor [14], 128
Kbytes 4-way set associative level-1 data cache, a 1 Mbyte direct-mapped level-2
cache, and a 128-bit-wide main memory bus. The POWER2 processor is capable of is-
suing two double-precision multiply-add instructions per clock cycle. Both LAPACK’s
right-looking LU-factorization subroutine DGETRF and the recursively partitioned
algorithm were compiled by IBM’s XLF compiler version 3.2. All the algorithms
used the BLAS from IBM’s Engineering and Scientific Subroutine Library (ESSL).
On square matrices we have also measured the performance of the LU-factorization
subroutine DGEF from ESSL. The interface of this subroutine only allows for the
factorization of square matrices. The coding style and the data structures used in the
recursively partitioned algorithm are the same as the ones used by LAPACK. In par-
ticular, permutations are represented in both algorithms as a sequence of exchanges.
In all cases, the array that contains the matrix to be factored was allocated statically
and aligned on a 16-byte boundary. The leading dimension of the matrix was equal
to the number of rows (no padding).

The performance of the algorithms was assessed using measurements of both run-
ning time and cache misses. Time was measured using the machines real-time clock,
which has a resolution of one cycle. The number of cache misses was measured using
the POWER2 performance monitor [13]. The performance monitor is a hardware sub-
system in the processor capable of counting cache misses and other processor events.
Both the real-time clock and the performance monitor are oblivious to time sharing.
To minimize the risk that measurements are influenced by other processes, we ran
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Table 4.1

The performance in millions of operations per second (Mflops) and the number of cache misses
per thousand floating point operations (CM/Kflop) of five LU-factorization algorithms on an IBM
RS/6000 workstation, on square matrices. The figures for LAPACK’s DGETRF are those of the
block size r with the best running time, in upright letters, and those of the block size with the smallest
number of cache misses, in italics. The minimum number of cache misses does not generally coincide
with the minimum running time. See the text for a full description of the experiments.

n = 1007 n = 1024
Subroutine Mflops CM/Kflop Mflops CM/Kflop
LAPACK’s DGETRF, row exchanges 178, 176 5.81, 5.65 170, 168 5.45, 5.29
Recursively partitioned, row exchanges 201 3.76 186 4.14
LAPACK’s DGETRF, permuting by columns 201, 199 2.94, 2.81 198, 195 3.11, 3.02
Recursively partitioned, permuting by columns 222 1.61 223 1.59
ESSL’s DGEF 228 2.15 221 3.42

the experiments when no other users used the machine (but it was connected to the
network). We later verified that the measurements are valid by comparing the real-
time-clock measurements with the user time reported by AIX’s getrusage system call
on an experiment-by-experiment basis. All measurements reported here are based on
an average of 10 executions.

We have coded two variants of the recursively partitioned algorithm. The two
versions differ in the way permutations are applied to submatrices. In one version,
permutations are applied using LAPACK’s auxiliary subroutine DLASWP. This sub-
routine, which is also used by LAPACK’s right-looking algorithm, permutes the rows
of a submatrix by exchanging rows using the vector exchange subroutine DSWAP, a
level-1 BLAS. The second version permutes the rows of the matrix by applying the
entire sequence of exchanges to one column after another. The difference amounts to
swapping the inner and outer loops. This change was suggested by Fred Gustavson.

The first experiment, whose results are summarized in Table 4.1, was designed
to determine the effects of a complex hierarchical memory system on the partitioned
algorithms. Four facts emerge from the table.

1. The recursively partitioned algorithm performs fewer cache misses and deliv-
ers higher performance than the right-looking algorithm. ESSL’s subroutine
performs less cache misses than LAPACK but more than the recursively par-
titioned algorithm, but it achieves best or close to best performance.

2. Permuting one column at a time leads to fewer cache misses and faster execu-
tion than exchanging rows. This is true for both the right-looking algorithm
and the recursively partitioned algorithm. This is probably a result of the
advantage of the stride-1 access to the column in the column permuting over
the large stride access to rows in the row exchanges.

3. The performance, in terms of both time and cache misses, of all the algorithms
except the recursively partitioned with column permuting is worse when the
leading dimension of the matrix is a power of 2 than when it is not. The
performance of the recursively partitioned algorithm with column permuting
improves by less than half a percent. The degradation in performance on a
power of 2 is probably caused by fact that the caches are not fully associative.

4. The running time depends on the measured number of cache misses but not
completely. This can be seen both from the fact that ESSL’s DGEF per-
forms more cache misses than the recursively partitioned algorithm, but it
is faster, and from the fact that the block size that leads to the minimum
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Fig. 4.1. The performance in Mflops (on the left) and the number of cache misses per Kflop
(on the right) of LU factorization algorithms on an IBM RS/6000 workstation. These graphs depict
the performance of the recursively partitioned (RP) and right-looking (RL) algorithms on square
matrices. The optimal value of r was selected experimentally from powers of 2 between 2 and 256.
The dashed lines represent the performance of the recursively partitioned algorithms with column
permuting (CP).

number of cache misses in the DGETRF does not lead to the best running
time. The discrepancy can be caused by several factors that are not mea-
sured, including misses and conflicts in the level-2 cache, TLB misses, and
instruction scheduling. In all four cases in the table the minimum running
time is achieved with a value of r that is higher than the number that leads
to a minimum number of cache misses. For example, on n = 1007, DGETRF
with row exchanges performed the least number of cache misses with r = 40,
but the fastest running time was achieved with r = 55. This may mean that
the cause of the discrepancy is misses in the level-2 cache, which is larger
than the level-1 cache and therefore may favor a larger block size (since more
columns fit in it).

In summary, the experiment shows that although the implementation details of the
memory system influence the performance of the algorithms, the recursively parti-
tioned algorithm still emerges as faster than the right-looking one when they are
implemented in a similar way.

The second set of experiments was designed to assess the performance of the
algorithms over a wide range of input sizes. The performance and number of cache
misses of the algorithms are presented in Figure 4.1 on square matrices ranging in
order from 200 to 2000. The level-1 cache is large enough to store a matrix of order 128.
The following points emerge from the experiment.

1. Beginning with matrices of order n = 300, the recursively partitioned al-
gorithm with column permuting is faster than the same algorithm with row
exchanges, which is still faster than LAPACK’s DGETRF with row exchanges
(we did not measure the performance of DGETRF with column permuting
in this experiment).

2. The performance of DGETRF with optimal block size r and with r = 64 is
essentially the same except at n = 300, although the optimal block size clearly
leads to a smaller number of cache misses from n = 400 through n = 1600.

3. The recursively partitioned algorithm performs fewer cache misses than ESSL’s
DGEF on all input sizes, but it is not faster. As in the first experiment, the
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Fig. 4.2. The performance in Mflops (on the left) and the number of cache misses per Kflop
(on the right) of the right-looking algorithm with column permuting with as a function of the block
size r. The order of the square matrix used is n = 1007. Note that the y-axes do not start from
zero.
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Fig. 4.3. The performance in Mflops (on the left) and the number of cache misses per Kflop
(on the right) of the right-looking algorithm with column permuting with as a function of the block
size r. The dimensions of the matrix are 62500-by-64. For comparison, the performance of the
recursively partitioned algorithm on this problem is 118 Mflops and 11.03 CM/Kflop.

experiment itself does not indicate what causes this phenomenon. We spec-
ulate that it is caused by better instruction scheduling or fewer misses in the
level-2 cache.

The next experiment was designed to determine the sensitivity of the performance
of the right-looking algorithm to the block size r. We used the column permuting
strategy which proved more efficient in the previous experiments. The experiment
consists of running the algorithm on a range of block sizes on a square matrix of order
1007 and on a rectangular 62500-by-64 matrix. The factorization of a rectangular
matrix with n > m arises as a subproblem in out-of-core LU factorization algorithms
that factor blocks of columns that fit within core. The specific dimensions of the
matrices were chosen so as to minimize the effects of conflicts in the memory system
on the results. The results for n = m = 1007, shown in Figure 4.2, show that the
minimum number of cache misses occurs at r = 42, which is higher than

√
m ≈ 32,

and that the best performance is achieved with an even higher value of r, 55. The



LOCALITY OF REFERENCE IN LU DECOMPOSITION 1077

30 40 50 60 70 80 90
202

204

206

208

210

212

M
flo

ps

Block Size r
30 40 50 60 70 80 90

1.1

1.2

1.3

1.4

1.5

1.6

C
ac

he
 R

el
oa

ds
 P

er
 K

F
lo

p

Block Size r

Fig. 4.4. The performance in Mflops (on the left) and the number of cache misses per Kflop
(on the right) of the right-looking algorithm with column permuting with as a function of the block
size r. The order of the square matrix used is n = 1007. The machine used here has a bigger
level-1 cache and no level-2 cache than the machine used in all the other experiments. Compare
with Figure 4.2. For comparison, the performance of the recursively partitioned algorithm on this
problem on this machine is 229 Mflops and 0.650 CM/Kflop.

performance is not very sensitive to the choice of r, however, and all values between
about 50 and 70 yield essentially the same performance, 201 Mflops. The results for
62500-by-64 matrices, shown in Figure 4.3, show that the minimum number of cache
misses occur at r = 10, and the best performance occurs at r = 8, which happens
to coincide exactly with

√
m. The sensitivity to r is greater here than in the square

case, especially below the optimal value.

The last experiment in this set, presented in Figure 4.4, was designed to determine
whether the discrepancy between the optimal block size in terms of level-1 cache misses
and the optimal block size in terms of running time was caused by the level-2 cache.
The experiment repeats the last experiment for square matrices of order 1007, except
that the experiment was conducted on a machine with a 256-bit-wide main memory
bus, 256 Kbytes level-1 cache, and no level-2 cache. The two machines are identical
in all other respects. There is a discrepancy in optimal block sizes in Figure 4.4,
but it is smaller than the discrepancy in Figure 4.2. The experiment shows that the
discrepancy is not caused solely by the level-2 cache. It is not possible to determine
whether the smaller discrepancy in this experiment is due to the lack of level-2 cache
or to the larger level-1 cache.

Robustness experiments. The second set of experiments shows that the per-
formance advantage of the recursively partitioned algorithm, which was demonstrated
by the first set of experiments, is not limited to a single computer architecture. The
experiments accomplish this goal by showing that the recursively partitioned algo-
rithm outperforms the right-looking algorithm on a wide range of architectures.

All the experiments in this set compare the performance of the recursively parti-
tioned algorithm with the performance of LAPACK’s right-looking algorithm on two
sizes of square matrices, n = 1007 and n = 2014 (except when the larger matrices do
not fit within main memory). These sizes were chosen so as to minimize the impact of
cache associativity on the results. Each measurement reported represents the average
of the best five out of 10 runs, to minimize the effect of other processes in the system.
The block size for the right-looking algorithm was LAPACK’s default r = 64.
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Table 4.2

The running time in seconds of LU factorization algorithms on several machines. For each
machine and each matrix order, the table shows the running times of the recursively partitioned
(RP) algorithm and the right-looking (RL) algorithm with row exchanges and column permutations.
Some measurements are not available and marked as N/A because the amount of main memory is
insufficient to factor the larger matrix in core. See the text for a full description of the experiments.

n = 1007 n = 2014
Row Column Row Column

exchanges pivoting exchanges pivoting
Machine RL RP RL RP RL RP RL RP
IBM POWER2 3.82 3.39 3.37 3.05 27.88 26.00 25.28 23.45
IBM POWER 22.81 19.07 17.87 16.86 146.1 143.4 135.8 129.7
SGI R4600/R4610 37.15 34.39 36.42 33.57 N/A N/A N/A N/A
SGI R4400/R4010 9.44 8.36 9.38 8.29 73.92 68.64 73.73 66.79
DEC A21064 9.27 8.94 9.36 8.89 N/A N/A N/A N/A
DEC A21164 2.61 2.56 2.30 2.25 20.15 19.68 17.80 17.06

We used the following machine configurations:

• A 66.5 MHz IBM RS/6000 workstation with a POWER2 processor, 128
Kbytes 4-way set associative data cache, a 1 Mbyte direct-mapped level-2
cache, and a 128-bit-wide bus. We used the BLAS from IBM’s ESSL.
• A 25 MHz IBM RS/6000 workstation with a POWER processor, 64 Kbytes

4-way set associative data cache, and a 128-bit-wide bus. We used the BLAS
from IBM’s ESSL.
• A 100 MHz Silicon Graphics Indy workstation with a MIPS R4600/R4610

CPU/FPU pair, a 16 Kbytes direct-mapped data cache, and a 64-bit-wide
bus. We used the SGI BLAS. This machine has only 32 Mbytes of main
memory, so the experiment does not include matrices of order n = 2014.
• A 250 MHz Silicon Graphics Onyx workstation with 4 MIPS R4400/R4010

CPU/FPU pairs, a 16 Kbytes direct-mapped data cache per processor, a
4 Mbytes level-2 cache per processor, and a 2-way interleaved main memory
system with a 256-bit-wide bus. The experiment used only one processor.
We used the SGI BLAS.
• A 150 MHz DEC 3000 Model 500 with an Alpha 21064 processor, 8 Kbytes

direct-mapped cache, and a 512 Kbytes level-2 cache. We used the BLAS from
DEC’s DXML for IEEE floating point. A limit on the amount of physical
memory allocated to a process prevented us from running the experiment on
matrices of order n = 2014.
• A 300 MHz Digital AlphaServer with 4 Alpha 21164 processors, each with an

8 Kbytes level-1 data cache, a 96 Kbytes on-chip level-2 cache, and a 4 Mbytes
level-2 cache. The experiment used only one processor. We used the BLAS
from DEC’s DXML for IEEE floating point.

The results, which are reported in Table 4.2, show that the recursively partitioned
algorithm consistently outperforms the right-looking algorithm. The results also show
that permuting columns is almost always faster than exchanging rows.

Experiments using Strassen’s algorithm. Performing the updates of the
trailing submatrix using a variant of Strassen’s algorithm [10] improved the perfor-
mance of the recursively partitioned algorithm. We replaced the call to DGEMM,
the level-3 BLA subroutine for matrix multiply-add by a call to DGEMMB, a pub-



LOCALITY OF REFERENCE IN LU DECOMPOSITION 1079

lic domain implementation2 of a variant of Strassen algorithm [3]. (Replacing the
calls to DGEMM with calls to a Strassen matrix-multiplication subroutine in IBM’s
ESSL gave similar results.) DGEMMB uses Strassen’s algorithm only when all the
dimensions of the input matrices are greater than a machine-dependent constant. The
authors of DGEMMB set this constant to 192 for IBM RS/6000 workstations.

In the recursively partitioned algorithm with column permuting, the replacement
of DGEMM by DGEMMB reduced the factorization time on the POWER2 machine
to 2.99 seconds for n = 1007 and to 22.18 seconds for n = 2014. The factorization
times with the conventional matrix-multiplication algorithm, reported in the first line
of Table 4.2, are 3.05 and 23.45 seconds. The running time was reduced from 182.7 to
166.8 seconds on a matrix of order n = 4028. The change would have no effect on the
right-looking algorithm, since in all the matrices it multiplies at least one dimension
is r which was smaller than 192 in all the experiments.

A similar experiment carried out by Bailey, Lee, and Simon [2] showed that
Strassen’s algorithm can accelerate the LAPACK’s right-looking LU factorization on a
Cray Y-MP. The largest improvements in performance, however, occurred when large
values of r were used. The fastest factorization of a matrix of order n = 2048, for
example, was obtained with r = 512. Such a value is likely to cause poor performance
on machines with caches. (The Cray Y-MP has no cache.) On the IBM POWER2
machine, which has caches, increasing r from 64 to 512 causes the factorization time
with a conventional matrix-multiplication algorithm to increase from 30.8 seconds
to 54 seconds. Replacing the matrix-multiplication subroutine by DGEMMB with
r = 512 reduces the solution time but by less than two seconds.

5. Conclusions. The recursively partitioned algorithm should be used instead of
the right-looking algorithm because it delivers similar or better performance without
parameters that must be tuned. No parameter to choose means that there is no
possibility of a poor choice, and hence the new algorithm is more robust. Section 4
shows that the performance of the right-looking algorithm can be sensitive to r and
that the best performance does not always coincide with the block size that causes the
smallest number of cache misses. Choosing r can be especially difficult on machines
with more than two levels of memory. A recursive algorithm, on the other hand, is a
natural choice for hierarchical memory systems with more than two levels.

The recursively partitioned algorithm provides a good opportunity to use a fast
matrix-multiplication algorithm such as Strassen’s algorithm. Since a significant frac-
tion of the work performed by the recursively partitioned algorithm is used to mul-
tiply large matrices, the benefit of using Strassen’s algorithm can be large. The
right-looking algorithm performs the same work by several multiplications of smaller
matrices, so the benefit of Strassen’s algorithm should be smaller.

The analysis of the right-looking algorithm in section 3 shows how the block size
r should be chosen. The value r ≈

√
m is optimal with two exceptions. When a single

row is too large to fit within primary memory, a value r =
√
M/3 leads to better

performance. When more than
√
m columns fit within primary memory, r should

be set to M/n to minimize memory traffic. The extreme cases are the source of the
difficulty in choosing a good value of r for hierarchical memory systems with more
than two levels. In our experiments, the performance of the right-looking algorithm
on matrices with more rows than columns was very sensitive to the choice of r, but
it was not sensitive on large square matrices.

2Available online from http://www.netlib.org/linalg/gemmw.
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In the typical cases, when at least one row fits within primary memory, the
right-looking algorithm with an optimal choice of r performs a factor of Θ(

√
M/m)

more data transfers than the recursively partitioned algorithm. In our experiments
this factor led to a significant difference in both the number of cache misses and the
running time.

The conclusion that the value r =
√
m is often close to optimal shows that there

is a system-independent way to choose r. In comparison, the model implementa-
tion of ILAENV, LAPACK’s block-size-selection subroutine, uses a fixed value, 64,
and LAPACK’s User’s Guide advises that system-dependent tuning of r could im-
prove performance. The viewpoint of the LAPACK designers seems to be that r is
a system-dependent parameter whose role is to hide the low bandwidth of the sec-
ondary memory system during the updates of the trailing submatrices. Our analysis
here shows that the true role of r is to balance the number of data transfers between
the two components of the algorithm: the factorization of blocks of columns and the
updates of the trailing submatrices.

Designers of out-of-core LU decomposition codes often propose to use block-
column (or row) algorithms. Many of them propose to choose r = M/n so that
an entire block of columns fits within primary memory [4, 6, 7, 15]. This approach
works well when the columns are short and a large number of them fit within pri-
mary memory, but the performance of such algorithms would be unacceptable when
only few columns fit within primary memory. Some researchers [7, 8, 9] suggest that
algorithms that use less primary memory than is necessary for storing a few columns
might have difficulty implementing partial pivoting. The analysis in this paper shows
that it is possible to achieve a low number of data transfers even when a single row
or column does not fit within primary memory.

Womble et al. [15] presented a recursively partitioned LU decomposition algorithm
without pivoting. They claimed, without a proof, that pivoting can be incorporated
into the algorithm without asymptotically increasing the number of I/Os the algorithm
performs. They suggested that a recursive algorithm would be difficult to implement,
so they implemented instead a partitioned left-looking algorithm using r = M/n.

Toledo and Gustavson [12] describe a recursively partitioned algorithm for out-
of-core LU decomposition with partial pivoting. Their algorithm uses recursion on
large submatrices but switches to a left-looking variant on smaller submatrices (that
would still not fit within main memory). Depending on the size of main memory,
their algorithm can factor a matrix in 2/3 the amount of time used by an out-of-core
left-looking algorithm with a fixed block size.

Acknowledgments. Thanks to Rob Schreiber for reading several early versions
of this paper and commenting on them. Thanks to Fred Gustavson and Ramesh
Agarwal for helpful suggestions. Thanks to the anonymous referees for several helpful
comments.
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Abstract. A variational formulation for the generalized singular value decomposition (GSVD)
of a pair of matrices A ∈ Rm×n and B ∈ Rp×n is presented. In particular, a duality theory analogous
to that of the SVD provides new understanding of left and right generalized singular vectors. It is
shown that the intersection of row spaces of A and B plays a key role in the GSVD duality theory.
The main result that characterizes left GSVD vectors involves a generalized singular value deflation
process.

Key words. generalized eigenvalue and eigenvector, generalized singular value and singular
vector, stationary value and stationary point, deflation, duality
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1. Introduction. The singular value decomposition (SVD) of a given matrix
A ∈ Rm×n is

UTAV = S = diag{σ1, . . . , σq}, q = min{m,n},(1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, S ∈ Rm×n is zero except
for the real nonnegative elements σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σq = 0 on the
leading diagonal with r = rank(A). The σi, i = 1, . . . , q, are the singular values of A.
Of the many ways to characterize the singular values of A, the following variational
property is of particular interest [4].

Theorem 1.1. Consider the optimization problem

max
x 6=0

‖Ax‖
‖x‖ ,(2)

where ‖ ·‖ denotes the 2-norm of a vector. Then the singular values of A are precisely
the stationary values, i.e., the functional evaluations at the stationary points, of the
objective function ‖Ax‖/‖x‖ with respect to x 6= 0.

We note that the stationary points x ∈ Rn in problem (2) are the right singular
vectors of A. At each of such points, it follows from the usual duality theory that
there exists a vector y ∈ Rm of unit Euclidean length such that yTAx is equal to the
corresponding stationary value. This y is the corresponding left singular vector of A.

The main purpose of this paper is to delineate a similar variational principle that
leads to the generalized singular value decomposition (GSVD) of a pair of matrices
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A ∈ Rm×n and B ∈ Rp×n. While the variational formula analogous to (2) for
the GSVD is well known, the corresponding duality theory has apparently not been
developed. (See [1] for a related treatise.) The purpose of this note is to fill the
duality theory gap for the GSVD problem.

Let R(M) and N (M) denote, respectively, the range space and the null space of
any given matrix M . We will see that the intersection of row spaces of A and B,

R(AT )
⋂
R(BT ) =

{
z ∈ Rn | zT = xTA = yTB for some x ∈ Rm and y ∈ Rp

}
,

plays a fundamental role in the duality theory of the associated GSVD. The equiva-
lence

C

[
x
−y

]
= [AT , BT ]

[
x
−y

]
= 0⇐⇒ xTA = yTB

suggests that the null space of the matrix C := [AT , BT ],

N (C) =

{[
x
−y

]
∈ Rm+p | C

[
x
−y

]
= 0

}
,(3)

may be interpreted as a “representation” of R(AT )
⋂
R(BT ). But this representation

is not unique in that different values of
[

x
−y

]
∈ N (C) may give rise to the same

z ∈ R(AT )
⋂
R(BT ). In particular, all points in the subspace

S :=

{[
g
−h

]
∈ Rm+p | gTA = hTB = 0

}
(4)

collapse into the zero vector in R(AT )
⋂
R(BT ). For a reason to be discussed in

what follows (see (16) and the argument thereafter), the subspace S should be taken
out of consideration. More precisely, define the homomorphism H : N (C) −→
R(AT )

⋂
R(BT ) by

z = H

([
x
−y

])
⇐⇒ zT = xTA = yTB,

and define, for every
[

x
−y

]
∈ N (C), the quotient map π

([
x
−y

])
to be the coset of

S containing
[

x
−y

]
, i.e.,

π

([
x
−y

])
:=

[
x
−y

]
+ S.(5)

Then the first homomorphism theorem for vector spaces (see, for example, [5, The-
orem 4.a]) states that R(AT )

⋂
R(BT ) is isomorphic to the quotient space N (C)/S

where

N (C)/S :=

{
π

([
x
−y

])
|
[

x
−y

]
∈ N (C)

}
.(6)

It is in this quotient space that we establish the duality theory.
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Recall that linearly independent vectors in N (C) that are not in S will generate
naturally linearly independent vectors in the quotient space N (C)/S through the
quotient map. Thus the simplest way to represent N (C)/S is through the orthogonal
complement S⊥ of S in N (C). Define N(AT ) and N(BT ) to be matrices so that their
columns span, respectively, the null spaces N (AT ) and N (BT ). Define

Z :=

 AT BT

N(AT )T 0
0 N(BT )T

 .(7)

Then N (C)/S can be uniquely represented by the subspace

N (Z) =

{[
x
−y

]
∈ Rm+p | Z

[
x
−y

]
= 0

}
.(8)

We shall have the dimension counted carefully in section 2.
Our discussion is based upon the following formulation of the GSVD for A and

B by Paige and Saunders [6] (or QSVD in [3]) that generalizes the original concept
in [9].

Definition 1.1. Assume rank(C) = k, then there exist orthogonal U ∈ Rm×m,
V ∈ Rp×p, and invertible X ∈ Rn×n such that[

UT 0
0 V T

] [
A
B

]
X =

[
ΩA 0
ΩB 0

]
(9)

with ΩA ∈ Rm×k and ΩB ∈ Rp×k given by

r s k − r − s

ΩA =

 IA r
SA s

OA m− r − s,


r s k − r − s

ΩB =

 OB p− k + r
SB s

IB k − r − s,


where IA and IB are identity matrices, OA and OB are zero matrices with possibly no

rows or columns, and SA = diag{ω(1)
A , . . . , ω

(s)
A } and SB = diag{ω(1)

B , . . . , ω
(s)
B } satisfy

1 > ω
(1)
A ≥ · · · ≥ ω(s)

A > 0, 0 < ω
(1)
B ≤ · · · ≤ ω(s)

B < 1,

ω
(i)
A

2
+ ω

(i)
B

2
= 1.

The quotients

λi :=
ω

(i)
A

ω
(i)
B

, i = 1, . . . , s,
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are called the generalized singular values of (A,B) for which we make use of the
notation Λ := diag{λ1, . . . , λs}. The values of r and s are defined internally by the
matrices A and B.

Suppose we partition X into four blocks of columns X = [X1, X2, X3, X4] with
column sizes r, s, k − r − s, and n − k, respectively. Correspondingly, suppose we
partition U into U = [U1, U2, U3] with column sizes r, s,m − r − s, and V into V =
[V1, V2, V3] with column sizes p− k + r, s, k − r − s, respectively. Observe that

XTATAX =


IA 0

S2
A

...
OTAOA

0 . . . 0

 ,

XTBTBX =


OTBOB 0

S2
B

...
IB

0 . . . 0

 ,
where, for simplicity, we have used “0” to denote various zero matrices with appro-
priate sizes. Upon examining the second column block, we notice that

ATAX2 = BTBX2Λ2.

That is, {λ2
i |i = 1, . . . , s} is a subset of the eigenvalues of the symmetric pencil

ATA− µBTB.(10)

Similarly, we point out the following remarks to include all other cases [3, 6].
1. If k < n, then ATAX4 = BTBX4 = 0 implies that every complex number is

an eigenvalue of (10). This is the case that is considered of little interest. We
will refer to eigenvalues of this type as defective.

2. Since ATAX3 = 0 and BTBX3 6= 0, the pencil (10) has 0 as an eigenvalue
with multiplicity k − r − s.

3. Since BTBX1 = 0 and ATAX1 6= 0, we may regard that the pencil (10) has
∞ as an eigenvalue with multiplicity r.

We view the relationships

UT2 AX2 = SA,

V T2 BX2 = SB

as the fundamental and most important components of (9). We refer to the corre-
sponding columns of U2 and V2 as the left generalized singular vectors of A and B,
respectively. Note that there are two such left vectors for each generalized singular
value, one for A, and one for B.

Similar to Theorem 1.1, we have the following variational formulation.
Theorem 1.2. Consider the optimization problem

max
Bx 6=0

‖Ax‖
‖Bx‖ .(11)

Then the generalized singular values λ1, . . . , λs of (A,B) are precisely the nonzero
finite stationary values of the objective function in (11).
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Proof. The stationary values of ‖Ax‖/‖Bx‖ are square roots of those of the
function

f(x) :=
〈Ax,Ax〉
〈Bx,Bx〉 ,

where 〈·, ·〉 is the standard Euclidean inner product. It is not difficult to see that the
gradient of f at x where Bx 6= 0 is given by

∇f(x) =
2

〈Bx,Bx〉
(
ATAx− f(x)BTBx

)
.

The theorem follows from comparing the first-order condition∇f(x) = 0 with (10).
Obviously, the corresponding stationary points x ∈ Rn for the problem (11) are

related to columns of the matrix X2 (up to scalar multiplications), which are also
eigenvectors of the pencil (10). What is not clear are the roles that U2 and V2 play
in terms of the variational formula (11). In this note we present some new insights in
this regard.

In the usual SVD duality theory the left singular vectors can be obtained from
the optimization problem

max
y 6=0

‖yTA‖
‖y‖ ,(12)

a formula similar to (2). Thus one might first guess that the duality theory analogous
to (11) would be the problem

max
yTB 6=0

‖yTA‖
‖yTB‖ .

However, this is certainly not a correct form as a single row vector yT is not compatible
for left multiplication on both A and B. We will see correct dual forms for the GSVD
in (18) and (23).

2. Duality theory. For convenience, we denote

U2 = [u
(2)
1 , . . . , u(2)

s ],

V2 = [v
(2)
1 , . . . , v(2)

s ].

It follows from

UT2 AX = SAS
−1
B V T2 BX = ΛV T2 BX(13)

that UT2 A = ΛV T2 B or, equivalently,

C

[
U2

−V2Λ

]
= 0.(14)

Note that the columns of both U2 and V2 are unit vectors. Given any
[

x
−y

]
in the

null space of C with ‖x‖ 6= 0 and ‖y‖ 6= 0, we observe that

C

[
x
‖x‖

− ‖y‖‖x‖
y
‖y‖

]
=

1

‖x‖C
[

x
−y

]
= 0,(15)
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where x/‖x‖ and y/‖y‖ are also unit vectors. Comparing (15) with the relationship
(14), we are motivated to consider the role that each generalized singular value λi
plays in the optimization problem:

max

C

[
x
−y

]
=0,x 6=0

‖y‖
‖x‖ .(16)

However, we need to hastily point out a subtle flaw in the formulation of (16). Consider

a given point
[

x
−y

]
∈ S with ‖x‖ 6= 0 and ‖y‖ 6= 0. Then

[
αx
−βy

]
∈ S for arbitrary

α, β ∈ R. In this case, the optimization subproblem

max
xTA=yTB=0,x 6=0

‖y‖
‖x‖(17)

becomes the problem

max
α,β∈R,α 6=0

|β|
|α|

that obviously has no stationary point at all and has maximum infinity. The trouble

persists so long as
[

x
−y

]
contains components from S. It is for this reason that the

subspace S should be taken out of consideration. We should consider, instead of (16),
the modified optimization problem (see (7) and (8))

max[
x
−y

]
∈N (Z),x 6=0

‖y‖
‖x‖ .(18)

We will prove that each λi corresponds to a stationary value for the problem (18).
But first it is worthy to point out some interesting remarks.

1. The optimization problem (18) is consistent with the ordinary singular value

problem where B = I. In this case, Z =
[

AT I
N(AT )T 0

]
. Thus

[
x
−y

]
∈

N (Z) implies that y = ATx 6= 0. The forbidden situation xTA = yT = 0 in
(18) is not a concern in this case because of the homogeneity in x and only
implies that 0 is a stationary value (or equivalently A has a zero singular
value). Thus in the case of the ordinary SVD, the problem (18) reduces to
(12).

2. It is clear that dim(N (C)) = m + p − k since we assume rank(C) = k. The
structure involved in (9) implies that for S defined in (4) it must be

S = R(U3)⊕R(V1).

That is, the size of N(AT ) and N(BT ) should be m × (m − r − s) and
p × (p − k + r), respectively. It follows that dim(S) = m + p − k − s. The
space we are interested in is the quotient space N (C)/S. It is known from
the homomorphism theorem that dim(N (C)/S) = dim(N (C)) − dim(S) [5,
Lemma 4.8]. Thus dim(N (C)/S) = s. We will see below that this dimension
count agrees with our assumption that there are s generalized singular values.
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The following theorem is critical to the study of stationary values and stationary
points of the optimization problem (18).

Theorem 2.1. Let the columns of the matrix
[

Φ
Ψ

]
with Φ ∈ Rm×s and Ψ ∈

Rp×s be a basis for the subspace N (Z). Then the nondefective finite nonzero eigen-
values of the symmetric pencil of (10),

ATA− µBTB,

are the same as those of the pencil

ΨTΨ− λΦTΦ.(19)

Proof. Suppose ATAx = µBTBx. Since µ is nondefective and nonzero, ATAx =

µBTBx 6= 0. That is,
[

Ax
−µBx

]
represents a nonzero element in N (C)/S. Thus there

exist vectors v ∈ Rs, v 6= 0, ξA ∈ Rm−r−s, ξB ∈ Rp−k+r such that

Ax = Φv +N(AT )ξA,

−µBx = Ψv +N(BT )ξB .

It follows that

(ΨTΨ− µΦTΦ)v = −µ(ΦTA+ ΨTB)x+ (µΦTN(AT )ξA −ΨTN(BT )ξB) = 0.

In the above, we have used the fact that Z
[

Φ
Ψ

]
= 0. This shows that µ is an

eigenvalue of (19) with v as the corresponding eigenvector.
To complete the eigenvalue (generalized singular value) set equality, suppose now

that (ΨTΨ − λΦTΦ)v = 0 with λ 6= 0,∞ and v 6= 0. We want to show that the
equation [

A
−λB

]
x =

[
Φv
Ψv

]
(20)

has a solution x. If this can be done, then since [AT , BT ]
[

Φ
Ψ

]
= 0, it follows that x

is an eigenvector of the pencil ATA− µBTB with eigenvalue λ.

To show (20) means to show that the vector
[

Φv
Ψv

]
is in the column space of the

matrix
[

A
−λB

]
. It suffices to show that[

Φv
Ψv

]
⊥
[
y
z

]
(21)

wherever [
AT , −λBT

] [ y
z

]
= 0.(22)

Rewrite (22) as [AT , BT ]
[

y
−λz

]
= 0, showing that

[
y
−λz

]
∈ N (C). We, therefore,

must have

y = Φw +N(AT )ηA,

−λz = Ψw +N(BT )ηB
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for some vectors w, ηA, and ηB of appropriate size. Substituting y and z into (21)
implies [

yT , zT
] [ Φv

Ψv

]
= wT

(
ΦTΦv − 1

λ
ΨTΨv

)
+

(
ηTAN(AT )TΦv − 1

λ
ηBN(BT )TΨv

)
= 0.

The assertion is therefore proved.
Corollary 2.2. The generalized singular values λi, i = 1, . . . , s, are the sta-

tionary values associated with the optimization problem (18).
Proof. We have already seen in Theorem 1.2 how the generalized singular values

of (A,B) are related to the pencil ATA− µBTB, which are now related to the pencil
ΨTΨ−λΦTΦ. By Theorem 1.2 again, we conclude that the generalized singular values
of (A,B) can be found from the stationary values associated with the optimization
problem

max
Φv 6=0

‖Ψv‖
‖Φv‖ ,(23)

which is equivalent to (18).
We now characterize the stationary points of (18). In particular, we prove the

following result, which completes our duality theory. Aside from the fundamental
connection between the GSVD and its duality theory, the eigenvalue deflation of the
proof should be of special interest in its own right.

Theorem 2.3. Suppose [
x1

−y1

]
. . .

[
xs
−ys

]
are stationary points for the problem (18) with corresponding stationary values λ1, . . . , λs.
Define

ui :=
xi
‖xi‖

,(24)

vi :=
yi
‖yi‖

.(25)

Then the columns of the matrices Ũ := [u1, . . . , us] and Ṽ := [v1, . . . , vs] are the left
generalized singular vectors of A and B, respectively.

Proof. Suppose
[

x1

−y1

]
is an associated stationary point of (18) with the sta-

tionary value λ1. (The ordering of which stationary value is found is immaterial in
the following discussion. We assume λ1 is found first.) Taking this vector to be the
first basis vector in N (Z), we may write[

Φ
Ψ

]
=

[
x1 Φ2

−y1 Ψ2

]
,

where Φ2 ∈ Rm×(s−1) and Ψ2 ∈ Rp×(s−1) are to be defined below. Consider the
stacked matrix

Z2 :=


AT BT

N(AT )T 0
0 N(BT )T

xT1 0

 .
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Note that, due to the last row in Z2, the null space of Z2 is a proper subspace of the
null space of Z with one less dimension. We may, therefore, use a basis of the null

space of Z2 to form the columns of the matrix
[

Φ2

Ψ2

]
. In this way, we attain the

additional property that

xT1 Φ2 = 0.

Note that the eigenvector of (19) corresponding to eigenvalue λ1 is the same as the
stationary point for the problem (23) with stationary value λ1. Since (23) is simply a

coordinate representation of (18) and we already assume that
[

x1

−y1

]
is a stationary

point associated with (18), the eigenvector of (19) corresponding to λ1 must be the
unit vector e1 ∈ Rq. It follows that

yT1 Ψ2 = 0,

and hence

ΨTΨ− λΦTΦ =

[
yT1 y1 − λxT1 x1 0

0 ΨT
2 Ψ2 − λΦT2 Φ2

]
.

Thus we have shown that the eigenvalues of the pencil ΨT
2 Ψ2 − λΦT2 Φ2 are exactly

those of the pencil ΨTΨ− λΦTΦ with λ1 excluded. Note that the submatrix
[

Φ2

Ψ2

]
spans a null subspace of Z that is complementary to the vector

[
x1

−y1

]
. After the

first stationary point is found, we may, therefore, deflate (18) to the problem

max

Z2

[
x
−y

]
=0,x 6=0

‖y‖
‖x‖ .(26)

A stationary point of (26) will also be a stationary point of (18) since it gives the
same stationary value in both problems. This deflation procedure may be continued
until all nonzero stationary values are found.

Then, by construction, ŨT Ũ = I and Ṽ T Ṽ = I. Furthermore, we have

ŨTA = ΛṼ TB,

which completes the proof.
That is, we have derived two matrices Ũ and Ṽ that play the same role as that

of U2 and V2, in (9), respectively.

3. Summary. We have discussed a variational formulation for the GSVD of a
pair of matrices. In particular, we characterize the role of the left generalized singular
vectors in this formulation.

We summarize the analogies between the SVD and the GSVD in Table 1. The
stationary values in any of the variational formulations give rise to the corresponding
singular values.

There is a close correspondence between the (generalized) eigenvalue problem and
the (generalized) singular value problem, as is indicated in Theorems 1.1 and 1.2. The
results in Theorems 2.1 and 2.3 apparently are new and shed light on understanding
the left singular vectors.
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Table 1

Comparison of variational formulations between SVD and GSVD.

Regular problem Generalized problem

Decomposition UTA = SV T UTAX = ΛV TBX

See formula (1) See formula (13)

Right singular vector V X

Variational formula
max ‖Ax‖

‖x‖x 6=0
max ‖Ax‖

‖Bx‖Bx 6=0

(including zero σi, λi) See formula (2) See formula (11)

Left singular vector U [UT , V T ]T

Variational formula

max ‖y‖
‖x‖[

AT I
N(AT )T 0

][
x
−y

]
=0,x 6=0

max ‖y‖
‖x‖ AT BT

N(AT )T 0
0 N(BT )T

[ x
−y

]
=0,x 6=0

( = max ‖AT x‖
‖x‖ )

AT x 6=0,x 6=0

(only positive σi, λi) See formula (12) See formula (18)

Some of the available numerical methods and approaches for computing the GSVD
are available in [2, 7, 8, 10]. The deflation process used in the characterization of
the left singular vectors can be carried out effectively by updating techniques [4]. We
anticipate that the discussion here might lead to a new numerical algorithm, especially
when a few singular values are required and the matrix C is sparse.

Acknowledgment. We want to thank an anonymous referee for the many valu-
able suggestions that significantly improved this paper.
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Abstract. Let Mm,n be the space of m × n complex matrices. For A,B ∈ Mm,n, denote
the Hadamard (or Schur) product of A and B by A ◦ B. Given A ∈ Mm,n, let σ1(A) ≥ σ2(A) ≥
· · · ≥ σmin{m,n}(A) be the ordered singular values, and the decreasingly ordered Euclidean row and
column lengths of A are denoted by r1(A) ≥ r2(A) ≥ · · · ≥ rm(A) and c1(A) ≥ c2(A) ≥ · · · ≥ cn(A),
respectively. It is shown that for any A,B ∈Mm,n,

k∑
i=1

σi(A ◦B) ≤
k∑
i=1

min{ci(A), ri(A)}σi(B),

k = 1, 2, . . . ,min{m,n}.

This settles, in a stronger form, a conjecture of R. A. Horn and C. R. Johnson [Topics in Matrix
Analysis, Cambridge University Press, New York, 1991, p. 344] affirmatively.

Key words. singular values, Hadamard products

AMS subject classifications. 15A18, 15A42, 15A45

PII. S0895479896309645

1. Introduction. Let Mm,n be the space of m×n complex matrices and Mn ≡
Mn,n. For A = [aij ], B = [bij ] ∈Mm,n, the Hadamard product of A and B is A ◦B ≡
[aijbij ]. Much work has been done for the singular values of Hadamard products. See
[2] and [3].

We always arrange the singular values of A ∈Mm,n in decreasing order σ1(A) ≥
σ2(A) ≥ · · · ≥ σmin{m,n}(A). Denote the decreasingly ordered Euclidean row and col-
umn lengths ofA ∈Mm,n by r1(A) ≥ r2(A) ≥ · · · ≥ rm(A) and c1(A) ≥ c2(A) ≥ · · · ≥
cn(A), respectively; i.e., rk(A) is the kth largest value of (

∑n
j=1 |aij |2)1/2, i = 1, . . . ,m

and ck(A) is the kth largest value of (
∑m
i=1 |aij |2)1/2, j = 1, . . . , n. In [3, p. 344] R.

A. Horn and C. R. Johnson ask whether inequalities of the form

(1)
k∑
i=1

σi(A ◦B) ≤
k∑
i=1

ci(A)αri(A)1−ασi(B)

are valid for 0 ≤ α ≤ 1 and k = 1, . . . ,min{m,n}. The only values of α for which (1)
has been proved are α = 0, 1/2, and 1 [3, Theorems 5.5.20 and 5.5.21].

In this paper we shall prove a stronger result than (1).

2. The result.
Theorem 1. For any A,B ∈Mm,n,

(2)
k∑
i=1

σi(A ◦B) ≤
k∑
i=1

min{ci(A), ri(A)}σi(B)

∗Received by the editors September 20, 1996; accepted for publication (in revised form) by T.
Ando November 22, 1996.

http://www.siam.org/journals/simax/18-4/30964.html
†Institute of Mathematics, Peking University, Beijing 100871, China (zhan@sxx0.math.pku.

edu.cn).
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k = 1, 2, . . . ,min{m,n}.

We need consider only the square case m = n, since nonsquare matrices can be
augmented to square ones with zero blocks. For Hermitian matrices H,G ∈ Mn we
write H ≤ G to mean that G −H is positive semidefinite. Denote by I the identity
matrix. The key observation is the following fact.

Lemma 2. For any A,B ∈Mn we have
(a) (A ◦B)(A ◦B)∗ ≤ σ1(B)2I ◦ (AA∗),
(b) (A ◦B)∗(A ◦B) ≤ σ1(B)2I ◦ (A∗A), and
(c) σi(A ◦B) ≤ min{ci(A), ri(A)}σ1(B) for i = 1, 2, . . . , n.
Proof. It is known [2, p. 116] that

(3) (A ◦B)(A ◦B)∗ ≤ (AA∗) ◦ (BB∗)

for all A,B ∈Mn. Since BB∗ ≤ σ1(B)2I, the Schur product theorem implies

(4) (AA∗) ◦ (BB∗) ≤ (AA∗) ◦ (σ1(B)2I).

Combining (3) with (4) yields (a). Now replace A and B in (a) by their adjoints to get
(b). Note that 0 ≤ X ≤ Y =⇒ σi(X) ≤ σi(Y ) (i = 1, 2, . . .) [5, Corollary 7.7.4(c)].
By the definition of ri(A) and ci(A), (c) follows from (a) and (b).

The next result is a summary of some ideas in [1] and [4], from which we may
establish the main theorem.

Lemma 3. Let A ∈Mn and α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 be given, and suppose

k∑
i=1

σi(A ◦B) ≤
k∑
i=1

αiσ1(B), k = 1, . . . , n

for all B ∈Mn. Then

k∑
i=1

σi(A ◦B) ≤
k∑
i=1

αiσi(B), k = 1, . . . , n

for all B ∈Mn.
Proof. A matrix K ∈ Mn is called a rank r partial isometry if σ1(K) = · · · =

σr(K) = 1 and σr+1(K) = · · · = σn(K) = 0. The proof of Lemma 8 in [1] with

ci(X)ci(Y ) replaced there by αi shows that |tr[(A ◦Kr)Ks]| ≤
∑min{r,s}
i=1 αi for any

partial isometries Kr,Ks ∈ Mn with respective ranks r and s. Next the argument
following Lemma 10 in [1] completes the proof of this lemma.

Proof of Theorem 1. We need only prove the square case m = n. Lemma 2(c)

implies
∑k
i=1 σi(A ◦ B) ≤

∑k
i=1 min{ci(A), ri(A)}σ1(B) for k = 1, . . . , n. Applying

Lemma 3 completes the proof.
Since for any 0 ≤ α ≤ 1, min{ci(A), ri(A)} ≤ ci(A)αri(A)1−α, (2) is evidently

sharper than (1).
Finally we remark that the weak multiplicative majorization analogue of (2),

which is stronger than (2), is, in general, false. Consider the following example:

A = I2 and B =

(
1 1
1 1

)
.



SINGULAR VALUES OF HADAMARD PRODUCTS 1095

Acknowledgments. The author wishes to thank Professor T. Ando for his en-
couragement and the three referees for their helpful suggestions which make the paper
more succinct.

REFERENCES

[1] T. Ando, R. A. Horn, and C. R. Johnson, The singular values of a Hadamard product: A
basic inequality, Linear and Multilinear Algebra, 21 (1987), pp. 345–365.

[2] R. A. Horn, The Hadamard product, in Matrix Theory and Applications, Proceedings of
Applied Mathematics, Vol. 40, C. R. Johnson, ed., AMS, Providence, RI, 1990.

[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[4] R. A. Horn and C. R. Johnson, Hadamard and conventional submultiplicativity for unitarily
invariant norms on matrices, Linear and Multilinear Algebra, 20 (1987), pp. 91–106.

[5] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.


	SJMAEL_V18_i1_p0001.pdf
	SJMAEL_V18_i1_p0021.pdf
	SJMAEL_V18_i1_p0030.pdf
	SJMAEL_V18_i1_p0037.pdf
	SJMAEL_V18_i1_p0052.pdf
	SJMAEL_V18_i1_p0066.pdf
	SJMAEL_V18_i1_p0074.pdf
	SJMAEL_V18_i1_p0083.pdf
	SJMAEL_V18_i1_p0104.pdf
	SJMAEL_V18_i1_p0119.pdf
	SJMAEL_V18_i1_p0124.pdf
	SJMAEL_V18_i1_p0140.pdf
	SJMAEL_V18_i1_p0159.pdf
	SJMAEL_V18_i1_p0181.pdf
	SJMAEL_V18_i1_p0191.pdf
	SJMAEL_V18_i1_p0223.pdf
	SJMAEL_V18_i1_p0249.pdf
	SJMAEL_V18_i1_p0258.pdf
	SJMAEL_V18_i1_p0264.pdf
	SJMAEL_V18_i2_p0265.pdf
	SJMAEL_V18_i2_p0279.pdf
	SJMAEL_V18_i2_p0291.pdf
	SJMAEL_V18_i2_p0305.pdf
	SJMAEL_V18_i2_p0312.pdf
	SJMAEL_V18_i2_p0334.pdf
	SJMAEL_V18_i2_p0348.pdf
	SJMAEL_V18_i2_p0360.pdf
	SJMAEL_V18_i2_p0369.pdf
	SJMAEL_V18_i2_p0393.pdf
	SJMAEL_V18_i2_p0403.pdf
	SJMAEL_V18_i2_p0419.pdf
	SJMAEL_V18_i2_p0435.pdf
	SJMAEL_V18_i2_p0450.pdf
	SJMAEL_V18_i2_p0464.pdf
	SJMAEL_V18_i2_p0482.pdf
	SJMAEL_V18_i2_p0499.pdf
	SJMAEL_V18_i2_p0518.pdf
	SJMAEL_V18_i2_p0519.pdf
	SJMAEL_V18_i3_p0521.pdf
	SJMAEL_V18_i3_p0535.pdf
	SJMAEL_V18_i3_p0552.pdf
	SJMAEL_V18_i3_p0566.pdf
	SJMAEL_V18_i3_p0590.pdf
	SJMAEL_V18_i3_p0615.pdf
	SJMAEL_V18_i3_p0633.pdf
	SJMAEL_V18_i3_p0653.pdf
	SJMAEL_V18_i3_p0693.pdf
	SJMAEL_V18_i3_p0706.pdf
	SJMAEL_V18_i3_p0733.pdf
	SJMAEL_V18_i3_p0752.pdf
	SJMAEL_V18_i3_p0775.pdf
	SJMAEL_V18_i4_p0793.pdf
	SJMAEL_V18_i4_p0818.pdf
	SJMAEL_V18_i4_p0827.pdf
	SJMAEL_V18_i4_p0842.pdf
	SJMAEL_V18_i4_p0861.pdf
	SJMAEL_V18_i4_p0868.pdf
	SJMAEL_V18_i4_p0887.pdf
	SJMAEL_V18_i4_p0893.pdf
	SJMAEL_V18_i4_p0913.pdf
	SJMAEL_V18_i4_p0938.pdf
	SJMAEL_V18_i4_p0959.pdf
	SJMAEL_V18_i4_p0981.pdf
	SJMAEL_V18_i4_p1000.pdf
	SJMAEL_V18_i4_p1013.pdf
	SJMAEL_V18_i4_p1035.pdf
	SJMAEL_V18_i4_p1065.pdf
	SJMAEL_V18_i4_p1082.pdf
	SJMAEL_V18_i4_p1093.pdf

